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ABSTRACT

Visual in-context prompting has recently made promising progress, achieving
training-free segmentation with a generalized model derived from large-scale pre-
training. However, we observe that these in-context segmentation models fail on
the anomaly detection task, e.g., visual inspection. In this study, we propose iCAS,
a novel model for In-Context Anomaly Segmentation enabling automatic defect
annotation and visual prompting anomaly segmentation. The framework is built
upon an in-context mask transformer, further enhanced by a greedy query selection
strategy and a mask-level feature matching module to improve both sensitivity and
generalization. Further, we propose the General-to-Specific pre-training to solve the
weak generalization problem caused by the scarcity of anomalous samples. Finally,
we conduct comprehensive experiments under a variety of anomaly detection and
segmentation tasks. Evaluations on multiple publicly available datasets show the
generalization and effectiveness of our method.

1 INTRODUCTION

Recent advances in large-scale pre-trained visual in-context models have led to significant progress
in promptable semantic segmentation, demonstrating impressive adaptability across diverse domains
and tasks Wang et al.| (2023bja); [Kirillov et al|(2023); Zhang et al.| (2024a)); Meng et al.| (2024).
However, developing a general anomaly segmentation model for industrial visual inspection remains
uniquely challenging. Unlike conventional segmentation tasks, anomaly segmentation in industrial
settings demands the precise localization of subtle, fine-grained, and often low-contrast deviations
from normal regions Bergmann et al.| (2019); [Zou et al.| (2022). The inherently subtle nature of
anomalies, combined with the scarcity of labeled anomaly data, makes it particularly difficult to train
models that generalize effectively to diverse and unseen anomalies. Moreover, despite the strong
generalization capabilities of recent large-scale pre-trained segmentation models such Kirillov et al.
(2023)), their representations remain optimized for broad semantic boundaries rather than the subtle,
fine-grained deviations characteristic of industrial anomalies. In contrast, an in-context segmentation
paradigm enables the model to adapt its behavior dynamically based on a few provided normal or
anomalous examples, without the need for full retraining. This paradigm is particularly valuable
in industrial inspection, where sample diversity is high and annotation budgets are limited. By
leveraging contextual prompts from a small support set, the model can refine anomaly localization,
improve boundary precision, and flexibly accommodate novel anomaly types as they arise.

Prior studies on general anomaly segmentation have primarily focused on vision-language models
such as CLIP |Radford et al.[(2021). WinCLIP Jeong et al. (2023) introduces handcrafted text prompts
to represent normal and anomalous states, enabling anomaly localization, but its effectiveness is
constrained by the limited expressiveness of crafted textual descriptions and the domain gap between
text and visual features. To address these limitations, AnomalyCLIP [Zhou et al.| (2023)) learns
anomaly-specific text prompts from additional anomalous datasets to facilitate unified zero-shot
anomaly segmentation, though it still fundamentally relies on text prompts. Recently, InCLTR Zhu
& Pang| (2024) proposes using normal image samples as in-context prompts, improving anomaly
detection performance through collaborative text and image prompting. Despite these advances, all
of these methods depend heavily on textual prompts, which restrict their ability to achieve precise
segmentation boundaries compared to visual promptable models Kirillov et al.| (2023]).
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Figure 1: An illustration of achieving iCAS via General-to-Specific pretraining.

Promptable visual in-context models such as SAM [Kirillov et al.|(2023) have demonstrated remark-
able generalization capabilities through large-scale pre-training on semantic segmentation datasets,
enabling interactive segmentation across a variety of tasks. Nevertheless, SAM’s performance in
anomaly segmentation is limited, often requiring extensive user interactions to produce accurate
results Ji et al.| (2024)); [Yang et al.| (2024). This limitation is primarily attributed to the substantial
domain gap between SAM’s pre-training data and real-world anomaly distributions. As an interactive
segmentation model, SAM is not inherently able to perform automated cross-image inference based
on in-context images and masks. To address this issue, approaches like PerSAM [Cheng et al.| (2021)
and Matcher |[Liu et al.| (2024c) perform customized in-context inference by feeding SAM with
localization priors from extra modules. Also, SegIC Meng et al.| (2024) a Matcher |Liu et al |
propose an end-to-end model trained from scratch to perform in-context segmentation with sample
prompts. These methods highlight that current visual in-context models struggle to generalize directly
to anomaly segmentation and often require the collaboration of multiple auxiliary models.

To address these challenges, we propose the In-Context Anomaly Segmentation (iCAS) model
together with a General-to-Specific pre-training paradigm, as show in Fig. [T} The iCAS model
is designed to enhance in-context reasoning and enable precise anomaly localization, leveraging
limited anomaly-specific data. Meanwhile, the General-to-Specific strategy aims to systematically
overcome the scarcity and diversity limitations of anomalous samples, progressively refining the
model’s capacity to handle diverse anomaly types. Together, these innovations enable robust and
scalable anomaly segmentation without the need for extensive anomaly-specific datasets.

Specifically, iCAS is adapted from the mask classification transformer architecture (Cheng et al.
and incorporates an in-context query matching mechanism. The model first generates a set of
class-agnostic masks using a mask decoder and subsequently matches and aggregates these masks
through an in-context transformer decoder by comparing semantic tokens extracted from the target
and reference images. To further enhance feature selection, we introduce a Greedy Query Selection
(GQS) mechanism, which applies an active learning strategy to sample representative features from
the image embeddings as content queries. During inference, iCAS is capable of flexible in-context
reasoning based on various forms of context, including interactive masks, anomaly-mask pairs, or
normal reference samples. To increase the model’s sensitivity to subtle anomalous content, we
propose the Mask-level Feature Matching (MFM) module, which facilitates finer discrimination
between normal and abnormal regions.

To fully exploit the potential of iCAS under limited anomaly data conditions, we introduce the
General-to-Specific training paradigm. In this paradigm, the model is first pre-trained on large-scale
generic semantic segmentation datasets to acquire strong mask prediction and in-context segmentation
capabilities. It is subsequently re-trained on anomaly-specific datasets, allowing it to refine its ability
to predict anomaly masks using the limited available anomalous samples. This two-stage strategy
bridges the gap between generic semantic understanding and precise anomaly localization, effectively
leveraging the strengths of both abundant generic data and scarce anomaly-specific examples.

Overall, our contribution can be summarized as:

- We introduce the iCAS model, which utilizes an in-context transformer, a greedy query selection
mechanism, and mask-level feature matching to enhance the localization of anomalous regions.

- We propose a General-to-Specific paradigm for in-context anomaly segmentation pre-training, aiming
to bridge the gap between general semantic segmentation and specialized anomaly segmentation.
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- Extensive experiments and ablation studies are conducted across various anomaly segmentation and
detection tasks to validate the effectiveness of the proposed methods.

2 RELATED WORK

Anomaly Segmentation Visual anomaly segmentation is usually defined as unsupervised learning
that discriminates fine-grained anomalies based on normal samples |Pang et al.| (2021)). Considering a
few anomaly samples available in real application scenarios, some recent studies have also focused
on open-set supervised anomaly segmentation tasks Ding et al.| (2022); [Zhu et al.|(2024). Anomaly
segmentation generally includes reconstruction-based [Bergmann et al.| (2018)); Shi et al.| (2021); You
et al.[(2022); Salehi et al.| (2021); |Deng & Li (2022); [Bergmann et al.| (2020), synthesis-based |L1
et al.| (2021)); Zavrtanik et al.|(2021); |Zhang et al.| (2024b); Liznerski et al.| (2020), and embedded-
based |Defard et al.[(2021); Roth et al.|(2022); Xie et al.|(2023)) methods, while its core proposition is
to discover and learn powerful discriminative representations to recognize anomalous patterns. In
particular, some studies |Santos et al.| (2023)); |Costanzino et al.[|(2024) have found that robust pre-
trained visual representations achieve powerful anomaly segmentation performance without training.
To obtain anomaly segmentation models with transferability and generalizability, there are also
studies to design specialized visual pre-training paradigms, such as RegAD with a feature registration
model |[Huang et al.|(2022)) and MetaUAS with a change detection model |Gao| (2024)), to achieve few-
shot anomaly detection. Recently, large pre-trained vision-language models, such as CLIP Radford
et al.| (2021)), have demonstrated strong promptable perception and in-context transfer abilities on
downstream visual tasks. WinCLIP Jeong et al.|(2023)) presents to enhance CLIP with handcrafted
text prompts to enable powerful zero-shot and few-shot visual anomaly segmentation performance.
AnomalyCLIP |Zhou et al.| (2023)) further proposes learnable generic textual prompts to optimize the
precision of CLIP for anomaly detection and segmentation. Meanwhile, InNCTRL [Zhu & Pang| (2024)
incorporates the visual feature residuals of CLIP to achieve contextual anomaly detection for test
samples by utilizing a few normal samples as references. Despite the promising results achieved with
text—vision alignment, Musc [Li et al.| (2024a) reveals that comparison between visual features can
lead to superior anomaly localization ability. UniVAD |Gu et al.| (2025)) further shows that leveraging
the collaborative cues from multiple foundation models with component-level clustering yields a
unified training-free few-shot anomaly detection framework across diverse domains. DictAS|Qu et al.
(2025)) enhances CLIP-based anomaly segmentation by introducing a dictionary-learning mechanism
that performs sparse dictionary lookup to robustly identify unseen anomalous patterns. Unlike the
previously mentioned approaches that use native or fine-tuned language—vision models, we focus on
training a large anomaly segmentation model from scratch with vision-only in-context learning.

In-Context Segmentation Recent developments in in-context segmentation began with the Seg-
ment Anything Model (SAM) [Kirillov et al.[(2023), which demonstrated that a single, promptable
segmentation network can generalize to diverse objects without task-specific training. After that,
MobileSAM [Zhang et al.|(2023)) distills SAM’s heavyweight encoder into a compact architecture
that supports real-time inference on edge devices. In parallel, HQ-SAM |Ke et al.[(2023) targets
mask fidelity by integrating a learnable high-quality token into the decoder and fusing it at multi-
ple feature levels to produce crisper boundaries and finer details. To extend SAM’s cross-image
in-context segmentation capability, one-shot approaches such as Matcher |Liu et al.| (2024c)) guide
mask prediction by matching deep features between a reference concept and a target image, and Per-
SAM [Zhang et al.|(20244) personalizes SAM’s outputs through a lightweight target-guided attention
and minimal semantic prompts. Novel frameworks such as SINE|Liu et al.| (2024b)) propose a simple
in-context learning framework to address task ambiguity in promptable segmentation by training a
mask transformer decoder|Cheng et al.|(2021)) from scratch with frozen DINOv2 features. Meanwhile,
SeglC Meng et al.| (2024) proposes to utilize meta-dense correspondences, such as the visual features
of DINOV?2 or the vision-language features of CLIP, to train the mask decoder for potential mask
prediction. However, recent studies reveal the limitations of SAM for anomaly detection or surface
defect segmentation |Ji et al.|(2024); |Cao et al.|(2023); Yang et al.|(2024), where more interactions and
guidance are usually required to obtain more accurate mask prediction boundaries. Thus, we propose
a generalized in-context anomaly segmentation model and training strategy to achieve superior
discrimination of anomaly boundaries.
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Figure 2: An overview of the iCAS framework. We use a frozen pre-trained encoder to extract visual
features, and then train the mask decoder and the in-context decoder. For in-context learning, we
use mask pooling to obtain prompt queries and greedy query selection to obtain content queries for
context token learning, which are then used for mask set matching.

3 METHOD

In this section, we first introduce the proposed visual In-Context Anomaly Segmentation (1ICAS)
framework in Sec[3.1] which consists of a mask decoder that generates a diverse set of candidate
masks and an in-context transformer decoder that matches these masks to anomaly prompts. Notably,
we propose a novel content query sampling method, Greedy Query Sampling, to realize sampling
class-agnostic queries from image features. After that, we present the objective of in-context learning
in Sec[3.2] In Sec[3.3] we introduce a General-to-Specific training strategy, which includes generic
pre-training and anomaly-aware pre-training. Generic pre-training aims to learn effective potential
mask generation and semantic prompt matching on a large-scale semantic segmentation dataset.
Considering the fine-grained representation in the anomaly samples, we pre-train the model on
extra anomaly detection datasets to refine the perception of anomaly content and boundaries. The
inference phase is described in Sec[3.4] iCAS performs in-context anomaly segmentation from
different prompt formulations on novel scenarios. Particularly, we introduce semantic reasoning as
well as a Mask-level Feature Matching module for enhancement.

3.1 UNIFIED FRAMEWORK

Given a collected dataset D, we randomly select a sample {I;, M;} as the target image and its
corresponding ground-truth mask. To construct a reference sample for prompting, we apply data
augmentation to {I;, M}, resulting in a new pair {I,., M,.} as reference. The detailed architecture of
our proposed iCAS is shown in Fig.[2] We use a pre-trained DINOv2Oquab et al| (2023) as a feature
encoder to extract robust visual features from input images. For each image pair I,. and I;, we extract
the F., F} € RE*HoxWo 44 the the extracted features with the frozen image encoder, where C, Hy
and W, represent the number of feature channels, and the height and width of the feature maps.

Semantic prompting aims to extract prompt queries from the in-context examples. Given the
reference image I,- and its corresponding promptable mask M,., we apply a MaskPooling operation to
generate semantic prompt queries. Specifically, for each semantic instance, we aggregate the visual
features within the regions specified by M,. and 1 — M,., to generate in a set of (abnormal) prompt

queries Qg € RW)*C and (normal) non-target prompt Q?,/tp € RW)XC for N semantic instances.

In-context transformer takes a typical transformer decoder structure |Carion et al.| (2020). The
transformer decoder typically uses randomly initialized query embeddings and positional encodings as
content queries Q0 € R < where K denotes the number of context queries. In our framework, we
additionally use prompt queries Q°, ?m.p and learnable foreground&background queries QY%,, Qp,
to support in-context anomaly recognition. In each transformer decoder layer, the initial context

query set {Q¢, @}, @0, Q% Qp, } is transformed with the target image feature F; through multi-

4
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head self- and cross-attention mechanisms. We eventually receive the output query embedding sets
{Qc, Qp, Qnip, Q g, Qng} With global context information after multiple layers of transformer.

Greedy Query Selection (GQS) is proposed
to sample representative embeddings as content  Algorithm 1 Greedy Query Selection
queries, which is inspired by conditional query Input: target features F, € RHoWoxC
selection to promote the convergence of trans- Ini tiali.ze QO =1} t

former |[Zhu et al.|(2020); Zhang et al.| (2022b); fori € (0,5 — 1) do

Li et al.|(2023); Liu et al.|(20244a). Unlike these ’ . .
methods, which require a category prior as a con- q = argmaXicr,—Qp Mijer, <%J >

0_ O
dition, GQS covers representative features and Qf Q: U{q}
preserves outliers through active learning. To ~ ¢nd for o
be specific, we convert the GQS into a k-center Return Q.

problem Farahani & Hekmatfar| (2009); Sener & Savarese|(2017), i.e., select K centroid features such
that the maximum distance between each image feature and its nearest centroid feature is minimized.
The GQS is illustrated in Algorithm [T} and more details are given in the Appendix.

Mask decoder takes the target image features F} as input and outputs the pixel embeddings P; €
REXHXW oradually via upsampling layers. Inspired by the mask classification modelCheng et al.
(2021)), we compute the dot product of content query embeddings (). and pixel embeddingsP;
to generate class-agnostic mask sets M; € REXIXW e M, = sigmoid(Q. x P;). After
pre-training on a large-scale dataset, the mask prediction has stronger transferability compared to
the per-pixel predictionZhang et al.| (2022a), providing iCAS with powerful in-context semantic
segmentation ability.

3.2 OBIECTIVE

We predict the N class probabilities for content queries Q. using {Qp,Qnip, Qug}
and {Qfg,ngp,ng} as semantic classifiers and non-target classifiers to obtain z =
{(pp7prn‘p7M )}X | probability-mask pairs. Given K predicted probability-mask pairs z and K

ground-truth segments z; = {(cf, M{)}X*,, we compute a matching cost, i.e., —pf,(c]) — piy, (c]) +
Lmask(ME, M}), to assign predictions to ground truths via the bipartite matching. pé(c] ) and
pmp(cj) are target prediction probabilities and non-target prediction classifiers, respectively, where

Dy, tp(cj ) is designed to recognize unknown content based on known prompts. L, 45 is a binary mask
loss followingZhang et al.[(2022a). For the jth ground truth, we get a o(j) index from the optimal
assignment of bipartite matching.

To train the parameters of iCAS, the overall in-context learning loss is defined as:
K

Lic(z, Zt) = Zj=1

which includes a prompt cross-entropy loss, a non-target prompt cross-entropy loss and a mask loss.
Notably, prompt classification and mask prediction are derived from maskformer|Cheng et al.|(2021)),
while the non-target prompt optimization aims to enhance the segmentation of abnormal objects.

[~ og pZ () (c]) — log Py, (7)(€]) + Lonask (MTD), M), e))

3.3 GENERIC-TO-SPECIFIC TRAINING

We propose a General-to-Specific training strategy to enable iCAS to achieve accurate in-context
anomaly segmentation: a generic pre-training phase followed by an anomaly-specific pre-training
phase. First, in the generic pre-training phase, iCAS is trained on large-scale semantic segmentation
datasets, denoted as D,. Each training sample in D, contains various objects and their corresponding
masks, enabling iCAS to learn to generate a set of class-agnostic potential masks that decompose
an image into multiple segments with precise semantic boundaries. Next, in the anomaly-specific
training phase, we further train iCAS on a semantic anomaly dataset D, where each anomalous
region is annotated with a semantic mask. For each anomaly sample, we provide a single anomaly
prompt and target, and optimize the predicted mask set to best fit the fine-grained anomaly region.
This phase specifically optimizes iCAS for accurately predicting the anomaly boundaries within the
in-context learning framework.
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Figure 3: An overview of the in-context inference for iCAS. We present the prompting process for
normal and anomaly images, respectively. Then, we show the inference process of iCAS based on
normal and anomaly prompts. Specifically, in semantic inference and mask-level feature matching,
the left and right sides refer to in-context matching for normal and anomaly prompts, respectively.

With the general-to-specific pre-training paradigm, iCAS can learn to achieve generalization from the
generic data in D, and improved sensitivity for anomaly segmentation through fine-tuning on D;.
During inference, iCAS is applied to the unseen anomaly dataset, denoted as 7, which represents the
target dataset for in-context reasoning. Importantly, 7 and D, are disjoint datasets, meaning they do
not share any samples. This ensures that 7 represents a completely separate domain from D;, with
no overlap between the two. The model generates predictions for each test sample from 7, where the
input is an image and its corresponding anomaly prompt, producing the predicted mask.

Previous methods in anomaly segmentation typically rely on anomaly-specific data augmentation
applied to normal samples in the target dataset|L1 et al.|(2021), or generate synthetic anomalies for
training on the target dataset|Zavrtanik et al.| (2021); Zhang et al.|(2024b). Other approaches utilize
meta-learning techniques on generic datasets to achieve domain adaptation |Gao| (2024); [Wu et al.
(2021)). In contrast, our method follows a General-to-Specific paradigm, where iCAS is pre-trained
on a large-scale generic dataset and fine-tuned on an anomaly-specific dataset. This allows iCAS to
generalize across domains while specializing in anomaly segmentation, without the need for direct
anomaly synthesis or domain-specific training. Our approach is designed for in-context anomaly
segmentation, enabling iCAS to adapt to a wide range of anomaly segmentation tasks and ensuring
robust performance even in novel domains.

3.4 IN-CONTEXT ANOMALY SEGMENTATION

We demonstrate the in-context inference phrase in Fig. [3] which is described in detail as follows.

Semantic Inference. The proposed iCAS can utilize anomaly image prompting and normal im-
age prompting for in-context anomaly segmentation. Given ith anomaly sample and its prompt
mask pair for anomaly image prompting, we assign a pixel-level semantic scores at position
[h,w] via semantic inference Zhang et al| (2022a), ie. S, = Y1, p' - Mi[h,w], where
pi= oxp(<Qp,Qe>)

2 4e(Qp @nip Qpg ) FP(<PRL>)
tation of known anomalous samples, which is consistent with few-shot or interactive prompt seg-
mentation |Kirillov et al.| (2023); Zhang et al.| (2024a); [Liu et al.| (2024cib). For normal image
prompting, we propose a normal promoting anomaly score S,, = Zfil p' - Milh,w], where
b= exp(<Qrg,Qe>)

2 0€{Quip Qg Qpyt XP(<P Q>
negative likelihood function Rai et al.|(2023) that estimates non-target content, i.e., normal prompts,
from the predicted queries and masks.

Intuitively, S; is only used as a result of semantic segmen-

ik The proposed S,, for anomaly detection is motivated by a

Mask-level Feature Matching. We further introduce the mask-level feature matching (MFM), where
feature-level comparison is performed for identifying anomalous regions with the potential mask set.
Given the feature map F; and the set of potential masks M, of a target sample, we calculate their
mask-level embeddings (),,, through the MaskPooling operation. The anomaly image prompting use
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0

anomaly embedding as semantic prompts Qg and normal embedding as non-targeted prompts (),

the MFM score is computed as S™/™ = S5 pi. Mi[h, w], where p' = ZQE{Q?Z;Q}Z‘;gTZ, Ty
Furthermore, for normal image prompting with a reference I,., we first get its poterpltial masks M,
by mask decoder and then compute the mask-level prompt embedding Q, € RX*C set by mask
pooling. The MFM score with normal prompts is compute as S™/™ = Zfil p* - Mi[h,w], where
pt = minjex 1— < Q! ., QI >. Note that we add the MFM score as a complement to the semantic
inference score to strengthen robustness, i.e. S5, = Sq.n, + Sff,{ m,

4 EXPERIMENTS

4.1 DATASETS

Training Data. For generic pre-training, we build a large-scale image dataset with semantic annota-
tions, collected from COCO [Lin et al.|(2014), ADE20K [Zhou et al.|(2017), and Objects365[Shao et al.
(2019), and we use SAM [Kirillov et al.| (2023) to generate additional masks for categories lacking
semantic annotations. To achieve generalizability on the AD task, we collect annotated abnormal
samples from large-scale AD datasets, ReallAD [Wang et al.|(2024) and MANTA [Fan et al.|(2024) for
anomaly-aware pre-training. The collected anomaly pre-training dataset consists of 85,564 images in
over 300 anomaly categories.

Evaluation Data. We evaluate our proposed method on multiple anomaly detection benchmarks.
For the semantic anomaly segmentation tasks, we conduct few-shot segmentation and interactive
segmentation experiments on the MVTecAD Bergmann et al.| (2019) with 15 categories and the
VisA Zou et al.| (2022) dataset with 12 categories. The detailed categories are listed in the Appendix
A.2. For the few-shot AD and open-set AD tasks, we additionally use the SDD |Tabernik et al.| (2020),
ELPV Deitsch et al.|(2019), and AFID [Silvestre-Blanes et al.| (2019) datasets as benchmarks.

4.2 IMPLEMENTATION DETAILS

For both generic pre-training and anomaly-aware re-training, we use the same training setup despite
there are different objectives. We use the pre-trained DINOvV2 as the feature encoder and keep its
parameters frozen, and train the parameters of the mask decoder, in-context transformer, and learnable
tokens. The learning rate is set to 1e~* and the batch size is set to 32. For both stages, we use
AdamW with a weight decay of 5¢ 2 to optimize the model. We set the image size to 518 x 518 and
use a strong data augmentation strategy |Ghiasi et al.| (2021)) to generate image-prompt pairs. Note that
generic pre-training takes 50 epochs and anomaly-aware re-training takes 5 epochs. For evaluation,
we use mloU for semantic segmentation and AUROC for anomaly detection.

4.3 MAIN RESULTS

Table 1: Semantic Anomaly Segmentation Results on MVTecAD and VisA in terms of mloU.

MVTecAD| CP BT HN LT CB CS GD PL TS MN SR TB ZP TL WD |Mean

PerSAM |54 163 74 35 259 52 3.6 9.0 248 27.6 89 24.8 27.6 33.0 4.1 | 15.1
Matcher 1.6 16.1 48 0.7 122 14 08 1.6 167 25 30 70 32 27 45| 53
SINE 19.5 174 6.0 28.1 18.0 13.7 8.9 33.6 21.9 4.3 51.3 8.1 349 11.5 10.3| 19.2

Ours |54.6 24.9 35.5 66.7 44.1 78.2 61.2 84.7 78.0 27.6 63.6 24.8 51.6 59.0 29.5| 51.1
VisA |CD CP CS CG FR Ml M2 Pl P2 P3 P4 PF |Mean

PerSAM | 1.7 55 103 13 154 02 01 33 11 05 64 13.0| 49
Matcher | 09 79 24 04 01 03 02 27 10 7.6 43 46 | 27
SINE 12 31 119 39 205 05 04 172 73 74 168 174 | 89

Ours | 259 583 755 655 42.0 24 22 27.6 229 152 278 825 373
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Semantic Anomaly Segmentation. The evaluation of semantic anomaly segmentation focuses
on comparisons with PerSAM |Zhang et al.[(2024a), Matcher |Liu et al.| (2024c), and SINE |L1u et al.
(2024b), methods that aim to perform contextual segmentation from a prompt example without
training. In particular, we take one sample from each of all the anomaly types from each object
category as prompts, and then evaluate them on each category individually. The overall results on
the MVTecAD and VisA datasets are shown on Fig. [T} where each object category is denoted by an
abbreviation. The results demonstrate that current general in-context segmentation models fail on
anomaly segmentation tasks, despite their impressive performance on general semantic segmentation
tasks. Notably, our proposed iCAS model achieves surprising generalization and robust performance
on semantic anomaly segmentation, achieving an average mloU of 51.1% and 37.3% on MVTecAD
and VisA datasets, respectively. Compared to the state-of-the-art (SOTA) method, SINE |L1u et al.
(2024b), our method achieves a remarkable increase of 31.9% mloU on MVTecAD and 28.4% mloU
on VisA. Our results show that iCAS exhibits powerful training-free anomaly segmentation ability,
which can directly generate accurate segmentation masks in a wide range of anomaly detection
scenarios.

Table 2: Evaluation of Interactive Anomaly Segmentation on MVTecAD and VisA in terms of mIoU.

MVTecAD‘ CP BT HN LT CB CS GD PL TS MN SR TB ZP TL WD‘Mean

SAM 42.5 41.6 50.0 49.8 51.1 31.5 31.7 39.8 32.4 44.1 33.0 22.4 14.5 63.2 27.5| 39.1
MB-SAM |[17.2 34.7 48.6 28.5 48.9 31.2 8.8 32.4 30.9 38.0 34.4 16.3 15.4 66.7 17.7| 32.1
HQ-SAM |53.1 44.4 51.2 59.8 54.4 37.8 38.7 55.4 41.5 63.9 40.1 39.0 19.6 80.1 49.9| 48.8
Ours |74.8 44.6 51.6 72.2 52.4 81.9 69.6 86.8 81.1 35.3 79.5 48.4 55.3 69.7 52.4| 63.7
VisA |CD CP CS CG FR MI M2 PI P2 P3 P4 PF |Mean
SAM 25 222 31 288 46 43 27 102 11.5 200 23 95 | 107
MB-SAM | 2.7 58 1.0 310 34 28 28 88 89 164 21 11.1] 8.1

HQ-SAM | 90 267 85 359 59 65 35 115 124 192 23 152 13.1
Ours |35.7 674 71.6 67.8 68.1 7.0 4.7 473 304 324 394 83.2| 46.3

Interactive Anomaly Segmentation. The evaluation of interactive anomaly segmentation follows
promptable segmentation task proposed in SAM Kirillov et al.|(2023). As show in Tab. 2] we compare
the iCAS with state-of-arts interactive segmentation model, including SAM [Kirillov et al.| (2023)),
Mobile-SAM [Zhang et al.| (2023)) and HQ-SAM [Ke et al.[(2023). For these methods, we directly
input the point coordinates to obtain interactive segmentation results. Particularly, we use a simplified
interactive approach for iCAS, which is to convert points or boxes into area masks as prompts.
Note that we randomly sample positive and negative point pairs for all methods as the interactive
prompts. Evidently, our proposed iCAS outperforms the competing methods by a significant margin.
Furthermore, while these interactive models still have impressive results on MVTecAD, they fail to
segment tiny defects on VisA, of which our approach has a notable improvement.

Table 3: Comparison of few-shot anomaly detection AUROC on MVTecAD (MVT) Bergmann
et al.| (2019), VisA [Zou et al.[(2022)), SDD [Tabernik et al.| (2020), ELPV |Deitsch et al.|(2019)), and
AFID [Silvestre-Blanes et al.[(2019) datasets. The results of the other methods are quoted from Zhu
& Pang| (2024); [Li et al.[(2024b), while ours is the mean of 5 random runs.

| 2-shot | 4-shot | 8-shot

‘MVT VisA SDD ELPV AFID‘MVT VisA SDD ELPV AFID‘MVT VisA SDD ELPV AFID
RegAD 82.4 557 49.9 57.1 564|857 574 525 59.6 59.6|88.2 58.9 594 633 60.3
PatchCore| 85.8 81.7 90.2 71.6 739 |88.5 84.3 923 75.6 733|922 86.0 925 83.7 745
WiIinCLIP | 93.1 84.2 942 726 72.6|94.0 858 943 754 764|947 86.8 94.1 814 79.6

InCTRL |94.0 85.8 97.2 839 76.1 945 877 97.5 846 79.0|953 887 97.8 872 80.6
One2N 95.1 87.2 96.8 85.6 783|956 88.6 97.8 87.3 82.6|96.2 899 98.4 90.6 84.7

Ours | 97.6 92.8 984 842 81.2|97.8 93.0 98.8 840 88.8|98.2 939 994 83.0 88.7

Method

Few-shot Unsupervised Anomaly Detection. Our proposed iCAS can directly perform unsuper-
vised anomaly detection tasks that rely only on normal samples. However, other visual in-context
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models are unable to utilise only non-target prompts, apart from utilizing additional AD model
guidance (2023); (2025). We compare iCAS with SOTA few-shot AD models and
the results are presented in Tab. 3] It can be noticeably observed that the performance of iCAS is
more powerful than other few-shot AD algorithms on various datasets. We also show the results with
increasing number of shots to verify the robustness and scalability of iCAS. The overall experiments
prove that our proposed iCAS has a strong generalization ability with anomaly detection tasks.

Open-set Supervised Anomaly Detection. Inspired by . .
open-set supervised anomaly detection studies :Sllzlseijtggfs n(-)sfex}n}géngly detection re-
(2022), we allow iCAS to detect anomalies using nor-
mal samples with a few annotated anomalous samples. ~ Method | MVTecAD SDD ELPV ~ AFID
We compare with the SOTA methods DevNet|Pang et al.|  DevNet 83.2 851 810 609
(2019), DRA [Ding et al(2022) and AHL [Zhu et al.| Egﬁ gg? gg-; %-g ggz
and follow their settings to randomly select an anomalous . - - -
sample as input. This task involves exploiting the open O | 992 %85 81 919
set recognition ability of the AD models in scenarios where anomalous samples are available. The
overall results are shown in Tab. 4] where our method significantly outperforms the other methods.

A v
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Figure 4: Qualitative comparison of in-context anomaly segmentation on MVTecAD and VisA.

Evaluation on Medical Datasets. To demonstrate the effectiveness of our method in the medical

domain, we conducted additional experiments on Retinal OCT (2019); [Kermany et al.
(2018), Brain MRI|Baid et al| (2021), and Liver CT|Landman et al.| (2015)); Bilic et al.|(2023) datasets.

The results in Tab. [}&{6] show that iCAS significantly outperforms existing in-context segmentation
models in both interactive and semantic settings. Specifically, in interactive anomaly segmentation,
iCAS consistently surpasses SAM, notably more than doubling the mIoU on Brain MRI and Liver CT.
Furthermore, in semantic anomaly segmentation, iCAS demonstrates superior robustness compared to
PerSAM and Matcher, particularly on the Liver CT dataset where it achieves a substantial lead. These
confirm that iCAS possesses strong generalization capabilities, extending its efficacy effectively from
industrial inspection to complex medical imaging tasks.

Table 5: Results of interactive anomaly seg- Table 6: Results of semantic anomaly seg-
mentation of SAM and iCAS on medical mentation on medical datasets
datasets Dataset | Method | mIoU FB-IoU
Dataset | Method | mIoU FB-IoU PerSAM | 136 417
Retinal OCT SAM 43.5 63.7 Retinal OCT | Matcher 8.3 34.2
etina iCAS | 545 720 iCAS | 310 619
Brain MRI SAM 21.0 52.7 PerSAM 13.6 53.6
ramn iCAS 49 4 72.9 Brain MRI Matcher 10.7 42.9
Liver CT SAM | 205 584 iCAS | 51 352
et iCAS | 423 70.6 PerSAM | 14.1 15.8
Liver CT Matcher 6.5 114
iCAS 47.3 66.8
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4.4 VISUALIZATION

To qualitatively evaluate the effectiveness of our method, we show comparison of the context
segmentation results with other SOTA models in Fig. ] In semantic anomaly segmentation, our
method can precisely segment anomalous regions using prompts of masked regions, while the generic
model SINE [Liu et al.|(2024b)) is insensitive to anomaly boundaries. In addition, our method allows
for segmenting anomalous regions by interactive prompting, e.g., clicking on the region. Although
SAM Kirillov et al.|(2023) can generate precise boundaries, it suffers from semantic ambiguity in
segmenting unexpected objects.

4.5 ABLATION STUDY

Table 7: Ablations of the training strat- As shown in Tab. |/, we conduct experiments on differ-
ent combinations of components for iCAS. First, we train
egy and proposed modules, GQS and . ..
: R the models on the general semantic training set and the
MFM. G-Train and A-Train indicate the o e
anomaly training set individually and evaluate the results
separately, and our proposed general-to-specific anomaly
training strategy significantly outperforms both the general
G-Train _ A-Train GQS MFM | MVTecAD VisA  pre-training and anomaly-aware pre-training. In particu-

generic pre-training and anomaly-aware
pre-training.

v . o0 N9 lar, iCAS learns to generate category-agnostic mask sets
v v 472 329 from a large-scale general semantic dataset, while the
v ‘ 200 110 anomaly-specific dataset can optimize the boundaries of
’ M ¥2 B0 the anomaly masks matched for iCAS. Secondly, we con-
v v 472 329 . .

v v v 491 356 duct ablation studies for the proposed greedy query sam-
v v v o7 33 pling strategy and mask-level feature matching module.

For both generic pre-trained models and fully pre-trained
models, our proposed GQS and MFM are able to significantly improve their anomaly segmentation
performance, which demonstrates the adaptability of our proposed methods. Specifically, GQS and
MEFM can improve the mloU of generic models by 9.2% and 2.6% and can further improve the mIoU
of iCAS by 3.9% and 4.4% on MVTecAD and VisA, respectively.

Table 8: Ablation studies according to dataset size and model capacity.

| MVTecAD VisA MVTecAD VisA
DASELS 115U FB-ToU mloU FB-ToU Backbone }mIOU FB-ToU mloU FB-ToU
ReallAD| 43.3 684 208 59.4 DINOV2-S 424 732 249 6038
MANTA| 417 670 300 59.5 DINOV2-B| 45.0 737 334 682
Both |5L1 749 373 685 DINOV2-L| 511 749 373 685

In addition, considering the training cost of iCAS as a large visual model, we perform dataset and
model scaling law experiments separately, as shown in Tab. [8] We train the models individually on
each of the two large anomaly sample datasets, MANTA and ReallAD, and compare them with the
full model trained on them together. In this case, the model trained on ReallAD performs better on
MVTecAD, while training on MANTA achieves better results on VisA. Obviously, the full training
achieves a significantly best performance. This result reveals that more samples and anomaly types as
a training set can enhance the robustness and generalization of the model. Subsequently, we conduct
experiments on different backbones, which are small, base, and large models of DINOv2. It can be
seen that the performance of the model strengthens as the capacity of the backbone network increases,
with larger models leading to stronger feature discrimination and generalization.

5 CONCLUSION

We introduce iCAS, an in-context anomaly segmentation model that achieves semantic and interactive
prompting anomaly segmentation, as well as normal prompting anomaly detection. Specifically,
iCAS is built on an in-context mask transformer and collaborates with our proposed greedy query
selection strategy and mask-level feature matching module to capture fine-grained anomaly features.
Furthermore, we propose the General-to-Specific pre-training method, which utilizes massive seman-
tic datasets to address the challenge of insufficient pre-training generalizability caused by the scarcity
of anomaly datasets. Extensive experiments and ablation studies validate the effectiveness of iCAS.

10
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A APPENDIX

A.1 MODEL ARCHITECTURE

For the image encoder, we maintain the structure of DINOvV2 |Oquab et al.| (2023)) and freeze the
parameters as a robust feature extractor. In addition, we employ the 6 transformer layers and 200
content queries of DETR |Carion et al.|(2020) as the context transformer decoder, and use the mask
decoder structure of maskformer|Cheng et al.|(2021). The foreground and background tokens are
randomly initialized and aligned with the dimensions of the query, and are used to the in-context
contrastive learning of prompt training.

A.2 EXPERIMENT SETTING

We follow the official code implementation of PerSAM Zhang et al.| (2024a), Matcher [Liu et al.
(2024c), and SINE [Liu et al.|(2024b) for semantic anomaly segmentation and take the same visual
prompt samples for fair comparison. For interactive anomaly segmentation, we implement SAM |Kir+
illov et al.[(2023)), Mobile-SAM [Zhang et al.| (2023)), and HQ-SAM [Ke et al.| (2023) with the same
stochastic sampling points on all experiments.

We use abbreviations for categories in the semantic anomaly segmentation and interactive anomaly
segmentation experiments. In detail, MVTecAD is consist of carpet (CP), bottle (BT), hazelnut (HN),
leather (LT), cable (CB), capsule (CS), grid (GD), pill (PL), transistor (TS), metalnut (MN), screw
(SR), toothbrush (TB), zipper (ZP), tile (TL), wood (WD), while VisA contains candle (CD), capsules
(CP), cashew (CS), chewinggum (CG), fryum (FR), macaronil (M1), macaroni2 (M2), pcbl (P1),
peb2 (P2), pcb3 (P3), pcb4 (P4), pipefryum (PF).

A.3 ANOMALY SEGMENTATION WITH NORMAL AND ANOMALY PROMPTS

We compare the results of normal and anomaly prompting on the results of anomaly segmentation,
as shown in Tab.[0] Obviously, the semantic prior of the anomaly prompt produces better results.
Moreover, by combining normal and anomaly prompts, more accurate results can be predicted. This
is because anomalies are usually open-ended, and even semantic anomalies of the same type exist
with unknown semantic features. With the addition of anomaly segmentation with normal sample
prompts, better open-set anomaly segmentation results can be achieved.

Table 9: The mloU results of anomaly segmentation for normal and anomaly prompting.

MVTecAD | VisA

Normal Prompting ~ Anomaly Prompting ~ Both | Normal Prompting ~ Anomaly Prompting ~ Both
31.7 51.1 532 | 20.9 37.3 434

A.4 MORE RESULTS

To provide a more comprehensive comparison of the in-context model’s performance in anomaly
segmentation, we evaluate not only the IOU of the anomalous semantic regions but also the IOU
metrics for both the foreground and background (FB-IOU). In anomaly segmentation scenarios,
the anomalous regions are typically small while the normal regions are much larger, making it
important to consider the overall IoU across both foreground and background. As demonstrated in
Tab|[10] although various models are compared, our proposed iCAS significantly outperforms others,
exhibiting exceptional capability in distinguishing both anomalous and normal regions.

As shown in Table|1 1} DINOv2-Large consistently outperforms both DINOv1-Large and CLIP-ViT-
Large across all metrics and datasets. Compared with DINOv1, DINOv2 benefits from larger-scale
visual pre-training and improved contrastive/self-supervised objectives, which significantly strengthen
its local semantic representation capability. This allows DINOvV2 to better capture subtle and small-
scale anomalies that are common in industrial inspection scenarios. In contrast, CLIP-ViT-Large
mainly emphasizes global image—text alignment during pre-training, leading to weaker local visual
discrimination ability and consequently inferior anomaly segmentation performance.
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Table 10: The comparison of IoU and FB-IoU results for semantic anomaly segmentation and
interactive anomaly segmentation.

Dataset | MVTecAD |  VisA Dataset | MVTecAD |  VisA
Metric |IoU FB-IoU|IoU FB-IoU Metric |IoU FB-IoU|IoU FB-IoU
PerSAM 15.1 396 |49 459 SAM 39.1 48.2 |10.7 459
Matcher 53 231 |27 329 MB-SAM |32.1 38.2 |8.1 45.7
SINE 19.2 527 |89 4838 HQ-SAM |48.8 64.7 |13.1 49.7
iCAS(Ours) ‘5 1.1 749 ‘ 37.3 68.5 iCAS(Ours) ‘ 63.7 83.8 ‘46.3 77.0

Table 11: Comparison of different backbone models on MVTecAD and VisA datasets.

MVTecAD VisA
Backbone Model - -ty FB-IoU (%) mloU (%) FB-ToU (%)
CLIP-ViT-Large 40.86 68.24 3121 62.18
DINOvI-Large 45.40 72.92 33.87 65.43
DINOvV2-Large (Ours) 51.10 74.90 37.30 68.50

Table 12: Performance of iCAS under different numbers of queries (K) for Interactive and Semantic
settings.

Setting K Queries mloU (%) FB-IoU (%)

50 59.2 81.2
Interactive 100 9.7 81.7
150 61.3 82.2
200 63.7 83.8
50 47.2 73.8
Semantic 100 50.3 74.1
150 50.9 74.3
200 51.1 74.9

Table[T2)reports the performance of iCAS under varying numbers of queries (K) for both Interactive
and Semantic settings. The results show that the model remains highly stable across different K values.
Notably, even when K is reduced to 50, the Interactive mIoU only drops slightly, demonstrating that
the Greedy Query Selection (GQS) effectively captures representative features early in the sampling
process and is not overly sensitive to the specific choice of K.

A.5 COMPARISON OF ICAS WITH GENERIC ICL MODELS

Table 13: Comparison of iCAS capabilities against generic ICL models. Note that existing models
generally lack support for anomaly detection tasks.

Method Base Architecture Training Paradigm SAS IAS FSAD OSAD
SAM ViT-H SA-1B (11,000K) X v X X
SegGPT Painter (ViT-L) Painter+ ADE20K+COCO. . . (162K+273K) v X X X
HQ-SAM SAM (ViT-H) SA-1B+HQSeg-44K (11,000K+44K) X v X X
Matcher SAM (ViT-H), DINOv2 (ViT-L) SA-1B+N/A (11,000K) X X X X
SINE DINOV2 (ViT-L) ADE20K+COCO+0bj365 (776K) v v X X
iCAS (Ours) DINOV2 (ViT-L) General-to-Specific (861K) v v v v

As shown in Tab. [I3] prior approaches face significant challenges in standard anomaly detection
settings. Whether in unsupervised few-shot anomaly detection (FSOD) or few-shot anomaly detection
with anomalies (Open-set Anomaly Detection, OSAD), existing generic models fail to perform
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well. This is because these models are primarily designed to learn semantic alignment without
distinguishing between normal and abnormal variations.

On the other hand, iCAS is specifically trained to bridge this gap. Additionally, we propose a
completely novel set of model components tailored to address the anomaly segmentation problem.
These components collectively form a new reasoning mechanism that allows iCAS to significantly
outperform existing generic baselines.

Tab. [T4] presents a comparison of the methods in terms of their parameters and inference time (time
per image). The table highlights the key differences between the methods, specifically focusing on
the number of parameters and inference speed. iCAS (Ours) stands out as the most efficient method,
with only 322M parameters, roughly half the size of SAM/PerSAM and one-third the size of Matcher.
Despite its smaller parameter size, iCAS achieves the fastest inference time, requiring just 0.46
seconds per image, which is approximately 1.74x faster than SAM, 3.09x faster than PerSAM, and
25.9x faster than Matcher.

Method | Parameters (Approx.) | Inference Speed (Time per Image)
SAM 641M 0.80s
PerSAM 641M 1.42s
Matcher 945M 11.89s
iCAS (Ours) 322M 0.46s

Table 14: Comparison of methods in terms of parameters and inference speed.

A.6 VISUALIZATION OF GQS.

Previous transformer-based methods typically rely on semantic conditions as classifiers during the
query selection process. However, in anomaly detection scenarios, semantic conditions are often
unavailable, posing a significant challenge for query selection. To address this, we propose a Greedy
Query Selection (GQS) strategy that actively learns to select the most representative and independent
query features from all image features. Notably, this selection approach is particularly well-suited
for anomaly detection, as anomalies tend to exhibit distinct feature distributions. To illustrate the
effectiveness of our method, we visualize several selected features in Fig[5] where GQS consistently
covers all unique visual regions while ignoring redundant textures.

Figure 5: Visualization of selected queries by GQS mapped onto the original image.

A.7 THEORETICAL ANALYSIS OF GQS.

Problem Formulation. Let 7 = {z1,...,z)} (z; € R?) be the set of M feature vectors
extracted from an input image. Our goal in the query selection phase is to select a subset of NV queries
Q ={q,...,qn} C F that best represents the feature space. We formulate this as the K-Center
Problem, where the objective is to minimize the covering radius R:

R(Q) = max ggg d(z,q) 2)
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where d(-, -) is a distance metric (e.g., Euclidean distance). Let Q* denote the optimal subset that
minimizes R, and let R* = R(Q*) be the optimal covering radius.

Theorem 1. The covering radius Rgqs produced by the Greedy Query Selection satisfies Rags <
2- R*.

Proof. Let z..;; be the point in F that determines the final radius of GQS, i.e., d(zcrit, @) = Rags-
Consider the set of N 4 1 points consisting of the N selected queries Q = {q1, ..., qn} plus the
critical point ;. By the definition of the greedy strategy, for any ¢ < j, the distance d(g;, ¢;) must
be at least the radius determined by the set {¢1, ..., gj—1}, which is greater than or equal to the final
radius Rgs. Thus, all pairwise distances in this set of N + 1 points are at least RgQs.

Now, consider the optimal clustering Q* with NV centers. By the Pigeonhole Principle, if we distribute
N + 1 points into N clusters, at least one cluster must contain two points from our set of N + 1
points. Let these two points be » and v. Since v and v are in the same optimal cluster with center
c¢* € QF, by triangle inequality:

d(u,v) < d(u,c*) +d(v,c*) < R* + R* = 2R" 3)

However, we established that the pairwise distance between any points in our set is at least Rggs.
Therefore:

Rags < d(u71)) < 2R* @)
O

Let x4nom € JF be an anomaly feature. If x40 18 strictly distinguishable from the normal
background features F,4 such that d(Zenom, Fog) > 2R*, then GQS is guaranteed to select a query
g such that d(Zanom, q) < 2R*. Unlike random sampling, which may miss sparse anomalies with a
probability depending on the anomaly’s size, GQS guarantees coverage as long as the anomaly is a
geometric outlier in the feature space.

A.8 VISUALIZATION

We show the results of semantic anomaly segmentation on the MVTecAD and VisA datasets for all
categories in Fig. [f|and Fig.[7] with the prompt sample on the left and the segmentation results on
the right. In this case, the white outline refers to the groundtruth of the anomaly region, while the
blue mask indicates the predicted segmentation region. In addition, we visualize in Fig.[8]and Fig.[9]
the interactive anomaly segmentation on all categories of MVTecAD and VisA, which results are
generated by randomly clicking on the regions. Finally, we update the comparison with a revised
version of the visualization in Fig. [T0}

A.9 FAILURE CASE

Our proposed iCAS still has failure cases for in-context anomaly segmentation. As shown in Fig. [TT]
for samples with multiple anomalous regions of the same type, the interactive segmentation of iCAS
sometimes does not predict all regions. In addition, the current anomaly descriptions are often
ambiguous, e.g., for the “color” anomaly category of MVTecAD, it includes black and red, etc. As
shown in Fig.[12} the black region as an anomaly prompt has poor generalization over the red anomaly
region. Therefore, making the granularity of in-context anomaly segmentation more controllable is a
critical future research direction.

A.10 LIMITATION
Different from other methods that use a few normal or abnormal samples for training, we use a

certain amount of anomaly data for pre-training, as we aim to explore the pre-training of a generalized
in-context anomaly segmentation model from publicly available anomaly datasets.
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Figure 7: Visualization of semantic anomaly segmentation on VisA.

20



Under review as a conference paper at ICLR 2026

i
[ 110

LI

pud

Figure 9: Visualization of interactive anomaly segmentation on VisA.

A.11 THE USAGE OF LLMs

Given the current LLMs’ outstanding performance in text tasks, we used a commercial LLM,
ChatGPT, to check this paper’s grammar and provide revision suggestions. No LLMs were used
during research ideation or coding.
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Figure 10: Qualitative comparison of in-context anomaly segmentation on MVTecAD and VisA.
On the left is the semantic anomaly segmentation task compared to SINE, and on the right is the
interactive anomaly segmentation task compared to SAM. We use a white contour for ground truth, a
red mask for anomaly prompts, and a red star for the click region.
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Figure 11: Failure cases of semantic anomaly segmentation
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Figure 12: Failure cases of interactive anomaly segmentation
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