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ABSTRACT

Uncertainty quantification in predictive models is essential for safe decision-
making and risk assessment. The predictive uncertainty is often represented by
a predictive distribution because it is its most general representation. Optimising
the sharpness of the distribution subject to its calibration is necessary. This work
addresses the proper calibration of predictive distributions in regression tasks. We
particularly focus on machine learning models, which are increasingly prevalent
in real-world applications. We employ the probability integral transform (PIT)
histogram to evaluate calibration quality. It can be used to diagnose calibration
problems, e.g. under- or over-estimation, under- or over-dispersion, or an incor-
rect number of modes. However, PIT histograms are often difficult to interpret
because multiple calibration problems may occur simultaneously. To tackle this
issue, we present a methodological concept for the automatic interpretation of
PIT histograms. It is based on a mixture density network interpreter trained with
a synthetic data set of PIT histograms. Given a predictive model, data set, and
corresponding PIT histogram, the interpreter can identify a probable observation-
generating distribution. This allows us to diagnose a potential calibration problem
by comparing the predictive with the probable observation-generating distribution.
To showcase the power of the proposed concept in the automatic interpretation of
PIT histograms, we referred to regression tasks on standard data sets. As a result,
we could achieve notable improvements in the calibration of machine learning
models.

1 INTRODUCTION

Predictive (especially machine learning) models are increasingly prevalent in real-world applica-
tions. While they bring many benefits, they are often not perfect and can make incorrect predictions.
To enable safe decision-making, risk assessment, and much more, we have to represent (i.e. quan-
tify) and consider the uncertainty of their predictions. Among various means of representing predic-
tive uncertainties, probability distributions are their most general representation. However, there is a
critical question: How well do these predictive distributions represent those predictive uncertainties?

The key to answering this question is the paradigm of maximising the sharpness of predictive dis-
tributions subject to their calibration (Gneiting et al., 2007). Calibration refers to the statistical
consistency between predictive distributions and observations, while sharpness refers to the concen-
tration of predictive distributions. Here, we focus on regression tasks and use the probability integral
transform (PIT) histogram as a tool for calibration diagnosis. In the machine learning literature, the
calibration plot is also a common tool to diagnose calibration (Kuleshov et al., 2018). These two
tools are equivalent because both display an estimate of the PIT distribution: the PIT histogram
shows a density estimate, whereas the calibration plot displays an estimate of the cumulative distri-
bution function (see appendix A). One should be able to diagnose a potential calibration problem
by visually inspecting a PIT histogram or calibration plot. However, in some cases, the calibration
problem can only be diagnosed if one has a strong familiarity with the behaviour of these tools.

After an introduction to calibration, sharpness, PIT histograms and proper scoring rules (see sec-
tion 2), we present a methodological concept for an automatic calibration diagnosis that is novel
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to the best of our knowledge. We train a neural network interpreter with a synthetic data set of
PIT histograms to automatically interpret PIT histograms by decomposing them into predictive and
probable observation-generating distributions (see section 3). Then, users can see a potential cali-
bration problem by visualising the distributions. Looking at distributions is much more user-friendly
than looking at PIT histograms. To showcase the power of the proposed concept, we automatically
diagnose the calibration of standard probabilistic machine learning models on standard regression
data sets (see section 4).

2 CALIBRATION, SHARPNESS, PIT HISTOGRAMS & PROPER SCORING RULES

Arguably, the main purpose of a predictive distribution is to quantify the residual predictive uncer-
tainty in a task that cannot be explained when employing a corresponding point prediction. Instead
of simply asking for a best guess, we request a full specification of all possible observations and
their corresponding probability. Naturally, this specification in the form of a predictive distribution
should be reliable, e.g. whenever the model predicts an event to be observed with a probability of
10 %, then we expect the observed event frequency to be 10 % as well. A predictive distribution that
satisfies this property is called calibrated.

A different predictive model, possibly with access to a richer data set, may issue a different prob-
ability for the same observation but still be calibrated. This can happen if the model can better
distinguish between events and adapt to each event accordingly. The probability density in the pre-
dictive distribution will be more concentrated, and the degree of concentration is called sharpness.
Both under- and over-confident predictive distributions are undesirable, suggesting that the avail-
able information determines the optimal level. Therefore, we aim to maximise sharpness subject to
calibration.

Formally, a predictive distribution represented by a predictive cumulative distribution function F is
calibrated if the PIT Z = F (Y ) follows a uniform distribution, where Y denotes the random obser-
vation. The PIT is translation-invariant (shifting predictive distribution and observation in the same
direction by the same amount yields the same PIT) and scale-invariant (PIT remains the same when
increasing the scale for both the predictive and observation-generating distributions). Whenever the
PIT value is close to 0, the observation falls into the left tail of the predictive distribution, whereas
a value close to 1 means that the observation falls into the right tail. We diagnose (mis)calibration,
by visualising the PIT values {zi = Fi(yi)}ni=1 from the collection of prediction-observation pairs
(Fi, yi)

n
i=1 via a histogram (i.e. a PIT histogram).

Simple calibration problems can be identified easily (see Figure 1): a biased model has a PIT his-
togram with a single peak at an edge, an under-dispersed model has a bell-shaped PIT histogram,
and an over-dispersed model has a U-shaped one. However, in the case of multi-modal observation-
generating distributions or when more calibration problems co-occur, potential shapes of PIT his-
tograms cannot be enumerated easily anymore, which makes the interpretation of PIT histograms
(i.e. calibration diagnosis) difficult or even inaccessible for inexperienced users. Therefore, we have
to provide a user-friendly interpretation of PIT histograms from which users can recognise the cali-
bration problem. Subsequently, the users can modify their models (e.g. output a mixture of normal
distributions instead of a single normal distribution) and get more reliable results.

The PIT histogram is a useful diagnostic tool but unsuitable when comparing two predictive models.
To compare predictive distributions, we employ proper scoring rules. In a nutshell, a scoring rule
is a loss function for predictive distributions, as opposed to point predictions. A scoring rule is
proper if it has the essential property that a predictive distribution that matches the true observation-
generating distribution minimises the expected score or loss. Implicitly, that property also means
that a proper scoring rule will measure calibration and sharpness jointly. The two most commonly
used proper scoring rules are the negative log-likelihood, also known as logarithmic score,

NLL(fi, yi) = − log fi(yi), (1)

where fi denotes the probability density function corresponding to Fi, and the continuous ranked
probability score,

CRPS(Fi, yi) =

∫
(Fi(x)− 1x≥yi

) dx.

2



Under review as a conference paper at ICLR 2024

0.0

0.2

0.4

de
ns

ity

biased predictive distribution

0

2

4

de
ns

ity

PIT histogram
predictive distribution
observation-generating
distribution

0.0

0.2

0.4

de
ns

ity

under-dispersed predictive distribution

0

1

2

de
ns

ity
4 2 0 2 4

y

0.00

0.25

0.50

de
ns

ity

over-dispersed predictive distribution

0.0 0.2 0.4 0.6 0.8 1.0
PIT

0

1

de
ns

ity

Figure 1: PIT histograms for simple calibration problems. The first row displays a PIT histogram of
a biased model with a single peak at 1. The second row displays a U-shaped PIT histogram specific
for under-dispersed models. The last row displays a bell-shaped PIT histogram that refers to over-
dispersed models. To construct the PIT histograms, we sample observations from the observation-
generating distribution and compute PIT values using the predictive cumulative distribution function.

We need to use a proper scoring rule to measure and confirm the improvement in predictive perfor-
mance that can be achieved by correcting calibration problems. The relevant summary measure is
the mean score,

1

n

n∑
i=1

S(Fi, yi),

where S is a proper scoring rule. For a more comprehensive overview and review of probabilistic
modelling in general and calibration, sharpness, and scoring rules in particular, we refer to Gneiting
& Katzfuss (2014, sections 2.2, 2.3, 3.1).

3 AUTOMATICALLY INTERPRETING PIT HISTOGRAMS

By automatically interpreting a PIT histogram, we mean its decomposition into an observation-
generating and predictive distribution that would lead to the same PIT histogram. This means that
we want to represent the inverse function of PIT, including the identification of an observation-
generating distribution. We represent the inverse function with a machine learning model called
an interpreter. The interpreter takes the advantage of PIT histograms that they are invariant to
the translation and scale of observation-generating and predictive distribution pairs (see section 2).
Therefore, an interpreter trained on a synthetic data set of PIT histograms can interpret a given
PIT histogram independently of the original translation and scale of the observation-generating and
predictive distribution pair. The interpretation allows us to diagnose a potential calibration problem
of a predictive model on a data set given its PIT histogram. In the following subsections, we describe
the synthetic data set of PIT histograms and interpreter in detail.

3.1 SYNTHETIC DATA SET OF PIT HISTOGRAMS

The synthetic data set has to be relevant to the particular application. That means relevant to
1. expected families of observation-generating distributions and 2. predictive distributions that our
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models output (e.g. normal distribution). Therefore, the synthetic data set is defined by expected
observation-generating distributions, the number of observations m we sample from them, a predic-
tive distribution F , and the number of PIT histograms bins b. We generate a PIT histogram by

step 1 choosing an observation-generating distribution, i.e. a specific random variable Yi;
step 2 sampling m observations {yi,j |j = 1, . . . ,m} from Yi;
step 3 applying PIT to observations, i.e. F (yi,j), where F is the predictive cumulative distribution

function;
step 4 binning the PIT values into b bins, i.e. producing a PIT histogram;
step 5 normalising the PIT histogram (i.e. all bins sum to 1) so that it is independent of the number

of observations m.

In practice, we would have a single observation yi sampled from Yi and single predictive distribution
Fi for every input features. However, we do not have input features here; for simplicity, we sample
m observations yi,j from every Yi and have a single predictive distribution F for all observations.
Hence, the difference in notation from section 2. We can also use a random number of observations
m to generate PIT histograms with various noises. The synthetic data set comprises triplets of an
observation-generating distribution, observations, and a PIT histogram.

3.2 INTERPRETER

The interpreter is a mixture density network (Bishop, 1994), a machine learning model that outputs
a mixture distribution. The input of the interpreter is a PIT histogram. Its output approximates
an observation-generating distribution that probably led to the PIT histogram given a predictive
distribution. In particular, the interpreter outputs a mixture of normal distributions because it can
approximate any observation-generating distribution if it has enough components. It is trained with
the synthetic training set using the negative log-likelihood as its loss function. The loss function
is computed between a predicted observation-generating distribution (a mixture of normal distribu-
tions) and observations from a true observation-generating distribution. This allows observation-
generating distributions of the synthetic data set from any family. We illustrate the training in Fig-
ure 2.

4 EXPERIMENTS

Our experiments showcase that the methodological concept (abstractly described in section 3)
can automatically diagnose calibration problems like under- and over-estimation, under- and over-
dispersion, and an incorrect number of modes. Currently, the most pressing issue is that uni-modal
predictive distributions are used to model multi-modal observation-generating distributions. There-
fore, in the following experiments, we focus on under-specified machine learning models that output
only a single normal distribution while the observation-generating distribution is multi-modal. First,
we evaluate the proposed concept on a synthetic data set. Then, we apply it to real-world regression
data sets, where we can automatically diagnose that machine learning models need to output mixture
distributions.

4.1 EXPERIMENTAL SYNTHETIC DATA SET OF PIT HISTOGRAMS

We choose a simple synthetic data set based on the normal family that allows for the calibration
problems mentioned above. Every observation-generating distribution is a mixture of two normal
distributions. That means every observation yi,j is a realisation of a random variable Yi, which takes
a random value from N(−di/2, ti) with probability wi or N(di/2, vi) with probability 1− wi. We
have the separation di, weight wi, and variances ti and vi parameters. By manipulating them, we
can obtain PIT histograms of models that under- and over-estimate, are under- and over-dispersed,
or have an incorrect number of modes. We choose to sample m = 104 observations from the
observation-generating distribution. We fix the predictive distribution to standard normal distri-
bution N(0, 1) since the PIT is invariant to translation and scale, and most probabilistic machine
learning models output a normal distribution, e.g. Nix & Weigend (1994) or (Lakshminarayanan
et al., 2017). Our PIT histogram has b = 20 bins.

4



Under review as a conference paper at ICLR 2024

4 2 0 2 4
y

0.00

0.25
de

ns
ity

step 1 and 2

observation-
generating
distribution
sample

4 2 0 2 4
y

0

1

cu
m

ul
at

iv
e 

de
ns

ity

step 3

predictive
distribution
sample

mean negative log-likelihoodmean negative log-likelihood

0.0 0.2 0.4 0.6 0.8 1.0
PIT

0.0

2.5

de
ns

ity

step 4 and 5

PIT histogram

4 2 0 2 4
y

0.00

0.25

de
ns

ity

predicted
observation-
generating
distribution

interpreterinterpreter

Figure 2: The training of the interpreter starts with sampling an observation-generating distribution.
PIT values are computed from them using a predictive distribution. Based on their PIT histogram,
the interpreter outputs a probable observation-generating distribution.

If we sample the parameters of the observation-generating distribution, we get an infinite data set.
By visually checking the shapes of generated PIT histograms, we decided to sample the parameters
from the following distributions. The weight wi is sampled from uniform distributions U(0, 1). The
separation parameter is mainly of interest when generating observations. We use it as a parameter
for the severity of ignoring bi-modality. To ensure the sufficient presence of bi-modal scenarios, we
sample ui,1 from U(0.1, 1) and di = 2(1 − u2

i,1). For variances ti or vi, we sample ui,2 and ui,3

from U(−2, 2), and ti = 2ui,2 and vi = 2ui,3 .

4.2 EXPERIMENTAL INTERPRETER

Our experimental interpreter outputs a mixture of 5 normal distributions, which gives the interpreter
enough flexibility with respect to our experimental synthetic data set. It has to have 20 input neurons
(the PIT histograms have 20 bins), its single hidden layer has 16 neurons, and its output has 15
neurons (weight, mean, and variance for every component). The activation functions are the same
as in the original paper by Bishop (1994): the hyperbolic tangent for neurons in the hidden layer,
softmax function for weights, and exponential function for variances. We trained it with Adam
optimiser in its default setting (Kingma & Ba, 2015), batch size of 100 pairs, and early stopping as
described in Algorithm 7.1 in Goodfellow et al. (2016) with patience of 100 epochs, where an epoch
is a single batch. As a validation set, we used a fixed random synthetic data set of 1000 triplets
generated according to the setting described in section 4.1.

4.3 EVALUATION ON EXPERIMENTAL SYNTHETIC DATA SET

First, we test if our interpreter can recover observation-generating distributions at all. We evalu-
ate it on a test set generated as our synthetic data set. The test set contains 1000 triplets, which is
enough for statistical significance. For a test PIT histogram, our interpreter predicts an observation-
generating distribution. We measure how well it fits the observations that produced the PIT his-
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Figure 3: Comparison of our interpreter with the nearest neighbour algorithm for different training
set sizes of the algorithm. We only test training sets with sizes less than 105 because larger sets are
impractical to generate and store. The plot compares mean negative log-likelihoods on our synthetic
test set. Our interpreter can better generalise to new PIT histograms than the nearest neighbour
algorithm.

togram with the negative log-likelihood. We report the mean negative log-likelihood on the test
set.

We compare our interpreter with the nearest neighbour algorithm, an obvious choice as a simple
baseline. We can generate its training set by substituting the uniform distributions of our syn-
thetic data set with values evenly spaced from their minimum to maximum values. For a test
PIT histogram, we compute its Euclidean distance from all training PIT histograms. The pre-
dicted observation-generating distribution is the observation-generating distribution that produced
the training PIT histogram with the closest distance. Moreover, we can control the training set size
by the number of evenly spaced values. The number is always the same for all 3 parameters be-
cause the parameters are equally important. For example, if we choose the number to be 8, we get a
training set with 83 = 4096 triples.

Figure 3 compares the performance of our interpreter trained as described in section 4.2 with the
performance of the nearest neighbour algorithm and its dependence on its training set size. Our
interpreter can recover its observation-generating distribution with the mean negative log-likelihood
of 1.575. It is better than the nearest neighbour algorithm for all tested training set sizes. We do not
test training sets with more than 105 triplets because such sets are impractical to generate and store.
Our interpreter better generalises to new PIT histograms than the nearest neighbour algorithm.

4.4 EVALUATION ON REAL-WORLD DATA SETS

We show that the proposed concept can automatically diagnose the calibration of machine learning
models applied to real-world data sets. We choose data sets from the UC Irvine Machine Learn-
ing Repository because they are used to evaluate predictive uncertainties, e.g. by Hernandez-Lobato
& Adams (2015) or Lakshminarayanan et al. (2017). For our purposes, we limit ourselves to the
Year Prediction MSD (Bertin-Mahieux et al., 2011), Physicochemical Properties of Protein Tertiary
Structure, and Combined Cycle Power Plant (Tüfekci, 2014) data sets (hereafter year, protein, and
power data sets respectively). We will see that they are sufficient to show the power of our method-
ological concept.

On each data set, we train a density network (a simple baseline model with a normal predictive dis-
tribution), deep ensemble (an advanced model also with a normal predictive distribution) introduced
by Lakshminarayanan et al. (2017), and mixture density network (a simple model with a more com-
plex predictive distribution). We implement the density network as a mixture density network with
a single component. It has a single hidden layer with 100 neurons for the protein and year data sets
and 50 for the power data set. Again, activation functions are the same as in the original paper (see
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Table 1: Comparison of models in terms of the mean negative log-likelihood (mean NLL) and the
mean continuous ranked probability score (mean CRPS). As expected from the automatic calibration
diagnoses, mixture density networks perform significantly better for the year and protein data set,
while the gap is not that significant for the power data set.

data set model mean NLL mean CRPS
year density network 3.373 ± 0.003 4.322 ± 0.013

deep ensemble 3.367 ± 0.003 4.294 ± 0.014
mixture density network 3.094 ± 0.002 4.040 ± 0.007

protein density network 2.805 ± 0.039 2.342 ± 0.025
deep ensemble 2.675 ± 0.023 2.196 ± 0.028
mixture density network 2.086 ± 0.017 1.940 ± 0.019

power density network 2.795 ± 0.018 2.175 ± 0.030
deep ensemble 2.809 ± 0.017 2.125 ± 0.032
mixture density network 2.673 ± 0.023 2.093 ± 0.042

section 4.2). The deep ensemble comprises the density networks and has 5 ensemble members, as
recommended in Algorithm 1 in Lakshminarayanan et al. (2017). The mixture density network has
5 components analogous to deep ensembles. We leave 10 % of a data set for a test set. The rest is
split into a training (90 %) and validation (10 %) set. The models are trained with the setting of our
interpreter. However, models process the whole training set in every epoch, not a single batch. Fea-
tures and observations are standardised to zero mean and unit variance. This experimental setting is
inspired by Hernandez-Lobato & Adams (2015) and (Lakshminarayanan et al., 2017). However, we
only match it partially because we aim to diagnose calibration problems rather than compete with
them. Nevertheless, our results in Table 1 are almost identical to those of Lakshminarayanan et al.
(2017).

Figure 4 shows the diagnoses on the year data set. The PIT histograms of the density network and
deep ensemble are not uniform, so the models are not calibrated. However, it is not clear what
the calibration problems are from the PIT histograms. Our interpreter suggests that the calibration
problems are combinations of over-estimation and over-dispersion. It is probably caused by the
normal predictive distribution that is insufficiently flexible in its shape, i.e. we need a more flexible
predictive distribution that can explain the skewness. This interpretation is supported by the fact
that the PIT histogram produced by the probable observation-generating distribution is almost the
same as the true PIT histogram. The probable observation-generating distribution would be better
modelled with a more complex predictive distribution. Here, we use a mixture of normal distribution
for simplicity. Indeed, the PIT histogram of the mixture density network is almost uniform, so it is
almost calibrated.1

The diagnosis on the protein data set is similar to the year data set (see Figure 5). The only difference
is that the models under-estimate.

The situation is quite different for the power data set. Looking at Figure 6, we observe that PIT
histograms of the density network and deep ensemble exhibit some noise but remain largely uniform.
It is plausible that the underlying observation-generating distribution deviates only slightly from a
normal distribution. Consequently, the PIT histogram of a mixture density network retains a similar
appearance. This suggests we may not anticipate a significant improvement with the mixture density
network.

To support the conclusion of the previous diagnoses, we computed the mean NLL and CRPS for
our models. We expect the mixture density network to perform better on the year and protein data
set than the other models. While on the power data set, we expect all models to perform almost the
same. We split the data sets into 5 train-test folds to get standard errors of the means. We show the
metrics in Table 1. The metrics of the mixture density network are always better than the metrics of
other models. However, as expected, the gap is significant for the year and protein data set, while
the gap is not that significant for the power data set.

1We cannot diagnose the mixture density networks because our interpreter presupposes single normal distri-
butions as predictive distributions, while the mixture density networks output mixtures of normal distributions.
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Figure 4: Automatic calibration diagnoses on the year data set reveal calibration problems of the
density network and deep ensemble, evident from their non-uniform PIT histograms. It suggests
inadequate predictive distributions cause their problems. A mixture density network exhibits an
improvement in calibration because it has a more complex predictive distribution, as seen in its
nearly uniform PIT histogram.
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Figure 5: Automatic calibration diagnoses on the protein data set lead to the same conclusions as
on the year data set (see Figure 4).
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Figure 6: Automatic calibration diagnoses on the power data set reveal that all models are almost
calibrated.

We showed that the proposed concept can automatically diagnose calibration problems on real-
world data sets. Moreover, based on a provided interpretation of a given PIT histogram, the user can
modify its model to get better results.

5 DISCUSSION

The proposed methodological concept is designed to interpret PIT histograms automatically. They
are decomposed into observation-generating and predictive distributions, allowing us to diagnose
calibration problems of predictive models automatically. We employ a mixture density network,
an interpreter, to perform this interpretation. We generate a synthetic data set of PIT histograms
tailored to expected observation-generating and predictive distributions to train the interpreter. The
interpreter approximates the observation-generating distribution that probably produced a given PIT
histogram. This concept provides a powerful tool for diagnosing calibration problems of predictive
models, offering the potential to enhance their calibration.

We showed that the concept works on real-world data sets, but still, we see several areas for improve-
ment. Its limitation is that the synthetic data set of PIT histograms is based on a single predictive
distribution. At the same time, in practice, we want to analyse models that output predictive various
families of distributions. We would have to generate a specific synthetic data set for every family
and train an interpreter with it. Although generating such synthetic data sets can be difficult, it is
possible. Next, a simplification is that we have a single predictive distribution for all observations,
while in practice, we would have a different predictive distribution based on input features for every
observation. It looks like a small problem from our experiments, but we leave it for future research.

There has been much work on finding a method with the best predictive uncertainty, e.g. some are
based on Bayesian theory (Hernandez-Lobato & Adams, 2015; Gal & Ghahramani, 2016), others on
ensembles (Lakshminarayanan et al., 2017; Egele et al., 2022). We conclude our work by suggesting
that it may be about something other than finding a method with the best predictive uncertainty. Our
experiments suggest that choosing a correct predictive distribution might be more important than
finding the best method. Our novel methodological concept is a step towards diagnosing calibration
problems and thus identifying correct predictive distributions.
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REPRODUCIBILITY STATEMENT

The code underlying this work is available as supplementary material. The real-world regression
data sets are publicly available in the UC Irvine Machine Learning Repository. The data preparation
applied to these data sets is described in section 4.4. All values of hyperparameters are named
individually in section 4.
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A PIT HISTOGRAM & CALIBRATION PLOT

We show that PIT histograms and calibration plots are equivalent, given n predictive cumulative
distribution distributions Fi and corresponding observations yi.

To construct a PIT histogram, we choose k bin edges 0 = e1 < . . . < ek = 1. The PIT histogram
displays bin counts (b1, b2, . . . , bk−1), where

bj = |{i|ej ≤ Fi(yi) < ej+1, i = 1, . . . , n}|.

The PIT histogram of a calibrated model is uniform.
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To construct a calibration plot (Kuleshov et al., 2018), we choose k confidence levels 0 ≤ p1 <
. . . < pk ≤ 1. The calibration plot displays {(pj , p̂j)}kj=1, where

p̂j =
|{i|Fi(yi) < pj , i = 1, . . . , n}|

n
.

The calibration plot of a calibrated model has the diagonal line from (0, 0) to (1, 1).

It is evident that the two tools are equivalent. The main difference is that the calibration plot is
cumulative, while the PIT histogram is not.
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