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ABSTRACT

In this study, we propose Variable Disretization (VD) for self-supervised image
representation learning. VD is to discretize each and every variable in the em-
bedding space making their probability distributions estimable, based on which
the learning process can be directly principled by information measures. Specif-
ically, a loss function is defined to maximize the joint entropy between discrete
variables. Our theoretical analysis guarantees that the entropy-maximized VD can
learn transform-invariant, non-trivial, redundancy-minimized, and discriminative
features. Extensive experiments demonstrate the superiority of VD on various
downstream tasks in terms of both accuracy and training efficiency. Moreover, the
VD-based information-theoretic optimization could be adapted to other learning
paradigms or multimodal data representation learning.

1 INTRODUCTION

Self-supervised learning (SSL) can unleash the power of large-scale datasets and is a critical compo-
nent in pretraining foundation models, e.g., the well-known GPT-3 (Brown et al., 2020), which have
empowered a wide range of downstream tasks (Bommasani et al., 2021). In this study, we focus
on self-supervised image representation learning, where an effective approach is to drive semanti-
cally similar samples (i.e., different transformations of the same instance) close to each other in the
embedding space (Dosovitskiy et al., 2014). Simply maximizing the similarity or minimizing the
distance between semantically similar samples tends to produce trivial solutions; e.g., all samples
have the same embedding features. Various excellent methods have been proposed to learn mean-
ingful representations and avoid trivial solutions; e.g., SimCLR (Chen et al., 2020a;b), MoCo (He
et al., 2020), BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021), SwAV (Caron et al., 2020),
Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2022).

Fundamentally different from current SSL methods that maximize the similarity or minimize the dis-
tance between continuous feature variables including vector quantization methods (Van Den Oord
et al., 2017; Caron et al., 2020), we propose Variable Disretization (VD) that enables a new
information-theoretic optimization framework for representation learning. Specifically, each vari-
able in an embedding vector is quantized into a set of discrete groups using one-hot encoding, which
is implemented by the softmax function. Here we associate VD to attribute learning (Russakovsky
& Fei-Fei, 2010) for explanation only; i.e., an object can be represented by a set of attributes as illus-
trated in Fig. 1. An embedding vector consists of multiple variables representing different types of
attributes and each variable consists of a set of discrete units representing specific attributes; e.g., V -
1, V -2, and V -S represent object configuration, texture, and shape, respectively, and each segment
instantiates a set of specific attributes; e.g., V -2 represents samples with different textural patterns
(dots, stripes, etc.). By doing so, VD makes it possible to estimate the probability distribution over
discrete units of each variable so that the information measures defined on probability distributions
can be directly computed for both optimization and theoretical analysis. Two general properties
are desired behind the illustration in Fig. 1: 1) samples can be classified into a set of different and
discrete groups for each variable; and 2) different variables discriminate samples using different
classification criteria, which means that the mutual information between different variables should
be minimized, or equivalently the information/entropy of embedding features should be maximized.
To automatically learn such embeddings for SSL, we propose an entropy-based loss function based
on the empirical joint probability distribution. Our information-theoretic analysis reveals why such
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Figure 1: Illustration of variable discretization with piano keys. The VD embedding vector consists
of multiple segments (V -1, ..., V -S) representing different discrete variables shown in different
colors. Each segment is associated with a set of discrete attributes; e.g., V -2 represents the texture
attribute, and different units in V -2 specify different textural patterns, like dots, stripes, etc. Each
segment is discretized with a one-hot vector q(s, :).

meaningful features can be promoted while trivial solutions are avoided, which are consistent with
the qualitative results in Appendix D.

2 METHODOLOGY

2.1 SELF-SUPERVISED LEARNING FRAMEWORK
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Figure 2: SSL framework through multi-segmental informational coding optimized with maximum
entropy. Here there are four segments and each segment consists of four units for illustration.

In this study, we adopt a twin architecture (Zbontar et al., 2021) for SSL, where the same network
is shared between two branches, as shown in Fig. 2. During training, input images X = {xi}Ni=1

are mapped to two distorted sets X′ = {x′
i}Ni=1 and X′′ = {x′′

i }Ni=1, where N is the batch size.
A common transformation distribution including random crops combined with color distortions is
used to generate different views. Then, the two sets of distorted images X′ and X′′ are respectively
fed to two branches, each of which consists of an encoder f(·;θf ) and a projector g(·;θg), where
θf and θg respectively denote the parameters of the encoder and projector to be optimized. The
outputs of the encoder are commonly used as the representation features. The projection head maps
the representation features into the embedding space. Note that the presented method is not limited
to this twin architecture, which can be extended to the two branches with different parameters,
heterogeneous networks, or even different input modalities (e.g., text, audio, etc.).

2.2 VARIABLE DISCRETIZATION

The embedding features of two transformed images are z′
i = g(f(x′

i;θf );θg) ∈ RD, and z′′
i =

g(f(x′′
i ;θf );θg) ∈ RD respectively, where D is the feature dimension. As shown in Fig. 1, the VQ

embedding vector consists of multiple segments and each segment represents a discrete variable,
and thus we reformat the vector zi as zi(s, d), s = 1, · · · , S, d = 1, · · · , Ds, where S is the number
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of segments, Ds is the dimension of the sth segment. In this study, all variables have the same
number of discrete units, i.e., ∀s,Ds = DS , and the dimension of the whole embedding space is
D = DS × S. In principle, different variables can be discretized into different numbers of units.
Then, one-hot encoding is used for discretization through the softmax function:

q′
i(s

′, d′) =
exp(z′

i(s
′, d′))∑DS

d=1 exp(z
′
i(s

′, d))
, (1)

where q′
i(s

′, d′) denotes the score of the image x′
i belongs to the d′-th unit in the s′-th variable. The

score vector q′′
i (s

′′, :) for the other branch is computed in the same way. The VQ can be interpreted
as a combination of multiple classifiers or cluster operators that implement different classification
criteria learned in an SSL fashion.

2.3 ENTROPY LOSS

Since each variable has a finite number of units, it is possible to estimate its probability distribution
over a set of samples. The empirical joint distribution P (s′, s′′, d′, d′′) between every two units
within and across variables is estimated as follows:

P (s′, s′′, d′, d′′) =
1

N

N∑
i=1

q′
i(s

′, d′)q′′
i (s

′′, d′′), (2)

where P (s′, s′′, d′, d′′) is computed as the statistical frequency of the sample belonging to both the
unit-d′ of the variable-s′ and the unit-d′′ of the variable-s′′ over N samples. With the empirical
joint probability distribution, information-theoretic measures can be directly computed. Here two
versions of the loss function are defined. The first version Lent is a pure joint entropy loss:

Lent =
1

S2

S∑
s′=1

S∑
s′′=1

DS∑
d′=1

DS∑
d′′=1

(1− 1s′=s′′,d′ ̸=d′′)P (s′, s′′, d′, d′′) log(P (s′, s′′, d′, d′′)), (3)

where 1s′=s′′,d′ ̸=d′′ is an indicator function that equals to 1 if s′ = s′′ and d′ ̸= d′′; otherwise, it
is equal to 0. The empirical joint distribution can be denoted by a block matrix as shown in Fig. 2,
where (1 − 1s′=s′′,d′ ̸=d′′) indexes the diagonal elements of the diagonal blocks and all elements of
the off-diagonal blocks, as indicated by the orange area. Therefore, minimizing this loss function
is maximizing the joint entropy over the selected elements. Our theoretical analysis in Appendix B
guarantees that the entropy-maximized VD can learn transform-invariant, non-trivial, redundancy-
minimized, and discriminative features.

To enhance the transformation invariance of features, we introduce an additional term to maximize
the inner product between the embedding features from two transformations. Then, the second
version of the loss function is defined as

L = Lent − λ
1

NS

N∑
i=1

S∑
s=1

log(

DS∑
d=1

q′
i(s, d)q

′′
i (s, d)), (4)

where λ is a balancing factor and set to λ = 1 by default. Minimizing the transformation invariance
loss not only enforces different transformations of the same image having similar embedding fea-
tures but also encourages all variables one-hot encoded. Different from the statistical entropy mea-
surement, this transformation invariance term imposes a sample-specific constraint. The transforma-
tion invariance can be also achieved by minimizing the cross-entropy between the two embedding
vectors, i.e., − 1

NS

∑N
i=1

∑S
s=1

∑DS

d=1 q
′
i(s, d) log(q

′′
i (s, d)). However, by using the cross-entropy

the performance would be degraded, as reported in Subsection J.2.

Our proposed method can be easily implemented, with a PyTorch-style pseudo-code in Appendix A.
All implementation details can be found in Appendix H and I.

3 RESULTS

Linear Classification on ImageNet. Being consistent with the baseline methods Barlow Twins and
VICReg, a ResNet-50 backbone was trained with the batch size of 2,048 for 1,000 epochs on the
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Table 1: Linear classification on ImageNet. Top-1 and Top-5 accuracies (in %) are reported. The
best three results are underlined.

Methods SimCLR MoCo v2 SimSiam SwAV InfoMin BYOL BT VICReg VD
Top-1 69.3 71.1 71.3 71.8 73.0 74.3 73.2 73.2 73.6
Top-5 89.0 90.1 - - 91.1 91.6 91.0 91.1 91.4

training set of ImageNet, and the linear classification results on the evaluation set are reported in
Table 6. The difference from Barlow Twins and VICReg is that VD used a two-layer MLP projector
(8,192-8,160) instead of three layers (8,192-8,192-8,192). The performance of VD is on par with the
state of the art method BYOL that uses asymmetric techniques, such as an additional predictor and
a momentum encoder. The comparative results show that VD achieves better results than Barlow
Twins and VICReg, where all these three methods trained a twin architecture without using negative
pairs or any asymmetric techniques.

Table 2: Transfer Learning. SSL models pre-trained on ImageNet were used to initialize the
backbone. The best results are in bold.

Methods Object Detection Instance Segmentation Linear Classification
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 VOC2007 Places205

Sup. 38.2 58.2 41.2 33.3 54.7 35.2 87.5 53.2
MoCo-v2 39.3 58.9 42.5 34.4 55.8 36.5 86.4 51.8

SwAV 38.4 58.6 41.3 33.8 55.2 35.9 86.4 52.8
SimSiam 39.2 59.3 42.1 34.4 56.0 36.7 - -

BT 39.2 59.0 42.5 34.3 56.0 36.5 86.2 54.1
VD (Ours) 39.3 59.1 42.6 34.4 55.8 36.6 86.5 54.8

Transfer Learning. Here we closely followed (Zbontar et al., 2021) selecting the same comparison
methods in the same settings. VD performs on par with the current methods and slightly better
than Barlow Twins on the object detection and segmentation tasks. On the other hand, the linear
classification results on VOC2007 and Places205 datasets show that VD achieved better results than
the selected methods. Also, similar to the other SSL methods, VD can effectively improve the
downstream tasks in the transfer learning settings. All implementation details for the reproduction
of transfer learning results are in Appendix I.2.

Table 3: KNN classification. Top-1 accuracy with 20 and 200 nearest neighbors are reported. The
best results are highlighted in bold.

Methods NPID LA PCL BYOL SwAV BT VICReg VD
20-NN - - 54.5 66.7 65.7 64.8 64.5 67.0
200-NN 46.5 49.4 - 64.9 62.7 62.9 62.9 64.9

KNN Classification on ImageNet. The results with 20 and 200 nearest neighbors are reported in
Table 8, showing that VD achieved the best performance among the comparison methods. Since
the KNN classifier determines the class of a sample by directly searching its nearest samples in the
feature space, the representation features learned by VD is more semantically similar to each other
among the nearest neighbors than those learned by other methods. Thus, VD has the potential supe-
riority when applied to the downstream tasks based on the nearest neighbor search. More empirical
results are reported in Appendix J, showing the superiority of VD in terms of both accuracy and
training efficiency.

In conclusion, we have presented variable discretization that leads to a new information-theoretic
SSL framework. Theoretical analysis ensures that the optimized embedding features are transform-
invariant, non-trivial, redundancy-minimized, and discriminative. Extensive empirical results have
demonstrated the effectiveness and superiority of VD. We believe that VD-based information-
theoretic optimization could be adapted to other learning paradigms, such as supervised learning
and semi-supervised learning, and multimodal data representation learning, such as image-text.
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APPENDIX A PYTORCH PSEUDOCODE

An exemplary implementation for VD in the PyTorch-style is described in Algorithm 1.

Algorithm 1: PyTorch-style pseudocode for VD
# f: network function
# lambda: weight on the transformation invariance loss term
# N: batch size
# D: dimensionality of the embedding vector
# D S: dimensionality of each segment
# S=D/D S: number of segments
#
# select: select the diagonal elements of diagonal blocks and
all elements of off-diagonal blocks

for x in loader: # load a batch with N samples
# two randomly augmented versions of x
x’, x’’ = augment(x)

# compute embeddings
z’ = f(x’)
z’’ = f(x’’)

# Variable Discretiztion
x’ = torch.reshape(x’, [N, -1, D S]) # N×S×D S
x’’ = torch.reshape(x’’, [N, -1, D S]) # N×S×D S
q’ = torch.softmax(x’, dim=2) # softmax normalization
q’’ = torch.softmax(x’’, dim=2) # softmax normalization

# compute transformation invariance loss
loss TI = -torch.log((q’*q’’).sum(dim=2)).mean()

# compute entropy loss
q’ = torch.reshape(q’, [N, D]) # N × D
q’’ = torch.reshape(q’’, [N, D]) # N × D
P = torch.einsum(‘np,nq->pq’, [q’, q’’]) / N # D × D,
empirical joint probability distribution
P s = select(P)
loss ent = (P s * torch.log(P s)).sum() / (S × S)

# final loss
loss = loss ent + lambda * loss TI # lambda=1 by default

# optimization step
loss.backward()
optimizer.step()

APPENDIX B ANALYSIS

The entropy loss function consists of two parts, including the entropy over diagonal elements of
diagonal blocks and the entropy over all elements of off-diagonal blocks as illustrated by the orange
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area in Fig. 2, and can be formally expressed as

Lent =
1

S

∑
s′,s′′,s′=s′′

∑
d′,d′′,d′=d′′

P (s′, s′′, d′, d′′) log(P (s′, s′′, d′, d′′))

+
1

S(S − 1)

∑
s′,s′′,s′ ̸=s′′

∑
d′,d′′

P (s′, s′′, d′, d′′) log(P (s′, s′′, d′, d′′)).

(B-5)

For the first part, it can be demonstrated that its optimal solution is that ∀i, s, d, q′
i(s, d) = q′′

i (s, d),
q′
i(s, :) and q′′

i (s, :) are one-hot vectors, the statistical probability of the sth attribute type taking the
dth instantiation is p(s, d) = 1

N

∑N
i=1 qi(s, d) = 1

DS
, and P (s, s, d, d) = 1

DS
. The proof can be

found in Appendix C. For the second part, it is intuitive that the optimal solution to maximize the
joint entropy over the off-diagonal block items is ∀s′, s′′, d′, d′′, s′ ̸= s′′,P (s′, s′′, d′, d′′) = 1

(DS)2 ;
i.e., a batch of samples are evenly assigned over each off-diagonal block.

Transformation invariance: The solution that ∀i, s, q′
i(s, :) = q′′

i (s, :) are one-hot vectors means
that the learned VD embeddings are invariant to transformations, and a sample tends to be confi-
dently represented by a single instantiated attribute within each and every segment.

Non-trivial solution: The solution that 1
N

∑N
i=1 qi(s, d) =

1
DS

means that a batch of samples are
evenly assigned over different attributes in each segment as q′

i(s, :) and q′′
i (s, :) are one-hot vectors.

Thus, the trivial solution that all samples have the same embedding features can be avoided. The
discriminative encoding analyzed below also ensures VD embeddings are non-trivial.

Minimum redundancy: As described in Fig. 1, different segments of the VD embedding vector
are expected to focus on diverse and complementary attributes. In other words, the redundancy or
mutual information between any two segments should be minimized, which is a popular measure
for feature selection (Peng et al., 2005). Specifically, it can be demonstrated that the redundancy or
mutual information between any two segments is minimized when the optimal solution is obtained.
Specifically, the mutual information I(s′, s′′) between any two segments s′ and s′′ is

I(s′, s′′) =H(s′) +H(s′′)−H(s′, s′′)

=−
DS∑
d′=1

p′(s′, d′) log(p′(s′, d′))−
DS∑

d′′=1

p′′(s′′, d′′) log(p′′(s′′, d′′))

+

DS∑
d′=1

DS∑
d′′=1

P (s′, s′′, d′, d′′)log(P (s′, s′′, d′, d′′))

=− log
1

DS
− log

1

DS
+ log

1

(DS)2
= 0.

(B-6)

Thus, the mutual information is minimized and diverse attributes are learned. From another per-
spective, ∀s′, s′′, d′, d′′, s′ ̸= s′′, we have P (s′, s′′, d′, d′′) = 1

(DS)2 = p(s′, d′)p(s′′, d′′), and thus
the variables q(s′, d′) and q(s′′, d′′) are independent. The redundancy constraint was studied for W-
MSE, Barlow Twins, and VICReg by minimizing the covariance or linear correlation. In contrast,
our entropy-based loss function reduces the redundancy or mutual information in a non-linear way.
Moreover, it can be derived that the optimal VD embedding features have zero covariance between
any two features in different segments and negative covariance between the features within the same
segment; for details, please see Appendix C.

Discriminative encoding: Contrastive learning or instance discrimination has proven very effec-
tive for representation learning by maximizing the similarity between different transformations of
the same instance while discriminating the reference from other instances. It is underlined that
VD is consistent to contrastive learning and discriminating instances in a novel way. Specifically,
the optimal VD embedding can totally encode (DS)

S different samples. In our default settings
DS = 80, S = 102 (See Section H for details), VD can represent 80102 different samples. The
maximized joint entropy means that any two units from every two segments have the equal possi-
bility to co-occur, that is, a batch of samples are evenly assigned to all possible embeddings. Since
the number of all possible embeddings is much larger (2,048 vs 80102) than the batch size, it will
be enforced to encode different instances with different embeddings. Like contrastive learning, it
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ensures non-trivial solutions. The difference lies in that contrastive learning differentiates instances
by pushing the reference away from its negative instances, while VD intrinsically assigns instances
with different attribute codes in an information-principled manner.

In Appendix D, the individual VD embeddings and the empirical joint probability matrix learned on
the ImageNet dataset are visualized, showing that the empirical results are consistent with the above
theoretical analysis. In summary, the VD embedding features optimized with the entropy-based loss
are transform-invariant, non-trivial, diverse, and discriminative.

APPENDIX C THEORETICAL PROOF

The optimal solution to the first part in Lent. As described in Subsection B, the entropy loss
function consists of two parts: (1) the entropy over diagonal elements of diagonal blocks and (2) the
entropy over all elements of off-diagonal blocks, as illustrated in Fig. 2. Now, let us minimize the
first part, which is formulated as

Lent =
1

S

∑
s′,s′′,s′=s′′

∑
d′,d′′,d′=d′′

P (s′, s′′, d′, d′′) log(P (s′, s′′, d′, d′′)) (C-7)

Since every diagonal block has the same optimal solution, we only need to consider the sth diagonal
block, and the objective function can be simplified as

Lent(s, s) =

DS∑
d=1

P (s, s, d, d) log(P (s, s, d, d)) (C-8)

where 0 ≤ P (s, s, d, d) ≤ 1, 0 ≤
∑DS

d=1 P (s, s, d, d) ≤ 1. Then, it is easy to find the solution that
minimizes this objective function; i.e., ∀s, d,P (s, s, d, d) = 1

DS
. Thus, ∀s, d, we have

∑
d

P (s, s, d, d) =

DS∑
d=1

1

DS
= 1 (C-9)

As defined in Eqs. (1) and (2), we have ∀s, d, 0 ≤ q′
i(s, d) ≤ 1, 0 ≤ q′′

i (s, d) ≤ 1,
∑DS

d=1 q
′
i(s, d) =

1,
∑DS

d=1 q
′′
i (s, d) = 1, and P (s, s, d, d) = 1

N

∑N
i=1 q

′
i(s, d)q

′′
i (s, d).

Given the above conditions, let us next prove that for ∀s, ∃d, q′
i(s, d) = q′′

i (s, d) = 1 by contradic-
tion.

If its negation is true, i.e., ∀s, d, either 0 ≤ q′
i(s, d) < 1 or 0 ≤ q′′

i (s, d) < 1, then we have
∀s, d, either q′

i(s, d) <
∑DS

d′=1 q
′
i(s, d

′) = 1, or q′′
i (s, d) <

∑DS

d′′=1 q
′′
i (s, d

′′) = 1. For q′′
i (s, d) <∑DS

d′′=1 q
′′
i (s, d

′′) = 1, we have
DS∑
d=1

P (s, s, d, d) =

DS∑
d=1

1

N

N∑
i=1

q′
i(s, d)q

′′
i (s, d)

=
1

N

N∑
i=1

DS∑
d=1

q′
i(s, d)q

′′
i (s, d)

<
1

N

N∑
i=1

DS∑
d=1

(
q′
i(s, d)

DS∑
d′′

q′′
i (s, d

′′)

)
= 1

(C-10)

That is,
∑

d P (s, s, d, d) < 1, which leads to a contradiction with Eq. (C-9). Similarly, we have
the same contradiction for q′

i(s
′, d) <

∑DS

d′=1 q
′
i(s

′, d′) = 1. Therefore, the statement that ∀s, ∃d,
q′
i(s, d) = q′′

i (s, d) = 1 is true. It means that for ∀s, q′
i(s, :) and q′′

i (s, :) are one-hot vectors and
equal to each other.

Because ∀s, d,P (s, s, d, d) = 1
DS

, q′(s, d) = q′′(s, d), and q′(s, :) and q′′(s, :) are one-hot vectors,

then P (s, s, d, d) = 1
N

∑N
i=1 q

′
i(s, d)q

′′
i (s, d) =

1
N

∑N
i=1 q

′
i(s, d) = p(s, d) = 1

DS
.
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Covariance of the optimal solution. The optimal solution to maximize the joint entropy over the
off-diagonal blocks for the second part is ∀s′ ̸= s′′,P (s′, s′′, d′, d′′) = E[q(s′, d′)q(s′′, d′′)] =

1
(DS)2 . According to the above proof, we have ∀s, d,p(s, d) = E[q(s, d)] = 1

DS
. We can the-

oretically demonstrate that the covariance is zero between any two units from different segments.
Specifically, ∀s′, s′′, d′, d′′, s′ ̸= s′′, we have

cov[q(s′, d′), q(s′′, d′′)] = E[q(s′, d′)q(s′′, d′′)]−E[q(s′, d′)]E[q(s′′, d′′)]

=
1

(DS)2
− 1

DS
× 1

DS
= 0.

(C-11)

Since ∀s, d′, d′′,
∑

d′,d′′ P (s, s, d′, d′′) = 1 and ∀s, d′, d′′, d′ = d′′,P (s, s, d′, d′′) = 1
DS

, then
∀s, d′, d′′, d′ ̸= d′′,P (s, s, d′, d′′) = 0. We can demonstrate that any two units within the same
segment are negatively correlated. Formally, ∀s, d′, d′′, d′ ̸= d′′, we have

cov[q(s, d′), q(s, d′′)] = E[q(s, d′)q(s, d′′)]−E[q(s, d′)]E[q(s, d′′)]
= P (s, s, d′, d′′)− p(s, d′)p(s, d′′)

= 0− 1

DS
× 1

DS
= − 1

DS
2 .

(C-12)

That is, every unit within each segment encodes discriminative and complementary features, while
the units from different segments encode unrelated and diverse features.

APPENDIX D VISUALIZATION OF VD EMBEDDING

(a) (b) (c) 

Figure D.3: Visualization of VD elements. (a) A partial joint probability matrix, where blue and
yellow respectively represent small and large values, (b) two transformations of the same image,
and (c) partial embedding vectors corresponding to the images in (b).

In Fig. D.3, we visualize the VD elements including an empirical joint probability matrix and indi-
vidual embeddings, where the empirical joint probabilities were computed over the whole ImageNet
train dataset and only the left-upper partial matrix of 400× 400 and the first 800 units of embedding
features are selected for visualization. The theoretical analysis in Subsection B demonstrates that
the embedding statistics are enforced to be uniform; i.e., ∀s, d,P (s, s, d, d) = 1

DS
, meaning that

the probabilities of the diagonal elements in all diagonal blocks are equal and those of off-diagonal
elements are zeros. Also, the probabilities of all elements of the off-diagonal blocks are equal, i.e.,
∀s′, s′′, d′, d′′, s′ ̸= s′′,P (s′, s′′, d′, d′′) = 1

(DS)2 . The empirical joint probability matrix visualized
in Fig. D.3-(a) is consistent with theoretical analysis although not a perfect match. Furthermore,
Figs. D.3-(b) and (c) show that the embedding features in each segment tend to be one-hot and
invariant to the transformations, which are also consistent with the theoretical analysis.

To qualitatively evaluate if meaningful embedding features are learned, in Fig. D.4 we show some
examples assigned to specific units in the first two segments, where the whole embedding vector has
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Figure D.4: Visualization of learned VD features on ImageNet validation set. The left side shows
the samples assigned to the features indexed by 6, 8, 24, and 25 in the first segment. The right side
shows the samples assigned to the features indexed by 88, 124, 134, and 138 in the second segment.

8,160 units including 102 segments, and each segment has 80 units. Specifically, some features in
the first segment represent different types of textures; e.g., the feature unit indexed by 24 represents
the dot style textures, and the units 6, 8, and 25 correspond to other specific textures/patterns. In the
second segment, some features represent different shapes; e.g., the unit 124 abstract a “∩” shape, and
the units 88, 134, 138 represent other shapes/patterns. Obviously, the first and second segments use
different principles to group samples; e.g., the image containing red mushrooms in the first segment
is grouped (indexed by 24) with the objects having similar textures, while in the second segment
it is grouped (indexed by 134) with the images having twin/repeated objects. These visual results
indicate that the learned VD embedding features are indeed meaningful and consistent to the general
properties of Fig. 1, which are ensured by the theoretical analysis.

APPENDIX E RELATED WORK

For self-supervised representation learning (SSL), various pretext tasks were designed such as de-
noising auto-encoders (Vincent et al., 2008), context auto-encoders (Pathak et al., 2016), coloriza-
tion and cross-channel auto-encoders (Zhang et al., 2016; 2017), masked auto-encoders (He et al.,
2022), rotation (Gidaris et al., 2018; 2020), patch ordering (Noroozi & Favaro, 2016; Doersch et al.,
2015; Chen et al., 2021), clustering (Caron et al., 2018; 2019; Asano et al., 2019; Yan et al., 2020;
Huang et al., 2019; Zhuang et al., 2019; Gidaris et al., 2021), and instance discrimination (Doso-
vitskiy et al., 2014; Wu et al., 2018; Tian et al., 2020b; Ye et al., 2019; Dwibedi et al., 2021). Here
we compare VD with the most related SSL methods, including contrastive learning, asymmetric
non-contrastive Learning, clustering-based SSL, dense SSL, and the more recent non-asymmetric
and non-contrastive learning methods.

Contrastive Learning. The contrastive learning based SSL methods (Chen et al., 2020a; He et al.,
2020) need to directly compare the features between negative pairs. Thus, large batch sizes are
required, such as for SimCLR (Chen et al., 2020a). MoCo (He et al., 2020) uses a memory bank to
store a large number of features as negative samples so that small batch sizes can be used, while it
requires a momentum updating technique. The theoretical analysis for contrastive learning is based
on estimating the lower bound on mutual information between different views (Oord et al., 2018).
In contrast, VD doesn’t need negative samples, memory bank, or momentum updating, while it can
still discriminate instances. Without directly comparing a large number of negative pairs for instance
discrimination, VD naturally encodes different instances with different embeddings via maximizing
the joint entropy, as demonstrated in our theoretical analysis. VD can directly use information
measurements for both optimization and analysis instead of estimating the lower bound.

Asymmetric non-contrastive Learning. BYOL (Richemond et al., 2020) and SimSiam (Chen &
He, 2021) demonstrate that meaningful representations can be learned without using negative pairs.
However, these methods depend on asymmetric architectures and stop gradient techniques to avoid
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trivial solutions. The follow-up theoretical analysis (Wang & Isola, 2020; Zhang et al., 2021a;
Richemond et al., 2020; Tian et al., 2021) leverage various concepts under different assumptions to
demonstrate why these methods can avoid trivial solutions. VD requires neither negative samples
nor asymmetric designs. Moreover, VD enables a new information-theoretic SSL framework where
the information measures are directly used for both numerical optimization and theoretical analysis,
which intrinsically avoids trivial solutions and learns meaningful features.

Clustering-based SSL. DeepCluster (Caron et al., 2018) iteratively performs clustering with an
extra kmeans algorithm on the features extracted in the previous step, and updates the weights of
the network using the cluster assignments as supervision. To avoid trivial solutions, random sam-
ples are selected for the empty cluster to compute the centroid. It is time consuming for kmeans
to cluster the whole large datasets, and the random selected samples is hard to form a meaningful
cluster. Similarly, SELA (Asano et al., 2019) leverages the Sinkhorn-Knopp algorithm to iteratively
perform clustering and optimize the clustering networks with the assigned cluster labels in an on-
line manner. SwAV (Caron et al., 2020) alternatively computes the cluster assignment of one view
and optimize the network to predict the same assignment for other views of the same sample. As
a contrastive learning method, SwAV still requires a lot of prototype vectors for negative compar-
isons between embeddings and codes. In can be seen that all these clustering methods require to
compute a large number of extra cluster centers and leverage extra algorithms to compute assign-
ments. From the clustering perspective, each segment in the VD embedding can be regarded as
a cluster assignment, and multiple segments can be regarded as performing multiple clustering si-
multaneously, where different segments have different clustering principles. Different from current
clustering based methods, VD does not require computing a large number of cluster centers or an
extra algorithm to estimate the cluster assignments iteratively.

Dense SSL. Some excellent studies, such as DenseCL (Wang et al., 2021) and DenseSiam (Zhang
et al., 2022), design self-supervised/unsupervised learning methods for improving dense prediction
tasks, including object detection (Tian et al., 2019), instance segmentation (Zang et al., 2021), and
semantic segmentation (Zhang et al., 2021b). The basic idea is to enhance the pixel-level and region-
level consistency in the self-supervised/unsupervised learning setting. DenseCL (Wang et al., 2021)
proposes to optimize a pairwise contrastive (dis)similarity loss at the pixel level between two views
of input images. Most recently, DenseSiam (Zhang et al., 2022) proposes to optimizes the consis-
tency of different levels based on the simple Siamese network without needing negative pixel pairs,
momentum encoders or heuristic masks. Synergistically, VD can be also used for dense prediction
tasks by discretizing the feature vector of each sub-region/pixel and learning dense representations
in the information-theoretic framework.

Non-asymmetric and non-contrastive learning. Recently, WMSE (Ermolov et al., 2021), Bar-
low Twins Zbontar et al. (2021), and VICReg (Bardes et al., 2022) propose to train a simple twin
network architecture using covariance matrix based loss functions without needing any asymmetric
or constrastive learning techniques. Specifically, WMSE (Ermolov et al., 2021) proposes to min-
imize the MSE distance between different views and enforce the self-covariance matrix to be an
identity-matrix. Barlow Twins (Zbontar et al., 2021) optimizes the cross-covariance matrix to be an
identity-matrix. VICReg (Bardes et al., 2022) proposes three loss terms including invariance, vari-
ance, and covariance. The theoretical analysis for Barlow Twins (Zbontar et al., 2021) assumes the
Gaussian distribution assumption of embedding features, then the loss function can be interpreted
with the information measures under some approximations. One of the key ideas of these methods
is to reduce the redundancy between feature variables by minimizing the linear correlation. In con-
trast, VD discretizes the feature variables making the probability distribution estimable so that the
information-measures (entropy/mutual information/(in)dependence) can be directly used for both
numerical optimization and theoretical analysis without assuming the Gaussian distribution. Im-
portantly, our theoretical analysis shows that VD is exactly minimizing the mutual information or
any dependence between feature variables, which is beyond the linear correlation constraints used
in current methods. That is why VD can use a shorter embedding vector and achieve even better
results at a lower computational cost.

APPENDIX F COMPUTATIONAL ENVIRONMENT

VD models were distributively trained on four nodes, each of which has the system information:

13



Under review at the Workshop on Understanding Foundation Models at ICLR 2023

• 2× 20 core 2.5 GHz Intel Xeon Gold 6248;

• 8× NVIDIA Tesla V100 GPU each with 32 GiB HBM;

• 768 GiB RAM per node;

• Dual 100 Gb EDR Infiniband

APPENDIX G RUNNING TIME

Table 4: Running time and peak memory. Comparison of different methods in terms of the
running time over 100 epochs, the peak memory on a single GPU, and the top-1 accuracy (%) on
linear classification on top of the frozen representations. All models were distributively trained on
32 Tesla V100 GPUs.

Method Time / 100epochs Peak memory / GPU Top-1 accuracy
SwAV 9h 9.5G 71.8

SwAV (w/multi-crop) 13h 12.9G 75.3
BYOL 10h 14.6G 74.3

Barlow Twins 12h 11.3G 73.2
VICReg 11h 11.3G 73.2

VD 8.5h 10.4G 73.6

In Table 4, the computational cost of VD was evaluated and compared with other methods. All
methods were run on 32 Tesla V100 GPUs. These methods offer different trade-offs among running
time, memory and performance. SwAV with multi-crop and BYOL achieve better performance at
the additional computational cost and memory usage. Barlow Twins and VICReg have balanced
results with less memory than BYOL and SwAV (multi-crop), faster speed than SwAV (multi-crop),
but a slightly worse performance. Compared with the most related Barlow Twins and VICReg
methods, VD cannot only reduce the running time and memory usage significantly, but also improve
the performance. It is due to that VD can use a shallower fully-connected MLP head for a better
performance as discussed in Subsection J.2. The computational cost of VD will be significantly
reduced further when using a (×2) lower dimension for embeddings, and the performance would be
degraded very slightly, as discussed in Subsection J.2.

APPENDIX H IMPLEMENTATION DETAILS FOR PRETRAINING

For a fair comparison, we closely followed the implementation settings in VICReg to train VD mod-
els. Specifically, the standard ResNet-50 backbone (He et al., 2016) was used as the encoder that
outputs a representation vector of 2,048 units in the same training settings, including the data aug-
mentation (random cropping, horizontal flip, color jittering, grayscale, Gaussian blur, solarization,
with the same parameters in VICReg), the optimizer of LARS (You et al., 2017; Goyal et al., 2017)
with a weight decay of 10−6 and the learning rate of lr = batch size/256 × base lr, and the co-
sine decay schedule (Loshchilov & Hutter, 2016) from 0 with 10 warmup epochs towards the final
value of 0.002. The base learning rate base lr was set to 0.6 in our study. By default, we used a
two-layer MLP projector (8,192-8,160), the number of segments S = 102, the segment dimension
DS = 80, and D = DS × S = 8, 160 (similar to the feature dimension of 8, 192 used by VICReg
and Barlow Twins). The results were respectively analyzed for different feature dimensions, depths
of projectors, batch sizes, segment dimensions, and numbers of training epochs. The effect of the
single extra hyperparameter DS of VD was evaluated as well. The SSL models were trained on
the 1,000-classes ImageNet dataset without labels and evaluated in various downstream tasks. All
implementation details for downstream tasks are in Appendix I. Code will be made available.
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APPENDIX I IMPLEMENTATION DETAILS FOR DOWNSTREAM TASKS

I.1 EVALUATION ON IMAGENET

Linear classification: For all evaluation experiments on ImageNet linear classification, we followed
the standard procedure that a linear classifier was trained on top of the frozen backbone of a ResNet-
50 pre-trained with VD. The SGD optimizer was used with a learning rate of 0.02, a cosine decay, a
weight decay of 10−6, a batch size of 256, and 100 training epochs. In the training stage, the images
were augmented by the composition of random cropping and resizing of ratio 0.2 to 1.0 for size
224×224, and random horizontal flips. In the testing stage, the images were simply cropped from
the image center and resized to 224× 224.

Semi-supervised learning: In the semi-supervised learning setting, a linear classifier was appended
to the pre-trained backbone with VD, and the network was fine-tuned using 1% and 10% of the
labels. The SGD optimizer was used with no weight decay and a batch size of 256, and the model
was trained for 20 epochs. In the 1% of labels case, we used a learning rate of 0.08 for the encoder
and 0.1 for the linear head. In the 10% of labels case, we used 0.02 for the encoder and 0.1 for the
linear head. Both these learning rates followed a cosine decay schedule. The data augmentation
steps for training and testing followed the same settings of the linear evaluation.

I.2 TRANSFER LEARNING

Object detection and instance segmentation: Mask R-CNN (He et al., 2017) with the C-4 back-
bone was trained on the COCO 2017 train split and tested on the validation set. We used a learning
rate of 0.1 and kept the other parameters the same as in the 1 schedule in detectron2.

Linear classification: We followed the exact settings from PIRL (Misra & Maaten, 2020) in evalu-
ating linear classifiers on the Places-205 and VOC07 datasets. For Places-205, a linear classifier was
trained using the SGD optimizer for 14 epochs with a learning rate of 0.01 reduced by a factor of 10
at epochs 5 and 10, a weight decay of 5× 10−4, and a momentum of 0.9. For VOC2007 dataset, we
trained SVM classifiers, where the C values were computed using cross-validation.

Table 5: Top-1 linear classification accuracies on CIFAR10. Here the embedding dimension for all
models was set to 1024. The VD results with different segment dimensions are reported.

Models Barlow Twins VICReg VD
8 16 24 32 48 64

TOP-1 88.2 88.5 88.5 88.6 88.6 89.2 89.2 88.6

APPENDIX J MORE RESULTS

J.1 EVALUATION RESULTS IN DIFFERENT TASKS

Linear Classification on ImageNet. Linear probing is the commonly used evaluation protocol
that trains a linear classifier on top of the frozen representations to evaluate the performance of SSL
methods. Being consistent with Barlow Twins and VICReg, a ResNet-50 backbone was trained with
the batch size of 2,048 for 1,000 epochs on the training set of ImageNet, and the linear classification
results including Top-1 and Top-5 accuracies of different methods on the evaluation set are reported
in Table 6. The difference from Barlow Twins and VICReg is that VD used a two-layer MLP
projector (8,192-8,160) instead of three layers (8,192-8,192-8,192). The performance of VD is on
par with the state of the art method BYOL that uses asymmetric techniques, such as an additional
predictor and a momentum encoder. Note that the results of some excellent methods (Caron et al.,
2020; Gidaris et al., 2021) based on multi-crop/multi-positive techniques are not included in Table 6.
These techniques can usually boost performance further. The comparative results show that VD
achieves better results than Barlow Twins and VICReg, where all these three methods trained a twin
architecture without using negative pairs or any asymmetric techniques.

Semi-Supervised Classification on ImageNet. We also evaluated VD in the semi-supervised learn-
ing setting, where the pre-trained ResNet-50 with VD was fine-tuned on subsets of ImageNet, in-
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Table 6: Comparison of SSL methods on ImageNet for linear and semi-supervised classifica-
tion. Top-1 and Top-5 accuracies (in %) are reported. The best three results are underlined.

Methods
Linear Classification Semi-supervised Learning
Top-1 Top-5 Top-1 Top-5

1% 10% 1% 10%
Supervised 76.5 - 25.4 56.4 48.4 80.4
MoCo (He et al., 2020) 60.6 - - 57.2 83.8
PIRL (Misra & Maaten, 2020) 63.6 - - - - -
CPC v2 (Henaff, 2020) 63.8 - - - - -
CMC (Tian et al., 2020a) 66.2 - - - - -
SimCLR (Chen et al., 2020a) 69.3 89.0 48.3 65.6 75.5 87.8
MoCo v2 (Chen et al., 2020c) 71.1 90.1 - - - -
SimSiam (Chen & He, 2021) 71.3 - - - - -
SwAV (Caron et al., 2020) 71.8 - - - - -
InfoMin Aug (Tian et al., 2020b) 73.0 91.1 - - - -
BYOL (Grill et al., 2020) 74.3 91.6 53.2 68.8 78.4 89.0
Barlow Twins (Zbontar et al., 2021) 73.2 91.0 55.0 69.7 79.2 89.3
VICReg (Bardes et al., 2022) 73.2 91.1 54.8 69.5 79.4 89.5
VD (Ours) 73.6 91.4 54.0 69.1 78.9 89.1

cluding 1% and 10% of the full ImageNet dataset respectively, and all reported methods used the
same subset images. Currently, VD is not as good as Barlow Twins and VICReg in the semi-
supervised learning settings, while it is better than BYOL and other compared methods, and signifi-
cantly better than purely supervised learning without SSL pretraining.

Table 7: Transfer Learning. For object detection and instance segmentation tasks, SSL models
pre-trained on ImageNet were used to initialize the backbone of the object detection and instance
segmentation models on COCO. Mask R-CNN (He et al., 2017) with the C4 backbone variant
(Wu et al., 2019) was fine-tuned using the 1 schedule. AP metrics defined by COCO are reported
here. For the linear classification task, Top-1 accuracy (in %) for Places205 (Zhou et al., 2014) and
mAP for VOC07 (Everingham et al., 2010) are based on the frozen representations pre-trained on
ImageNet. The best results are in bold.

Methods Object Detection Instance Segmentation Linear Classification
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 VOC2007 Places205

Sup. 38.2 58.2 41.2 33.3 54.7 35.2 87.5 53.2
MoCo-v2 39.3 58.9 42.5 34.4 55.8 36.5 86.4 51.8

SwAV 38.4 58.6 41.3 33.8 55.2 35.9 86.4 52.8
SimSiam 39.2 59.3 42.1 34.4 56.0 36.7 - -

BT 39.2 59.0 42.5 34.3 56.0 36.5 86.2 54.1
VD (Ours) 39.3 59.1 42.6 34.4 55.8 36.6 86.5 54.8

Transfer Learning. Transfer learning is another popular way for the evaluation of SSL methods,
including object detection, instance segmentation, and linear classification. Our results are reported
in Table 7. It is noted that various studies have different setups for the object detection and instance
segmentation tasks. Here we closely followed (Zbontar et al., 2021) selecting the same comparison
methods in the same settings. VD performs on par with the current methods and slightly better
than Barlow Twins on the object detection and segmentation tasks. On the other hand, the linear
classification results on VOC2007 and Places205 datasets show that VD achieved better results than
the selected methods. Also, similar to the other SSL methods, VD can effectively improve the
downstream tasks in the transfer learning settings. All implementation details for the reproduction
of transfer learning results are in Appendix I.2.

KNN Classification on ImageNet. Another common protocol for evaluating representation learn-
ing methods is by K-Nearest-Neighbors (KNN) classification on ImageNet. We followed the recent
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Table 8: KNN classification. Top-1 accuracy with 20
and 200 nearest neighbors are reported. The best results
are highlighted in bold.

Method 20-NN 200-NN
NPID (Wu et al., 2018) - 46.5

LA (Zhuang et al., 2019) - 49.4
PCL (Li et al., 2021) 54.5 -

BYOL (Grill et al., 2020) 66.7 64.9
SwAV (Caron et al., 2020) 65.7 62.7
BT (Zbontar et al., 2021) 64.8 62.9

VICReg (Bardes et al., 2022) 64.5 62.9
VD (Ours) 67.0 64.9

Table 9: Batch Size. Top-1 accu-
racy (in %) results for linear classi-
fication on ImageNet were obtained
based on ResNet50 with 100 pre-
training epochs. The best results are
highlighted in bold.

Batch Size 512 1024 2048 4096

SimSiam 68.1 68.0 67.9 64.0

VICReg 68.2 68.3 68.6 67.8

VD 68.3 69.3 69.4 68.7

studies (Wu et al., 2018; Zhuang et al., 2019; Caron et al., 2020; Bardes et al., 2022) that built KNN
classifiers with the learned representations on the training set of ImageNet and evaluated the KNN
classification results on the validation set of ImageNet. The results with 20 and 200 nearest neigh-
bors are reported in Table 8, showing that VD achieved the best performance among the comparison
methods. Since the KNN classifier determines the class of a sample by directly searching its nearest
samples in the feature space, the representation features learned by VD is more semantically similar
to each other among the nearest neighbors than those learned by other methods. Thus, VD has the
potential superiority when applied to the downstream tasks based on the nearest neighbors search.

All the above results demonstrate the effectiveness and superiority of VD as a new embedding
strategy in with the information-theoretic optimization framework. In the following subsections, the
characteristics and superiority of VD will be further discussed.

J.2 EMPIRICAL ANALYSIS

In this subsection, we comprehensively evaluate the proposed VD method in various settings and
compare it with other SSL methods if the corresponding results in the same or comparable settings
were already reported. All the models were evaluated with linear classification on ImageNet.

Effect of Batch Size. SSL methods usually require a large batch size or a memory bank especially
for contrastive learning. Here we evaluated VD with different batch sizes and the results are reported
in Table 9. It shows that VD achieved consistently better results than the latest method VICReg over
different batch sizes. As discussed in Subsection B, an intrinsic property of VD is to discriminatively
encode different instances, making it work well without a large number of contrastive samples.

Table 10: Training epochs. Top-1 accuracy (in %) of linear classification on ImageNet using
ResNet-50. The best results are highlighted in bold while the second best results are underlined.

Methods SimCLR MoCo v2 BYOL SwAV SimSiam VD
100 epochs 66.5 67.4 66.5 66.5 68.1 69.4
200 epochs 68.3 69.9 70.6 69.1 70.0 71.8
400 epochs 69.8 71.0 73.2 70.7 70.8 73.1
800 epochs 70.4 72.2 74.3 71.8 71.3 73.4

Effect of Epoch Number. The SSL methods in different studies do not always use the same training
epochs due to different computational costs and environments. VD was evaluated with different
numbers of training epochs as reported in Table 10. VD is consistently better than most of the
existing methods on all different training epochs. When the numbers of training epochs were small
(100 and 200), VD can converge to the best results.

Effect of Projector Depth. The existing studies (Chen & He, 2021; Zbontar et al., 2021; Bardes
et al., 2022) show that using a three-layer MLP as the projector achieved the best results. However,
VD has a different behavior that a two-layer MLP achieved the best results as shown in Table 11.
It may be due to the discriminability and diversity of VD embeddings, allowing it to learn informa-
tional representations more effectively. At the same time, the computational cost can be reduced,
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Table 11: Projector Depth. The best
results are highlighted in bold.

Depth 2 3 4
Top-1 69.4 68.5 67.9
Top-5 89.3 88.3 87.9

Time/100ep 8.5h 9.6h 10.8h
Memory/GPU 10.4G 11.5G 12.5G

Table 12: Feature Dimension. The best Top-1 accuracies
are highlighted in bold.

DVICReg 1024 2048 4096 8192 16384
DVD 960 2000 4080 8160 16320

VICReg 62.4 65.1 67.3 68.6 68.8
VD 64.1 66.6 69.2 69.4 69.1

Time/100ep 7.6h 7.7h 8.0h 8.5h 10.9h
Memory/GPU 7.6G 8.0G 8.5G 10.4G 15.9G

Table 13: Loss terms. The best results are highlighted
in bold.

Loss DE+OE OE+TI DE+OE+TIC DE+OE+TI
Top-1 65.4 64.1 68.3 69.4
Top-5 86.9 86.4 88.6 89.3

Table 14: Segment Dimension. The
best results are highlighted in bold.

DS 32 64 80 96 128
Top-1 67.8 69.1 69.4 69.2 68.4
Top-5 88.5 89.1 89.3 89.1 88.5

especially for the fully-connected MLP with high-dimensional inputs and outputs. The running time
per 100 epochs and the peak memory per GPU for different projector depth are reported in Table 11,
where the computational environment is described in Appendix F. Moreover, the comparison results
of different methods in Appendix G show that VD cannot only reduce the running time and memory
cost but also achieves better performance than Barlow Twins and VICReg.

Effect of Feature Dimension. In the previous Barlow Twins and VICReg studies, it was found that
a very high-dimensional embedding vector is necessary for improving the representation learning
performance. For VD, the feature dimension plays an important role as well. The results of different
feature dimensions for VICReg and VD are reported in Table 12, where the the dimensions of
VD embeddings are similar to those of VICReg embeddings while keeping the dimension of each
segment the same, DS = 80. It can be seen that VD achieved consistently better results than VICReg
on different embedding feature dimensions. Importantly, when the embedding feature dimension
was reasonably large (4,096 and 8,192), VD achieves the best results that are even better than the
best results of VICReg using the larger dimension of 16,384. This is because that minimizing linear
correlation by the existing methods cannot ensure the minimized non-linear dependency while VD
can minimize any form of dependency between any two feature variables. Therefore, the redundancy
between VD feature variables tends to be lower than the existing methods so that feature dimension
can be reduced for even better results. In principle, the large embedding feature dimension (i.e.,
16,384) significantly increases the computational and memory cost for Barlow Twins, VICReg, and
VD that compute the covariance or joint probability matrix, which was also discussed in the Barlow
Twins study (Zbontar et al., 2021). This point is demonstrated in Table 12 by evaluating running
time and memory cost, where the computational environment is described in Appendix F. Thus, VD
is both efficient and effective.

Effect of Loss Function. The effect of different loss terms was evaluated in Table 13, where
DE, OE, TIC, and TI denote the diagonal entropy loss, off-diagonal entropy loss, transformation
invariance loss implemented with cross-entropy, and transformation invariance loss implemented
with inner-product, respectively. As described in Subsection B, only optimizing the entropy loss
(DE+OE) allows VD to avoid trivial solutions and learn informational representations. This theo-
retical analysis is consistent with the empirical results in Table 13 that 65.4% Top-1 was achieved
using the entropy loss only, comparable to some methods reported in Table 6. Adding the enhanced
transformation invariance constraint in instance-level significantly improved the performance, as
also discussed in the Subsection 2.3. Without adding the DE loss, the results were significantly
degraded, as the DE loss not only enhances the transformation invariance but also helps learn non-
trivial and complementary attributes in each and every segment. In our experiments, minimizing the
cross-entropy degraded the performance compared with the inner-product implementation.

Effect of Segment Dimension. Finally, the effect of our unique hyperparameter, i.e., segment
dimension, was evaluated. Our empirical results with different segment dimensions in Table 14
indicate that DS = 80 achieved the best results, where the dimension of the whole embedding
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vector was kept the same. It shows that the representation performance is not sensitive to this
hyperparameter.

APPENDIX K DISCUSSIONS AND CONCLUSION

From pairwise independence to mutual independence. Although VD is minimizing the pair-
wise independence, the minimum mutual independence among multiple feature variables cannot be
ensured (Gallager, 2013). In other words, redundancy may still exist among multiple feature vari-
ables. Similar to the study (Niu & Wang, 2022) that imposes high-order moment constraints on the
embedding features, maximizing joint entropy among multiple variables could be implemented to
reduce the redundancy further for even better self-learning performance.

From representation learning to hierarchical clustering. Each segment in VD can be regarded as
a clustering head, while different segments promote different and independent clustering criteria. In
this study, we mainly focus on the general representation learning task, where each segment has the
same number of clusters and every two segments are independent. This idea could be extended to
hierarchical clustering; e.g., different segments may have different numbers of hierarchical clusters
and the independence constraint between segments can be adapted with task prior.

APPENDIX L RESULTS ON CIFAR10

Here we further evaluated the characteristics of VD in terms of the segment dimension on the CI-
FAR10 dataset. Without using any asymmetric or contrastive techniques, Barlow Twins and VICReg
are regarded as the baseline methods for VD. Specifically, the batch size was 512 and the total di-
mension of the embedding vector was 1,024, the base learning rate was 0.1, the number of training
epochs was 800, and all other hyper-parameters were kept the default settings for VD, Barlow Twins,
and VICReg. Top-1 accuracy results are reported in Table 5, showing that the segment dimension
should be adjusted according to the target dataset, which is similar to that the network architec-
ture and the total feature dimension are usually associated with the scale and complexity of target
datasets. Nevertheless, VD achieved superior results than the baseline models over a large range of
segment dimensions under the same evaluation setting.
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