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ABSTRACT

We study multi-task Reinforcement Learning where shared knowledge among
different environments is distilled to enable scalable generalization to a variety
of problem instances. In the context of general function approximation, Markov
Decision Process (MDP) with low Bilinear rank encapsulates a wide range of
structural conditions that permit polynomial sample complexity in large state
spaces, where the Bellman errors are related to bilinear forms of features wi ‘th low
intrinsic dimensions. To achieve multi-task learning in MDPs, we propose online
representation learning algorithms to capture the shared features in the different
task-specific bilinear forms. We show that in the presence of low-rank structures in
the features of the bilinear forms, the algorithms benefit from sample complexity
improvements compared to single-task learning. Therefore, we achieve the first
sample efficient multi-task reinforcement learning algorithm with general function
approximation.

1 INTRODUCTION

The ability to capture informative representations that generalize among multiple tasks has become
significant in various machine learning applications Li et al. (2014); Tsiakas et al. (2016); Baevski
et al. (2019); D’Eramo et al. (2019); Kubota et al. (2020); Liu et al. (2019b). In the context of
multi-task learning Caruana (1997); Baxter (2000); Yu et al. (2005), this ability is highly desirable
and becomes vital to learn with fewer amount of samples than learning each single task individually.
Representation learning Bengio et al. (2013) is a powerful approach for achieving such sample
efficiency improvement.

This paper considers representation learning in Multitask Reinforcement Learning, an important
class of meta Reinforcement Learning (meta-RL) Wang et al. (2016); Finn et al. (2017); Ritter et al.
(2018). Reinforcement learning (RL) is a sequential decision-making problem where an agent aims
to learn the optimal decisions by interacting with an unknown environment Sutton & Barto (2018).
Empowered by representation learning with deep neural networks LeCun et al. (2015); Goodfellow
et al. (2016), RL has achieved tremendous success in various real-world applications, such as Go
Silver et al. (2016), Atari Mnih et al. (2013), Dota2 Berner et al. (2019), Texas Holdém poker
Moravčík et al. (2017), and autonomous driving Shalev-Shwartz et al. (2016). Therefore, the benefit
of using representation learning to extract joint feature embedding from different but related tasks
emerged as an essential problem to investigate.

Specifically, this paper studies the problem of learning multiple RL problems jointly with the help
of representation learning. Although multi-task learning in online-decision making problems has
received increasing research interest Lazaric & Ghavamzadeh (2010); Mutti et al. (2021); Maurer
et al. (2016); Qin et al. (2021); Yang et al. (2021); Hu et al. (2021), most existing works focus on
tabular or linear models. Indeed, how general function approximations extrapolate across huge state
spaces remains largely an open problem itself. Recently, Bilinear class Du et al. (2021) proposes
a promising structural framework of generalization in reinforcement learning through the use of
function approximation. Bilinear class postulates that the Bellman error can be related to a bilinear
form depending on the hypothesis and captures nearly all existing function approximation models, e.g.
Jin et al. (2020a); Zanette et al. (2020); Yang & Wang (2020); Jiang et al. (2017); Sun et al. (2019);
Kakade et al. (2020); Agarwal et al. (2020). However, in the presence of shared information in the
bilinear forms across multiple tasks, the Bilin-UCB proposed in Du et al. (2021) is not able to adapt
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to such knowledge and challenges abound in adopting representation learning to find nearly-optimal
policies with limited data.

In this paper, we give the first sample efficient algorithm of multi-task RL with general function
approximation through the usage of representation learning in Bilinear class. In particular, to study
representation learning, we propose Low-rank Multi-task Bilinear class—a structural framework
that permits generalization both within and across tasks in multi-task RL. Specifically, such a model
class specifies M MDP instances, where M > 0 is a fixed integer and each one belongs to the
Bilinear class Du et al. (2021), i.e., the Bellman error admits a low-rank factorization in Rd. Since
our multi-task setting have M MDP instances, there are M different features maps specified by
the definition of Bilinear class, each corresponding to one MDP task and taking values in Rd. We
additionally assume that these M features maps, when packed together as a matrix-valued mapping
in Rd×M , has rank k � d. In other words, in Low-rank Multi-task Bilinear class, the bilinear form
of each task possesses a low-dimensional task-specific feature and a shared representation.

Under this setting, it is desirable that the RL algorithm utilize the intrinsic low-dimensional structure
to achieve an improved sample efficiency compared to solving each task separately. To this end,
under the online setting where the agent learn from its past experiences without knowing the model,
we design a sample efficient algorithm that provably finds nearly-optimal policies for all tasks. Our
algorithm is based on the principle of Optimism in the Face of Uncertainty (OFU) which constructs
an confidence region that contains the true hypothesis based on the historical data across the M tasks,
and then update the policy according to the most optimistic hypothesis within the confidence region.
In particular, here the hypothesis can denote the true transition models or optimal value functions of
these M tasks. When constructing the confidence region, we explicitly utilize the low-dimensional
structure by joint learning the task-specific features and shared representation via Empirical Risk
Minimization (ERM) with multi-task data.

Moreover, as for planning, we find the hypothesis in the confidence region which leads to the
highest aggregated value in these M tasks. In the analysis, we show a concentration result where
the estimation noise can be embedded into low dimension space and thus prove that our algorithm is
able to find nearly-optimal policies within limited samples. Concretely, compared to learning each
task separately using Bilin-UCB Du et al. (2021), an algorithm designed for Bilinear class without
utilizing the shared representation, our algorithm enjoys a (d/k)-time improvement in the sample
efficiency whenever the feature classes are small. To our best knowledge, our work seems to propose
the first provably sample efficient multi-task RL algorithm with general function approximation.

Notations Let Rd denote the d-dimensional space and Rd×k denote the space of d-by-k matrices
in R. The inner product of two vectors x, y ∈ Rd is denoted as 〈x, y〉. For sets A1, . . . , An, define
⊗k∈[n]Ak = A1 ⊗ · · · ⊗ Ak = {(a1, . . . , an) : ak ∈ Ak, k ∈ [n]}. Given scalars a1, · · · , an, let
a1:n denote the vector (a1, · · · , an). Also let (aω)ω∈Ω denote the tuple consisting of aω where ω
comes from a countable set Ω. For variables v1, . . . , vk, we denote by v1:k the k-tuple (v1, . . . , vk).

Roadmap In Section 2 we introduce the basic problem setup and notations. In Section 3 we
introduce Low-rank Multi-task Bilinear class—a framework that captures shared information in
bilinear class. Next, we display the main algorithm of learning Low-rank Multi-task Bilinear
class models, empowered by representation learning and optimism principle in decision making,
in Section 4. We show the main theoretical result in Section 5 and the overview of techniques in
Section 6. A couples of examples are given in Section A. We conclude with discussions of further
directions.

1.1 RELATED WORK

General function approximation in Reinforcement Learning Theoretical understanding of the
sample complexity of RL with general function approximation seems relatively scarce. In recent
years, there has been a surge of theoretical insights on linear function approximation and non-linear
function approximations Jin et al. (2020b;c); Wang et al. (2021); Zanette et al. (2020); Agarwal et al.
(2020); Kakade et al. (2020); Wen & Van Roy (2017); Dann et al. (2018); Du et al. (2019); Dong
et al. (2020); Liu et al. (2019a); Wang et al. (2020a); Dong et al. (2021); Zhou et al. (2020); Yang
et al. (2020); Jin et al. (2021a); Du et al. (2021). Among them, Bilinear class Du et al. (2021) is one
of the most general framework.
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Multi-task learning and Meta learning Meta Learning Thrun & Pratt (2012) and multi-task
representation learning Caruana (1997) are important tools for capturing shared knowledge across
tasks and achieving generalization to a new task. Theoretical analysis dated back to Baxter (2000);
Maurer (2005); Yu et al. (2005). Maurer et al. (2016); Amit & Meir (2018); Konobeev et al. (2020)
consider generalization errors averaged over the meta distribution under the assumption of shared
distribution for sampling the source tasks. Recently, Du et al. (2020); Tripuraneni et al. (2020b;a);
Chua et al. (2021) consider the diversity of task distributions and establish risk bounds based on
learning shared representation across tasks and transferring to new tasks.

Multi-task bandit and RL In multi-task bandit and RL problems, theoretical analysis often postu-
lates the existence of low-rank of sparsity structures in the representation Lazaric & Ghavamzadeh
(2010); Brunskill & Li (2013); Calandriello et al. (2014); Mutti et al. (2021); Maurer et al. (2016);
D’Eramo et al. (2019); Arora et al. (2020); Qin et al. (2021); Yang et al. (2021); Hu et al. (2021).
The most related works are Hu et al. (2021); Yang et al. (2021) where the benefits of representation
learning of linear bandits and linear MDPs are studied. However, it remains open whether multi-task
RL can benefit from representation learning via general function approximation.

2 PRELIMINARIES

We consider learning a set of M problem instances
P = {Mm = (Sm,Am, {Pm,h}Hh=1, rm, sm,1)}m∈[M ],

where eachMm ∈ P denotes an episodic Markov Decision Process (MDP) in which Sm denotes
the state space, Am denotes the action set, H denotes the number of time steps in each episode,
{Pm,h}Hh=1 denotes the transition kernel, rm denotes the reward function, and sm,1 denotes the fixed
initial state. We assume rm ∈ (0, 1) without loss of generality.

For MDPMm, let Em denote the expectation under {Pm,h}Hh=1. A (deterministic) policy πm is a
length-H sequence of functions πm = {πm,h : Sm 7→ Am}Hh=1. To interact withMm, the agent
starts at a fixed initial state sm,1 and at each time step h ∈ [H], it takes action am,h ∼ πm,h, receives
reward rh(sm,h, am,h) and transits to sm,h+1 ∼ P(·|sm,h, am,h). Let Emπm denote the expectation
under MDPMm and taking policy πm. We use om,h = (sm,h, am,h, sm,h+1) to denote the history
at h-th time step in MDPMm. Given a policy πm, we define the value function V πmm,h(s) as the
expected sum of reward under policy πm starting from sm,h = s at time step h:

V πmm,h(s) := Em
[
H∑
t=h

rm(sm,t, am,t)|sm,h = s

]
.

Similarly, we define the Q-function Qπmm,h(s, a) as the the expected sum of reward taking action a in
state sm,h = s and then following πm,h:

Qπmm,h(s, a) = Em
[
H∑
t=h

rm(sm,t, am,t)|sm,h = s, am,h = a

]
.

The Bellman operator Tm,h applied to Q-function Q : Sm ×Am 7→ R is defined via
Tm,h(Q)(s, a) := rm,h(s, a) + Es′∼Pm,h(·|s,a)[max

a′
Q(s′, a′)].

There exists an optimal policy π∗m that gives the optimal value function for all states, i.e. , V π
∗
m

m,h(s) =

supπ V
π
m,h(s) holds for all h ∈ [H] and s ∈ Sm. Therefore Qπ

∗
m

m,h satisfies the following Bellman
optimality equations for all s ∈ Sm, a ∈ Am and h ∈ [H]:

Q
π∗m
m,h(s, a) = Tm,h(Q

π∗m
m,h+1)(s, a).

The agent aims at using fewer samples to find a set of policies {πm}Mm=1 such that
M∑
m=1

V
π∗m
m,h(s1)− V πmm,h(s1) ≤ ε

holds with probability at least 1− δ. In the following, we define the filtration Ht to be the σ-field
induced by all the random variables up to round t.
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3 MULTI-TASK BILINEAR CLASS

In general function approximation, a hypothesis class denoted by G is applied to address the set P of
M problem instances. Here, each hypothesis g ∈ G is a function approximation that captures the
information of both task-specific information of all M problem instances and the shared knowledge
across tasks. For example, in model-based RL, g may denote the transition models of the M tasks,
that is, {Pm,h}M,H

m=1,h=1. Whereas in model-free RL, g can be the optimal value functions of the M

tasks, i.e., {V π
∗
m

m,h}
M,H
m=1,h=1. Using the notion of hypothesis g ∈ G, we aim to cover a large class of

MDP models studied under the function approximation setting. We will introduce concrete examples
in Section A.

Under our setting, each hypothesis g ∈ G is associated with Q-functions {Qm,h,g(·, ·)}m∈[M ],h∈[H]

and value functions {Vm,h,g(·)}m∈[M ],h∈[H] in theM tasks such that Vm,h,g(·) = maxaQm,h,g(·, a)
holds for all m ∈ [M ] and h ∈ [H].

Bilinear class Du et al. (2021) is a general framework that allows generalization in RL for a wide
range of function approximators. In the following, we develop the low-rank multi-task bilinear
framework so that it permits generalization in meta-RL across different tasks. The key intuition
behind this framework is that it captures the common representation via low-rank structures in the
features of task-specific bilinear forms.
Definition 3.1 (Low-rank Multi-task Bilinear class). We say the following tuple

(G, {Mm = (Sm,Am,Pm, rm, sm,1)}m∈[M ], lm,h,f )

is a multi-task Bilinear class with rank k if there exists g∗ ∈ G such that Qm,h,g∗ = Q
π∗m
m,h and

Vm,h,g∗ = V
π∗m
m,h hold for all m ∈ [M ], h ∈ [H], and there exist functions W ∗m,h : G 7→ Rd,

v∗m,h : G 7→ Rk, B∗h : G 7→ Rd×k, and X∗m,h : G 7→ Rd (d� k) such that for each g ∈ G, m ∈ [M ]

and h ∈ [H]:

1. The features W ∗m,h possess low rank structures:

W ∗m,h(g) = B∗h(g)v∗m,h(g). (1)

2. We can upper bound the expected Bellman error as follows:∣∣∣∣Emam,1:h∼πm,g,1:h [Qm,h,g(sm,h, am,h)− rm,h(sm,h, am,h)− Vm,h,f (sm,h+1)]

∣∣∣∣
≤ |〈W ∗m,h(g)−W ∗m,h(g∗), X∗m,h(g)〉|. (2)

Here πm,g,h(s) = arg maxaQm,h,g(s, a) is the optimal policy in MDPMm under hypoth-
esis g.

3. For any f ∈ G there exist policy πest,m(f) and discrepancy measure lm,h,f (om,h, g) that
can be used for estimating 〈vm,h(g)Bh(g) − vm,h(g∗)Bh(g∗), Xm,h(f)〉 for any g ∈ G,
such that:

Emam,1:h−1∼πm,f ,am,h∼πest,m(f)[lm,h,f (om,h, g)] = 〈W ∗m,h(g)−W ∗m,h(g∗), X∗m,h(f)〉,
(3)

where om,h = (sm,h, am,h, sm,h+1).
Remark 3.2. A few remarks are in order. First, when d = k and M = 1, we recover the Bilinear
class introduced in Du et al. (2021). Thus, our model can be viewed as an multi-task extension of
Bilinear class with a shared low-dimensional representation. Second, here the hypothesis class G can
either be model-based function approximation or value-based function approximation, as in either
case the Q-functions Qm,h,g and the value functions Vm,h,g are well defined. Third, the common
representation B∗h(·) captures the knowledge shared in all problem instances and enables multi-task
learning with fewer samples. Finally, the discrepancy measure lm,h,f (om,h, ·) can be computed for
all hypothesis g, an important property that facilitates data reusage as explained below. Examples of
Low-rank Multi-task Bilinear class can be found in below and in Appendix A.
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To understand this framework, we first notice that the expected Bellman errors of the following forms∣∣∣∣Emam,1:h∼πm,g,1:h [Qm,h,g(sm,h, am,h)− rm,h(sm,h, am,h)− Vm,h,f (sm,h+1)]

∣∣∣∣
serve as upper bounds for the sub-optimality of policies πm,g. Thus the Eq. (2) indicates that the
sub-optimality of policies πm,g can be controlled if the feature W ∗m,h(g) is close to the feature
W ∗m,h(g∗) corresponding to the best-in-class function approximator g∗. Eq. (3) further establishes the
connection between the error W ∗m,h(g)−W ∗m,h(g∗) and the discrepancy measure lm,h,f (om,h, g).
One important observation is information sharing among the function class through the feature
X∗m,h(f): given samples from a single function approximator f , the quantity

Emam,1:h−1∼πm,f ,am,h∼πest,m(f)[lm,h,f (om,h, g)]

can be estimated for all g ∈ G. This thus allows for data reusage for each on-policy samples in our
algorithm.

Eq. (1) postulates that the features W ∗m,h(g) share a low-dimension structure. Note that this structure
is not fixed for all function approximator g — in fact, the common representation Bh(g) may also
be a function of g. This allows for much generality in multi-task RL models. We will show that
the low-rank multi-task bilinear class cover many existing function approximation models in multi-
task setting. As compared with a great number of multi-task/meta RL algorithms that use a single
representation to solve multiple tasks, our function approximators allow for more generality and
therefore handles more structural conditions of multi-task RL such as those studied in Yang et al.
(2021) and Hu et al. (2021). Moreover, our algorithm reduces to using a single representation for
the feature W in many special cases, for example when the feature v∗m,h is trivial. In this sense, our
algorithm can be seen as encompassing the method of using a single feature for multiple tasks.

Now we give an example of low-rank multi-task bilinear framework. This example shows that the
proposed framework captures the linear mixture model Modi et al. (2020) in multi-task RL where
the mixing coefficients of different tasks lie in the same low-dimension space. First, we recall the
definition of Linear Mixture Model in the following.

Definition 3.3 (Linear Mixture Model). MDP M = (S,A, {Ph}Hh=1, r, s1) is a linear mixture
model if there exist known feature maps φ : S ×A× S 7→ Rd and ψ : S ×A 7→ Rd and unknown
θ∗h ∈ Rd, h ∈ [H] such that

Ph(s, a, s′) = 〈θ∗h, φ(s, a, s′)〉, rh(s, a) = 〈θ∗h, ψ(s, a)〉.

It is known that linear mixture model is Bilinear class with hypothesis g = (θ1, . . . , θH) and

Xh(g) = Eπg [ψ(sh, ah) +
∑
s′∈S

φ(sh, ah, s
′)Vh+1,g(s

′)], Wh(g) = θh.

The discrepancy measure can chosen as

lf (oh, g) = 〈θh, φ(sh, ah) +
∑
s′

ψ(sh, ah, s
′)Vh+1,f (s′)〉 − (Vh+1,f (sh+1) + rh)

and the estimation policies can be chosen as πest(f) = πf . We consider learning the special case of
Low-rank Multi-task Bilinear class where each MDPMm is a linear mixture model with

Pm,h(s, a, s′) = 〈θ∗m,h, φm(s, a, s′)〉, rm,h(s, a) = 〈θ∗m,h, ψm(s, a)〉

and there exist ν∗m,h ∈ Rk, B∗h ∈ Rd×k such that θ∗m,h = B∗hν
∗
m,h for all h ∈ [H],m ∈ [M ].

Then we let g = (νm,h, Bh)h∈[H],m∈[M ] and use the (fixed) features vm,h(g) = νm,h, Bh(g) = Bh.
Notice that each (νm,h, Bh)h∈[H],m∈[M ] will define the expectation Emπm,g (via Pm,h(s, a, s′) =

〈θm,h, φm(s, a, s′)〉 with θm,h = Bhνm,h). Thus we can set the feature class X induced by G in
which the feature Xm,h(g) can be computed for each g ∈ G as follows:

Xm,h(g) = Emπm,g [ψm(sm,h, am,h) +
∑
s′∈Sm

φm(sm,h, am,h, s
′)Vm,h+1,g(s

′)].
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Algorithm 1 Representation Learning in Low-rank Multi-task Bilinear class

Input: V,B,X
for t← 1, . . . , T do

Find g(t) as the solution of the optimization problem in Eq. (4)
For ∀h ∈ [H],m ∈ [M ], sample n0 times from am,1:h−1 ∼ πm,g(t) , am,h ∼ πm,est and create

datasets D(t)
m,h.

end for
Let t0 ← maxt∈[T ]

∑M
m=1 V

π
m,g(t)

m,1 (s1)

Return πg
(t0)

4 REPRESENTATION LEARNING IN LOW-RANK MULTI-TASK BILINEAR CLASS

In this section we present the main algorithm to learn Low-rank Multi-task Bilinear class. First, we
define in the following the feature classes to capture v∗m,h, B

∗
h, X

∗
m,h for m ∈ [M ], h ∈ [H].

Definition 4.1 (Function approximations). We define feature class V = V1 ⊗ · · · ⊗ VH where
Vh ⊂ {v : G 7→ Rk}⊗M ,∀h ∈ [H], representation class B = B1⊗· · ·⊗BH where Bh ⊂ {B : G 7→
Rd×k}, and feature class X = X1 ⊗ · · · ⊗ XH where Xh ⊂ {X : G 7→ Rd}⊗M ,∀h ∈ [H].

Here we assume that function classes V , B, and X completely captures the mappings specified
in the multi-task Bilinear class. Therefore, given expressive V,B,X as inputs, we can learn the
representations v1:M,1:H ∈ V, B1:H ∈ B, X1:M,1:H ∈ X to approximate v∗1:M,1:H , B

∗
1:H , X

∗
1:M,1:H

by minimizing some proper loss function.

Based on this assumption, we propose an algorithm based on the OFU principle while leveraging
representation learning to improve sample efficiency. The procedure is shown in Algorithm 1.
In particular, in the t-th iteration, an (optimistic) hypothesis g(t) ∈ G is computed using Upper
Confidence Bound (UCB) by finding a hypothesis that achieves the highest total value in these M
tasks. Specifically, consider the following constrained optimization problem:

g(t) = arg max
g∈G(t)

M∑
m=1

Vm,1,g(sm,1) (4)

which maximizes the sum of candidate value functions Vm,1,gi(sm,1) subject to the constraint that
the hypothesis g(t) belongs to the confidence set G(t). As we will show in the proof, G(t) contains
the true hypothesis g∗ for all t ∈ [T ] with high probability. Thus, by solving (4), the sum of value
functions of g(t) serves as an upper bound of that of g∗.

The key issue now is how the confidence set is chosen. In BiLin-UCB, the confidence set is chosen
to contain all hypotheses that possess small values in the average of discrepancy measures across
the available batch data. Since the discrepancy measures serve as unbiased estimates for the bilinear
forms which upper bound the Bellman error, this confidence set essentially finds all hypotheses
with low Bellman error. However, this approach fails to exploit the shared information among
tasks. Instead, we make use of the feature classes V,B,X and learn the common representation
{Bh}h∈[H] by Empirical Risk Minimization (ERM). For each hypothesis g ∈ G and h ∈ [H], let
(v

(g)
1:m,h, B

(g)
h , X

(g)
1:m,h, g̃) be the solution of the following optimization problem:

(v
(g)
1:m,h, B

(g)
h , X

(g)
1:m,h, g̃

(g)) = arg min
v1:m,h∈Vh,Bh∈Bh,X1:m,h∈Xh,g̃∈G{ t−1∑

τ=1

M∑
m=1

(
E

(s,a,s′)∼D(τ)
m,h

[lm,h,g(τ)(s, a, s
′, g)]− 〈Bh(g)vm,h(g)−Bh(g̃)vm,h(g̃), Xm,h(g(τ))〉

)2}
.

Notice that g̃(g) depends on g and in the rest of this paper we use g̃ for simplicity of notation. With
features (v

(g)
1:m,h, B

(g)
h , X

(g)
1:m,h), the confidence set G(t) is then given as the collection of all possible

hypothesis g such that the sum of squares of the bilinear forms across the available batch data is not
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greater than a pre-defined parameter R2:

G(t) =

{
g ∈ G :

t−1∑
τ=1

M∑
m=1

(
〈B(g)

h (g)v
(g)
m,h(g)−B(g)

h (g̃)v
(g)
m,h(g̃), X

(g)
m,h(g(τ))〉

)2 ≤ 4R2

}
. (5)

Due to the definition of (v
(g)
1:m,h, B

(g)
h , X

(g)
1:m,h, g̃), the bilinear form

〈B(g)
h (g)v

(g)
m,h(g)−B(g)

h (g̃)v
(g)
m,h(g̃), X

(g)
m,h(g(τ))〉

approximates 〈W ∗m,h(g)−W ∗m,h(g∗), X∗m,h(g(τ))〉 for all g ∈ G. Therefore the confidence set G(t)

contains all the hypothesis in which the sum of
(
〈W ∗m,h(g) −W ∗m,h(g∗), X∗m,h(g(τ))〉

)2
over all

history data and tasks is upper bounded by R2. We will show that this can be used to quantify the
Bellman error of the candidate action-value functions under the corresponding greedy policy, which
then can be related to the sub-optimality of the corresponding greedy policy in the true environment.
The width parameter R2 can be enlarged to handle the cases where realizability assumption is
not strictly satisfied. Since ERM is robust to misspecification, optimism is still guaranteed and
the analysis follows similarly. The resulting algorithm would thus have sub-optimality depending
additively on the misspecification error.

This confidence set captures the shared information Bh(·) across tasks and contains all hypothesis
with low Bellman errors within a smaller R2. Algorithm 1 then samples trajectories according to
the greedy policies of the chosen hypothesis g(t) and the estimation policy πest and augments the
available batch data with D(t)

m,h, h ∈ [H],m ∈ [M ].

We note that the main computation workload of Algorithm 1 is the ERM step in Line 3. This means
that Algorithm 1 is oracle-efficient with access to an ERM oracle. In general, Line 3 pertains to a
difficult optimization problem over the set of candidate function approximators G(t). Although no
efficient algorithms are currently known to solve this problem, we note that for certain instances
of the bilinear class (e.g., Yang et al. (2021)) where G is parameterized by variables in a Euclidean
space, computationally efficient gradient-based algorithms may exist to solve Line 3.

5 MAIN THEORY

This section presents the theoretical analysis of Algorithm 1. Without loss of generality, we assume
that the feature classes are all bounded.
Definition 5.1. Assume ‖vm,h(g)‖2, ‖Bh(g)‖F ≤ CW and ‖Xm,h(g)‖2 ≤ CX hold for all vm,h ∈
Vh, Bh ∈ Bh, Xm,h ∈ Xh and g ∈ G, h ∈ [H],m ∈ [M ]. Here CW , CX ∈ R.

Next, it is important to consider the expressiveness of function classes V,B,X . The following
assumption is common in the theory of reinforcement learning Jin et al. (2020b); Wang et al. (2020b);
Jin et al. (2021b); Du et al. (2021).
Assumption 5.2 (Realizability). Assume g∗ ∈ G and v∗1:M,1:H ∈ V, B∗1:H ∈ B, X∗1:M,1:H ∈ X .

Now we present the theory for Algorithm 1.

Theorem 5.3. Set T = 8HMd log(1 +
MC2

X

λ ) and

R2 = 8H3(Mk log(Mn0CWCX) + log(
HT |G||V||B||X |

δ
))
/
n0.

With probability 1− δ the algorithm outputs a set of policies πg
(t0)

such that
M∑
m=1

V
π∗m
m,1(s1)−

M∑
m=1

V
π
m,g(t0)

m,1 (s1) ≤ O(HR).

The total number of trajectories used in Algorithm 1 is upper bounded by O(MHTn0). Therefore,
with probability at least 1− δ, Algorithm 1 is able to use

O

(
H6M2d(Mk + log(|X ||V||B||G|/δ))

ε2

)

7



Under review as a conference paper at ICLR 2023

trajectories to find a set of policies {πm}m∈[M ] such that

M∑
m=1

V
π∗m
m,1(s1)−

M∑
m=1

V πmm,1(s1) ≤ ε. (6)

Notice that if we use Bilin-UCB to learn each single task individually, then the total number of
trajectories to achieve the above guarantee is H

6M3d2 log(|G|/δ)
ε2 . Indeed, to achieve Eq. (6), the average

sub-optimality of each task should be O(ε/M). Using Bilin-UCB, achieving V π
∗
m

m,1(s1)−V πmm,1(s1) ≤
ε/M costs O(H6M2d2 log(|G|/δ)/ε2) samples for each task. Thus the total number of trajectories
is H6M3d2 log(|G|/δ)

ε2 via learning each task individually.

Therefore, Theorem 5.3 improves the sample complexity of learning Low-rank Multi-task Bilinear
class given small sizes of expressive feature classes V,B,X , for example, log(|X ||V||B|) ≤Md.

In general, the dependence on d can not be reduced since we estimate a d-by-k matrix for shared
representation. Furthermore, we believe that without further assumption, a polynomial improvement
w.r.t M is impossible because the learner has to learn the task-specific features v∗m,h ∈ Rk for all
m ∈ [M ].

For an important special case known as Linear Mixture Model (Definition 3.3), we have the following
result via plugging |V| = |B| = 1, |X | = |G| into Theorem 5.3.
Corollary 5.4. Consider Low-rank Multi-task Bilinear class where each MDP Mm is a linear
mixture model with Pm,h(s, a, s′) = 〈θ∗m,h, φm(s, a, s′)〉, rm,h(s, a) = 〈θ∗m,h, ψm(s, a)〉 and there
exist ν∗m,h ∈ Rk, B∗h ∈ Rd×k such that θ∗m,h = B∗hν

∗
m,h for all h ∈ [H],m ∈ [M ]. Let

X = G = N (Rk, ε)⊗MH ⊗N (Rd×k, ε)

where N (Rk, ε) denotes the ε-covering of Rk and N (Rd×k, ε) denotes the ε-covering of Rd×k.
Under Assumption 5.2, there exists an algorithm that with probability at least 1 − δ finds a set of
policies {πm}m∈[M ] such that

M∑
m=1

V
π∗m
m,1(s1)−

M∑
m=1

V πmm,1(s1) ≤ ε

using

O

(
H6M2d(Mk + kd) log(1/εδ))

ε2

)
trajectories.

Remark 5.5. Using Bilin-UCB to learn each task individually, it takes O
(
H6M3d3 log(1/δ) · ε−2

)
trajectories to learn a set of policies {πm}m∈[M ] such that

M∑
m=1

V
π∗m
m,1(s1)−

M∑
m=1

V πmm,1(s1) ≤ ε.

Therefore, Algorithm 1 achieves sample complexity improvement comparing to single-task learning.
Without further assumption, a polynomial improvement w.r.t M appears impossible because the
learner has to learn the task-specific features vm,h ∈ Rk for all m ∈ [M ] with an Ω(M3k) sample
complexity in total. The main benefit of multi-task learning in this case is to reduce the dependence
on the ambient dimension d to k.

6 TECHNIQUE OVERVIEW

This section gives an overview of the analysis and the main techniques. Owing to optimism principle
and the construction of confidence set via representation learning, the proof of Theorem 5.3 will
crucially depend on the following three observations:

8
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Risk bounds for representation learning. Since the discrepancy measures serve as unbiased
estimations of bilinear forms, i.e.

Emam,1:h−1∼πm,f ,am,h∼πest,m(f)[lm,h,f (om,h, g)] = 〈W ∗m,h(g)−W ∗m,h(g∗), X∗m,h(f)〉,

the solutions (v
(g)
1:m,h, B

(g)
h , X

(g)
1:m,h, g̃

(g)) of ERM will be able to concentrate to the population mean,
i.e.

〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(τ))〉 ≈ 〈B(g)
h (g)v

(g)
m,h(g)−B(g)

h (g̃)v
(g)
m,h(g̃), X

(g)
m,h(g(τ))〉.

This means that Algorithm 1 has approximately captured the correct bilinear forms. Thus G(t)

essentially finds all hypothesis g such that
∑
τ (〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(τ))〉)2

is small.

Regret decomposition associated to the bilinear forms. One key property of Bilinear class is the
upper bound of Bellman error as follow:∣∣∣∣Emam,1:h∼πm,g,1:h [Qm,h,g(sm,h, am,h)− rm,h(sm,h, am,h)− Vm,h,f (sm,h+1)]

∣∣∣∣
≤ |〈W ∗m,h(g)−W ∗m,h(g∗), X∗m,h(g)〉|.

Furthermore, we know that the sub-optimality of the greedy policy of candidate hypothesis can be
decomposed into the sum of Bellman errors across time steps. Therefore, we show the following
upper bound

M∑
m=1

Vm,1,g(s1)−
M∑
m=1

V
πm,g
m,1 (s1) ≤

M∑
m=1

H∑
h=1

∣∣∣∣〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g)
〉∣∣∣∣.

Coverage condition of features Xm,h(·). Owing to the previous two observations, the issue left
is to upper bound |〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g)〉| for some g = g(t) by the quantity∑
τ (〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(τ))〉)2. Using Hölder’s inequality, it suffices that∑
τ X
∗
m,h(g(τ))X∗m,h(g(τ))> possess sufficient coverage condition of X∗m,h(g) for all m ∈ [M ].

Setting T = Ω(Md), we will confirm this via elliptical potential lemma.

The proof of Theorem 5.3 is then established based on the above three observations. Since the second
and third steps are natural extensions of the analysis of Bilin-UCB, the technical bulk is then to build
risk bounds for representation learning. Specifically, we define the following failure event:
Definition 6.1. Define E as the event that there exist t ∈ [T ] and h ∈ [H] such that

t−1∑
τ=1

M∑
m=1

(
〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(τ))〉

− 〈B(g)
h (g)v

(g)
m,h(g)−B(g)

h (g̃)v
(g)
m,h(g̃), X

(g)
m,h(g(τ))〉

)2 ≥ R2.

We will show that P[E ] ≤ 1− δ with the choice of R2 in Algorithm 1. The key step is embedding the
estimation noise into low dimensional space Rk and achieve improved concentration.

7 CONCLUSION

This paper considers learning multiple RL problems jointly with representation learning. A structural
framework is proposed that permits generalization across tasks via general function approximation.
A sample efficient algorithm is designed based on representation with ERM and optimistic principle
where the confidence sets are constructed based on learned features. Theoretical analysis is displayed
that the algorithm finds nearly-optimal policies within limited samples. Several examples are
discussed and sample complexity improvements are illustrated.

Given the success of representation learning in multi-task RL, it is an interesting future direction to
study transfer learning for quickly adapting prior knowledge to a new, unseen task with limited data
and computational power.
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