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ABSTRACT

Parameter-efficient fine-tuning (PEFT) techniques such as low-rank adaptation
(LoRA) can effectively adapt large pre-trained foundation models to downstream
tasks using only a small fraction (0.1%-10%) of the original trainable weights. An
under-explored question of PEFT is in extending the pre-training phase without
supervised labels; that is, can we adapt a pre-trained foundation model to a new
domain via efficient self-supervised pre-training on this new domain? In this work,
we introduce ExPLoRA, a highly effective technique to improve transfer learning
of pre-trained vision transformers (ViTs) under domain shifts. Initializing a ViT
with pre-trained weights on large, natural-image datasets such as from DinoV2
or MAE, ExPLoRA continues the unsupervised pre-training objective on a new
domain, unfreezing 1-2 pre-trained ViT blocks and tuning all other layers with
LoRA. We then fine-tune the resulting model only with LoRA on this new domain
for supervised learning. Our experiments demonstrate state-of-the-art results on
satellite imagery, even outperforming fully pre-training and fine-tuning ViTs. Using
the DinoV2 training objective, we demonstrate up to 7.5% improvement in linear
probing top-1 accuracy on downstream tasks while using <10% of the number
of parameters that are used in prior fully-tuned state-of-the art approaches. Our
ablation studies confirm the efficacy of our approach over other baselines, including
PEFT and unfreezing more ViT blocks.

1 INTRODUCTION

Pre-training foundation models (Bommasani et al., 2021)) for natural language (Brown et al.| [2020;
Chowdhery et al., 2023} Touvron et al., 2023} Jiang et al.,2024) and natural images (Oquab et al.|
2023} |He et al.| 2022} [Zhou et al.l 2021;|[Rombach et al.| 2022} has historically been computationally
intensive, often limited to organizations with substantial resources. However, recent advancements
in parameter-efficient fine-tuning (PEFT) techniques including low-rank adaptation (LoRA) and
others (Hu et al.,[2021; Zhang et al., [2023b}; |Chavan et al., 2023} |Qiu et al., 2023 [Liu et al., 2023}
Jia et al., [2022) have sparked significant interest. These methods aim to adapt foundation models to
downstream supervised-learning tasks using a small fraction (0.1%-10%) of the model’s trainable
weights, with many based on the hypothesis that the required weight updates to the pre-trained model
have a “low intrinsic rank" (Hu et al., 2021} L1 et al., 2018; /Aghajanyan et al., 2020).

In this paper, we focus on visual foundation models (VFMs) such as DinoV2 or MAE (Oquab
et al.,|2023; |He et al.| 2022), which were trained on large-scale natural-image datasets. Despite the
large investments in developing such models for natural images, they underperform when applied to
other domains with visual data (e.g. medical or satellite images). For example, fine-tuning a model
pre-trained on natural images on satellite image classification tasks is not as effective as fine-tuning
one that was pre-trained on satellite images (Cong et al.,2022; |Ayush et al.,[2021). To bridge this gap,
prevailing approaches invest similarly large levels of compute to pre-train VFMs on new domains,
inspired by techniques developed for natural images (Cong et al., {2022} |Reed et al., 2023} [Tang et al.,
2024; Khanna et al.| 2024 Zhou et al., 2023; Moutakanni et al., [2024; Man et al., [2023).

In this work, we challenge this paradigm (fig. [I), asking whether pre-training from scratch on
each new domain is strictly necessary, since doing so is expensive (in compute and time) and
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Figure 1: Consider two different image domains, Ds and Dr. Left: the traditional paradigm of pre-training
from scratch on each domain to yield Wpg and Wp,., and then fine-tuning on target datasets ¢ to yield Ag,, A,
for domains Dg and D, respectively. Right: our approach, which is to initialize with pre-trained weights from
domain Dy and then learn unsupervised weights Ap,. for domain D in a parameter-efficient manner.

precludes knowledge transfer from natural images. Instead, we wish to more efficiently leverage
the rich semantic information encoded in natural-image vision foundation models to adapt them to
new domains. Our proposed solution addresses these concerns using PEFT techniques for domain
adaptation via self-supervised learning.

We introduce EXPLoRA, which generalizes vision foundation models to new domains by extend-
ing the pre-training phase with parameter-efficient techniques. We initialize a vision transformer
(ViT) (Dosovitskiy et al.;,[2021)) with pre-trained weights from natural-image datasets such as MAE or
DinoV2. Selectively unfreezing 1-2 transformer blocks, we tune remaining weights with LoRA and
continue unsupervised pre-training on the new domain. Subsequently fine-tuning with linear probing
or LoRA on this new domain for supervised learning outperforms prior state-of-the-art (SoTA)
approaches while training under 6-10% of the original weights. On satellite imagery, for example, we
demonstrate an 8% improvement in linear probing top-1 accuracy, and even an improvement over
prior SoTA fully pre-trained and fine-tuned techniques. We conduct an extensive study on RGB,
temporal, and multi-spectral satellite images, either matching or outperforming prior methods that
fully pre-train from scratch. EXPLoRA also generalizes to different domains such as wildlife, medical,
and agricultural imagery on the WILDS (Koh et al., 2021) benchmark. Our contributions include:

1. Introducing ExXPLoRA, a novel parameter-efficient method that extends unsupervised pre-
training on target domains, achieving state-of-the-art supervised-learning performance using
a fraction of the original ViT weights (section 3).

2. Conducting a comprehensive case study on satellite imagery, showcasing improvements in
linear probing top-1 accuracy and outperforming existing techniques on datasets like fMoW.
We also demonstrate generalization to multiple other domains within WILDS (section [6).

3. Demonstrating EXPLoRA’s efficacy via ablation studies and by analyzing the differences in
local (eg: positional) and global (eg: class) information encoded in the patch representations
output by each ViT block (section[6.3).

2 RELATED WORK

VFMs VFMs such as DinoV2 or masked autoencoders (MAE) that pre-train with self-supervised
learning (SSL) have demonstrated remarkable performance across downstream tasks such as classifi-
cation or semantic segmentation (Oquab et al.| (2023); |He et al.| (2022); |Grill et al.| (2020); (Chen et al.
(2020). However, there has also been a rise in domain-specific VFMs (Cong et al.| [2022; |Reed et al.|
2023; Moutakanni et al.}[2024; Ma et al., [2024} Zhang et al., 2023a). For instance, SatMAE handles
temporal or multi-spectral satellite image inputs. Since these models contain hundreds of millions of
parameters, efficient adaptation to downstream tasks has become a key research focus.

PEFT PEFT methods have gained widespread adoption for efficiently adapting large models by
updating only a fraction of parameters, mitigating the prohibitive costs of full model tuning. LoRA
learns low-rank weight updates to frozen weights, while other methods modify the frequency or
number of trainable parameters per layer (Hu et al 2021 |Zhang et al.| |2023b; |Chavan et al.| 2023}
Pu et al., |2023)). Others use multiplicative orthogonal updates (Qiu et al., [2023} |Liu et al.l [2023)) or
inject adapter modules (Steitz & Rothl [2024; [Y1n et al.| 20235 |Chen et al.} 2022} [Yin et al.| 2024} |Lian
et al}[2022), effectively retaining pre-training knowledge in frozen weights. Visual prompt tuning
(VPT) methods concatenate learnable prompt tokens to image patch sequences, trading improved
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fine-tuning performance with increased inference costs (Jia et al.| 2022} [Yoo et al.} 2023}, [Pei et al ]
[2024}, [Han et al] [2023} [Nie et al] [2023)). ExPLoRA aims to supplement rather than replace these
methods, and thus can be configured with any existing or future PEFT method for ViT fine-tuning.

Domain Adaptation Domain adaptation enables models trained on a source domain to perform
well on a different but related target domain. Traditional transformer-based methods address this
via domain alignment, discriminative feature learning, cross-attention with pseudo-labels
2022} [Chuan-Xian et al| 2022} [Zhu et al| 2023), or adversarial learning with self-refinement
et al.| 2023} (Xu et al}[2021)), typically requiring either labeled target data or source domain labels.
Recent work explores adapting ViTs through different means: e.g., continual pre-training via masked
image modeling (Mendieta et al} [2023)) and scaled LoRA adapters (Scheibenreif et al.| 2024)) for
satellite imagery. ExXPLoRA builds on this direction, enabling SSL directly on the target domain
while using significantly fewer parameters. Further comparisons with related work are in appendix [A]

3 BACKGROUND

MAE The masked-autoencoder (MAE) is an effective SSL technique for ViTs
that uses an asymmetric encoder-decoder architecture on images x € R€*#*W where patches are
masked before being processed by the ViT encoder £. The masked patches are then reconstructed by
a smaller decoder £ p, with both trained jointly using mean-squared error on the reconstructed visible

pixels. While effective across domains (Cong et al.} 2022} [Bachmann et al.} 2022), MAEs typically

require full fine-tuning for downstream tasks, which makes them computationally expensive.

DinoV2 DinoV2 (Oquab et al}[2023) is a robust SSL method for ViTs. Unlike MAE, DinoV2
features have demonstrated strong zero-shot performance, enabling adaptation to downstream tasks
even with a frozen ViT backbone. During pre-training, DinoV2 maintains two copies of a ViT
encoder: the student (trainable) and the teacher, which is updated using an exponential-moving
average of the student’s parameters. The training objective incorporates a global, image-level loss

from Dino (Caron et al,[2021)), a patch-based loss from iBOT 2021)), and regularizers
including KoLeo (Delattre & Fournier, 2017) and Sinkhorn-Knopp centering (Caron et al,[2020).

LoRA Low-rank adaptation (LoRA) (Hu et al [2021)) assumes that the weight update to change a
set of unsupervised pre-trained weights to supervised fine-tuned weights lives in a low-rank subspace,

W~ Wy + Aw = Wy + BA 1

where W € R¥2*¥1 are the final, task-specific fine-tuned weights, W, € R*2*¥*1 are the pre-trained
weights, Ay € RF2X¥1 is the weight update required to translate the pre-trained weights Wj to the
fine-tuned weights . The key is that Ay, = BA where B € R*2*" and A € R"*%1, That is, A
and B form a low-rank factorization of Ay, where the rank r < min(k1, k2).

4 PROBLEM SETUP

Consider a set of image domains D = {1,2, ...}, where each domain d € D is associated with a
data distribution p,4(x), and images x € RC*HaxWa have domain-specific channel, height, and
width. Let Dg C D represent a set of source domains (e.g., internet-scale natural image data) and
Dy C D represent target domains (e.g., satellite imagery). The data from the source domains follow
a distribution pp4(x), and the target domain data come from pp..(x). For some target domains
dr € Dr, the joint distributions pg,. (x,y) describe images x with associated supervised labels y
used for downstream tasks. We then assume access to the following:

(i) Wpg, pre-trained weights obtained via unsupervised pre-training on images from pp (x)
(i) Xp, = {x;}Y, ~ pp,(x), an unlabeled dataset of N images from new domains D
(i) Var = {x5,¥; }Jl\/ile ~ par(X,y) alabeled dataset of My, images from domain dy € Dr

Our objective is to learn optimal weights Wy, for each supervised-learning dataset Vg, in a parameter-
efficient manner while leveraging the knowledge stored in Wp.
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Figure 2: An overview of EXPLoRA. The set £ of L ViT blocks is partitioned into two sets: I/, which denotes
blocks whose parameters are completely unfrozen, and £ \ & which denotes blocks that undergo LoRA tuning
(only on the @), V attention matrices). Note that the normalization layers are always unfrozen across all blocks.

Algorithm 1 ExPLoRA

1: Input: Wp = pre-trained ViT with L layers £ = {1,...,L}; Xp, := unlabeled dataset

2: Initialize a frozen ViT with Wp from source domains Dg (e.g., DinoV2 or MAE weights).

3: Unfreeze all parameters of a subset of blocks U C L. (e.g.,Ud = {L} orld = {1,L}).

4: Apply LoRA (with rank r) on ) and V' weights in attention layers of frozen blocks in £ \ I/ and
unfreeze normalization layers in these blocks.

5: Train all unfrozen parameters A p,. on the unlabeled dataset X'p,,. using the same unsupervised
objective as what was used for Wp (e.g., DinoV2 or MAE).

6: Output: A new pre-trained model WBT = Wps + Ap, for target domains Dr.

Traditionally, the approach (fig. [T) has been to begin pre-training from scratch on the new domains of
interest in X'p,., and then fine-tune for each dataset )., representing the following:

WdT ~ WDT + AdT 2)

where Wp,,. represents the weights learned from unsupervised pre-training on Xp.., and A4, are
the weights learned from supervised fine-tuning on )g,.. However, this method is computationally
expensive: fully pre-training Wp,,. from scratch for every new domain requires prohibitively large
amounts of additional compute.

On the other hand, LoRA addresses this inefficiency in the following way:

Wy, = Wpg + Ag, = Wpg + B Aa, 3

The LoRA hypothesis is that the update A4, resides in a low-rank subspace when adapting pre-
trained weights Wp, to fine-tuned weights 1W,,.. This hypothesis holds well when pre-training and
fine-tuning distributions are similar, or where dr € Dg. However, when there is significant domain
shift, such as between natural images and multi-spectral satellite data, the low-rank assumption often
breaks down (see section [6.1.3).

Our goal is to learn Wp,. in a parameter-efficient manner to bridge the large domain shift to Dy
while leveraging the knowledge encoded in Wp,. We propose the following factorization of W,

WdT ~ WDS + ADT + AdT (4)

where Ap,. € RF2X¥1 is an additional update matrix learned from unsupervised pre-training on Xp,..
Crucially, A .. requires only a fraction of the k1 ko parameters of Wp, making it significantly more
efficient than full-rank pre-training. The resulting model, Wy, = Wp + Ap, ~ Wp,., retains
the benefits of unsupervised pre-trained VFEMs, including strong feature extraction, effective linear
probing, KNN classification, and generalization to downstream tasks.
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5 METHOD

To learn Ap,., we propose EXPLoRA (i.e. Extended Pre-training with LoRA), a method that
efficiently adapts pre-trained ViTs for new target domains D, described in algorithm T}

In terms of notation, D-[L]-r64 refers to a ViT initialized with DinoV2 weights (denoted by D),
where U = {L}, and LoRA rank 64 is applied to the ), V matrices of attention layers in £ \ . Thus,
Ap,. comprises of all weights in I/, LoORA matrices in £ \ U, and normalization layers. For &/ = {1},
Ap,. consists of only 5% of the original ViT parameters. As we show in section [6] our extended
pre-training approach can match or even outperform full pre-training on new domains from scratch.

ExPLoRA for DinoV2 We initialize a ViT-L with W from the DinoV2 ViT-L encoder, without
registers (Darcet et al.,2023). Since the DinoV2 pre-trained checkpoints don’t contain the Dino or
iBOT linear heads, we initialize a shared Dino-iBOT linear head from scratch. This shared head is
fully trained during extended pre-training, adding only a minimal number of trainable parameters.

ExPLoRA for MAE We initialize a ViT-L with Wp, from the MAE ViT-L encoder. Since MAE
provides the pre-trained decoder, we use these weights to initialize our MAE decoder He et al.|(2022).
During extended pre-training, in addition to the EXPLoRA recipe in algorithm [T} we apply LoRA
with rank ' on the @, V matrices of each attention layer in the frozen decoder. Note that the LoRA
rank r’ may differ from the LoRA rank r used in the ViT encoder (appendix [B.4). All other decoder
weights, apart from the layer-normalization layers, are kept frozen. No block is fully unfrozen in the
MAE decoder, as it will be discarded after extended pre-training. This helps to minimize the number
of additional parameters trained in the decoder.

ExPLoRA for Multi-Spectral Inputs  For the multi-spectral ViT introduced by SatMAE we need
to additionally unfreeze the positional encoding and the patch embedding weights for each group of
channels. These cannot be initialized from Wp,, as Wp is trained on RGB inputs, whereas multi-
spectral inputs can have more or different channels. As part of Ap,. in algorithm I} the positional
encodings and patch embeddings for multi-spectral data are adapted during extended pre-training.
Aside from this, the approach remains unchanged from that of DinoV2 or MAE described earlier.

Storage Considerations After running EXPLORA, we receive a new unsupervised model Wy, ==
Wpg + Ap, for the target domains Dp. Any components that are not part of the ViT encoder (eg:
the Dino linear head or the MAE decoder) are discarded. Post-ExPLoRA, only A, consisting of 1-2
unfrozen ViT blocks, LoORA matrices, and layer-normalization weights, are stored for each Dr. Like
LoRA and other PEFT methods, ExXPLoRA significantly reduces additional storage requirements
compared to fully training Wp,. from scratch.

Fine-Tuning post-ExPLoRA  After extended pre-training with EXPLoRA, the output weights W, |
behave as any fully pre-trained model Wp,.. We can now use the ViT for feature extraction, PEFT,
or fine-tuning as desired. For instance, we could initialize a linear head for classification or a decoder
for segmentation, either of which is fully trainable. We can then freeze all ViT weights and apply
LoRA-r8 on the (), V matrices of the attention layers (or use another PEFT method). Lastly, we use
supervised fine-tuning on each labeled dataset V... to train the unfrozen parameters A,,.. This yields
our final model W,. (eq. @), which can be used for classification, segmentation, detection etc.

6 EXPERIMENTS

Our experimental results consist of a case study on satellite imagery (section[6.T), with an ablation
study in section [6.1.2] and analysis in section [6.3] We evaluate on multiple downstream tasks in
sections and Additional experiments and ablations are provided in appendix
and training hyperparameter and compute configurations are mentioned in appendix [C| Our results
achieve a new SoTA top 1 accuracy of 79.2% (11.4%) on the competitive fMoW-RGB benchmark,
outperforming fully pre-trained and fine-tuned models while using 6% of the ViT encoder parameters.
We also achieve a 18.2% improvement in linear probing accuracy on the same dataset. Across
other satellite datasets, we match fully-pretrained prior state-of-the-art methods, and demonstrate
competitive performance on WiLDS benchmark datasets as well.
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6.1 CASE STUDY: SATELLITE IMAGERY

We examine satellite images given their importance towards multiple societal applications (section [7))
and since they represent a significant domain shift from natural images. There is a large and growing
body of research on developing foundational models for satellite imagery from scratch/Ayush et al/|
(2021)); [Cong et al|(2022);[Reed et al.| (2023); Tang et al.| (2024), thus presenting a good benchmark

for EXPLoRA.

6.1.1 RGB SATELLITE IMAGES

Dataset We first consider the functional map of the world (fMoW) dataset of high-resolution
satellite images, each paired with one of 62 classification labels (Christie et al, 2018)). fMoW is used
as a benchmark for many satellite-image foundation models (Cong et al.,[2022; Reed et al.}, 2023).

Pre-train  Fine-tune

Model Arch. PEFT 4P Top 1 Acc.
arams #Params

ScaleMAE [49] ViT-L Full 303.3M 303.3M 77.80
SatMAE ViT-L Full 303.3M 303.3M 77.78
SatMAE [17] VIiT-L LoRA-8 [28] 303.3M 0.8M 76.10
ScaleMAE ViT-L LoRA-r8 303.3M 0.8M 78.01
GFM ViT-L LoRA-78 [28] 303.3M 0.8M 73.03
GDA ViT-L GDA-r16 8.5M 8.5M 71.88
MAE [26] ViT-L LoRA-78 [28] - 0.8M 76.21
M-[L]-r64 ViT-L LoRA-r8 [28] 18.7M 0.8M 76.55
DinoV2 [44] ViT-L LoRA-r8 [28] - 0.8M 78.08
DinoV?2 [44]] ViT-L  BOFT-b2m8 - 0.9M 72.40
DinoV2 [44] ViT-L VPT-100 [29] - 0.4M 77.29
DinoV2 ViT-L GVPT-100 [63] - 0.4M 76.22
DinoV2 [44] ViT-L  AdaLoRA-r8 [63] - 1.2M 78.87
DinoV2 ViT-L Adapter+ - 1.4M 78.16
DinoV2 [44]  ViT-L SA2VP [43] - 1.IM 71.53
D-[L]-r64 ViT-L SA2VP [43] 18.7M 1.IM 78.51
D-[L]-r64 ViT-L LoRA-r8 18.7M 0.8M 79.15

Table 1: Results on the fMoW-RGB validation dataset. The “Pre-train #Params" and “Fine-tune #Params" refer
to the trainable parameters of the ViT encoder required on the new domain, i.e. satellite images. M- [L]-r64
and D- [L]-r64 refer to EXPLoRA models initialized with MAE and DinoV2 weights, respectively (section E[)

We compare our results in table[T]against both prior fully pre-trained SoTA foundation models as
well as PEFT techniques applied on ViTs pre-trained with MAE and/or DinoV2 weights. Our results
demonstrate that D-EXPLoRA-[L]-764 is SOTA in terms of fMoW-RGB average accuracy at 79.15%.
ExPLoRA outperforms techniques that require fully and/or continually pre-training ViTs on fMoW
while using 6% of the original ViT encoder parameters. Further experiments with MAE are in[B77]

ExPLoRA-initializations with LoRA fine-tuning outperform other unsupervised initializations paired
with PEFT techniques by 1-3%, including SoOTA matrix-adaptation methods like AdaLoRA
et al.} [2023b), BOFT (Liu et al} [2023), VPT approaches such as GVPT (Yoo et al} [2023) and
SA?VP (Pei et al| 2024), and adapter methods like Adapter+ (Steitz & Roth| 2024). We also
outperform satellite image domain adaptation methods such as GFM (Mendieta et al] [2023)) and
GDA (Scheibenreif et al.|, 2024). Additionally, applying SA2VP to ExXPLoRA-initialized ViTs
improves performance over a DinoV2 initialization by 1%, showcasing EXPLoRA’s compatibility
with other PEFT methods and its versatility as an initialization for new domains.

Using our strongest performing variant (i.e. EXPLoRA with DinoV2), we investigate linear-probing
performance on fMoW-RGB compared with prior SOTA methods in table 2| Linear-probing rep-
resents freezing the backbone and then training a linear head on the features extracted from the
frozen backbone, serving as a desirable metric of the quality of extracted embeddings. Our results
demonstrate an improvement of over 18.2% in top 1 average accuracy over prior SOTA methods,
demonstrating that EXPLoRA learns robust unsupervised representations for its target domain without
requiring expensive from-scratch pre-training. Importantly, EXPLoRA outperforms domain-specific
prior SoTA solutions (rows 1-4), as well as DinoV2, which suggests successful transfer learning on
the target domain by leveraging knowledge from pre-training on natural images.
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Blocks LoRA Norm LoRA Num. Topl

Top 1 Unfrozen Rank  Unfrozen Layers Params  Acc.

Method Arch. e 3 0 v 0 27M 7483
GASSL [2] ResNet  68.32 [L-1,1] 0 v [] 253M 7597
SatMAE [17] ViT-L  65.94 [] 256 v [Q,V] 259M 7551
ScaleMAE [49] ViT-B  67.30 [] 128 v All 33.1M  55.03
CScaleMAE [55] ViT-B  69.20 [L] 64 v Mlp 16.5M  48.55
DinoV2 [44] ViT-L 67.60 [1] 64 v [Q,V] 187M  75.97
DinoV2+ [44] VIT-L  69.00 (91 64 v [Q,V] 18.7M  75.45
D-[L]-r64 VIT-L  76.86 [L-1] 04 v [Q,V] 18.7M  77.40
D-[L]-r64f ViT-L 7748 [L] 0 v VPT-100 12.8M  70.14

[L] 64 X [Q,V] 18.6M  76.78

. . [L] 8 v [Q,V] 13.4M  76.31

Table 2: Linear-probing on quW—RGB. [L] 32 v [Q,V] 157M  76.40
The first four rows fully pre-train on the (L] 64 v [0, V] 187M  77.48

dataset. T denotes concatenating features

from the last 4 ViT blocks. All other rows Table 3: Ablation study using DinoV2-EXPLoRA, measuring linear-

use the features of the last ViT block. probing accuracy on fMoW-RGB. All results are obtained by using
concatenated features from the last 4 ViT blocks.

6.1.2 ABLATION STUDY

We perform an ablation study (table [3)) on linear-probing performance for fMoW-RGB to determine
whether our proposed configuration performs optimally. A natural question is whether the improve-
ment in performance stems primarily from unfreezing blocks, or from LoRA-tuning the rest of the
ViT. We investigate this by unfreezing blocks {L, L—1} in row 2 (with no LoRA), and comparing
that with EXPLoRA-L-r8 in row 10. As seen, unfreezing an extra block consumes almost double
the number of parameters, but fails to yield the same improvement in performance | 0.34%. Thus,
simply increasing the number of unfrozen blocks will likely improve performance, but will not do so
as effectively as EXPLoRA, and will also significantly and sharply decrease the parameter-efficiency.

Next, we investigate whether high LoRA ranks used on all ViT layers (i.e. all attention and MLP
matrices, not just (), V) is beneficial. Surprisingly, this significantly harms learning (row 4, 5). In
fact, it is much less effective than using just LoORA-r256 on the ), V' matrices of all £ blocks (row 3).
However, both rows 3 and 4 are much less parameter-efficient than EXPLoRA (rows 6-8, 11-13).

The choice of U matters as well. As seen in rows 6-8, and 13, for the DinoV2 objective, U = {1} or
U = {9} are not as effective as U = {L-1} or U = {L}, ceteris paribus. To understand this result
further, see section [6.3] We also notice a slight drop in accuracy from leaving the normalization
layers across the ViT frozen, seen in row 10.

Lastly, we investigate the impact of LoRA rank on EXPLoRA. Changing the rank from 8 to 32 has a
small improvement (1 0.09%), but changing from 32 to 64 brings about a much larger improvement
(1 1.08%), with only a relatively small increase in trainable parameters. This demonstrates that higher
ranks are necessary during pre-training for effective learning on the new domain. Further ablations
on compute efficiency (B.2), data efficiency (B.3), MAE decoder rank (B.4)), and ViT backbone size

are in appendix [B]

6.1.3 MULTI-SPECTRAL SATELLITE IMAGES

Dataset Next, we consider the fMoW-Sentinel dataset, a large dataset of Sentinel-2 images used
in|Cong et al.[(2022)). Each image consists of 13 spectral bands and is paired with one of 62 classes.

With fMoW-Sentinel, we evaluate transfer from natural images to multi-spectral, low-resolution
satellite images - a harder task than fMoW-RGB due to the absence of non-RGB bands in Dg. We
use the group-channel ViT-L from Cong et al|(2022), initialized with MAE. During algorithm[I] we
additionally unfreeze only the patch embedding layers due to architectural differences.

Table ] shows the challenge: fully fine-tuning from MAE drops accuracy by nearly 10% (row 2),
LoRA tuning from MAE performs worse (row 4), and unfreezing four transformer blocks (row 6)
fails to help. However, EXPLoRA with &/ = {1, L} outperforms even full pre-training from scratch
for LoRA fine-tuning (row 5 vs. last row), demonstrating effective adaptation to a very different
domain while using <10% of the parameters.
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Pre-train  Fine-tune

Model Backbone PEFT 4p Top 1 Acc.
arams  #Params

ImgNet-Supervised ResNet152 Full 60.3M 60.3M 54.46
MAE [26] ViT-L Full - 303.3M 51.61
SatMAE [17] ViT-L Full 303.3M 303.3M 61.48
MAE [26] ViT-L LoRA-r8 - 0.8M 46.97
SatMAE [17] ViT-L LoRA-r8  303.3M 0.8M 59.48
MAE-[1,2,L-1,L] ViT-L LoRA-r8 51.5M 0.8M 54.12
M-ExPLoRA-[L]-r32 ViT-L LoRA-r8 16.2M 0.8M 51.84
M-ExPLoRA-[1, L]-r32 ViT-L LoRA-r8 29.7M 0.8M 60.15

Table 4: Results on the fMoW-Sentinel validation set. The “Pre-train #Params" and “Fine-tune #Params"
refer to the trainable parameters required on the new domain, i.e. multi-spectral satellite images. “MAE-
[1,2,L-1,L]" refers to initializing the group-channel SatMAE model with MAE weights, unfreezing blocks
1,2,23,24 for ViT-L, and then continuing pre-training on fMoW-Sentinel.

SpaceNet Resisc45

Method PEFT II)nIoU Top 1 Acc.
SatMAE [17] Full 78.07 94.80
ScaleMAE [49] Full 78.90 95.70
DinoV2 [44] LoRA-r8 76.69 97.60
D-[L]-r64 LoRA-r8 76.69 97.65
SatMAE [17] Lin. Probe 50.89 88.30
ScaleMAE [49] Lin. Probe 47.17 89.60

o DinoV2 [44] Lin. Probe 76.21 96.34
Table 5: fMoW-Temporal validation set D-[L]-764 Lin. Probe 76.34 97.32

results

Method PEFT Top 1 Acc.
GASSL [2] Full 74.11
SatMAE [17]  Full 79.69
MAE [26] LoRA-r8  69.30
SatMAE [17] LoRA-r8  75.27
M-[L]-r32 LoRA-r8  75.98

Table 6: SpaceNet and Resisc-45 validation set results
6.1.4 ADDITIONAL SATELLITE DATASETS

We perform extensive experiments on downstream satellite datasets, with further results in[B.1}

fMoW-Temporal Each input is a sequence of up to 3 fMoW-RGB (Christie et al.,[2018)) images
of the same location, distributed temporally, and paired with one of 62 classes. Since the inputs are
now temporal sequences, we initialize the temporal MAE architecture from (Cong et al.| (2022) with
MAE weights, and pre-train on Xp,. with &/ = [L] and LoRA rank 32. ExPLoRA then outperforms
temporal SatMAE for PEFT (table[5)), demonstrating successful transfer learning at a fraction of the
pre-training parameters.

SpaceNet-vl This dataset contains high resolution satellite images, each paired with a segmentation
mask for buildings (Van Etten et al 2018)). The training and test sets consist of 5000 and 1940
images, respectively. For EXPLoRA, we pre-train on the training set. However, many images in the
dataset contain extensive blacked-out regions, indicating limits of the visible region. Considering this
limitation and the small dataset size, it is not clear whether additional pre-training is effective. We
find that, despite this, EXPLoRA remains on par with the LoRA-tuned DinoV2 model and remains
competitive with the fully pre-trained and fully fine-tuned domain-specific models (table[6).

RESISC-45 The RESISC-45 (Cheng et al., 2017) benchmark dataset consists of 31,500 satellite
images of varying resolution (0.2m-30m GSD), with 45 classes. The data is split into 25,200 training
and 6,300 validation images, as per Reed et al.| (2023). In table @, our D-ExPLoRA pre-trained
on only high-resolution fMoW-RGB images achieves SoTA results of 97.32% on multi-resolution
RESISC-45 images, with just linear-probing. Since we use the same pre-trained model as in the last
row of table[I] we demonstrate successful transfer learning from ExXPLoRA pre-training, without
requiring any additional modifications for scale-aware representation learning (Reed et al., 2023).

6.2 WILDS DATASETS

We test ExXPLoRA on the WILDS (Koh et al.| 2021) benchmark, specifically on Camelyon17 (Bandi
et al., 2018)), iWildcam (Beery et al.| [2020) and GlobalWheat |David et al.| (2020; [2021) datasets,
representing domain transfers to medical, wildlife, and agricultural imagery, respectively.
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Top 1 Topl AP@ AR@
Method  PEFT . Metod  pepr TPl Method 00" 0.5:095 05:0.95
CLater [48]  Full _ 93.90 etho Acc. TICON[32] 689 - -
ICON Full 90.10 DinoV2 [44] Lin. Probe 66.04 MAE[20] 82.5 538 58.7
DinoV?2 [44] Lin. Probe 93.27 DinoV2 [44] LoRA-r8 67.10 DinoV2 [44] 823  52.1 57.1
DinoV2 [44] LoRA-r8 9297 D-[L]-732 Lin. Probe 6295 D-[L]-r64 827 54.5 59.2
D-[L]-r32 Lin. Probe 9441 D-[L]-r32 LoRA-r8 68.07
D-[L]-r32 LoRA-r8 94.21 Table 9: Object detection results on the
Table 8: Classification results on validation set of GlobalWheat. AP and
Table 7: Classification results on the validation set of iWildcam. AR stand for average precision and aver-
the validation set of Camelyon17. age recall, respectively.

Camelyonl7 The WILDS Camelyon17 dataset consists of images of cancerous and non-cancerous
cell tissue organized in labeled and unlabeled splits. We use the “train-unlabeled" split for pre-training
ExPLoRA, and either use LoRA fine-tuning or linear probing on the training set of the labeled split.
We report accuracy on the binary classification problem and compare with entries on the WILDS
leaderboard which use unlabeled data. Our results in table [7/|demonstrate improved performance over
domain-specific methods as well as DinoV2, once again successfully bridging the domain gap.

iWildcam iWildcam classification requires identifying one of 182 animal species given an image.
We pre-train on the training set, finding that this outperforms pre-training on the extra-unlabeled
set. In table[8] we find an improvement over DinoV2 using LoRA-r8 PEFT. Surprisingly, the linear
probing performance of the EXPLoRA suffers in comparison with DinoV2, suggesting possible loss
in knowledge-transfer due to a small domain gap. Likely because natural image datasets Wp such
as ImageNet (Deng et al.,[2009) used for DinoV2 already contain many images of animals.

GlobalWheat The GlobalWheat dataset consists of a wheat head object detection task, where each
image of a wheat field is associated with bounding boxes on the visible wheat heads [David et al.
(20205 2021)). ExPLoRA extends pre-training on the training set, and then we run fine-tuning using
Detectron2 code for object-detection with ViTs (Wu et al.|[2019). ExPLoRA outperforms both fully
pre-trained baselines from the WILDS leaderboard and strong VFMs DinoV2 and MAE on top 1
accuracy, average precision, and average recall.

6.3 ANALYZING EXPLORA
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Figure 3: The mean of the principal Figure 4: Linear probing each Figure 5: Linear probing each patch

components of the feature map out- patch for position (local informa- for classification (global informa-

putted by each ViT block. tion), across all ViT blocks. tion), across all ViT blocks.

The key design choice of EXPLoRA is to fully train a small subset &/ C L of the ViT, while applying
low-rank updates to the remaining frozen layers £ \ U. For parameter-efficiency, we aim to keep
|U| < |£] and make and informed choice of which layers to unfreeze based on their potential to
improve learning during extended pre-training.

We conduct an investigation on 5 models using a sample of X'p,.. These models are DinoV2, D-
ExPLoRA-[L]-r64, SatMAE, MAE, and M-ExPLoRA- [L]-r64. We do the following analyses:
(i) PCA to measure the mean and variance of eigenvalues of patch feature vectors for each ViT block,
in fig. [3| (ii) linear probing for local or global information (Darcet et al., 2023) by training logistic
regression classifiers on each block’s patch feature vectors, to predict either patch position (fig. @) or
image class (fig.[5).
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Findings and Unfreezing Strategy for DinoV2 Our analysis reveals that the spectral properties
of a block’s feature map (fig. [3) and the ability to retrieve local information from its output patch
tokens (fig. @) are correlated. The classification accuracy for position and the mean of the principal
eigenvalues peak in the middle-layers of the model, suggesting that the middle blocks capture local
properties of patches (e.g., texture, relative position). Meanwhile, deeper blocks focus on global
semantic understanding, as shown by increased classification accuracy for image class prediction in
fig.[5| Combined, these results suggest that unfreezing deeper layers, such as i/ = {L}, allows the
model to better capture global features without overfitting to local details of images of Dr. This is
empirically confirmed in table[3] where linear probing accuracy correlates inversely with the mean
eigenvalue of each block (i.e., block 23 > block 22 > block 0 > block 9). The attention maps in fig. [§]
further support this, showing that the deeper layers focus more clearly on central objects, while earlier
layers (e.g., blocks 9, 10) exhibit more diffuse attention patterns spread around the border.

Findings and Unfreezing Strategy for MAE For MAE, we see a similar, but less pronounced
trend. However, MAE is only trained for reconstruction, and so retains more local information across
the ViT’s layers. This is reflected by its lower patch-wise eigenvalues, higher localization accuracy,
and lower global accuracies than Dino.

ExPLoRA’s Impact D-ExPLoRA preserves local information in the middle layers but also im-
proves localization accuracy in the last few layers. Importantly, it also enhances the global information
contained in the patches for deeper model layers. This indicates a better understanding of the target
domain, as seen in[B.6 where EXPLoRA’s attention highlights the central object more clearly.

7 CONCLUSION AND DISCUSSION

In this paper, we introduce EXPLoORA, a novel pre-training strategy to adapt pre-trained ViT foundation
models for natural images to additional visual domains such as satellite imagery or medical data. We
challenge the common paradigm of expensive pre-training from scratch for each new visual domain
by offering a solution to transfer knowledge from foundation models that is both parameter-efficient
and effective (even outperforming domain-specific foundation models). Our hope is that ExXPLoRA
enables further use of foundation models on domains other than natural images without requiring
vast computational resources for pre-training.

While effective, there are many aspects of EXPLoRA that deserve further study. The strategy of fully
training a small amount (or budget) of weights combines extremely well with PEFT techniques such
as LoRA— we hope that future work investigates the reason behind this in further detail. Unresolved
questions also include whether other parameter-efficient techniques might work better with ExXPLoRA
during pre-training. Further work to evaluate EXPLoRA for natural language would be valuable, as
would an investigation into whether we can do away entirely with unfreezing a transformer block.

BROADER IMPACT

As the scale of models and datasets grows exponentially, access to the computing power necessary
to develop and make use of foundation models is increasingly restricted to the hands of a few
organizations. This leaves many researchers in academia or smaller companies reliant on the
resources of such organizations for ML research and applications. Techniques such as PEFT can
alleviate this dependence and enable those with fewer computational resources to adapt, investigate,
and customize models for their own needs. We hope that ExXPLoRA furthers this goal, allowing ML
practitioners to tailor foundation models with minimal compute, thus broadening access to powerful
ML tools for critical fields like sustainability and medicine.

For example, automated analysis of satellite imagery can inform social, economic, and environmental
policies, but manual curation is expensive, and pre-training models on such data has significant costs,
both environmental and otherwise (see appendix [D). EXPLoRA offers a more efficient way to distill
knowledge from existing foundation models trained on natural images, sharply reducing costs while
aiding researchers and policymakers and enabling flexible applications in downstream tasks.
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APPENDIX

We include supplementary material in the following sections.

A  FURTHER CONTEXTUALIZATION WITH RELATED WORK

Here, we expand upon ExPLoRA’s 