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ABSTRACT

The widespread adoption of Large Language Models (LLMs) has introduced a sig-
nificant challenge for federated learning (FL): their massive parameter counts make
the traditional multi-round FL approach prohibitively expensive due to high com-
munication costs. One-shot federated learning (OFL) has emerged as a promising
solution by limiting communication to a single round. However, Unlike standard
FL, which can mitigate the effects of non-IID data over multiple communication
rounds, OFL must simultaneously address "amplified spatial heterogeneity" and
"parameter space collisions" in a single update. The lack of iterative communica-
tion means there’s no opportunity to progressively resolve these conflicts, leading
to parameter interference that can severely degrade the global model’s performance.
To address this, we propose the one-shot Federated Frequency Separated aggrega-
tion (FedDCT) method. This novel framework for LLMs uses the discrete cosine
transform (DCT) to construct orthogonal parameter spaces. This allows clients to
operate independently with minimal collisions, facilitating effective model adapta-
tion without the need for iterative communication, even with heterogeneous data.
Through extensive experiments, we demonstrate that FedDCT outperforms exist-
ing one-shot methods while maintaining comparable communication efficiency to
non-federated approaches.1

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing (NLP), demon-
strating remarkable capabilities across a diverse range of tasks (Brown et al., 2020; Chowdhery et al.,
2022; Touvron et al., 2023a). However, the current centralized training paradigm raises significant
privacy concerns, especially when dealing with sensitive data such as personal conversations, medical
records and proprietary business information (Bommasani et al., 2021; Carlini et al., 2021). Feder-
ated Learning (FL) offers a promising alternative by enabling collaborative model training without
exposing private data (Kairouz et al., 2021; Yang et al., 2020; Ren et al., 2025; Fan et al., 2025).
In typical FL settings, clients train models locally and periodically exchange model updates with a
server, which aggregates these updates to improve a global model.

Despite its privacy benefits, traditional FL faces a critical challenge when applied to training LLMs:
the immense communication overhead. With modern LLMs containing hundreds of billions of
parameters (Brown et al., 2020; Chowdhery et al., 2022), each communication round requires
transferring enormous amounts of data—potentially hundreds of gigabytes per client. This becomes
especially problematic in bandwidth-constrained environments, where network capacity might be
limited to just 1-10 MB/s (Yang et al., 2020; Ren et al., 2025; Tang et al., 2023). For instance,
transmitting the full parameter set of a 175B-parameter model (approximately 700GB) would require
nearly 20 hours at 10 MB/s for each round, making multi-round FL training impractical.

One-shot federated learning (OFL) has emerged as a potential solution by limiting communication to
a single round (Guha et al., 2019; Zhang et al., 2022; Li et al., 2021). In this paradigm, clients train
models locally and communicate with the server only once, drastically reducing the communication
burden.

1Code is available at on https://anonymous.4open.science/r/FEDFFT-555F.
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However, The fundamental challenge of one-shot federated learning lies in its inability to leverage
iterative refinement to resolve client heterogeneity conflicts, forcing all reconciliation to occur within
a single aggregation step (Zhou et al., 2020; Zhang et al., 2022). Unlike standard FL, which can
gradually mitigate the effects of non-IID data distributions across multiple communication rounds,
one-shot FL must simultaneously address amplified spatial heterogeneity and parameter space colli-
sions in a single update. This constraint is particularly problematic when client data distributions vary
significantly, as the local updates from different clients not only reflect conflicting data characteristics
but also compete for overlapping regions in the parameter space during aggregation. The absence
of iterative communication rounds eliminates the opportunity to detect and resolve these conflicts
progressively, resulting in parameter interference that can severely distort the global model’s ability
to generalize across diverse client distributions and downstream tasks, thus raising an important
question:

How to effective resolve the severe parameter interference in single round in Federated Learning?

In this paper, we introduce FedDCT, a novel one-shot federated learning framework for LLMs that
effectively addresses the challenges of heterogeneity and parameter interference. FedDCT leverages
the natural orthogonality properties of the 2D Discrete Cosine Transform (DCT) with sparse frequency
sampling to enable flexible control over client update orthogonality. By supporting both sampling
without replacement (strict orthogonality) and sampling with replacement (statistical orthogonality),
our approach uniquely enables truly independent client operation—each client can select frequency
components without any knowledge of others’ choices or coordination with the server. This maintain
minimal interference through the DCT’s quadratic expansion of the parameter space from d× d to
d2 frequencies, reducing the expected collision proportion from O(|Ω|2/d) in traditional methods
to O(|Ω|2/d2). Through theoretical analysis and extensive experimentation, we demonstrate the
effectiveness of our approach for OFL of LLMs across diverse language understanding tasks. Our
main contributions are as follows:

• We propose a novel frequency-based aggregation method that exploits the 2D DCT’s quadratic
parameter space expansion to achieve minimal collision rates while preserving federated learning’s
privacy principles. Critically, our sampling with replacement strategy allows clients to operate
independently without coordination, accommodating heterogeneous devices and data distributions.

• We formalize the parameter space collision problem in one-shot federated learning and provide a
theoretical framework distinguishing between strict orthogonality (requiring coordination) and
statistical orthogonality (enabling independence), showing DCT-based aggregation achieves both.

• We empirically validate our approach on benchmark NLP tasks, demonstrating significant improve-
ments over existing one-shot FL methods, while requiring only a fraction of the communication
cost compared to traditional federated learning in multi-round settings.

2 RELATED WORK

Approaches for mitigating FL communication overhead can be broadly divided into two main
categories: 1) Parameter-Efficient Fine-Tuning (PEFT) for language models, which reduces trainable
parameters, and 2) OFL, which limits communication to a single round.

PEFT: The massive size of LLMs has driven substantial research in PEFT methods, which adapt
pre-trained models by updating only a small subset of parameters. Low-Rank Adaptation (LoRA)
(Hu et al., 2021) decomposes weight updates into low-rank matrices, reducing the number of trainable
parameters from O(d2) to O(rd), where r ≪ d is the chosen rank. Adapter-based approaches
(Houlsby et al., 2019; Pfeiffer et al., 2020; Chen et al., 2022) insert trainable modules within
transformer architectures while keeping pre-trained weights frozen. Prefix tuning (Li & Liang, 2021)
and prompt tuning (Lester et al., 2021) prepend trainable vectors to the input or intermediate layers.
These approaches have demonstrated effectiveness, often matching full fine-tuning performance
while updating less than 1% of the parameters.

While these methods reduce the computational and memory requirements for adaptation, they were
primarily designed for centralized learning settings. When applied to FL, they still face significant
challenges related to communication efficiency and data heterogeneity. Recent work (Zhang et al.,
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2023a;b) has begun exploring PEFT methods in multi-round FL. However, their application in the
one-shot setting remains largely unexplored, particularly for LLMs.

OFL: OFL methods limit communication to a single round to minimize bandwidth requirements.
Guha et al. (Guha et al., 2019) introduced this concept with two approaches: 1) selectively ensembling
client models, and 2) distilling client knowledge using a public dataset. Follow-up works have
expanded on these ideas, but continue to face limitations. Data-dependent approaches (Guha et al.,
2019; Li et al., 2021) require auxiliary public datasets, which might be unavailable or inadequate
for specialized domains. Synthetic data generation methods (Zhou et al., 2020; Zhang et al., 2022)
use GANs or other generative models, but struggle with complex data distributions. Parameter
aggregation approaches (Wang et al., 2020; Yurochkin et al., 2019) directly combine client model
weights, but typically perform poorly under heterogeneous data distributions. Zhou et al. (Zhou et al.,
2020) explored dataset distillation for one-shot FL, but found performance degrading under moderate
to high data heterogeneity. Recently, Jhunjhunwala et al. (Jhunjhunwala et al., 2023) provided
theoretical analysis for one-shot averaging with over-parameterized networks, but did not address
the challenges of heterogeneous data. The fundamental limitation of existing OFL approaches is
their inability to combine client knowledge without interference, especially as the number of clients
increases. This challenge becomes more acute with LLMs, where the parameter space is vast but still
finite relative to the number of potential clients and the complexity of language data distributions.

3 PRELIMINARIES

3.1 ONE-SHOT FEDERATED LEARNING FOR PEFT

Parameter Efficient Federated Learning for LLMs. Given κ FL clients {Cκ}Kκ=1 and a global
FL server S, client Cκ train on the local dataset (Xκ,Yκ) via optimizing argmin∆Wκ

L(W +
∆Wκ;Xκ,Yκ) where W is the parameters of the base model and ∆Wκ is the local update. The
server aggregates all uploaded parameter updates through weighted averaging:

∆W̄ =

K∑
κ=1

γκ∆Wκ, where γκ =
|Xκ|∑K
κ=1 |Xκ|

, (1)

and update the global model in each communication round t as:

W t = W t−1 +∆W̄ . (2)
One-Shot Federated Learning for PEFT. Traditional FL requires multiple communication rounds
(t ≫ 1) to achieve good performance, which becomes prohibitively expensive for large models.
One-shot FL addresses this by limiting the process to a single communication round. In this setting,
clients train locally on their datasets and communicate with the server exactly once. Instead, the
global model is updated just once (t = 1) :

W 1 = W 0 +∆W̄ (3)

3.2 THE AGGREGATION METHODS

Parameter Efficient Aggregation for One-Shot Federated Learning. To reduce communication
cost, recent works (Hu et al., 2021) decompose parameter updates ∆W via low-rank adaptation1:

∆W̄ =

K∑
κ=1

∆Wκ, ∆Wκ = AκBκ, (4)

where Aκ ∈ Rd×r, Bκ ∈ Rr×k, and r ≪ min {d, k}. This reduces communication cost from O(dk) to
O(r(d+ k)). Existing aggregation strategies for LoRA, however, face fundamental limitations:

• FedAvg: FedIT (Zhang et al., 2024) proposes averaging local LoRA modules via FedAvg to reduce
resource requirements during training ∆W̄avg = ĀB̄, where Ā =

∑K
κ=1 Aκ, B̄ =

∑K
κ=1 Bκ.

However, this introduces undesirable cross-terms AiBj (i ̸= j), leading to parameter interference
that distorts client-specific knowledge—especially under heterogeneous data distributions.

1We omit the γt
κ for simplicity.
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Figure 1: FedDCT partitions client updates into orthogonal subspaces via 2D Discrete Cosine
Transform (DCT). The diagram illustrates how individual client updates are transformed into the
frequency domain, where they operate on distinct subsets of frequency components. These frequency-
separated updates are then aggregated by the server and reconstructed back into the parameter space
using the Inverse Discrete Cosine Transform (IDCT) to form the final global model update. The
right-hand side of the figure visually demonstrates the non-interference between local models in this
frequency-based approach.

.

• FedStack: FLoRA (Wang et al., 2024b) proposes stacking separately averaged LoRA modules
to construct the global model, thereby preserving client-specific updates. Ā = [A1, . . . ,AK ],
B̄ = [B1, . . . ,BK ]. While this prevents cross-terms mathematically, it still causes functional
interference when columns of different Aκ matrices learn similar features, creating redundancy
and competition during inference as they operate on overlapping regions of the parameter space.

To address the fundamental shortcomings of existing aggregation methods, we introduce a novel
parameter efficient aggregation strategy specifically designed for one-shot federated learning.

4 THE PROPOSED FedDCT METHOD

Our key insight is to eliminate parameter interference by operating in the frequency domain, where
we can naturally assign orthogonal frequency components to different clients. Specifically, we design
to decompose the global model update as:

∆W =

K∑
κ=1

∆Wκ =

K∑
κ=1

iDCT(Fκ) (5)

where iDCT(·) denote inverse transformation of 2D DCT and each client κ operates exclusively on
a distinct subset of frequency components Fκ = {F (u, v)|(u, v) ∈ Ωκ} with coordinates Ωk ∈ Ω
from the complete 2D DCT frequency domain Ω = {(u, v)|u, v ∈ {0, . . . , d− 1}}.
For a parameter matrix ∆W ∈ Rd×d, the (m,n)-th value of ∆W is reconstructed as

∆Wκ(m,n) =
∑

F (u,v)∈Fκ

αuαvF (u, v) · iDCTu,v. (6)

where iDCTu,v = αuαv cos
(

π(2m+1)u
2d

)
cos

(
π(2n+1)v

2d

)
represents the 2D iDCT basis function.

αu =
√

1
d if u = 0, otherwise αu =

√
2
d , and similarly for αv .

The critical innovation of our frequency assignment strategy is that instead of clients competing for
overlapping regions in the parameter space, each client is assigned a unique subset of frequency Fκ.
This ensures that local model updates from different clients reside in non-overlapping frequency
subspaces, making them inherently interference-free:

⟨∆Wκ,∆Wκ′⟩ = 0 (κ ̸= κ′). (7)
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For frequency aggregation, we collect all DCT coefficients: F = {F̄ (u, v)|(u, v) ∈
⋃K

κ=1 Ωκ}.
When multiple clients select the same frequency (u, v), we average their coefficients:

F̄ (u, v) =
1

|{κ : (u, v) ∈ Ωκ}|
∑

κ:(u,v)∈Ωκ

Fκ(u, v). (8)

The final aggregated update is reconstructed via inverse DCT(iDCT):

∆W̄ (m,n) =
∑

F̄ (u,v)∈F

F̄ (u, v) · iDCTu,v, (9)

4.1 FREQUENCY ASSIGNMENT AND CLIENT INDEPENDENCE

Each client κ randomly samples a subset of frequency coordinates Ωκ from the complete frequency
domain Ω = {(u, v)|u, v ∈ {0, . . . , d − 1}} and learns only the corresponding DCT coefficients
Fκ = {F(u,v)|(u, v) ∈ Ωκ}. We support two assignment strategies

• Centralized frequency assignment (strict orthogonality): Frequency components are allocated
to clients through explicit coordination, either by a central server or through inter-client com-
munication, to ensure strict orthogonality (no overlap between frequency subsets). Clients must
communicate with the server to receive their assigned frequency coordinates before beginning
local training The server maintains a global registry of which frequencies are assigned to which
clients. When clients sample frequency coordinates without replacement such that Ωκ ∩ Ωκ′ = ∅
for all κ ̸= κ′, the DCT’s orthogonal basis functions guarantee:

⟨∆Wκ,∆Wκ′⟩ = 0, ∀κ ̸= κ′.

• Decentralized frequency assignment (statistical orthogonality): Each client κ autonomously
samples a subset of frequency coordinates Ωk from the complete frequency domain Ω using
sampling with replacement. No communication required between clients or with the server
beyond the final model update. and clients operate with zero knowledge of other clients’ frequency
selections while still achieving effective interference reduction through statistical orthogonality:

E[⟨∆Wκ,∆Wκ′⟩] = 0, Var[⟨∆Wκ,∆Wκ′⟩] = |Ω|
2

d2
· σ4 (Theorem 4.2).

Both frequency assignment are feasible for FedDCT. however, centralized frequency assignment
fundamentally violates the core principles of one-shot federated learning by requiring explicit
coordination between the server and clients. It approach creates communication overhead beyond
the single-round constraint, as clients must either receive frequency assignments from the server or
negotiate frequency allocation among themselves, contradicting the fundamental goal of minimizing
communication in one-shot federated learning. Moreover, centralized assignment suffers from poor
scalability and robustness—it cannot handle dynamic client participation where clients may join or
leave unexpectedly, requires the server to maintain global state about all participating clients, and
introduces a single point of failure where coordination failures can compromise the entire federated
learning process. The comparison of these assignment are detail in Sec. 5.2.

4.2 THEORETICAL ANALYSIS

We now provide theoretical guarantees of decentralized frequency assignment for FedDCT in one-
shot federated learning.
Theorem 4.1 (Collision Probability under Sampling with Replacement). For clients κ and κ′, let Ωκ

and Ωκ′ be independently sampled frequency sets with replacement, each containing |Ωκ| and |Ωκ′ |
components from a total of d2 frequency components. The expected collision proportion is:

E
[
|Ωκ ∩ Ωκ′ |
|Ωκ|

]
=
|Ωκ′ |
d2

. (10)

This theorem shows that even with replacement, the collision probability remains small for typical
parameter settings. For example, with d = 1024 and |Ωκ′ | = 1000, the expected collision proportion
is only 1000

10242 ≈ 0.095%, meaning less than 0.1% of frequency components collide on average.

5
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Algorithm 1: Federated One-Shot Learning via Frequency Separated Aggregation
1 Require: Each client D datasets Dκ∈K , pretrained model weights W , number of frequency

components N .
2 Ensure: Global model W

1: for all client κ = 1 to K in parallel do
2: Random sample N frequency coordinate: Ωκ = {(µn, vn)}Nn=1 ▷ Spectrum assignment
3: Initialize trainable DCT coefficient: Fκ = {F (u, v)|(u, v) ∈ Ωκ}
4: for each batch training do
5: Compute ∆Wκ ← iDCT(Fκ) ▷ DCT inverse
6: Compute loss L (W +∆Wκ) and Update Fκ

7: end for
8: end for
9: Mix the Frequency: F =

⋃K
κ=1 Fκ ▷ Frequency domain aggregation

10: Server aggregates: ∆W̄ ← iDCT(FMixF) ▷ Recover the global model
11: Return updated model W +∆W̄

Theorem 4.2 (Interference Bound with Partial Collisions). For clients κ and κ′ with DCT coefficient
sets Fκ and Fκ′ , let C = Ωκ ∩ Ωκ′ be the collision set. Due to the orthogonality of DCT basis
functions, the interference between client updates is:

⟨∆Wκ,∆Wκ′⟩ =
∑

(u,v)∈C

Fκ(u, v) · Fκ′(u, v), (11)

where Fκ(u, v) and Fκ′(u, v) are the DCT coefficients at frequency (u, v).

Assuming the DCT coefficients are independently distributed with zero mean and variance σ2, the
expected interference is: E[⟨∆Wκ,∆Wκ′⟩] = 0, and the variance of interference is:

Var[⟨∆Wκ,∆Wκ′⟩] = E[|C|] · σ4 =
|Ωκ||Ωκ′ |

d2
· σ4. (12)

This theorem demonstrates that interference only occurs at colliding frequencies, and its magnitude
depends on the DCT coefficients at those frequencies. The expected interference is zero due to the
orthogonality of DCT basis functions, while the variance of interference scales asO(|Ω|2/d2), which
is significantly better than O(|Ω|2/d) in traditional parameter-efficient methods that operate directly
in the parameter space. The quadratic denominator d2 (from the 2D DCT’s expanded frequency
domain) ensures that interference variance remains negligible even with large frequency sets, as
typical collision rates are less than 0.1% for practical parameter settings.

5 EXPERIMENT

Datasets and Partitioning. To evaluate the effectiveness of FedDCT method, we conduct extensive
experiments across diverse language understanding and generation tasks. We use three widely-adopted
datasets in LLM research: Dolly-15K (Conover et al., 2023) for the question-answering (QA) task,
the Rosetta dataset (Rosset et al., 2024) for code generation, and GSM-8K (Cobbe et al., 2021) for
mathematical reasoning. We evaluate the federated fine-tuned models on MMLU (Hendrycks et al.,
2021) and MMLU-Pro (Wang et al., 2024a) for the QA task, HumanEval (Chen et al., 2021) test set
for Code generation task and GSM-8K for mathematical reasoning task, respectively. For Dolly-15K,
we report accuracy, BLEU, METEOR, and ROUGE-L scores with detailed analysis. For Rosetta,
we report Pass@1 and Pass@10 metrics. For GSM-8K, we report accuracy. To mimic realistic
heterogeneity, the clients’ dataset is partitioned via a Dirichlet distribution (Hsu et al., 2019) with
concentration parameter α; smaller values of α produce more skewed (i.e. heterogeneous) client splits.
In our primary experiments, we set α = 0.001 to emulate strong non-IIDness, and we additionally
evaluate α ∈ {0.001, 0.01, 0.05} to study the impact of varying heterogeneity levels.

Models and Training. We conduct experiments with two foundation models: LLaMA-2-7B (Touvron
et al., 2023b) and Qwen2.5-7B-Instruct (Team, 2024). All experiments use a consistent setup with

6
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Table 1: Comparison of FedDCT with baseline federated learning methods across LLaMA2-7B
and Qwen2.5-7B models. The results demonstrate FedDCT superior performance while requiring
significantly lower parameter uploads (0.36M) compared to other methods (2.1–5.1M).

Model Method Upload
Param MMLU MMLU-Pro HumanEvalX GSM-8KAcc. BLEU METEOR ROUGE-L Pass@1 Pass@10

LLaMA2-7B

Centralised FL 0 38.9±0.1 17.6±0.1 20.9±0.3 28.9±0.3 28.9±0.4 11.6±0.1 28.5±0.3 17.2±0.5

FLoRA (30-shots) 2.5M 36.4±0.1 15.7±0.1 21.2±0.3 29.5±0.8 19.9±0.4 11.2±0.5 15.7±0.7 15.8±0.2

One-Shot Methods

FLoRA (1-shot) 2.5M 24.6±0.1 10.2±0.4 03.2±0.4 05.8±0.6 01.5±0.3 02.7±0.2 06.1±0.9 14.6±0.9

DENSE 5.1M 26.3±0.2 08.2±0.2 0.01±0.01 0.02±0.01 0.01±0.01 04.4±0.1 07.1±0.6 11.3±0.4

CO-Boosting 5.1M 32.8±0.4 09.5±0.5 01.0±0.4 0.7±0.5 01.8±0.3 03.2±0.9 07.3±0.1 12.1±0.6

FuseFL 2.5M 34.8±0.2 13.6±0.2 11.1±0.3 11.9±0.2 19.5±0.4 11.5±0.4 16.6±0.7 15.0±0.3

FedDCT 0.36M 35.6±0.2 14.0±0.7 13.0±0.1 11.7±0.2 18.2±0.2 11.9±0.3 23.1±0.4 16.2±0.4

Qwen2.5-7B

Centralised FL 0 69.2±0.3 44.3±0.3 19.4±0.9 29.5±0.9 20.0±0.7 79.8±0.8 86.6±0.2 77.8±0.1

FLoRA (30-shots) 2.5M 67.1±0.4 39.6±0.2 17.7±0.1 26.3±0.4 13.3±0.7 78.2±0.3 79.9±0.2 77.1±0.7

One-Shot Methods

FLoRA (1-shot) 2.1M 65.7±0.3 40.0±0.3 12.1±0.4 18.6±0.4 13.1±0.4 72.9±0.6 84.8±0.9 62.6±0.2

DENSE 4.2M 32.3±1.0 19.1±0.3 01.7±0.3 04.7±0.6 06.9±0.1 53.7±0.6 61.3±0.3 52.1±0.2

CO-Boosting 4.2M 45.3±0.8 29.5±0.4 01.0±0.4 01.1±0.1 01.8±0.2 55.1±0.3 74.0±0.7 50.8±0.4

FuseFL 2.1M 67.8±0.4 38.7±0.6 16.8±0.1 14.4±0.3 16.7±0.8 78.2±0.2 82.7±0.9 68.4±0.9

FedDCT 0.36M 68.6±0.2 42.3±0.6 16.7±0.4 13.5±0.9 16.7±0.3 79.3±0.1 82.3±0.2 75.4±0.3

batch size 2 and local training for 2,000 steps per client. We perform hyperparameter tuning for the
learning rate in the range {0.001, 0.005, 0.01, 0.05} and report results using the best configuration.
For our FedDCT method, we use the Discrete Cosine Transform (DCT) basis with the number of
trainable parameter |Ω|(|Ω| = 6000) per weight matrix. We apply our method to query and value
matrices in the transformer blocks, which comprise approximately 20% of all model parameters.

Baselines. We compare FedDCT against the following baseline methods: Centralised FL: Cen-
tralized fine-tuning on the aggregated dataset (upper-bound reference). FLoRA(30-shots) (Wang
et al., 2024b): Standard FedAvg aggregation for federated instruction-tuning of large language
models in IID setting. FLoRA(1-shot): Standard one-shot federated learning (FL) for federated
instruction-tuning of large language models in Non-IID setting. DENSE (Zhang et al., 2022): A
data-free one-shot federated learning method that alternates between synthetic data generation and
model distillation to train the global model. CO-Boosting (Dai et al., 2024): A one-shot FL scheme in
which synthesized data and an ensemble of client models progressively enhance each other. FuseFL
(Tang et al., 2024): A one-shot federated learning approach based on model fusion, combining client
updates into a single global model. For all experiments, we set the default number of clients to
M = 5 and vary from 2 to 9 in specific scalability experiments.

5.1 MAIN RESULTS.

Table 12 presents the performance of FedDCT compared to baselines across different datasets and
models. Our method outperforms all one-shot federated learning baselines while achieving results
competitive with multi-round methods using significantly less communication. FedDCT consistently
outperforms most one-shot FL baselines across both models and all datasets, approaching centralised
performance in many cases. DENSE and CO-Boosting show lower performance, particularly for
complex generation tasks, likely due to the inherent limitations of synthetic data generation. Our
method demonstrates particularly strong performance on the Rosetta code generation task, where
maintaining semantic coherence is critical. The gap between FedDCT and Centralised FL is smaller
for the more capable Qwen2.5-7B model, suggesting that more powerful foundation models can
better leverage our approach. When tested on LLaMA-2-7B and Qwen2.5-7B, FedDCT achieved
scores approaching centralized training while requiring only 0.36M parameter uploads per client
compared to 2.1-5.1M for these baseline methods—a 5.8-14.2× reduction in communication overhead.
These findings validate the theoretical claim that FedDCT prevents parameter space collisions
through its frequency-separated approach, enabling efficient model adaptation without the iterative
communication in FLoRA or the synthetic data limitations in DENSE and CO-Boosting.

2The best results for each dataset are shown in bold.
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5.2 ANALYSIS

Analysis on Heterogeneity. A key challenge in one-shot federated learning is han-
dling non-IID data distributions across clients. Table 2 presents the performance

Table 2: Performance under different levels
of data heterogeneity (MMLU test set with
Qwen2.5-7B)

Method α = 0.001 α = 0.01 α = 0.05

Centralised FL 69.2±0.3 69.2±0.2 69.2±0.2

DENSE 32.3±1.0 37.6±0.9 38.8±0.5

Co-Boosting 45.3±0.8 45.2±0.4 54.2±0.8

FuseFL 67.8±0.4 67.5±0.3 67.7±0.4

FedDCT 68.6±0.2 69.5±0.4 68.4±0.3

of different methods under varying degrees of data
heterogeneity with the Dirichlet concentration pa-
rameter α. The experiment demonstrates FedDCT’s
remarkable robustness to Non-IID data distribu-
tions. When testing on the MMLU benchmark with
Qwen2.5-7B, FedDCT achieves 68.6% accuracy un-
der extreme heterogeneity (α = 0.001), maintain-
ing performance within 5% of centralized training
(69.2%), while competing methods show significant
degradation (DENSE: 32.3%, Co-Boosting: 45.3%),
confirming that the orthogonal nature of our frequency domain transformation effectively creates
separated parameter spaces, allowing clients to optimize for local data distributions without negatively
impacting others during aggregation, addressing the challenge of amplified spatial heterogeneity.

Table 3: Performance vs. Number of Clients on
Dolly-15k with Qwen2.5-7B

Method Clients Hetero Homo Comm. Cost (MB)

FedDCT
(|Ω| = 1000)

2 69.1±0.1 70.8±0.2 0.278
3 69.2±0.4 72.4±0.5 0.417
4 68.2±0.7 67.1±1.2 0.556
5 68.4±0.4 69.1±0.4 0.695
9 68.2±0.4 68.6±0.4 1.250

FLoRA
(1-shot)

2 68.8±0.6 68.8±0.7 09.62
3 70.2±0.2 70.1±0.3 19.24
4 67.8±0.5 68.2±0.6 28.86
5 65.7±0.3 68.2±0.9 48.13
9 66.9 ±0.4 67.6±0.4 86.63

Number of Clients. Table 3 demonstrate
FedDCT’s scalability as the number of clients
increases in federated learning scenarios. When
tested on the Dolly-15k dataset with Qwen2.5-
7B, FedDCT maintains consistent performance
across different client configurations, showing
only a 0.9% drop in accuracy (from 69.1% to
68.2%) when scaling from 2 to 9 clients. This
stability stands in stark contrast to FLoRA(1-
shot), which experiences a significant 1.9%
degradation (from 68.8% to 66.9%) under iden-
tical scaling conditions. Furthermore, FedDCT
achieves this superior performance while requir-
ing substantially lower communication costs
- only 0.695MB for 5 clients compared to
FLoRA’s 48.13MB, representing a significant reduction in bandwidth requirements. The effec-
tiveness of FedDCT persists in both heterogeneous and homogeneous data distribution settings,
making it particularly suitable for real-world federated learning deployments.

Centralized vs. Decentralized method The results in Table 4 show that both approaches achieve
similar high performance, with the decentralized method’s average accuracy on the MMLU, MMLU-
Pro, and GSM-8K datasets being 66.25%, 36.95%, and 71.75%, respectively, which is nearly identical
to the centralized method’s average scores of 66.20%, 37.85%, and 71.70%. This demonstrates
that the statistical orthogonality provided by the decentralized approach is as effective as the strict
orthogonality of the centralized approach. The decentralized method is more practical for real-world
one-shot FL because it avoids the communication overhead, scalability issues, and single-point-of-
failure risks associated with centralized coordination.
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Method Metric 9 Clients 40 Clients Average

Centralized
(Statistical)

MMLU 68.2 64.2 66.20
MMLU-Pro 41.7 34.0 37.85

GSM-8K 74.1 69.3 71.70

Decentralized
(Strict)

MMLU 68.2 64.3 66.25
MMLU-Pro 41.1 32.8 36.95

GSM-8K 74.2 69.3 71.75

Table 4: Performance Comparison of Centralized
vs. Decentralized Frequency Assignment.

|Ω| Sparsity Acc.

FedDCT

500 3.89e-5 66.7±2.4

1000 7.79e-5 68.4±0.4

1500 1.17e-4 68.7±0.2

2000 1.56e-4 68.6±0.2

10000 7.79e-4 68.6±0.2

12000 9.34e-4 68.8±0.3

Table 5: Acc. v.s. |Ω|. on Dolly-15k with
Qwen2.5-7B.

Type of aggregation. As shown in Figure 2, we compare the performance of different aggregation
methods for one-shot federated learning across two benchmark tasks: MMLU and GSM-8K.The
results demonstrate a clear performance advantage for our proposed FedDCT approach over theone-
shot version of FedIT(FedAvg) and FLoRA(FedStack), achieving scores of 35.8 on MMLU and
16.8 on GSM-8K. This significant improvement (approximately 57.7% higher than FedIT on MMLU
and 15.0% higher than FLoRA on GSM-8K) validates our theoretical claim that frequency-separated
aggregation effectively addresses parameter space collisions in one-shot federated learning.

Collision Analysis. Note that sparsity is controlled via the number of frequency components
that each client samples from the total frequency domain. As clients sample more frequency
components, sparsity increases, allowing for richer representation but potentially increasing the risk
of interference between clients. Table 5 presents the relationship between the number of frequency
components and model accuracy on the Dolly-15k dataset using the Qwen2.5-7B model.With just
500 frequency components (sparsity 3.90e-5), the model achieves a respectable 66.7% accuracy.
Doubling this to 1000 components (sparsity 7.70e-5) yields a significant improvement to 68.7%
accuracy, representing the highest performance observed across all configurations. Further increases
in frequency components produce minimal benefits or even slight decreases in performance: 1500
components (68.7%), 2000 components (68.6%), 10000 components (68.6%), and 12000 components
(68.8%). The table show that there exists an optimal range for frequency component allocation. Too
few components limit expressivity, while too many introduce redundancy and potential overfitting.
Figure 4 further visualizes collision patterns at different sparsity levels.

Communication Efficiency Analysis. Figure 5 illustrates the trade-off between communication
cost and model performance for different federated learning methods using the LLaMA2-7B model.
Results shows that FedDCT variants (|Ω|=1000 and |Ω|=2000) occupy the optimal upper-left re-
gion, indicating high accuracy with minimal communication requirements. This empirical result
directly validates our theoretical analysis that frequency-separated aggregation effectively creates
almost-orthogonal parameter spaces, enabling efficient knowledge transfer without the massive
communication burden of other one-shot federated learning approaches.

6 CONCLUSION

We identified parameter space interference as a major challenge in one-shot federated learning. We
theoretically proved that using orthogonal parameter spaces effectively eliminates this interference.
Our proposed FedDCT approach leverages orthogonal transformations in the frequency domain to
achieve this naturally, allowing clients to learn in non-overlapping regions without explicit coor-
dination. By sampling frequency components with replacement, we create an almost-orthogonal
parameter space, which enables efficient knowledge transfer and perfect global model reconstruction
while maintaining parameter efficiency.

9
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We use LLMs for only polish the writing. No LLMs are used for creating idea, code and other
artifacts.

A.2 PROOF OF THEOREM 4.1

Proof. Consider two clients κ and κ′ independently sampling frequency components with replace-
ment from the total frequency domain of size d2.

For any specific frequency coordinate (u, v), the probability that client κ selects it is:

P ((u, v) ∈ Ωκ) =
|Ωκ|
d2

(13)

Similarly, for client κ′:

P ((u, v) ∈ Ωκ′) =
|Ωκ′ |
d2

(14)

Since the clients sample independently, the probability that both select the same frequency (u, v) is:

P ((u, v) ∈ Ωκ ∩ Ωκ′) = P ((u, v) ∈ Ωκ) · P ((u, v) ∈ Ωκ′) =
|Ωκ||Ωκ′ |

d4
(15)

The expected number of collisions is the sum over all possible frequency coordinates:

E[|Ωκ ∩ Ωκ′ |] =
d−1∑
u=0

d−1∑
v=0

P ((u, v) ∈ Ωκ ∩ Ωκ′) = d2 · |Ωκ||Ωκ′ |
d4

=
|Ωκ||Ωκ′ |

d2
(16)

Therefore, the expected collision proportion is:

E
[
|Ωκ ∩ Ωκ′ |
|Ωκ|

]
=

E[|Ωκ ∩ Ωκ′ |]
|Ωκ|

=
|Ωκ||Ωκ′ |/d2

|Ωκ|
=
|Ωκ′ |
d2

(17)

A.3 PROOF OF THEOREM 4.2

Proof. Given the DCT representation of client updates:

∆Wκ =
∑

(u,v)∈Ωκ

Fκ(u, v) · iDCTu,v (18)

The inner product between two client updates is:

⟨∆Wκ,∆Wκ′⟩ =

〈 ∑
(u,v)∈Ωκ

Fκ(u, v) · iDCTu,v,
∑

(u′,v′)∈Ωκ′

Fκ′(u′, v′) · iDCTu′,v′

〉

=
∑

(u,v)∈Ωκ

∑
(u′,v′)∈Ωκ′

Fκ(u, v) · Fκ′(u′, v′) · ⟨iDCTu,v, iDCTu′,v′⟩
(19)

Due to the orthogonality of DCT basis functions:

⟨iDCTu,v, iDCTu′,v′⟩ =
{
1 if (u, v) = (u′, v′)

0 otherwise
(20)

Therefore:
⟨∆Wκ,∆Wκ′⟩ =

∑
(u,v)∈Ωκ∩Ωκ′

Fκ(u, v) · Fκ′(u, v) (21)

14
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For the expected value, assuming Fκ(u, v) and Fκ′(u, v) are independent with zero mean:

E[Fκ(u, v) · Fκ′(u, v)] = E[Fκ(u, v)] · E[Fκ′(u, v)] = 0 · 0 = 0 (22)

Thus:
E[⟨∆Wκ,∆Wκ′⟩] =

∑
(u,v)∈Ωκ∩Ωκ′

E[Fκ(u, v) · Fκ′(u, v)] = 0 (23)

For the variance, since the coefficients are independent across frequencies:

Var[⟨∆Wκ,∆Wκ′⟩] = Var

 ∑
(u,v)∈C

Fκ(u, v) · Fκ′(u, v)


=

∑
(u,v)∈C

Var[Fκ(u, v) · Fκ′(u, v)]

(24)

For independent random variables with variance σ2:

Var[Fκ(u, v) ·Fκ′(u, v)] = E[(Fκ(u, v) ·Fκ′(u, v))2] = E[Fκ(u, v)
2] ·E[Fκ′(u, v)2] = σ2 ·σ2 = σ4

(25)

Therefore:

Var[⟨∆Wκ,∆Wκ′⟩] = E[|C|] · σ4 =
|Ωκ||Ωκ′ |

d2
· σ4 (26)

where we used the result from Theorem 4.1 that E[|C|] = |Ωκ||Ωκ′ |
d2 .
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B EXPERIMENT

B.1 DETAILS

We trained our model with two NVIDIA A100 GPUs (each with 39 GB of memory). Training took
approximately 1.5 hours, while testing required about 2 hours. We reproduced all baselines because
they are adopted other datasets and models.

Metic: BLEU (Bilingual Evaluation Understudy): This metric compares the machine-generated
text to one or several reference texts by checking how many n-grams (word sequences) they share.
METEOR (Metric for Evaluation of Translation with Explicit ORdering): Matches words
from the generated output to the reference text and calculates a score that combines precision and
recall, taking synonyms and word stems into account. ROUGE-L (Recall-Oriented Understudy
for Gisting Evaluation): Measures the longest common subsequence between the generated and
reference summaries, which is useful for evaluating paraphrased or rephrased text.

B.2 DETAILS OF DATASETS

Dolly-15K dataset(Conover et al., 2023) An open-source collection of 15,000 text samples generated
by Databricks employees. It covers brainstorming, classification, closed-QA, generation, information
extraction, open-QA, and summarization. Data are partitioned by category, and we randomly sample
1,000 for a concise yet comprehensive evaluation.
For example:

• Instruction: When did Virgin Australia start operating?

• Context: ......

• Response:......

• Category:closed_qa

GSM8K (Grade School Math 8K)(Cobbe et al., 2021) A set of 8,500 high-quality, linguistically
diverse grade-school math word problems designed for multi-step reasoning. Partitioned by problem
topic.
For example:

• Question:......

• Answer:......

• Category:Data interpretation

Rosetta Code(Rosset et al., 2024) A programming chrestomathy site presenting solutions to the
same task in many languages to highlight similarities and differences. Partitioned by programming
language.

• Task description:......

• Code:......

• Category:Data interpretation

MMLU and MMLU-Pro test set(Hendrycks et al., 2021) MMLU contains 14,024 multiple-choice
questions across 57 subjects to evaluate LLM reasoning and MMLU-Pro. We randomly sample 1,000
for a concise yet comprehensive evaluation. We adopt a one-shot setting(Just given one example) on
MMLU and a five-shots on MMLU-Pro.

HumanEval test set(Chen et al., 2021) Released by OpenAI, comprises 164 programming problems
with function signatures, docstrings, templates, and unit tests. Handcrafted to avoid overlap with
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training data.

C LIMITATION

Our experiments focus on NLP tasks (QA, code, math reasoning) and two 7 B-parameter models.
The effectiveness of FedDCT on larger models (e.g. 100B+), other modalities (e.g. vision or
multimodal transformers), or different fine-tuning objectives remains to be validated. Because of
limited computation resources, we cannot test on the larger model.
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