

000 FEDDCT: TOWARDS INTERFERENCE-FREE ONE-SHOT 001 FEDERATED LEARNING VIA FREQUENCY DOMAIN AG- 002 GREGATION 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 The widespread adoption of Large Language Models (LLMs) has introduced a sig-
014 nificant challenge for federated learning (FL): their massive parameter counts make
015 the traditional multi-round FL approach prohibitively expensive due to high com-
016 munication costs. One-shot federated learning (OFL) has emerged as a promising
017 solution by limiting communication to a single round. However, Unlike standard
018 FL, which can mitigate the effects of non-IID data over multiple communication
019 rounds, OFL must simultaneously address "amplified spatial heterogeneity" and
020 "parameter space collisions" in a single update. The lack of iterative communica-
021 tion means there's no opportunity to progressively resolve these conflicts, leading
022 to parameter interference that can severely degrade the global model's performance.
023 To address this, we propose the one-shot Federated Frequency Separated aggrega-
024 tion (FedDCT) method. This novel framework for LLMs uses the discrete cosine
025 transform (DCT) to construct orthogonal parameter spaces. This allows clients to
026 operate independently with minimal collisions, facilitating effective model adapta-
027 tion without the need for iterative communication, even with heterogeneous data.
028 Through extensive experiments, we demonstrate that FedDCT outperforms existing
029 one-shot methods while maintaining comparable communication efficiency to
030 non-federated approaches.¹

031 1 INTRODUCTION

033 Large Language Models (LLMs) have revolutionized natural language processing (NLP), demon-
034 strating remarkable capabilities across a diverse range of tasks (Brown et al., 2020; Chowdhery et al.,
035 2022; Touvron et al., 2023a). However, the current centralized training paradigm raises significant
036 privacy concerns, especially when dealing with sensitive data such as personal conversations, medical
037 records and proprietary business information (Bommasani et al., 2021; Carlini et al., 2021). Feder-
038 ated Learning (FL) offers a promising alternative by enabling collaborative model training without
039 exposing private data (Kairouz et al., 2021; Yang et al., 2020; Ren et al., 2025; Fan et al., 2025).
040 In typical FL settings, clients train models locally and periodically exchange model updates with a
041 server, which aggregates these updates to improve a global model.

042 Despite its privacy benefits, traditional FL faces a critical challenge when applied to training LLMs:
043 the immense communication overhead. With modern LLMs containing hundreds of billions of
044 parameters (Brown et al., 2020; Chowdhery et al., 2022), each communication round requires
045 transferring enormous amounts of data—potentially hundreds of gigabytes per client. This becomes
046 especially problematic in bandwidth-constrained environments, where network capacity might be
047 limited to just 1-10 MB/s (Yang et al., 2020; Ren et al., 2025; Tang et al., 2023). For instance,
048 transmitting the full parameter set of a 175B-parameter model (approximately 700GB) would require
049 nearly 20 hours at 10 MB/s for each round, making multi-round FL training impractical.

050 One-shot federated learning (OFL) has emerged as a potential solution by limiting communication to
051 a single round (Guha et al., 2019; Zhang et al., 2022; Li et al., 2021). In this paradigm, clients train
052 models locally and communicate with the server only once, drastically reducing the communication
053 burden.

¹Code is available at on <https://anonymous.4open.science/r/FEDFFT-555F>.

054 However, The fundamental challenge of one-shot federated learning lies in its inability to leverage
 055 iterative refinement to resolve client heterogeneity conflicts, forcing all reconciliation to occur within
 056 a single aggregation step (Zhou et al., 2020; Zhang et al., 2022). Unlike standard FL, which can
 057 gradually mitigate the effects of non-IID data distributions across multiple communication rounds,
 058 one-shot FL must simultaneously address amplified spatial heterogeneity and parameter space colli-
 059 sions in a single update. This constraint is particularly problematic when client data distributions vary
 060 significantly, as the local updates from different clients not only reflect conflicting data characteristics
 061 but also compete for overlapping regions in the parameter space during aggregation. The absence
 062 of iterative communication rounds eliminates the opportunity to detect and resolve these conflicts
 063 progressively, resulting in parameter interference that can severely distort the global model’s ability
 064 to generalize across diverse client distributions and downstream tasks, thus raising an important
 065 question:
 066

How to effectively resolve the severe parameter interference in single round in Federated Learning?

068 In this paper, we introduce FedDCT, a novel one-shot federated learning framework for LLMs that
 069 effectively addresses the challenges of heterogeneity and parameter interference. FedDCT leverages
 070 the natural orthogonality properties of the 2D Discrete Cosine Transform (DCT) with sparse frequency
 071 sampling to enable flexible control over client update orthogonality. By supporting both sampling
 072 without replacement (strict orthogonality) and sampling with replacement (statistical orthogonality),
 073 our approach uniquely enables truly independent client operation—each client can select frequency
 074 components without any knowledge of others’ choices or coordination with the server. This maintain
 075 minimal interference through the DCT’s quadratic expansion of the parameter space from $d \times d$ to
 076 d^2 frequencies, reducing the expected collision proportion from $\mathcal{O}(|\Omega|^2/d)$ in traditional methods
 077 to $\mathcal{O}(|\Omega|^2/d^2)$. Through theoretical analysis and extensive experimentation, we demonstrate the
 078 effectiveness of our approach for OFL of LLMs across diverse language understanding tasks. Our
 079 main contributions are as follows:
 080

- 081 • We propose a novel frequency-based aggregation method that exploits the 2D DCT’s quadratic
 082 parameter space expansion to achieve minimal collision rates while preserving federated learning’s
 083 privacy principles. Critically, our sampling with replacement strategy allows clients to operate
 084 independently without coordination, accommodating heterogeneous devices and data distributions.
- 085 • We formalize the parameter space collision problem in one-shot federated learning and provide a
 086 theoretical framework distinguishing between strict orthogonality (requiring coordination) and
 087 statistical orthogonality (enabling independence), showing DCT-based aggregation achieves both.
- 088 • We empirically validate our approach on benchmark NLP tasks, demonstrating significant improve-
 089 ments over existing one-shot FL methods, while requiring only a fraction of the communication
 090 cost compared to traditional federated learning in multi-round settings.

091 2 RELATED WORK

094 Approaches for mitigating FL communication overhead can be broadly divided into two main
 095 categories: 1) Parameter-Efficient Fine-Tuning (PEFT) for language models, which reduces trainable
 096 parameters, and 2) OFL, which limits communication to a single round.

097 **PEFT:** The massive size of LLMs has driven substantial research in PEFT methods, which adapt
 098 pre-trained models by updating only a small subset of parameters. Low-Rank Adaptation (LoRA)
 099 (Hu et al., 2021) decomposes weight updates into low-rank matrices, reducing the number of trainable
 100 parameters from $\mathcal{O}(d^2)$ to $\mathcal{O}(rd)$, where $r \ll d$ is the chosen rank. Adapter-based approaches
 101 (Houlsby et al., 2019; Pfeiffer et al., 2020; Chen et al., 2022) insert trainable modules within
 102 transformer architectures while keeping pre-trained weights frozen. Prefix tuning (Li & Liang, 2021)
 103 and prompt tuning (Lester et al., 2021) prepend trainable vectors to the input or intermediate layers.
 104 These approaches have demonstrated effectiveness, often matching full fine-tuning performance
 105 while updating less than 1% of the parameters.

106 While these methods reduce the computational and memory requirements for adaptation, they were
 107 primarily designed for centralized learning settings. When applied to FL, they still face significant
 challenges related to communication efficiency and data heterogeneity. Recent work (Zhang et al.,

108 2023a;b) has begun exploring PEFT methods in multi-round FL. However, their application in the
 109 one-shot setting remains largely unexplored, particularly for LLMs.
 110

111 **OFL:** OFL methods limit communication to a single round to minimize bandwidth requirements.
 112 Guha et al. (Guha et al., 2019) introduced this concept with two approaches: 1) selectively ensembling
 113 client models, and 2) distilling client knowledge using a public dataset. Follow-up works have
 114 expanded on these ideas, but continue to face limitations. Data-dependent approaches (Guha et al.,
 115 2019; Li et al., 2021) require auxiliary public datasets, which might be unavailable or inadequate
 116 for specialized domains. Synthetic data generation methods (Zhou et al., 2020; Zhang et al., 2022)
 117 use GANs or other generative models, but struggle with complex data distributions. Parameter
 118 aggregation approaches (Wang et al., 2020; Yurochkin et al., 2019) directly combine client model
 119 weights, but typically perform poorly under heterogeneous data distributions. Zhou et al. (Zhou et al.,
 120 2020) explored dataset distillation for one-shot FL, but found performance degrading under moderate
 121 to high data heterogeneity. Recently, Jhunjhunwala et al. (Jhunjhunwala et al., 2023) provided
 122 theoretical analysis for one-shot averaging with over-parameterized networks, but did not address
 123 the challenges of heterogeneous data. The fundamental limitation of existing OFL approaches is
 124 their inability to combine client knowledge without interference, especially as the number of clients
 125 increases. This challenge becomes more acute with LLMs, where the parameter space is vast but still
 126 finite relative to the number of potential clients and the complexity of language data distributions.
 127

3 PRELIMINARIES

3.1 ONE-SHOT FEDERATED LEARNING FOR PEFT

130 **Parameter Efficient Federated Learning for LLMs.** Given κ FL clients $\{\mathcal{C}_\kappa\}_{\kappa=1}^K$ and a global
 131 FL server \mathcal{S} , client \mathcal{C}_κ train on the local dataset $(\mathcal{X}_\kappa, \mathcal{Y}_\kappa)$ via optimizing $\operatorname{argmin}_{\Delta \mathbf{W}_\kappa} \mathcal{L}(\mathbf{W} + \Delta \mathbf{W}_\kappa; \mathcal{X}_\kappa, \mathcal{Y}_\kappa)$ where \mathbf{W} is the parameters of the base model and $\Delta \mathbf{W}_\kappa$ is the local update. The
 132 server aggregates all uploaded parameter updates through weighted averaging:
 133

$$134 \quad \Delta \bar{\mathbf{W}} = \sum_{\kappa=1}^K \gamma_\kappa \Delta \mathbf{W}_\kappa, \text{ where } \gamma_\kappa = \frac{|\mathcal{X}_\kappa|}{\sum_{\kappa=1}^K |\mathcal{X}_\kappa|}, \quad (1)$$

138 and update the global model in each communication round t as:

$$139 \quad \mathbf{W}^t = \mathbf{W}^{t-1} + \Delta \bar{\mathbf{W}}. \quad (2)$$

140 **One-Shot Federated Learning for PEFT.** Traditional FL requires multiple communication rounds
 141 ($t \gg 1$) to achieve good performance, which becomes prohibitively expensive for large models.
 142 One-shot FL addresses this by limiting the process to a single communication round. In this setting,
 143 clients train locally on their datasets and communicate with the server exactly once. Instead, the
 144 global model is updated just once ($t = 1$):

$$145 \quad \mathbf{W}^1 = \mathbf{W}^0 + \Delta \bar{\mathbf{W}} \quad (3)$$

3.2 THE AGGREGATION METHODS

149 **Parameter Efficient Aggregation for One-Shot Federated Learning.** To reduce communication
 150 cost, recent works (Hu et al., 2021) decompose parameter updates $\Delta \mathbf{W}$ via low-rank adaptation¹:

$$152 \quad \Delta \bar{\mathbf{W}} = \sum_{\kappa=1}^K \Delta \mathbf{W}_\kappa, \quad \Delta \mathbf{W}_\kappa = \mathbf{A}_\kappa \mathbf{B}_\kappa, \quad (4)$$

155 where $\mathbf{A}_\kappa \in \mathbb{R}^{d \times r}$, $\mathbf{B}_\kappa \in \mathbb{R}^{r \times k}$, and $r \ll \min\{d, k\}$. This reduces communication cost from $\mathcal{O}(dk)$ to
 156 $\mathcal{O}(r(d+k))$. Existing aggregation strategies for LoRA, however, face fundamental limitations:

- 157 • **FedAvg:** FedIT (Zhang et al., 2024) proposes averaging local LoRA modules via FedAvg to reduce
 158 resource requirements during training $\Delta \bar{\mathbf{W}}_{\text{avg}} = \bar{\mathbf{A}} \bar{\mathbf{B}}$, where $\bar{\mathbf{A}} = \sum_{\kappa=1}^K \mathbf{A}_\kappa$, $\bar{\mathbf{B}} = \sum_{\kappa=1}^K \mathbf{B}_\kappa$.
 159 However, this introduces undesirable cross-terms $\mathbf{A}_i \mathbf{B}_j$ ($i \neq j$), leading to parameter interference
 160 that distorts client-specific knowledge—especially under heterogeneous data distributions.

161 ¹We omit the γ_κ^t for simplicity.

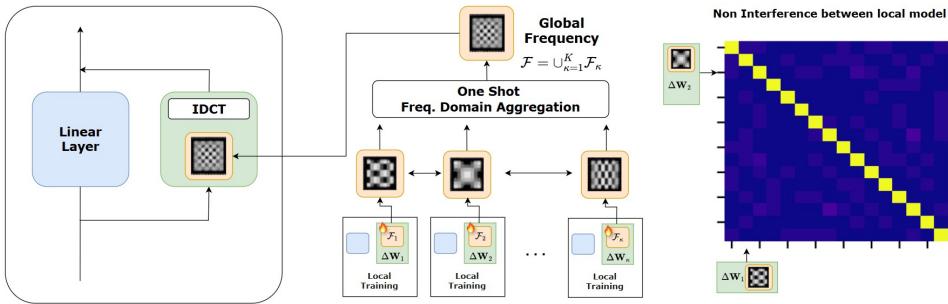


Figure 1: FedDCT partitions client updates into orthogonal subspaces via 2D Discrete Cosine Transform (DCT). The diagram illustrates how individual client updates are transformed into the frequency domain, where they operate on distinct subsets of frequency components. These frequency-separated updates are then aggregated by the server and reconstructed back into the parameter space using the Inverse Discrete Cosine Transform (IDCT) to form the final global model update. The right-hand side of the figure visually demonstrates the non-interference between local models in this frequency-based approach.

- **FedStack:** FLoRA (Wang et al., 2024b) proposes stacking separately averaged LoRA modules to construct the global model, thereby preserving client-specific updates. $\bar{\mathbf{A}} = [\mathbf{A}_1, \dots, \mathbf{A}_K]$, $\bar{\mathbf{B}} = [\mathbf{B}_1, \dots, \mathbf{B}_K]$. While this prevents cross-terms mathematically, it still causes functional interference when columns of different \mathbf{A}_κ matrices learn similar features, creating redundancy and competition during inference as they operate on overlapping regions of the parameter space.

To address the fundamental shortcomings of existing aggregation methods, we introduce a novel parameter efficient aggregation strategy specifically designed for one-shot federated learning.

4 THE PROPOSED FedDCT METHOD

Our key insight is to eliminate parameter interference by operating in the frequency domain, where we can naturally assign orthogonal frequency components to different clients. Specifically, we design to decompose the global model update as:

$$\Delta \mathbf{W} = \sum_{\kappa=1}^K \Delta \mathbf{W}_\kappa = \sum_{\kappa=1}^K \text{iDCT}(\mathcal{F}_\kappa) \quad (5)$$

where $\text{iDCT}(\cdot)$ denote inverse transformation of 2D DCT and each client κ operates exclusively on a distinct subset of frequency components $\mathcal{F}_\kappa = \{F(u, v) | (u, v) \in \Omega_\kappa\}$ with coordinates $\Omega_\kappa \in \Omega$ from the complete 2D DCT frequency domain $\Omega = \{(u, v) | u, v \in \{0, \dots, d-1\}\}$.

For a parameter matrix $\Delta \mathbf{W} \in \mathbb{R}^{d \times d}$, the (m, n) -th value of $\Delta \mathbf{W}$ is reconstructed as

$$\Delta \mathbf{W}_\kappa(m, n) = \sum_{F(u, v) \in \mathcal{F}_\kappa} \alpha_u \alpha_v F(u, v) \cdot \text{iDCT}_{u, v}. \quad (6)$$

where $\text{iDCT}_{u, v} = \alpha_u \alpha_v \cos\left(\frac{\pi(2m+1)u}{2d}\right) \cos\left(\frac{\pi(2n+1)v}{2d}\right)$ represents the 2D iDCT basis function. $\alpha_u = \sqrt{\frac{1}{d}}$ if $u = 0$, otherwise $\alpha_u = \sqrt{\frac{2}{d}}$, and similarly for α_v .

The critical innovation of our frequency assignment strategy is that instead of clients competing for overlapping regions in the parameter space, each client is assigned a unique subset of frequency \mathcal{F}_κ . This ensures that local model updates from different clients reside in non-overlapping frequency subspaces, making them inherently interference-free:

$$\langle \Delta \mathbf{W}_\kappa, \Delta \mathbf{W}_{\kappa'} \rangle = 0 \quad (\kappa \neq \kappa'). \quad (7)$$

216 For frequency aggregation, we collect all DCT coefficients: $\mathcal{F} = \{\bar{F}(u, v) | (u, v) \in \bigcup_{\kappa=1}^K \Omega_\kappa\}$.
 217 When multiple clients select the same frequency (u, v) , we average their coefficients:
 218

$$219 \quad \bar{F}(u, v) = \frac{1}{|\{\kappa : (u, v) \in \Omega_\kappa\}|} \sum_{\kappa : (u, v) \in \Omega_\kappa} F_\kappa(u, v). \quad (8)$$

221 The final aggregated update is reconstructed via inverse DCT(iDCT):
 222

$$223 \quad \Delta \bar{W}(m, n) = \sum_{\bar{F}(u, v) \in \mathcal{F}} \bar{F}(u, v) \cdot \text{iDCT}_{u, v}, \quad (9)$$

226 4.1 FREQUENCY ASSIGNMENT AND CLIENT INDEPENDENCE

228 Each client κ randomly samples a subset of frequency coordinates Ω_κ from the complete frequency
 229 domain $\Omega = \{(u, v) | u, v \in \{0, \dots, d-1\}\}$ and learns only the corresponding DCT coefficients
 230 $\mathcal{F}_\kappa = \{F_{(u, v)} | (u, v) \in \Omega_\kappa\}$. We support two assignment strategies
 231

- 232 • **Centralized frequency assignment (strict orthogonality):** Frequency components are allocated
 233 to clients through explicit coordination, either by a central server or through inter-client com-
 234 munication, to ensure strict orthogonality (no overlap between frequency subsets). Clients must
 235 communicate with the server to receive their assigned frequency coordinates before beginning
 236 local training. The server maintains a global registry of which frequencies are assigned to which
 237 clients. When clients sample frequency coordinates without replacement such that $\Omega_\kappa \cap \Omega_{\kappa'} = \emptyset$
 238 for all $\kappa \neq \kappa'$, the DCT's orthogonal basis functions guarantee:
 239

$$\langle \Delta W_\kappa, \Delta W_{\kappa'} \rangle = 0, \quad \forall \kappa \neq \kappa'.$$

- 240 • **Decentralized frequency assignment (statistical orthogonality):** Each client κ autonomously
 241 samples a subset of frequency coordinates Ω_κ from the complete frequency domain Ω using
 242 sampling with replacement. No communication required between clients or with the server
 243 beyond the final model update, and clients operate with zero knowledge of other clients' frequency
 244 selections while still achieving effective interference reduction through statistical orthogonality:
 245

$$246 \quad \mathbb{E}[\langle \Delta W_\kappa, \Delta W_{\kappa'} \rangle] = 0, \quad \text{Var}[\langle \Delta W_\kappa, \Delta W_{\kappa'} \rangle] = \frac{|\Omega|^2}{d^2} \cdot \sigma^4 \quad (\text{Theorem 4.2}).$$

248 Both frequency assignment are feasible for FedDCT, however, centralized frequency assignment
 249 fundamentally violates the core principles of one-shot federated learning by requiring explicit
 250 coordination between the server and clients. It approach creates communication overhead beyond
 251 the single-round constraint, as clients must either receive frequency assignments from the server or
 252 negotiate frequency allocation among themselves, contradicting the fundamental goal of minimizing
 253 communication in one-shot federated learning. Moreover, centralized assignment suffers from poor
 254 scalability and robustness—it cannot handle dynamic client participation where clients may join or
 255 leave unexpectedly, requires the server to maintain global state about all participating clients, and
 256 introduces a single point of failure where coordination failures can compromise the entire federated
 257 learning process. The comparison of these assignment are detail in Sec. 5.2.

258 4.2 THEORETICAL ANALYSIS

260 We now provide theoretical guarantees of decentralized frequency assignment for FedDCT in one-
 261 shot federated learning.

262 **Theorem 4.1** (Collision Probability under Sampling with Replacement). *For clients κ and κ' , let Ω_κ
 263 and $\Omega_{\kappa'}$ be independently sampled frequency sets with replacement, each containing $|\Omega_\kappa|$ and $|\Omega_{\kappa'}|$
 264 components from a total of d^2 frequency components. The expected collision proportion is:*

$$265 \quad \mathbb{E} \left[\frac{|\Omega_\kappa \cap \Omega_{\kappa'}|}{|\Omega_\kappa|} \right] = \frac{|\Omega_{\kappa'}|}{d^2}. \quad (10)$$

268 This theorem shows that even with replacement, the collision probability remains small for typical
 269 parameter settings. For example, with $d = 1024$ and $|\Omega_{\kappa'}| = 1000$, the expected collision proportion
 270 is only $\frac{1000}{1024^2} \approx 0.095\%$, meaning less than 0.1% of frequency components collide on average.

270 **Algorithm 1:** Federated One-Shot Learning via Frequency Separated Aggregation

271

272 **Require:** Each client \mathcal{D} datasets $\mathcal{D}_{\kappa \in K}$, pretrained model weights \mathbf{W} , number of frequency

273 components N .

274 **Ensure:** Global model \mathbf{W}

275 1: **for all** client $\kappa = 1$ to K **in parallel do**

276 2: Random sample N frequency coordinate: $\Omega_\kappa = \{(\mu_n, v_n)\}_{n=1}^N$ \triangleright Spectrum assignment

277 3: Initialize trainable DCT coefficient: $\mathcal{F}_\kappa = \{F(u, v) | (u, v) \in \Omega_\kappa\}$

278 4: **for each** batch training **do**

279 5: Compute $\Delta\mathbf{W}_\kappa \leftarrow \text{iDCT}(\mathcal{F}_\kappa)$ \triangleright DCT inverse

280 6: Compute loss $\mathcal{L}(\mathbf{W} + \Delta\mathbf{W}_\kappa)$ and Update \mathcal{F}_κ

281 7: **end for**

282 8: **end for**

283 9: Mix the Frequency: $\mathcal{F} = \bigcup_{\kappa=1}^K \mathcal{F}_\kappa$ \triangleright Frequency domain aggregation

284 10: Server aggregates: $\Delta\bar{\mathbf{W}} \leftarrow \text{iDCT}(\mathcal{F}_{\text{MixF}})$ \triangleright Recover the global model

11: **Return** updated model $\mathbf{W} + \Delta\bar{\mathbf{W}}$

Theorem 4.2 (Interference Bound with Partial Collisions). *For clients κ and κ' with DCT coefficient sets \mathcal{F}_κ and $\mathcal{F}_{\kappa'}$, let $\mathcal{C} = \Omega_\kappa \cap \Omega_{\kappa'}$ be the collision set. Due to the orthogonality of DCT basis functions, the interference between client updates is:*

$$\langle \Delta \mathbf{W}_\kappa, \Delta \mathbf{W}_{\kappa'} \rangle = \sum_{(u,v) \in \mathcal{C}} F_\kappa(u,v) \cdot F_{\kappa'}(u,v), \quad (11)$$

where $F_\kappa(u, v)$ and $F_{\kappa'}(u, v)$ are the DCT coefficients at frequency (u, v) .

Assuming the DCT coefficients are independently distributed with zero mean and variance σ^2 , the expected interference is: $\mathbb{E}[\langle \Delta W_k, \Delta W_{k'} \rangle] = 0$, and the variance of interference is:

$$Var[\langle \Delta \mathbf{W}_\kappa, \Delta \mathbf{W}_{\kappa'} \rangle] = \mathbb{E}[|\mathcal{C}|] \cdot \sigma^4 = \frac{|\Omega_\kappa||\Omega_{\kappa'}|}{d^2} \cdot \sigma^4. \quad (12)$$

This theorem demonstrates that interference only occurs at colliding frequencies, and its magnitude depends on the DCT coefficients at those frequencies. The expected interference is zero due to the orthogonality of DCT basis functions, while the variance of interference scales as $\mathcal{O}(|\Omega|^2/d^2)$, which is significantly better than $\mathcal{O}(|\Omega|^2/d)$ in traditional parameter-efficient methods that operate directly in the parameter space. The quadratic denominator d^2 (from the 2D DCT's expanded frequency domain) ensures that interference variance remains negligible even with large frequency sets, as typical collision rates are less than 0.1% for practical parameter settings.

5 EXPERIMENT

Datasets and Partitioning. To evaluate the effectiveness of FedDCT method, we conduct extensive experiments across diverse language understanding and generation tasks. We use three widely-adopted datasets in LLM research: Dolly-15K (Conover et al., 2023) for the question-answering (QA) task, the Rosetta dataset (Rosset et al., 2024) for code generation, and GSM-8K (Cobbe et al., 2021) for mathematical reasoning. We evaluate the federated fine-tuned models on MMLU (Hendrycks et al., 2021) and MMLU-Pro (Wang et al., 2024a) for the QA task, HumanEval (Chen et al., 2021) test set for Code generation task and GSM-8K for mathematical reasoning task, respectively. For Dolly-15K, we report accuracy, BLEU, METEOR, and ROUGE-L scores with detailed analysis. For Rosetta, we report Pass@1 and Pass@10 metrics. For GSM-8K, we report accuracy. To mimic realistic heterogeneity, the clients’ dataset is partitioned via a Dirichlet distribution (Hsu et al., 2019) with concentration parameter α ; smaller values of α produce more skewed (i.e. heterogeneous) client splits. In our primary experiments, we set $\alpha = 0.001$ to emulate strong non-IIDness, and we additionally evaluate $\alpha \in \{0.001, 0.01, 0.05\}$ to study the impact of varying heterogeneity levels.

Models and Training. We conduct experiments with two foundation models: LLaMA-2-7B (Touvron et al., 2023b) and Owen2.5-7B-Instruct (Team, 2024). All experiments use a consistent setup with

324
 325 Table 1: Comparison of FedDCT with baseline federated learning methods across LLaMA2-7B
 326 and Qwen2.5-7B models. The results demonstrate FedDCT superior performance while requiring
 327 significantly lower parameter uploads (0.36M) compared to other methods (2.1–5.1M).

Model	Method	Upload Param	MMLU	MMLU-Pro			HumanEvalX		GSM-8K	
				Acc.	BLEU	METEOR	ROUGE-L	Pass@1		
	Centralised FL	0	38.9 \pm 0.1	17.6 \pm 0.1	20.9 \pm 0.3	28.9 \pm 0.3	28.9 \pm 0.4	11.6 \pm 0.1	28.5 \pm 0.3	17.2 \pm 0.5
One-Shot Methods										
LLaMA2-7B	FLoRA (1-shot)	2.5M	24.6 \pm 0.1	10.2 \pm 0.4	03.2 \pm 0.4	05.8 \pm 0.6	01.5 \pm 0.3	02.7 \pm 0.2	06.1 \pm 0.9	14.6 \pm 0.9
	DENSE	5.1M	26.3 \pm 0.2	08.2 \pm 0.2	00.1 \pm 0.01	00.2 \pm 0.01	00.1 \pm 0.01	04.4 \pm 0.1	07.1 \pm 0.6	11.3 \pm 0.4
	CO-Boosting	5.1M	32.8 \pm 0.4	09.5 \pm 0.5	01.0 \pm 0.4	0.7 \pm 0.5	01.8 \pm 0.3	03.2 \pm 0.9	07.3 \pm 0.1	12.1 \pm 0.6
	FuseFL	2.5M	34.8 \pm 0.2	13.6 \pm 0.2	11.1 \pm 0.3	11.9 \pm 0.2	19.5 \pm 0.4	11.5 \pm 0.4	16.6 \pm 0.7	15.0 \pm 0.3
	FedDCT	0.36M	35.6\pm0.2	14.0\pm0.7	13.0\pm0.1	11.7\pm0.2	18.2\pm0.2	11.9\pm0.3	23.1\pm0.4	16.2\pm0.4
	Centralised FL	0	69.2 \pm 0.3	44.3 \pm 0.3	19.4 \pm 0.9	29.5 \pm 0.9	20.0 \pm 0.7	79.8 \pm 0.8	86.6 \pm 0.2	77.8 \pm 0.1
	FLoRA (30-shots)	2.5M	67.1 \pm 0.4	39.6 \pm 0.2	17.7 \pm 0.1	26.3 \pm 0.4	13.3 \pm 0.7	78.2 \pm 0.3	79.9 \pm 0.2	77.1 \pm 0.7
One-Shot Methods										
Qwen2.5-7B	FLoRA (1-shot)	2.1M	65.7 \pm 0.3	40.0 \pm 0.3	12.1 \pm 0.4	18.6\pm0.4	13.1 \pm 0.4	72.9 \pm 0.6	84.8\pm0.9	62.6 \pm 0.2
	DENSE	4.2M	32.3 \pm 1.0	19.1 \pm 0.3	01.7 \pm 0.3	04.7 \pm 0.6	06.9 \pm 0.1	53.7 \pm 0.6	61.3 \pm 0.3	52.1 \pm 0.2
	CO-Boosting	4.2M	45.3 \pm 0.8	29.5 \pm 0.4	01.0 \pm 0.4	01.1 \pm 0.1	01.8 \pm 0.2	55.1 \pm 0.3	74.0 \pm 0.7	50.8 \pm 0.4
	FuseFL	2.1M	67.8 \pm 0.4	38.7 \pm 0.6	16.8\pm0.1	14.4 \pm 0.3	16.7 \pm 0.8	78.2 \pm 0.2	82.7 \pm 0.9	68.4 \pm 0.9
	FedDCT	0.36M	68.6\pm0.2	42.3\pm0.6	16.7\pm0.4	13.5\pm0.9	16.7\pm0.3	79.3\pm0.1	82.3\pm0.2	75.4\pm0.3

344 batch size 2 and local training for 2,000 steps per client. We perform hyperparameter tuning for the
 345 learning rate in the range $\{0.001, 0.005, 0.01, 0.05\}$ and report results using the best configuration.
 346 For our FedDCT method, we use the Discrete Cosine Transform (DCT) basis with the number of
 347 trainable parameter $|\Omega| (|\Omega| = 6000)$ per weight matrix. We apply our method to query and value
 348 matrices in the transformer blocks, which comprise approximately 20% of all model parameters.

349 **Baselines.** We compare FedDCT against the following baseline methods: **Centralised FL**: Centralized
 350 fine-tuning on the aggregated dataset (upper-bound reference). **FLoRA(30-shots)** (Wang
 351 et al., 2024b): Standard FedAvg aggregation for federated instruction-tuning of large language
 352 models in IID setting. **FLoRA(1-shot)**: Standard one-shot federated learning (FL) for federated
 353 instruction-tuning of large language models in Non-IID setting. **DENSE** (Zhang et al., 2022): A
 354 data-free one-shot federated learning method that alternates between synthetic data generation and
 355 model distillation to train the global model. **CO-Boosting** (Dai et al., 2024): A one-shot FL scheme in
 356 which synthesized data and an ensemble of client models progressively enhance each other. **FuseFL**
 357 (Tang et al., 2024): A one-shot federated learning approach based on model fusion, combining client
 358 updates into a single global model. For all experiments, we set the default number of clients to
 359 $M = 5$ and vary from 2 to 9 in specific scalability experiments.

360 5.1 MAIN RESULTS.

363 Table 1² presents the performance of FedDCT compared to baselines across different datasets and
 364 models. Our method outperforms all one-shot federated learning baselines while achieving results
 365 competitive with multi-round methods using significantly less communication. FedDCT consistently
 366 outperforms most one-shot FL baselines across both models and all datasets, approaching centralised
 367 performance in many cases. DENSE and CO-Boosting show lower performance, particularly for
 368 complex generation tasks, likely due to the inherent limitations of synthetic data generation. Our
 369 method demonstrates particularly strong performance on the Rosetta code generation task, where
 370 maintaining semantic coherence is critical. The gap between FedDCT and Centralised FL is smaller
 371 for the more capable Qwen2.5-7B model, suggesting that more powerful foundation models can
 372 better leverage our approach. When tested on LLaMA-2-7B and Qwen2.5-7B, FedDCT achieved
 373 scores approaching centralized training while requiring only 0.36M parameter uploads per client
 374 compared to 2.1–5.1M for these baseline methods—a 5.8–14.2 \times reduction in communication overhead.
 375 These findings validate the theoretical claim that FedDCT prevents parameter space collisions
 376 through its frequency-separated approach, enabling efficient model adaptation without the iterative
 377 communication in FLoRA or the synthetic data limitations in DENSE and CO-Boosting.

378 ²The best results for each dataset are shown in bold.

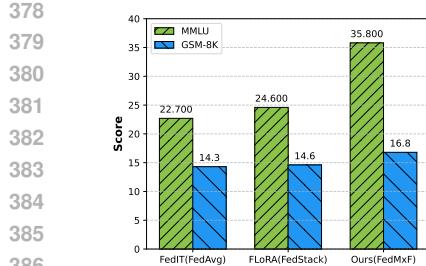


Figure 2: Comparison of different aggregation methods for one-shot federated learning

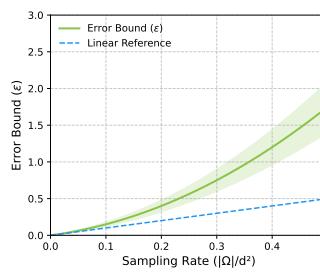


Figure 3: Collision error bound under sampling with replacement

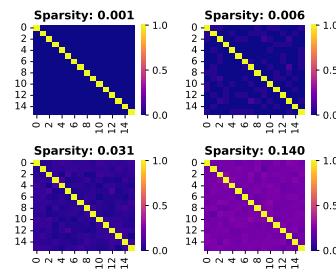


Figure 4: Visualization of collision patterns at different sparsity levels

5.2 ANALYSIS

Analysis on Heterogeneity. A key challenge in one-shot federated learning is handling non-IID data distributions across clients. Table 2 presents the performance of different methods under varying degrees of data heterogeneity with the Dirichlet concentration parameter α . The experiment demonstrates FedDCT’s remarkable robustness to Non-IID data distributions. When testing on the MMLU benchmark with Qwen2.5-7B, FedDCT achieves 68.6% accuracy under extreme heterogeneity ($\alpha = 0.001$), maintaining performance within 5% of centralized training (69.2%), while competing methods show significant degradation (DENSE: 32.3%, Co-Boosting: 45.3%), confirming that the orthogonal nature of our frequency domain transformation effectively creates separated parameter spaces, allowing clients to optimize for local data distributions without negatively impacting others during aggregation, addressing the challenge of amplified spatial heterogeneity.

Number of Clients. Table 3 demonstrate FedDCT’s scalability as the number of clients increases in federated learning scenarios. When tested on the Dolly-15k dataset with Qwen2.5-7B, FedDCT maintains consistent performance across different client configurations, showing only a 0.9% drop in accuracy (from 69.1% to 68.2%) when scaling from 2 to 9 clients. This stability stands in stark contrast to FLoRA(1-shot), which experiences a significant 1.9% degradation (from 68.8% to 66.9%) under identical scaling conditions. Furthermore, FedDCT achieves this superior performance while requiring substantially lower communication costs - only 0.695MB for 5 clients compared to FLoRA’s 48.13MB, representing a significant reduction in bandwidth requirements. The effectiveness of FedDCT persists in both heterogeneous and homogeneous data distribution settings, making it particularly suitable for real-world federated learning deployments.

Centralized vs. Decentralized method The results in Table 4 show that both approaches achieve similar high performance, with the decentralized method’s average accuracy on the MMLU, MMLU-Pro, and GSM-8K datasets being 66.25%, 36.95%, and 71.75%, respectively, which is nearly identical to the centralized method’s average scores of 66.20%, 37.85%, and 71.70%. This demonstrates that the statistical orthogonality provided by the decentralized approach is as effective as the strict orthogonality of the centralized approach. The decentralized method is more practical for real-world one-shot FL because it avoids the communication overhead, scalability issues, and single-point-of-failure risks associated with centralized coordination.

Table 2: Performance under different levels of data heterogeneity (MMLU test set with Qwen2.5-7B)

Method	$\alpha = 0.001$	$\alpha = 0.01$	$\alpha = 0.05$
Centralised FL	69.2 ± 0.3	69.2 ± 0.2	69.2 ± 0.2
DENSE	32.3 ± 1.0	37.6 ± 0.9	38.8 ± 0.5
Co-Boosting	45.3 ± 0.8	45.2 ± 0.4	54.2 ± 0.8
FuseFL	67.8 ± 0.4	67.5 ± 0.3	67.7 ± 0.4
FedDCT	68.6 ± 0.2	69.5 ± 0.4	68.4 ± 0.3

Table 3: Performance vs. Number of Clients on Dolly-15k with Qwen2.5-7B

Method	Clients	Hetero	Homo	Comm. Cost (MB)
FedDCT ($ \Omega = 1000$)	2	69.1 ± 0.1	70.8 ± 0.2	0.278
	3	69.2 ± 0.4	72.4 ± 0.5	0.417
	4	68.2 ± 0.7	67.1 ± 1.2	0.556
	5	68.4 ± 0.4	69.1 ± 0.4	0.695
	9	68.2 ± 0.4	68.6 ± 0.4	1.250
FLoRA (1-shot)	2	68.8 ± 0.6	68.8 ± 0.7	09.62
	3	70.2 ± 0.2	70.1 ± 0.3	19.24
	4	67.8 ± 0.5	68.2 ± 0.6	28.86
	5	65.7 ± 0.3	68.2 ± 0.9	48.13
	9	66.9 ± 0.4	67.6 ± 0.4	86.63

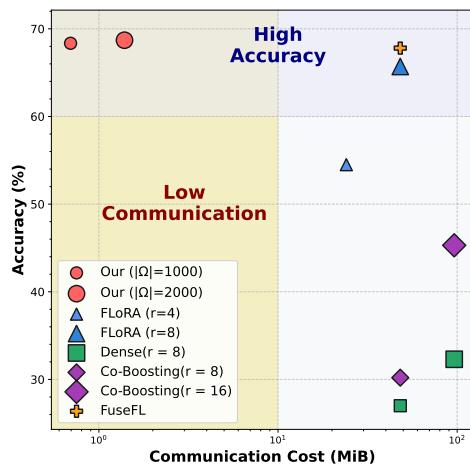


Figure 5: Trade off between communication efficiency between performance in various baselines on Llama2-7B.

Type of aggregation. As shown in Figure 2, we compare the performance of different aggregation methods for one-shot federated learning across two benchmark tasks: MMLU and GSM-8K. The results demonstrate a clear performance advantage for our proposed FedDCT approach over the one-shot version of FedIT(FedAvg) and FLoRA(FedStack), achieving scores of 35.8 on MMLU and 16.8 on GSM-8K. This significant improvement (approximately 57.7% higher than FedIT on MMLU and 15.0% higher than FLoRA on GSM-8K) validates our theoretical claim that frequency-separated aggregation effectively addresses parameter space collisions in one-shot federated learning.

Collision Analysis. Note that sparsity is controlled via the number of frequency components that each client samples from the total frequency domain. As clients sample more frequency components, sparsity increases, allowing for richer representation but potentially increasing the risk of interference between clients. Table 5 presents the relationship between the number of frequency components and model accuracy on the Dolly-15k dataset using the Qwen2.5-7B model. With just 500 frequency components (sparsity 3.90e-5), the model achieves a respectable 66.7% accuracy. Doubling this to 1000 components (sparsity 7.70e-5) yields a significant improvement to 68.7% accuracy, representing the highest performance observed across all configurations. Further increases in frequency components produce minimal benefits or even slight decreases in performance: 1500 components (68.7%), 2000 components (68.6%), 10000 components (68.6%), and 12000 components (68.8%). The table shows that there exists an optimal range for frequency component allocation. Too few components limit expressivity, while too many introduce redundancy and potential overfitting. Figure 4 further visualizes collision patterns at different sparsity levels.

Communication Efficiency Analysis. Figure 5 illustrates the trade-off between communication cost and model performance for different federated learning methods using the LLaMA2-7B model. Results show that FedDCT variants ($|\Omega|=1000$ and $|\Omega|=2000$) occupy the optimal upper-left region, indicating high accuracy with minimal communication requirements. This empirical result directly validates our theoretical analysis that frequency-separated aggregation effectively creates almost-orthogonal parameter spaces, enabling efficient knowledge transfer without the massive communication burden of other one-shot federated learning approaches.

6 CONCLUSION

We identified parameter space interference as a major challenge in one-shot federated learning. We theoretically proved that using orthogonal parameter spaces effectively eliminates this interference. Our proposed FedDCT approach leverages orthogonal transformations in the frequency domain to achieve this naturally, allowing clients to learn in non-overlapping regions without explicit coordination. By sampling frequency components with replacement, we create an almost-orthogonal parameter space, which enables efficient knowledge transfer and perfect global model reconstruction while maintaining parameter efficiency.

Method	Metric	9 Clients	40 Clients	Average
Centralized (Statistical)	MMLU	68.2	64.2	66.20
	MMLU-Pro	41.7	34.0	37.85
	GSM-8K	74.1	69.3	71.70
Decentralized (Strict)	MMLU	68.2	64.3	66.25
	MMLU-Pro	41.1	32.8	36.95
	GSM-8K	74.2	69.3	71.75

Table 4: Performance Comparison of Centralized vs. Decentralized Frequency Assignment.

	$ \Omega $	Sparsity	Acc.
FedDCT	500	3.89e-5	66.7±2.4
	1000	7.79e-5	68.4±0.4
	1500	1.17e-4	68.7±0.2
	2000	1.56e-4	68.6±0.2
	10000	7.79e-4	68.6±0.2
	12000	9.34e-4	68.8±0.3

Table 5: Acc. v.s. $|\Omega|$. on Dolly-15k with Qwen2.5-7B.

486 REFERENCES
487488 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
489 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
490 ties and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.491 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
492 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
493 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
494 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
495 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
496 Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.
497498 Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
499 ine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin
500 Raffel. Extracting training data from large language models. In *30th USENIX Security Sym-
501 posium (USENIX Security 21)*, pp. 2633–2650. USENIX Association, August 2021. ISBN 978-1-
502 939133-24-3. URL <https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting>.
503504 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
505 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
506 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
507 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
508 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
509 Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
510 Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
511 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
512 Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
513 McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
514 large language models trained on code, 2021.
515516 Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
517 Adaptformer: Adapting vision transformers for scalable visual recognition. *arXiv preprint
518 arXiv:2205.13535*, 2022.519 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
520 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
521 Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
522 Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
523 Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
524 skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
525 Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
526 Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
527 Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
528 Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
529 Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
530 Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022. URL
531 <https://arxiv.org/abs/2204.02311>.532 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
533 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
534 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
535 2021.536 Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
537 Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
538 instruction-tuned llm, 2023. URL <https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm>.
539

540 Rong Dai, Yonggang Zhang, Ang Li, Tongliang Liu, Xun Yang, and Bo Han. Enhancing one-
 541 shot federated learning through data and ensemble co-boosting. In *The Twelfth International*
 542 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=tm8s36960x>.

543

544 Tao Fan, Hanlin Gu, et al. Ten challenging problems in federated foundation models. *IEEE*
 545 *Transactions on Knowledge and Data Engineering*, 2025.

546

547 Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. *arXiv preprint*
 548 *arXiv:1902.11175*, 2019.

549

550 Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
 551 Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference on*
 552 *Learning Representations (ICLR)*, 2021.

553 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 554 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 555 NLP. In *Proceedings of the 36th International Conference on Machine Learning*, 2019.

556

557 Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
 558 data distribution for federated visual classification. *CoRR*, abs/1909.06335, 2019. URL <http://arxiv.org/abs/1909.06335>.

559

560 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
 561 et al. Lora: Low-rank adaptation of large language models. In *International Conference on*
 562 *Learning Representations*, 2021.

563

564 Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Towards a theoretical and practical
 565 understanding of one-shot federated learning with fisher information. In *Federated Learning and*
 566 *Analytics in Practice: Algorithms, Systems, Applications, and Opportunities*, 2023.

567

568 Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 569 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
 570 D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
 571 Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
 572 He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
 573 Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
 574 Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
 575 Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song,
 576 Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
 577 Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
 578 and open problems in federated learning, 2021.

579

580 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
 581 prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
 582 tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-*
 583 *guage Processing*, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November
 584 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
 585 <https://aclanthology.org/2021.emnlp-main.243/>.

586

587 Qinbin Li, Bingsheng He, and Dawn Song. Practical one-shot federated learning for cross-silo setting.
 588 In Zhi-Hua Zhou (ed.), *Proceedings of the Thirtieth International Joint Conference on Artificial*
 589 *Intelligence, IJCAI-21*, pp. 1484–1490. International Joint Conferences on Artificial Intelligence
 590 Organization, 8 2021. doi: 10.24963/ijcai.2021/205. URL <https://doi.org/10.24963/ijcai.2021/205>. Main Track.

591

592 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
 593 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th*
 594 *Annual Meeting of the Association for Computational Linguistics and the 11th International Joint*
 595 *Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 4582–4597, Online,
 596 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
 597 URL <https://aclanthology.org/2021.acl-long.353/>.

594 Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
 595 Kyunghyun Cho, and Iryna Gurevych. AdapterHub: A framework for adapting transformers.
 596 In Qun Liu and David Schlangen (eds.), *Proceedings of the 2020 Conference on Empirical
 597 Methods in Natural Language Processing: System Demonstrations*, pp. 46–54, Online, October
 598 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.7. URL
 599 <https://aclanthology.org/2020.emnlp-demos.7/>.

600 Chao Ren, Han Yu, et al. Advances and open challenges in federated foundation models. *IEEE
 601 Communications Surveys and Tutorials*, 2025.

602

603 Corby Rosset, Ho-Lam Chung, Guanghui Qin, Ethan C. Chau, Zhuo Feng, Ahmed Awadallah,
 604 Jennifer Neville, and Nikhil Rao. Researchy questions: A dataset of multi-perspective, decomposi-
 605 tional questions for llm web agents, 2024.

606

607 Zhenheng Tang, Yuxin Wang, Xin He, Longteng Zhang, Xinglin Pan, Qiang Wang, Rongfei Zeng,
 608 Kaiyong Zhao, Shaohuai Shi, Bingsheng He, et al. Fusionai: Decentralized training and deploying
 609 llms with massive consumer-level gpus. *The 32nd International Joint Conference on Artificial
 610 Intelligence, Symposium on Large Language Models (LLM@IJCAI 2023)*, 2023.

611 Zhenheng Tang, Yonggang Zhang, Peijie Dong, Yiu ming Cheung, Amelie Chi Zhou, Bo Han, and
 612 Xiaowen Chu. Fusefl: One-shot federated learning through the lens of causality with progressive
 613 model fusion. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 614 2024. URL <https://openreview.net/forum?id=E7fZOoiEK1>.

615

616 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

617

618 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 619 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
 620 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
 621 models. *arXiv preprint arXiv:2302.13971*, 2023a.

622

623 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 624 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 625 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 626 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 627 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 628 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 629 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 630 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 631 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 632 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 633 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 634 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 635 2023b. URL <https://arxiv.org/abs/2307.09288>.

636

637 Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
 638 erated learning with matched averaging. In *International Conference on Learning Representations*,
 639 2020. URL <https://openreview.net/forum?id=BkluqlSFDS>.

640

641 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 642 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 643 Fan, Xiang Yue, and Wenhui Chen. MMLU-pro: A more robust and challenging multi-task language
 644 understanding benchmark. In *The Thirty-eighth Conference on Neural Information Processing
 645 Systems Datasets and Benchmarks Track*, 2024a. URL <https://openreview.net/forum?id=y10DM6R2r3>.

646

647 Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, and Ang Li.
 648 FLoRA: Federated fine-tuning large language models with heterogeneous low-rank adaptations. In
 649 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b. URL
 650 <https://openreview.net/forum?id=TcCorXxNQJ>.

648 Qiang Yang, Lixin Fan, and Han Yu. *Federated Learning: Privacy and Incentive*. Springer, Cham,
649 2020.

650

651 Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang,
652 and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. *arXiv*
653 *preprint arXiv:1905.12022*, 2019.

654

655 Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Yufan Zhou, Guoyin
656 Wang, and Yiran Chen. Towards building the federated gpt: Federated instruction tuning, 2024.
657 URL <https://arxiv.org/abs/2305.05644>.

658

659 Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang Wu, Shouhong Ding, Chunhua Shen, and Chao
660 Wu. Dense: Data-free one-shot federated learning. *Advances in Neural Information Processing
Systems*, 35, 2022.

661

662 Zhen Zhang, Jialu Wang, and Xin Eric Wang. Parameter-efficient cross-lingual transfer of vision and
663 language models via translation-based alignment. *arXiv preprint arXiv:2305.03510*, 2023a.

664

665 Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin Xu. Fed-
666 PETuning: When federated learning meets the parameter-efficient tuning methods of pre-trained
667 language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of
the Association for Computational Linguistics: ACL 2023*, pp. 9963–9977, Toronto, Canada, July
668 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.632. URL
669 <https://aclanthology.org/2023.findings-acl.632/>.

670

671 Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Wu. Distilled one-shot federated
672 learning. *arXiv preprint arXiv:2009.07999*, 2020.

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**

704 **A.1 THE USE OF LARGE LANGUAGE MODELS**

706 We use LLMs for only polish the writing. No LLMs are used for creating idea, code and other
707 artifacts.

709 **A.2 PROOF OF THEOREM 4.1**

710 *Proof.* Consider two clients κ and κ' independently sampling frequency components with replacement
712 from the total frequency domain of size d^2 .

713 For any specific frequency coordinate (u, v) , the probability that client κ selects it is:

714
$$P((u, v) \in \Omega_\kappa) = \frac{|\Omega_\kappa|}{d^2} \quad (13)$$

717 Similarly, for client κ' :

718
$$P((u, v) \in \Omega_{\kappa'}) = \frac{|\Omega_{\kappa'}|}{d^2} \quad (14)$$

721 Since the clients sample independently, the probability that both select the same frequency (u, v) is:

722
$$P((u, v) \in \Omega_\kappa \cap \Omega_{\kappa'}) = P((u, v) \in \Omega_\kappa) \cdot P((u, v) \in \Omega_{\kappa'}) = \frac{|\Omega_\kappa| |\Omega_{\kappa'}|}{d^4} \quad (15)$$

725 The expected number of collisions is the sum over all possible frequency coordinates:

726
$$\mathbb{E}[|\Omega_\kappa \cap \Omega_{\kappa'}|] = \sum_{u=0}^{d-1} \sum_{v=0}^{d-1} P((u, v) \in \Omega_\kappa \cap \Omega_{\kappa'}) = d^2 \cdot \frac{|\Omega_\kappa| |\Omega_{\kappa'}|}{d^4} = \frac{|\Omega_\kappa| |\Omega_{\kappa'}|}{d^2} \quad (16)$$

730 Therefore, the expected collision proportion is:

731
$$\mathbb{E} \left[\frac{|\Omega_\kappa \cap \Omega_{\kappa'}|}{|\Omega_\kappa|} \right] = \frac{\mathbb{E}[|\Omega_\kappa \cap \Omega_{\kappa'}|]}{|\Omega_\kappa|} = \frac{|\Omega_\kappa| |\Omega_{\kappa'}| / d^2}{|\Omega_\kappa|} = \frac{|\Omega_{\kappa'}|}{d^2} \quad (17)$$

734 \square

735 **A.3 PROOF OF THEOREM 4.2**

737 *Proof.* Given the DCT representation of client updates:

739
$$\Delta \mathbf{W}_\kappa = \sum_{(u,v) \in \Omega_\kappa} F_\kappa(u, v) \cdot \mathbf{iDCT}_{u,v} \quad (18)$$

741 The inner product between two client updates is:

743
$$\begin{aligned} \langle \Delta \mathbf{W}_\kappa, \Delta \mathbf{W}_{\kappa'} \rangle &= \left\langle \sum_{(u,v) \in \Omega_\kappa} F_\kappa(u, v) \cdot \mathbf{iDCT}_{u,v}, \sum_{(u',v') \in \Omega_{\kappa'}} F_{\kappa'}(u', v') \cdot \mathbf{iDCT}_{u',v'} \right\rangle \\ 744 &= \sum_{(u,v) \in \Omega_\kappa} \sum_{(u',v') \in \Omega_{\kappa'}} F_\kappa(u, v) \cdot F_{\kappa'}(u', v') \cdot \langle \mathbf{iDCT}_{u,v}, \mathbf{iDCT}_{u',v'} \rangle \end{aligned} \quad (19)$$

749 Due to the orthogonality of DCT basis functions:

751
$$\langle \mathbf{iDCT}_{u,v}, \mathbf{iDCT}_{u',v'} \rangle = \begin{cases} 1 & \text{if } (u, v) = (u', v') \\ 0 & \text{otherwise} \end{cases} \quad (20)$$

754 Therefore:

755
$$\langle \Delta \mathbf{W}_\kappa, \Delta \mathbf{W}_{\kappa'} \rangle = \sum_{(u,v) \in \Omega_\kappa \cap \Omega_{\kappa'}} F_\kappa(u, v) \cdot F_{\kappa'}(u, v) \quad (21)$$

756 For the expected value, assuming $F_\kappa(u, v)$ and $F_{\kappa'}(u, v)$ are independent with zero mean:
 757

$$758 \mathbb{E}[F_\kappa(u, v) \cdot F_{\kappa'}(u, v)] = \mathbb{E}[F_\kappa(u, v)] \cdot \mathbb{E}[F_{\kappa'}(u, v)] = 0 \cdot 0 = 0 \quad (22)$$

759 Thus:

$$761 \mathbb{E}[\langle \Delta \mathbf{W}_\kappa, \Delta \mathbf{W}_{\kappa'} \rangle] = \sum_{(u,v) \in \Omega_\kappa \cap \Omega_{\kappa'}} \mathbb{E}[F_\kappa(u, v) \cdot F_{\kappa'}(u, v)] = 0 \quad (23)$$

763 For the variance, since the coefficients are independent across frequencies:
 764

$$765 \text{Var}[\langle \Delta \mathbf{W}_\kappa, \Delta \mathbf{W}_{\kappa'} \rangle] = \text{Var} \left[\sum_{(u,v) \in \mathcal{C}} F_\kappa(u, v) \cdot F_{\kappa'}(u, v) \right] \quad (24)$$

$$766 = \sum_{(u,v) \in \mathcal{C}} \text{Var}[F_\kappa(u, v) \cdot F_{\kappa'}(u, v)]$$

771 For independent random variables with variance σ^2 :

$$773 \text{Var}[F_\kappa(u, v) \cdot F_{\kappa'}(u, v)] = \mathbb{E}[(F_\kappa(u, v) \cdot F_{\kappa'}(u, v))^2] = \mathbb{E}[F_\kappa(u, v)^2] \cdot \mathbb{E}[F_{\kappa'}(u, v)^2] = \sigma^2 \cdot \sigma^2 = \sigma^4 \quad (25)$$

775 Therefore:

$$777 \text{Var}[\langle \Delta \mathbf{W}_\kappa, \Delta \mathbf{W}_{\kappa'} \rangle] = \mathbb{E}[|\mathcal{C}|] \cdot \sigma^4 = \frac{|\Omega_\kappa||\Omega_{\kappa'}|}{d^2} \cdot \sigma^4 \quad (26)$$

779 where we used the result from Theorem 4.1 that $\mathbb{E}[|\mathcal{C}|] = \frac{|\Omega_\kappa||\Omega_{\kappa'}|}{d^2}$. \square
 780

810 **B EXPERIMENT**
811812 **B.1 DETAILS**
813814 We trained our model with two NVIDIA A100 GPUs (each with 39 GB of memory). Training took
815 approximately 1.5 hours, while testing required about 2 hours. We reproduced all baselines because
816 they are adopted other datasets and models.
817818 **Metric: BLEU (Bilingual Evaluation Understudy):** This metric compares the machine-generated
819 text to one or several reference texts by checking how many n-grams (word sequences) they share.
820 **METEOR (Metric for Evaluation of Translation with Explicit ORdering):** Matches words
821 from the generated output to the reference text and calculates a score that combines precision and
822 recall, taking synonyms and word stems into account. **ROUGE-L (Recall-Oriented Understudy
823 for Gisting Evaluation):** Measures the longest common subsequence between the generated and
824 reference summaries, which is useful for evaluating paraphrased or rephrased text.
825826 **B.2 DETAILS OF DATASETS**
827828 **Dolly-15K dataset**(Conover et al., 2023) An open-source collection of 15,000 text samples generated
829 by Databricks employees. It covers brainstorming, classification, closed-QA, generation, information
830 extraction, open-QA, and summarization. Data are partitioned by category, and we randomly sample
831 1,000 for a concise yet comprehensive evaluation.
832

For example:

833

- **Instruction:** When did Virgin Australia start operating?
- **Context:**
- **Response:**.....
- **Category:**closed_qa

834835 **GSM8K (Grade School Math 8K)**(Cobbe et al., 2021) A set of 8,500 high-quality, linguistically
836 diverse grade-school math word problems designed for multi-step reasoning. Partitioned by problem
837 topic.
838

For example:

839

- **Question:**.....
- **Answer:**.....
- **Category:**Data interpretation

840841 **Rosetta Code**(Rosset et al., 2024) A programming chrestomathy site presenting solutions to the
842 same task in many languages to highlight similarities and differences. Partitioned by programming
843 language.
844845

- **Task description:**.....
- **Code:**.....
- **Category:**Data interpretation

846847 **MMLU and MMLU-Pro test set**(Hendrycks et al., 2021) MMLU contains 14,024 multiple-choice
848 questions across 57 subjects to evaluate LLM reasoning and MMLU-Pro. We randomly sample 1,000
849 for a concise yet comprehensive evaluation. We adopt a one-shot setting(Just given one example) on
850 MMLU and a five-shots on MMLU-Pro.
851852 **HumanEval test set**(Chen et al., 2021) Released by OpenAI, comprises 164 programming problems
853 with function signatures, docstrings, templates, and unit tests. Handcrafted to avoid overlap with
854

864 training data.
865
866
867

868 C LIMITATION

869 Our experiments focus on NLP tasks (QA, code, math reasoning) and two 7 B-parameter models.
870 The effectiveness of FedDCT on larger models (e.g. 100B+), other modalities (e.g. vision or
871 multimodal transformers), or different fine-tuning objectives remains to be validated. Because of
872 limited computation resources, we cannot test on the larger model.
873

874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917