WROOM: An Autonomous Driving Approach for Off-Road Navigation

Dvij Kalaria, Shreya Sharma, Sarthak Bhagat, Haoru Xue, John M. Dolan

Abstract— Off-road navigation is a challenging problem both
at the planning level to get a smooth trajectory and at the
control level to avoid flipping over, hitting obstacles, or getting
stuck at a rough patch. There have been several recent works
using classical approaches involving depth map prediction
followed by smooth trajectory planning and using a controller to
track it. We design an end-to-end reinforcement learning (RL)
system for an autonomous vehicle in off-road environments
using a custom-designed simulator in the Unity game engine.
We warm start the agent by imitating a rule-based controller
and utilize Proximal Policy Optimization (PPO) to improve the
policy based on a reward that incorporates Control Barrier
Functions (CBF), facilitating the agent’s ability to generalize
effectively to real-world scenarios. The training involves agents
concurrently undergoing domain-randomized trials in various
environments. We also propose a novel simulation environment
to replicate off-road driving scenarios and deploy our proposed
approach on a real buggy RC car. Videos and additional results:
https://sites.google.com/view/wroom-utd/home.
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Fig. 1.  Overview of the proposed approach, WROOM: The end-to-
end RL agent collects depth camera and IMU measurements from the
environment and outputs steering, throttle, and braking commands. The
reward function evaluates not only the agent’s progress in the environment
but also the smoothness and safety of its maneuvers, as reported by the
control barrier function (CBF). Imitation learning is utilized to kick-start the
agent, followed by Proximal Policy Optimization (PPO) to refine its policy,
and finally, policy distillation is employed for real-world deployment.

I. INTRODUCTION

Off-road driving by wheeled robots in environments char-
acterized by uneven contours is crucial for various appli-
cations in exploration, rescue missions, and planetary ex-
ploration, which poses a significant challenge [1]. Despite
advancements in precise localization and state measurement
technologies, traditional control systems struggle to handle
the uncertain and complex dynamics introduced by chal-
lenging terrain while the vehicle is in agile motion. For
instance, classic model predictive control (MPC) systems
[2] encounter difficulties in coping with dynamics that lack
precise and smooth mathematical descriptions. The necessity

of addressing this challenge is paramount, given its rele-
vance to real-world applications such as search and rescue
missions in remote, uncharted areas, autonomous exploration
in extreme environments, and operations of planetary rovers
in extraterrestrial landscapes. In these contexts, conventional
navigation methods reliant on GPS and pre-existing maps
often prove inadequate, underscoring the need for innovative
solutions.

Numerous recent studies have capitalized on classical
planning strategies coupled with control design methodolo-
gies [3]-[5]. While some focus on generating traversabil-
ity maps at the planning level, others delve into control-
level techniques such as learning residual dynamics models
from data [6], [7]. Additionally, imitation learning-based
approaches have emerged, leveraging human-collected expert
data on off-road navigation environments to train agents for
maneuvering through challenging terrains [8], [9].

While robot learning on challenging terrains has been
exemplified predominantly on legged platforms [10], [11],
there remains a conspicuous dearth of research on off-road
autonomy tailored specifically for ground-wheeled robots.
This scarcity underscores a notable gap, motivating the
present study aimed at training a time-optimal reinforce-
ment learning (RL) agent proficient in off-road mobility.
Significantly, the task of training an end-to-end policy poses
inherent challenges for wheeled robots, demanding both the
ability to plan smooth trajectories and the agility to execute
them effectively.

In pursuit of advancing off-road navigation solutions for
wheeled robots in uncharted terrains, we present a novel
simulation environment, OffTerSim, developed within the
Unity game engine. This simulator serves as a training
ground for agents tasked with off-road navigation, with
subsequent deployment onto a real RC car. We conduct a
benchmarking study employing various popular policy learn-
ing algorithms, including Control Barrier Functions (CBFs)
[12], Generative Adversarial Imitation Learning (GAIL) [13],
and policy distillation [14], within the simulator environment.
Our proposed RL-based approach Wheeled Robot Online Off-
road Mobility (WROOM), addresses the critical need for
robust off-road navigation strategies by integrating aspects of
smooth driving typically handled by classical planners and
robot safety usually managed at the control level through
classical approaches.

In summary, our contributions can be outlined as follows:

o We introduced a novel offroad driving simulator that

procedurally generates random trails with various ob-
stacles, enabling the training of agents capable of gen-
eralizing to real-world scenarios.
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« We propose a novel simulation environment, OffTer-
Sim, that closely replicates off-road driving scenarios
that could be used for sim-to-real training of agents.

o To the best of our knowledge, our approach is the
first one to address the challenge of offroad driving
in real-world situations with sim-to-real reinforcement
learning, marking a significant contribution in the field.

II. METHOD

In this section, we delve into the different components of
our proposed methodology. This encompasses the design of
the expert controller for executing imitation learning, and the
training process for our PPO-based agent, alongside detailed
descriptions of the reward functions and CBF constraints that
we implement. Additionally, we touch upon the approach
employed for distillation, facilitating the agent’s ability to
generalize effectively to real-world scenarios.

A. Simulator design

Fig. 2. Scandots (in purple) as privileged
information to the expert controller.

Fig. 3. Real-world de-
ployment using an RC
car.

We use the Unity Game engine [15] to design
a novel off-road driving simulator, which we call
Off-road Terrain Simulator (OffTerSim). The open-
source code for the environment can be found here:
https://github.com/dvij542/0ffTerSim  We
procedurally generate an environment for our simulator
aiming to mimic a forest trail environment where the agent
can be spawned at the start position and tasked to traverse it
while taking a smooth path free of any obstacles. A random
terrain is designed to mimic a forest trail. We define the
centerline of the trail by a 4" order equation. Without loss
of generality, let us assume our origin to be the starting
point of the trail where the agent will be spawned for each
episode. We define our trail shape by:-

y = f(z) = M/2+ bz + cx® + dz? (1)

Where (x,y) is a point on the trail, a,b,c,d ~ U(—1,1)
are randomly chosen coefficients that vary for each episode.
The width w sin U (Wi, Winax ) is the width of the trail also
randomly chosen. We choose an incline angle in = and y
direction as a; ~ U(Qmin, Mmax) and ay; ~ U(Omin, ¥max)
to incline the terrain in x and y directions. We also close
the non-trail region on the left and right of the trail with
a steepness defined by ﬂlefl and ﬁright ~ u(_ﬁmaxvﬁmax)-
Based on the value of 3, we can end up with hills on both
sides, one side or no side to simulate all forms of trails. We
also add smooth random noise to simulate unevenness on

the terrain which is defined by augmenting a height value
to each point on the terrain. The height map is defined by a
smooth continuous 2d function as follows:-
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Where +;; are Fourier coefficients chosen randomly from
U(0, Ymax )» M x M is the terrain image size with resolution d.
On top of these, we also add Gaussian noise with variance
Otril for in-trail points and open.qai for out-of-trail points.
Onon-trail > Otrail t0 make trail region smoother than non-trail
region. The vehicle model is defined as follows:-

Fro = KurotteCt + KbrakeCh af ==¢C — arctan(w)

F,y = D, sin(C, arctan(B,«,.)) wl iwv

Fy, = Dysin(Cyarctan(Byay)) Qr = arcwn(%)
(3)

Where Kiroie and Kyraie are constants that dictate the lon-
gitudinal force F’.,. [ and [, are the forward and rear lengths
of the vehicle from the COM. By, Cy, Dy, B,.,C;, D, are
the Pacejka friction coefficients of front and rear tires. oy, v,
are the front and rear slip angles. w, is the angular velocity
in the body frame’s z axis. v,,v, are the body frame’s
longitudinal and lateral velocities. F.,, F'r, are the lateral
forces from the front and rear tires perpendicular to the
tires. All these parameters are also varied for each episode.
Unity’s physics engine dictates the motion of a rigid body
under the effect of all these forces. Randomly sampled
obstacles of various sizes and shapes are also placed in
the terrain uniformly with trees only in non-trail regions.
Domain randomization includes randomly sampling all these
parameters as discussed to make the agent robust towards
and surface, trail shape, unevenness. Some stills from the
simulator are depicted in Figure ]

Fig. 4. Stills from the proposed simulation environment, OffTerSim.

B. Reinforcement Learning (RL)

We employ RL to train a policy that receives environmen-
tal inputs and generates actions to guide the agent along
a seamless trajectory, avoiding obstacles and adhering to
designated trails. This section delves into the specifics of our
observation and action spaces, as well as the two different
RL algorithms utilized for agent training.

Observation Space. Our policy model integrates various
input variables, including inertial state data from the IMU
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sensor (acceleration, angular velocity, roll, and pitch), Frenet
state [16] (See Figure [7) to track lateral displacement from
the center line of the trail, depth images from vehicle-
mounted sensors for obstacle and path detection, and scan-
dots [10] for privileged information on depth values. These
inputs facilitate the agent’s inference of critical information
such as visible region height, Frenet frame state, lateral
displacement, and heading angle from the center line.

Action Space. We test two action space variations for the
agent. The first is continuous, offering unrestricted movement
in all directions with a continuous throttle. The second
variant limits heading directions to n discrete values from
—1 to 1 with a continuous throttle control as before. The
latter proves simpler for learning, as optimization becomes
less challenging. Allowing continuous control in the first
variant leads to the agent getting stuck due to the symmetric
nature of the local obstacle avoidance problem. This results
in necessitating learning a discontinuous policy. In contrast,
the second variant allows for easier optimization and yields
qualitatively cleaner behavior.

Policy Model Architecture. We chose Proximal Policy
Optimization (PPO) [17] as the reinforcement learning algo-
rithm for optimizing policies in environments with discrete or
continuous action spaces. It iteratively collects data through
interactions with the environment and updates the policy to
maximize the expected cumulative reward. Unlike traditional
methods, PPO employs a clipped surrogate objective to
constrain policy updates, preventing significant deviations
that could lead to instability. By balancing the exploration-
exploitation trade-off with a proximal threshold, PPO con-
tinually improves the policy while ensuring stability.

To determine the agent’s action based on the depth image,
we utilize a policy model architecture featuring a ResNet
[18] for image encoding, followed by fully connected layers
combining depth image information with inputs from scan-
dots and IMU sensor values.

C. Control Barrier Functions (CBFs)

We use the CBF (as detailed in |A) as a shield to guide the
agent to learn a safe policy similar to [19]. We observe that
the RL agent struggles at the beginning going off-trail, which
debars the agent from learning meaningful behavior later in
the episode. To get rid of this, we use the CBF to refine
commands from the policy to obey the safety constraints

The safe control is obtained via the following optimization
program, where K, is set to a high value and wu.r is the
nominal control obtained from the potentially unsafe policy:

HBD Kviol(CrQight + Cigg) + |1 — et @

s.t. Umin <u< Umax

This new safe action is fed to the environment for control-
ling the agent. With this, the RL agent would be able to stay
safe while learning, as the CBF shield defined in @I) will
modify the unsafe controls from the nominal u.s to their
corresponding nearest safe commands w if admissible within
control limits i, and umax. To inform the policy update to

generate safe action altogether and thus not get this override
from CBF, we also add a negative reward for constraint
violation proportional to the change in command caused by
the CBF shield as follows: Reonsraint = Kconstraint || — Uref]|%.

D. Reward Design

Our reinforcement learning agent is trained using a re-
ward function comprised of five key terms. These terms
are designed to incentivize the agent’s movement along
trails, encourage progress, avoid obstacles, and ensure a safe
traversal toward the goal. The specific components of the
reward function are as follows:

o Progress Reward: This term promotes the advance-
ment of the agent along the trail by providing positive
rewards for progress made.

¢ Smoothness Reward: We also emphasize the smooth-
ness of the agent’s trajectory by penalizing the magni-
tudes of pitch and roll of the vehicle.

e Boundary Reward: To maintain the agent within the
trail boundaries, we penalize movement outside the
designated path.

e Collision Reward: Heavy penalties are imposed to
ensure that the agent actively avoids collisions with
obstacles along its path.

e CBF Reward: Any violations of the CBF conditions are
penalized to encourage adherence to safety constraints.

E. Policy distillation

We observe that when directly trying to train an agent
end-to-end, it takes a very long time to learn a meaningful
policy on the large dimension depth image as observation.
To address the given challenge, we implement a distillation
step. Initially, we train an agent with privileged information,
specifically the scandots, following previous works [10]. We
first train an expert controller that would have privileged
information for driving through rough terrain. Subsequently,
we employ this expert policy trained with privileged infor-
mation as the teacher and train a student policy network. The
student network utilizes the teacher’s outputs as ground truth
observations. It takes depth images from the environment as
input and learns to navigate relying solely on IMU values and
depth images. This approach facilitates the student network
in generalizing to real-world scenarios that it has not been
explicitly trained on.

III. RESULTS

In this section, we highlight the efficacy of the proposed
approach, WROOM, on both the simulation environment,
OffTerSim, as well as on the real-world deployment of a
real RC car using a set of five quantitative metrics and the
training average reward.

Metrics. (1) # collisions are the average number of colli-
sions with the obstacles over 10 runs. (2) Collision time (in
seconds) is the total time the car was in a collided state
with the obstacle during an episode. (3) Progress is the
total longitudinal distance traversed along the trail direction.
(4) Cumulative unevenness (measure of rough drive) is the



Index | Privileged | Discrete Actions | CBF | Pretrain | # collisions | Collision time (s) | Progress | Cumulative unevenness | # CBF Violations
1 X v v - 91.8 53.7 336.8 3095.14 13.0
2 v v v - 12.4 5.61 588.4 2300.5 3.6
3 v v X - 239 8.77 514.17 2369.3 -
4 v X v - 19.5 6.97 585.12 2240.6 2.3
5 X v v DAgger 13.5 5.88 569.2 2282.1 4.3
6 X v v GAIL 15.2 4.68 595.14 1702.2 0
TABLE I

QUANTITATIVE ABLATION OF INDIVIDUAL COMPONENTS OF WROOM USING VARIOUS METRICS.

Real-world deployment of our proposed approach, WROOM.

Fig. 5.

sum of squares of roll and pitch over all time steps in an
episode. (5) # CBF Violations is the number of times the
CBF constraints were violated in an episode.

Quantitative Results. We experimented with various ap-
proaches to train the agent, exploring different observations,
network architectures, and output spaces. Comparative anal-
yses of training rewards were conducted across different
settings. Initially, we sought to train a policy directly using
the privileged scandots information from the simulator (see
Figure [2). We employ a continuous action space for steering
and throttle commands. The training involved 32 agents
concurrently undergoing domain-randomized trials in various
environments.

However, we encountered challenges in learning obstacle
avoidance when using a continuous action space, primarily
due to symmetry issues (plot 4 in Fig [[TI). Subsequently,
we transitioned to a discrete action space for steering,
incorporating only n = 7 action commands: from left to
right. This adjustment resulted in significantly improved
rewards, as illustrated by plot 2 in Fig[ITl] The success of this
approach can be attributed to the neural network’s struggle
with learning a discontinuous observation-to-action mapping
when faced with obstacles directly ahead of the agent, as
detailed in [20].

The agent’s direct training using depth-based raw obser-
vations proves ineffective due to the high dimensionality of
the input, as evidenced by the examples provided in Section
[C| of the Appendix. In line with the methodology outlined in
[10], we explored an alternative approach to distill the policy
learned from privileged scandots information. Specifically,
we employed DAgger-based imitation learning, as described
in [21], and improved metrics like # collisions by 85.2%
and smoothness in drive-by ~ 27%. Additionally, we ex-
perimented with GAIL [13], where the expert experience
was collected for each episode, and the expert controller was

utilized to label the data. The collected data was then used to
train a generator-discriminator model, imposing penalties on
RL actions for substantial deviations from expert actions. The
loss term scale was gradually reduced as the agent enhanced
its alignment with the expert’s actions. Subsequently, other
RL reward terms were employed to further refine the agent’s
performance. This strategy closely resembles the policy dis-
tillation process depicted in [10]. This led to a CBF-abiding
policy with no CBF violations and 82.21% improvement in
traversing along the set trail.
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Fig. 6. Training reward plots highlighting the significance of each
component of the proposed approach, WROOM.

Real-world deployment. We tested the proposed ap-
proach on a real 1/10-scale RC car (see Fig. [3) on trails
on the CMU campus. The car is equipped with a LiDAR,
a depth dual camera, an IMU, and wheel encoders. The
onboard computation platform is an NVIDIA Jetson TX2
with 8GB of RAM and a 256-core NVIDIA Pascal GPU.
Some stills of WROOM on the real RC car can be viewed
in Figure [5] and the videos for the deployment can be found
on the website.

IV. CONCLUSION

We developed a comprehensive RL system for autonomous
off-road vehicles, utilizing depth camera input and allowing
the model to directly output control commands. To initiate
the learning process, we employed a warm start by imitating
a rule-based controller. Subsequently, we utilized PPO to
enhance the policy based on a reward system that integrates
CBF for safety reasoning. The resulting agent demonstrates
the capability to navigate challenging terrains and exhibits
successful transferability to real-world scenarios.
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APPENDIX

A. Background: Control Barrier Function

CBFs ensure safety by rendering a forward-invariant safe
set. We define a continuous and differentiable safety function
h(z) : X — R. The super-level set C € R™ can be named
as a safe set. Let the set C obey

C={xeX:h(x)>0} ®)
8C = {x € X : h(x) = 0} ©)
Int(C) = {x € X : h(x) > 0}. (7)

A control affine system has the form x = f(x) + g(x)u,
such that Ju st h(x) > —kp(h(x)), where k), €
KC is particularly chosen as xj(a) = ~a for a constant
4 > 0. The time derivative of h is expressed as h(x) =
Lth(x) + Lyh(x)u, where L¢h(x) and Lyh(x) represent
the Lie derivatives of the system denoted as Vh(x)f(x)
and Vh(x)g(x), respectively. The safety constraint for a
CBF is that there exists a 7 > 0 such that &Ielsz(th(X) +

Lsh(x)u) > —vy(h(x)) for all x € X. The solution u
assures that the set C is a forward invariant, i.e., z(t —
o0) € C. Let us consider the state of the system as X. For
our case, we define the state X as the vehicle’s state relative
to the Frenet frame as [ 6 w v vperp ], Where x is the closest
signed distance from the trail’s center line with positive sign
if on the right of the center line and negative otherwise. v
is the longitudinal velocity, vper is the lateral velocity, 0 is
the relative angle wrt the center line’s nearest-point tangent,
and w is the angular velocity of the vehicle. R = % is the
curvature of the center line at the nearest point. Let C'y and
C,. be the lateral stiffness coefficients of the front and the
rear tires respectively, [¢ and [, are the distances of front and
rear tires from the COM of the vehicle, m is the mass and
I, is the moment of inertia about the COM of the vehicle.

We want to ensure that the agents stay within the trail
boundaries and don’t go off-trail. Hence we formulate the
following CBF:-

L L
hlefl(X7 U) = 5 - 1'7hrigm(X, U) = 5 +x
& = Uperp c0s(0) + v sin(0)

—2(Cr +Cr)
muv

1;C3 +1,C? N o lsCrd
I.v I,

Uperp = perp
0 =w—vec
Z = Uperp c08(0) + ag sin(0) 4+ (w — ve) (—vperp sin(0) + v cos(h))
_ —2(13Cs + zicr)w N NITAY
Izv 1z
2-order CBF constraint for the left boundary is:

et (X, U) 4 20 e (X)) + AN hiere(X) > 0
— & — 2\ — A2 <§—x) >0

2-order CBF constraint for the right boundary is:

F 4 2X@ + A2 (g-i-x) >0
()



Fig. 7.

Vehicle state representation.

For more details about the formulation, readers are referred
to [22].

B. Implementation Details

To train our PPO agent, we utilize a batch size of 1024
with a buffer size of approximately 100K with a learning
rate of 5¢~* and a linear scheduler. The discount factor 7 is
chosen as 0.99 with a maximum horizon of 64 time steps.
The input dimensions for the depth images are chosen to be
64.

C. Qualitative Results

In this section, we present both failure case analyses and
successful trial examples obtained through our approach,
utilizing the proposed simulation setting. Figure [§] illustrates
instances where our approach fails to evade obstacles in the
simulator, resulting in collisions. This failure occurs because,
in the depicted scenario, we solely feed depth images as
raw input to the policy without access to any privileged
information. Consequently, the policy struggles to discern
crucial information from such high-dimensional inputs.

However, through policy distillation, the policy acquires
insights about essential information from the privileged data,
which is highlighted in Figure 9} Consequently, when pro-
vided with depth images post-distillation, the policy compre-
hends how to extract vital information, even from raw depth
images. This differentiation underscores the significance of
the distillation pipeline in deploying our approach to real-
world scenarios where depth is the only provided modality.

Fig. 8.

Failure case when trained only on depth images

D. Future Work

In future endeavors, we aim to advance our RL system’s
robustness and adaptability by integrating closed-loop model

Fig. 9. Success case when performed policy distillation

adaptation techniques, as suggested in [23], to facilitate a
safer and more efficient simulation-to-real transfer. Addi-
tionally, expanding our experimental scope to encompass
real-world trails with diverse and intricate model parameter
variations will provide valuable insights into the system’s
performance under more challenging conditions. Further-
more, exploring the potential integration of advanced sensor
fusion techniques and leveraging state-of-the-art reinforce-
ment learning algorithms could further enhance the system’s
capabilities and widen its applicability across various off-
road environments and scenarios.
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