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Figure 1: Visual Results. StrucBooth extracts and incorporates expression structure details from
the pixel space into the model, enabling the optimization of facial expressions.

ABSTRACT

Portrait animation aims to synthesize images or videos that transfer expressions
or poses from a reference while preserving identity. Existing methods often rely
on high-level expression encoders, which capture only coarse semantics and miss
fine-grained structural details in critical regions such as the eyes, eyebrows, and
mouth, leading to noticeable discrepancies and suboptimal expression fidelity. To
address this, we propose StrucBooth, a framework that binds pixel-level ex-
pression structures into the model through case-specific optimization while pre-
serving the generator’s inherent capabilities. StrucBooth combines (i) PGT-
based self-tuning, which uses a preliminary prediction as Pseudo Ground Truth
(PGT) for lightweight refinement, and (ii) pixel-level structural supervision, which
extracts gradient variations (Facial Structural Gradients) from expression-related
patches and aligns them to inject fine-grained structural information. Exten-
sive evaluations under both cross-driven and self-driven settings demonstrate that
StrucBooth consistently improves expression accuracy over strong baselines,
highlighting that integrating pixel-space structural signals is an effective direction
for faithful and visually consistent portrait animation.

1 INTRODUCTION

With the rapid advancement of AIGC technologies, image and video generation has achieved re-
markable progress. State-of-the-art methods can now synthesize highly realistic content (BlackFor-
est, 2024; Esser et al., 2024; Kong et al., 2024; Yang et al., 2024b; Wan et al., 2025), enabling a wide
range of applications such as personalized content creation and creative media production. In this
context, the intrinsic human desire to experience novel visual content has motivated the development
of the Portrait Animation task (Xu et al., 2025; Xie et al., 2024; Zhang et al., 2024a; Zhao et al.,
2025; Guo et al., 2024b). The goal of this task is to generate images or videos in which a target
identity faithfully reproduces the expressions, poses, and motions of a reference source, which may
be provided as either a single image or a short video clip.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Although recent advances have enabled the synthesis of visually convincing portraits, existing
works (Guo et al., 2024b; Wang et al., 2024a; Zhang et al., 2023b; Drobyshev et al., 2023) often
fall short in faithfully capturing fine-grained expression structures. Rich structural details and subtle
variations across different expressions are difficult for general-purpose expression synthesis models
to preserve, leading to noticeable discrepancies in fine-scale features. In addition, most methods
rely on 2D or 3D expression representations of feature level (Doukas et al., 2021; Yin et al., 2022;
Huang et al., 2023; Yu et al., 2023; Khakhulin et al., 2022; Mi et al., 2024; Tao et al., 2024), which
often compress or omit structural details in pixel space, limiting the model’s ability to perceive
these structures. Therefore, we aim to enhance the existing generative capabilities by extracting
and incorporating pixel-level expression structural details from specific expression cases, enabling
fine-grained expression optimization.

We thus propose StrucBooth, a framework designed to incorporate pixel-level expression
structures details into the model through case-specific optimization while preserving the inher-
ent generative capabilities of the generator. StrucBooth consists of the following two compo-
nents: (i) PGT-based self-tuning: As shown in Fig. 2(a), for each input case, we first generate a
preliminary prediction using the generator to be optimized, which serves as the Pseudo Ground
Truth (PGT). The PGT provides self-supervision for the following finetune stage, preserving the
generator’s basic generative ability. (ii) Facial Structural Gradients supervision: We posit that
structural information derived directly from the pixel space offers rich cues for expression imitation.
To this end, we extract Facial Structural Gradients, capturing the gradient variations of pixels. These
gradients convey strong structural signals while minimizing the influence of irrelevant factors such
as color and appearance. During optimization, we align the gradients of image patches correspond-
ing to expression-relevant regions, effectively incorporating fine-grained structural information into
the model.

Our experiments show that the proposed framework substantially improves expression similarity
while preserving identity. For instance, on Hellomeme (Zhang et al., 2024a), EXP SIM (Zhao et al.,
2025) increases from 0.2572 to 0.3185 with a corresponding drop in AED (Siarohin et al., 2019),
and on HunyuanPortrait (Xu et al., 2025), it improves from 0.2886 to 0.3265. In addition, self-
bench results reveal gains in SSIM (Wang et al., 2004) and PSNR, confirming enhanced structural
consistency without loss of perceptual quality. These results demonstrate that a few hundred op-
timization steps, combined with structural supervision, are sufficient to refine expression fidelity
while maintaining output reliability.

In summary, our contributions are as follows:

• We propose StrucBooth, a framework that incorporates pixel-level expression structure details
into the model through a few-step self-tuning process using PGT, optimizing expression structures
while preserving the model’s inherent generative capabilities.

• We introduce Facial Structural Gradients supervision, by aligning structural details in the pixel
space, we enhance the fine-grained consistency of expressions in the generated results.

• We conducted extensive experiments in multiple baselines and evaluation protocols. Our method
consistently improves expression fidelity and consistency.

2 RELATED WORK

2.1 DIFFUSION MODELS FOR VISUAL SYNTHESIS

Diffusion models have become a dominant generative paradigm for visual content creation, sur-
passing adversarial and autoregressive approaches in both fidelity and diversity (Ho et al., 2020;
Song et al., 2020; Ho, 2022). By progressively denoising latent variables, they offer stable train-
ing and controllable sampling, which has driven major advances in image synthesis. Large-scale
text-to-image systems (Saharia et al., 2022; Rombach et al., 2022) further combine diffusion with
transformer-based language encoders, achieving strong semantic grounding and photorealistic out-
puts. To improve structural controllability, methods such as ControlNet (Zhang et al., 2023a; Li
et al., 2024b) and IP-Adapter (Ye et al., 2023) introduce conditioning mechanisms based on poses,
sketches, and reference images, which extends to more applications (Zhou et al., 2024a;b; Wang
et al., 2024c; Liang et al., 2024; Zhou et al., 2024c; 2025; Li et al., 2025; 2024c). Beyond static
images, diffusion models have been extended to videos by incorporating temporal modeling into
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Figure 2: Overview. StrucBooth first generates pseudo-ground truth (PGT) for self-tuning.
During fine-tuning, we align and optimize expressions by aligning the Facial Structural Gradients of
expression-related patches between the driving image and the intermediate prediction.

the U-Net backbone (Wan et al., 2025; Kong et al., 2024; Yang et al., 2024b). Factorized spatio-
temporal attention (Chen et al., 2023; 2024a) and latent video diffusion (He et al., 2022; Ho et al.,
2022b) enable consistent motion generation while maintaining visual quality. Text-to-video systems
such as Make-A-Video and Imagen Video (Singer et al., 2022; Ho et al., 2022a) demonstrate strong
capabilities in generating short clips directly from textual prompts.

2.2 PORTRAIT ANIMATION

Portrait Animation aims to generate realistic motions and expressions from a single static image,
typically driven by external signals such as reference videos, landmarks, or audio cues. Tradi-
tional non-diffusion approaches primarily rely on explicit motion priors, with 3D Morphable Models
(3DMM) (Doukas et al., 2021; Yin et al., 2022; Huang et al., 2023; Yu et al., 2023; Khakhulin et al.,
2022; Mi et al., 2024; Tao et al., 2024) being the most common representation. While these meth-
ods can reproduce local expressions and mouth movements, their dependence on geometric warping
often leads to artifacts under large pose variations, identity mismatch, or occlusions.

The advent of diffusion models (Ho et al., 2020) has opened new directions for portrait anima-
tion. Several works (Wei et al., 2024; Yang et al., 2024a; Xie et al., 2024; Guo et al., 2024a) adapt
text-to-image diffusion backbones such as Stable Diffusion (Rombach et al., 2022), achieving im-
proved realism and robustness compared to earlier pipelines. To enhance controllability, landmark-
or keypoint-guided conditioning (Wang et al., 2024b; Zheng et al., 2024; Chen et al., 2024b) has been
introduced, enabling finer expression transfer. However, geometric discrepancies across identities
often cause expression misalignment and identity drift. Furthermore, most methods treat generation
as a frame-wise process without explicit temporal modeling, which results in flickering and limited
temporal smoothness.

Recent advances move toward end-to-end video diffusion frameworks (Zhang et al., 2024b; Peng
et al., 2024; Jin et al., 2024; Li et al., 2024a), explicitly integrating temporal coherence into the gen-
erative process. While these approaches improve consistency, they typically operate in latent spaces
that compress facial motion, inevitably discarding fine-grained structural cues. Such information
loss hinders long-horizon consistency and reduces realism for complex expressions, underscoring
the need for methods that preserve detailed dynamics in portrait animation.

3
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3 METHOD

3.1 OVERVIEW

Task Definition. The Portrait Animation task (Xu et al., 2025) takes as input an identity image
Fid, which specifies the static appearance of the target person, and a driving image or video Fdri

(hereafter referred to as a frame), which encodes the desired expressions, head motions, and poses.
The objective is to generate a new frame Fgen that faithfully preserves identity-specific details (e.g.,
facial geometry, hairstyle, background) from Fid, while accurately transferring the dynamic expres-
sion attributes from Fdri.

Method Overview. We conceptualize expression as an attribute on par with identity, and build
on the idea of incorporating it into the model through few-steps optimization with pixel-level ex-
pression structural supervision. As illustrated in Fig. 2, we propose the StrucBooth framework.
Concretely, we introduce a case-specific PGT-tuning scheme, where the generator is finetuned for a
few steps using generated Pseudo Ground Truth (PGT), enabling it to preserve the original gen-
erative capabilities for identity and background within each case. Meanwhile, during the finetuning
process, we extract Facial Structural Gradients (see details in Sec.3.3), a pixel-level expression
structure details, directly from the driving frame Fdri. By focusing on expression-relevant regions,
we align the intermediate predictions with the corresponding areas of the driving frame, guiding
fine-grained, case-specific optimization of expression structures.

3.2 PGT-BASED SELF-TUNING

PGT Generation. As previously mentioned, we aim to capture the pixel-level expression structure
details for each case via LoRA. An important issue is that, for any given case, the finetuning process
lacks true supervision for the post-imitation expression. So we propose the PGT self-tuning, which
preserves the model’s core generative capabilities.

We first synthesize a PGT image to serve as the pseudo-ground truth for the current case. Specifi-
cally, as shown in the left half of Fig. 2 (a), given a generator G and an arbitrary input case (Fdri, Fid),
we first use G to produce an initial prediction Fpgt:

Fpgt = G(Fdri, Fid) (1)

Self-tuning. Next, we establish a basic finetuning paradigm in the right half of Fig. 2 (a): We first
encode the Fpgt frame in the VAE latent xpgt, then add Gaussian noise ϵ at a given timestep t, and
feed the noisy latents xt into the model to predict the added noise or the corresponding flow:

Lldm = Ext, ϵ ∼ N (0, 1)
[∣∣ϵ− ϵθ(xt + ϵ)

∣∣2
2

]
, (2)

Here, xt denotes the noisy PGT latent, ϵθ represents the model’s prediction of the noise. If training
on flow instead, ϵ can be replaced with the ground-truth flow, while the formula remains in the form
of an MSE loss. This optimization step preserves the model’s ability to generate the pose, identity,
background, and expression for the current case, preventing excessive distribution shift.

3.3 FACIAL STRUCTURAL GRADIENTS SUPERVISION

Facial Structural Gradients. During the optimization process, we further incorporate pixel-level
structural supervision to bind the expression structure of the driving frame Fdri to the model. While
the driving frames Fdri contain rich expression-related structural information, they also differ from
the provided identity images Fid in terms of appearance like identity, sharpness, and color. There-
fore, we focus on extracting a structural representation that emphasizes expression-relevant details
while being robust to variations in appearance. We emphasize that expressions are primarily man-
ifested through distortions and deformations of facial structures, and therefore adopt image gradi-
ents as attribute-agnostic structural guidance. As shown in Fig. 2(b), gradients capture pixel-wise
variation trends and convey clear, recognizable expression information even without color or other
appearance cues. They provide strong structural signals and effectively emphasize subtle details that
are critical for accurate expression representation. Therefore, we extract gradients using the Sobel
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Driven
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Figure 3: Results in Cross-Video bench. Top 3 lines indicating results with HelloMeme(HM) as
baseline. Bottom 3 lines indicating results with HunyuanPotrait(HP) as baseline.

operator. Concretely, we first convert the input frame F to grayscale using a function Fgray(·) to
remove color information. We then apply Sobel convolution kernels Kx and Ky to compute hor-
izontal and vertical gradients at each pixel, forming local gradient vectors that capture directional
changes and fine structural patterns of facial features:

Gx,y(F ) =

[
Gx(F )
Gy(F )

]
=

[
(Kx ∗ Fgray(F ))
(Ky ∗ Fgray(F ))

]
, (3)

where the Sobel kernels are defined as:

Kx =

[
1 0 −1
2 0 −2
1 0 −1

]
, Ky =

[
1 2 1
0 0 0
−1 −2 −1

]
. (4)

Patch-Wise Structure Alignment. In a single step of the finetuning process, given the model’s
predicted noise or flow ϵ, we first compute the predicted x0 and decode it through the VAE to obtain
the predicted pixel frame Fpred. We then extract the Facial Structural Gradients as described above
from both the driving frame Fdri and the predicted frame Fpred, and try to optimize the expression
by aligning the gradient details between the two frames. However, directly aligning gradients be-
tween the two images (Fdri, Fpred) is impractical, since the driving frame and the predicted frame
correspond to different identities and thus may exhibit significant differences in the size and spatial
position of expression regions such as the eyes.

Given the strongly localized nature of expressions, only specific regions contain structure that is
highly relevant to the expression. Therefore, we extract Expression-relevant patches from both the
driving and predicted frames, resize them to the same size, and perform gradient supervision within
these regions. For the predicted frame Fpred, as shown on the right side of Fig. 2 (b), based on
the rough estimates of facial expression regions provided by the PGT, we can detect and crop the
corresponding expression-related latents patches from the predicted latents x0 and decode them into
patch images Ppred:

Ppred = Decode(x0 · R(Detect(Fpgt))). (5)

5
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Driven Reference Hellomeme Ours Reference Hellomeme Ours

Figure 4: Results on the image benchmark. We show the results of Hellomeme on Cross-Image
Benchmark.

Here, Decode denotes decoding the latent patches into images using the VAE, R represents re-
sizing the masks detected from the PGT to match the latent scale, and Detect indicates identify-
ing face-related regions using a face detector. Thanks to the spatial perceptual equivalence of the
VAE (Rombach et al., 2022), the pixel images decoded from these patches retain high visual qual-
ity and preserve the basic structural information, making them suitable for gradient computation
and optimization. At the same time, this patch-wise decoding reduces computational overhead by
avoiding decoding regions unrelated to the expression, improving efficiency and reducing memory
consumption. For the driving frame Fdri, we detect the locations of expression-relevant regions
such as the eyes and mouth using the same face detector, crop these regions, and, guided by the
PGT-predicted expression areas, resize the corresponding patches into Expression-related Patches
Pdri with the same size as Ppred:

Pdri = R(Fdri ·Detect(Fdri)). (6)

Based on the spatially aligned patches, we extract the corresponding gradients. To avoid the influ-
ence of gradient magnitudes, we align the gradient directions between patches using a cosine loss,
achieving pixel-level expression structure alignment:

Lgrad =
1

N

N∑
i=1

(
1− Gx,y(Ppred) ·Gx,y(Pdri)

∥Gx,y(Ppred)∥2 ∥Gx,y(Pdri)∥2

)
, (7)

Training Loss. To maintain portrait consistency during training, we additionally introduce a
sparse identity (id) loss. In particular, when optimizing videos, identity and related information
exhibit strong temporal redundancy. Therefore, we randomly sample one frame from the current
video segment, decode it, and compute the identity loss. Consequently, the overall training process
involves the following losses:

Ltotal = λldm · Lldm + λgrad · Lgrad + λid · Lid, (8)

where λldm, λgrad, λid are the balancing coefficients for each corresponding loss term.

4 EXPERIMENTS

4.1 SETTINGS

Benchmarks. We select HelloMeme (Zhang et al., 2024a) and HunyuanPortrait (Xu et al., 2025)
as our baselines, attempt to optimize different cases on top of these methods on the following three
benchmarks: Cross-Image, Cross-Video, and Self-Video. Specifically, in the Cross-Image bench-
mark, we manually collected 10 identity images and 20 driving images with pronounced and exag-
gerated expressions. resulting in a total of 200 test cases. We apply each baseline model to optimize

6
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Figure 5: Application. StrucBooth support more flexible control and optimization, allowing differ-
ent expression details to be combined into a single output. The red box in the figure indicates the
source of the output pose.

expression alignment for these cases. In the Cross-Video benchmark, we similarly collect 10 iden-
tity images and 20 driving expression videos, yielding another 200 test cases. In the Self-Video
benchmark, we select 50 short human expression videos (3 seconds each). For each video, we take
one frame from the first 10 frames as the identity image, and use the last 2 seconds as the driving
expression video.

Implementation Details. We adopt the following loss weights in our experiments: We set the loss
weights consistently across datasets: the gradient loss weight is 0.1, the identity-preserving loss
weight is 0.1, and for HelloMeme, the LDM reconstruction loss weight is set to 1.0. All models are
optimized for 800 steps with their default inference configurations on a single 48G NVIDIA A6000
GPU. Please refer to supplementary materials for more details.

4.2 METRICS

Cross-Video/Image Bench. For the Cross-Video and Cross-Image benchmarks, we evaluate iden-
tity, motion, and expression consistency. Identity Similarity (ID-SIM) is computed using Arc-
Face (Deng et al., 2019) embeddings, measuring the cosine similarity between each generated
frame and the reference identity. Expression Similarity is assessed via Average Expression Dis-
tance (AED) between facial landmarks of generated and driving frames (Siarohin et al., 2019). For
the Cross-Video benchmark, we also introduce Emotion Similarity (EMO-SIM) (Zhao et al., 2025)
to evaluate expression consistency across frames. EMO-SIM employ a pretrained emotion encoder
EmoNet (Toisoul et al., 2021) and compute the mean concordance correlation coefficient (CCC)
and Pearson correlation coefficient for both valence and arousal. Higher EMO-SIM scores indicate
better alignment of subtle expressions and micro-expressions.

Self-Video Bench. The Self-Video benchmark focuses on pixel-level fidelity. We measure Struc-
tural Similarity Index (SSIM) (Wang et al., 2004) and Peak Signal-to-Noise Ratio (PSNR) to quan-
tify alignment of facial expressions. To isolate facial regions, backgrounds are masked prior to
metric computation, ensuring that scores reflect improvements in expression synthesis rather than
background variations.

4.3 QUANTITATIVE AND QUALITATIVE ANALYSIS

Quantitative Results. As shown in Table 1, our method consistently improves the EXP SIM met-
ric (from 0.2572 to 0.3185 on Hellomeme and from 0.2886 to 0.3265 on HunyuanPortrait) while
reducing the AED metric across different baselines in the cross-bench setting. This demonstrates

7
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Table 1: Quantitative evaluation on Cross-Video, Self-Video and Cross-Image benchmarks. ↑
indicates higher is better, ↓ indicates lower is better. The best results are in bold.

Method Cross-Video Self-Video Cross-Image

ID↑ EXP SIM↑ AED↓ PSNR↑ SSIM↑ ID↑ AED↓
HelloMeme 0.494 0.2572 6.37 18.89 0.78 0.721 1.16

+ StrucBooth 0.505 0.3185 5.72 19.99 0.79 0.669 1.05
vs. Base +0.011 +0.0613 -0.65 +1.10 +0.01 -0.052 -0.11

HunyuanPotrait 0.594 0.2886 6.66 21.54 0.83 - -
+ StrucBooth 0.599 0.3265 6.55 21.83 0.84

vs. Base +0.005 +0.0379 -0.11 +0.29 +0.01

that, after a limited number of optimization steps, our approach effectively enhances the accuracy of
expression simulation. Importantly, the ID metric is largely preserved: fine-tuning toward pseudo-
targets maintains identity, with even slight improvements in some cases. In the self-bench setting,
our method improves both SSIM and PSNR, indicating enhanced structural consistency in expres-
sion imitation without compromising perceptual quality. Overall, these results show that combining
a small number of optimization steps with quality-restoration and structural losses allows the model
to refine expressions while retaining output fidelity. Furthermore, on HelloMeme, which supports
image-level synthesis, our method reduces the AED metric, confirming improved expression simi-
larity. Identity is minimally impacted: the ID metric decreases by only 0.052. These results indicate
that, at the image level, our approach effectively captures fine-grained expression details, enhancing
the fidelity of expression imitation.

Quantitative Results. In Fig. 3, we present the results on the video benchmark. As shown, in
the left-hand case, the imitation results exhibit closer similarity in the mouth’s range of motion and
structural details, making the overall expression more vivid and lifelike. In the right-hand case,
our method better captures subtle actions such as half-open or closed eyes, as well as lip-smacking,
rendering them more natural and expressive. In Fig. 4, taking the HelloMeme model as an exam-
ple, we also compare the original generation results with those obtained after approximately 800
optimization steps using our approach. Each row shows results generated from different reference
images when driven by the same expression input. We observe that the optimized results display
structures around the mouth, eyes, and other expression-related regions that more closely match the
driving image, thereby achieving more accurate expression imitation. For example, in the first row,
each person’s smiling expression better captures the perplexed look from the driving image, with the
mouth structure more closely aligned; in the second row, the extent of closed eyes and open mouths
is greater, demonstrating improved structural consistency; finally, the grin in the last row is also
structurally more faithful. While our method may cause a slight impact on identity preservation, this
effect is negligible compared to the substantial improvements in expression quality.

Application Patch-based expression optimization enables fine-grained and flexible control, allow-
ing diverse expression details from multiple reference images or videos to be integrated into a single
coherent output. To facilitate this, we introduce an intermediate representation, PasteDrive, con-
structed by compositing selected facial regions from different references. Expression optimization
is then performed in a patch-wise manner, with each region guided by its own expression gradients.
As illustrated in Fig. 5, this region-decoupled design offers two key advantages: (1) it allows selec-
tive imitation, enabling the model to replicate only specific components of a reference expression
(e.g., the mouth region in the first row); and (2) it supports compositional control, permitting seam-
less fusion of distinct regions from multiple references (second and third rows). These capabilities
underscore the effectiveness of patch-based optimization in achieving precise local control while
maintaining flexible expression composition.

4.4 ABLATION STUDY

PGT tuning. ① with ② in Tab. 2 (a) shows that direct PGT tuning preserves the model’s basic
generative capability and provides a slight improvement in expression reproduction.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation Results of HelloMeme on Cross-Image. (a): quantitative ablation table of
HelloMeme on Cross-Image. ↑ indicates higher is better. ↓ indicates lower is better. (b): ablation of
patch-wise decoding. (c): ablation of optimizing steps.

(a) Ablation on HelloMeme

ID Method ID↑ AED↓
① Base 0.721 1.16
② ① + PGT 0.703 1.14
③ ② + grad 0.611 1.01
④ ③ + id 0.669 1.05

(b) Patch-Wise decoding
(c) Optimize Steps

Facial Structural Gradients. Compared ② with ③, introducing the gradient loss during PGT tun-
ing effectively reduces the AED metric, enhancing the expression similarity of the model’s generated
results, but it also leads to a slight decrease in the ID metric.

Id presevation. If we optimize using only the gradient loss, as shown in the third row of Tab. 2
(a), the AED can be further reduced (from 1.05 to 1.01), indicating closer expression similarity, but
this comes at the cost of increased ID loss. By additionally incorporating an ID-preserving loss, it is
possible to recover some ID information without significantly compromising expression imitation.
In practice, these two losses represent a trade-off: increasing the weight of the gradient loss favors
stronger expression imitation, while increasing the weight of the ID or PGT-tuning loss helps better
preserve identity information.

Patch Wise decoding. As shown in Tab. 2(b), We show the resource consumption (GPU mem-
ory and training speed) and AED metric when computing on single frames. Pentagrams represent
patch-wise gradient computation, while circles labeled “Global” denote computing gradients on the
full decoded image followed by mask-based filtering. Green values indicate GPU memory usage
during execution, and red values indicate computation speed. When only the gradient loss is in-
volved, the patch-wise scheme and the global gradient computation scheme achieve similar AED
scores. However, the patch-wise approach consumes fewer resources and improves computation
speed by approximately 22%. Moreover, directly optimizing entire videos on a single A6000 GPU
is infeasible; by introducing the patch-wise decoding, we can efficiently perform optimization.

Optimize steps. As shown in Tab.2 (c), as the number of optimization steps increases, the AED
metric gradually decreases, indicating that the expressions become more similar; however, the ID
metric also experiences a slight decline. In practice, 400–600 steps are generally sufficient to achieve
high expression fidelity without substantially compromising identity preservation.

5 CONCLUSION

In this work, we propose StrucBooth, a method to optimize expression similarity in portrait an-
imation by extracting structural information directly in pixel space. Our approach can be applied
with any expression generator and requires only about 200–800 optimization steps to significantly
improve the expression similarity of the generated outputs. By leveraging case-specific PGT-based
self-tuning and pixel-level gradient supervision, our method effectively binds fine-grained expres-
sion structures into the model while preserving its inherent generative capabilities.Extensive exper-
iments on Hellomeme and HunyuanPortrait demonstrate that StrucBooth substantially improves
expression similarity and structural consistency without compromising identity or perceptual qual-
ity. These results highlight the effectiveness of incorporating structural gradients as a supervisory
signal, showing that a lightweight, few-step optimization can significantly enhance expression fi-
delity in portrait generation.

9
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ETHICS STATEMENT

Our work focuses on advancing portrait animation and expression generation to improve applica-
tions in education, communication, and creative media. We emphasize that our research is intended
for constructive purposes and is not designed to deceive or mislead. Like all generative technologies,
our methods could potentially be misused; we firmly oppose any use that could create harmful or
deceptive content, such as impersonating real individuals without consent.

All data used in our work are either publicly available or synthetically generated. Specifically, the
human faces and expressions are sourced from publicly accessible meme collections, fun caricatures,
or AIGC-generated portraits. No private, proprietary, or non-consensual personal data were used.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Detailed descriptions of the
training objectives, model architectures, and optimization settings are provided in the main paper
and Appendix. Furthermore, we commit to releasing our code and trained models upon acceptance
to promote transparency and reproducibility.

LLM USAGE STATEMENT

In this work, Large Language Models (LLMs) were used solely as a writing assistant to polish
the manuscript, such as improving grammar, clarity, and style. They were not used for research
ideation, experimental design, implementation, data analysis, or result interpretation. All technical
contributions, experiments, and conclusions are entirely the responsibility of the authors.
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6 APPENDIX

6.1 BASELINES

HelloMeme. The HelloMeme baseline is built upon a pre-trained Stable Diffusion (SD1.5) model
and incorporates additional modules to enable fine-grained control over portrait generation. Its main
principle is to extract fidelity-rich conditions, including facial expressions and head pose, and inject
them into the generative pipeline to guide the synthesis of target images or videos. The model
operates in a two-stage manner, where the first stage captures coarse facial and pose information,
and the second stage refines the output to match the driving conditions. This design allows the model
to preserve identity and expression details while leveraging the generative power of the underlying
diffusion backbone. To protect identity information during training, strong perturbations such as
random blurring are applied to sensitive regions like the eyes and mouth, ensuring the network
learns generalizable mappings rather than memorizing specific facial features.

Hunyuan Portrait. The Hunyuan Portrait baseline addresses the challenges of diverse facial ge-
ometries and intricate expression details by proposing an implicit conditional control framework. It
uses stable video diffusion as the backbone and integrates identity and motion information through
appearance and motion attention, avoiding the need for fine-tuning the image diffusion model or
separately training a motion module. Identity and motion are coarsely decoupled using a pre-trained
motion encoder, followed by enhanced training strategies and improved network architectures to
strengthen motion control and portrait identity separation. To better model temporal dependencies
in video generation, a motion memory bank is incorporated to provide an implicit representation of
motion features. An intensity-aware motion encoder is introduced to handle variations in motion
blur and pixel distortions, capturing fine-grained motion details. Additionally, consistent modeling
of portrait identity and background is achieved by combining ArcFace with a DiNOv2 backbone to
build an enhanced appearance encoder.

6.2 IMPLEMENTATION DETAILS

Method Details. For the face detector,we use face-alignment library to detect 2D facial landmarks,
extract the corresponding areas related to left eye, right eye, mouth, eyebrows, etc... Bounding boxes
covering the current expression regions are obtained according to the positions of the corresponding
landmarks and are expanded by roughly 5–25 pixels to ensure that key structural information is
included without introducing unnecessary content.

We first detect the PGT image to obtain a rough estimate of the expression regions in the predicted
result. These bounding boxes are then scaled down to match the latent space, allowing us to crop the
corresponding patches from the latent representation and decode them. For the driving image, we
similarly detect the facial expression regions and resize the cropped regions according to the patch
size from the decoded prediction, ensuring that their dimensions are consistent.

We then transfer all these patches into grayscale:

Igray = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B, (9)

then we extract image gradients using Sobel convolution kernels. For a given input image I , the
horizontal and vertical gradients are computed as:

Gx = Kx ∗ I, Gy = Ky ∗ I, (10)

where the Sobel kernels Kx and Ky are defined as:

Kx =

[
1 0 −1
2 0 −2
1 0 −1

]
, Ky =

[
1 2 1
0 0 0
−1 −2 −1

]
. (11)

Experiment Details. All baseline fine-tuning experiments were conducted using an 8-rank LoRA
setup with a learning rate of 2e-5, employing the AdamW optimizer with a constant schedule. Both
images and videos were processed at a resolution of 512 × 512. For HelloMeme, we adopted the v3
version and used the RV module as the base generator. For Hunyuan Portrait, we used the recom-
mended model weights provided by the authors. Specifically, during training, the LoRA modules
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Figure 6: More results of Videos on HelloMeme. We show more results of HelloMeme. For each
three lines, from top to bottom is driven frames, baseline frames and our frames.

were updated across a full timestep range of 0–1000. During inference, for the 25-step generation
process, LoRA was disabled in the last 15 steps to avoid overfitting or interference from fine-tuned
weights in the final refinement stage.
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Figure 7: More results of HunyuanPortrait. We show more results of HunyuanPortrait. For each
three lines, from top to bottom is driven frames, baseline frames and our frames.

6.3 MORE RESULTS.

HelloMeme on Cross-Video. We present additional results of HelloMeme on the Cross-Video
Bench in Fig. 6. In the first three cases, the baseline synthesis produces results with eyes remaining
open and insufficient mouth opening, whereas our method achieves better fidelity in details related
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Figure 8: More results of images on HelloMeme. We show more results of HelloMeme on Cross-
Image Bench. For each line, from left to right represents drive image, identity image, hellomeme
result and our result.

to eye closure and smiling. In the latter three cases, our approach generates mouth shapes and ex-
pressions with greater strength and closer resemblance to the driving images. Moreover, in the third
frame shown, the baseline fails to reasonably shift the eye gaze, while our optimized method ad-
dresses this issue. These comparisons demonstrate that, relative to the weaker HelloMeme baseline,
our method can effectively enhance the similarity of expression synthesis.

HunyuanPortrait on Cross-Video. We also present the results of HunyuanPortrait on the Cross-
Video Bench in Fig. 7. Improvements over the baseline are highlighted with green boxes. As shown,
our optimizations enhance the synthesis capability of the base model, particularly in details such as
eye gaze and mouth shape.

HelloMeme on Cross-Image We also present results on the Cross-Image Bench in Fig. 8. In
each row, from left to right, we show the driving image, the identity reference image, the synthesis
result of HelloMeme, and the synthesis result of our method. It can be observed that our synthesized
expressions are closer to the driving image in terms of structural details and expression amplitude.

6.4 LIMITATION

Although our method enhances the accuracy of expression imitation by completing structural infor-
mation, the quality of the simulated expressions and overall image fidelity remain constrained by the
performance of the underlying generator. In addition, for overly blurred images or cases where the
face cannot be recognized, our method struggles to extract valid regions or aligned structures, which
limits its effectiveness in extreme scenarios. Furthermore, in expression composition applications, if
the poses of different reference expressions differ significantly, the transfer process may suffer from
severe misalignment, making it difficult to obtain satisfactory results.
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