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Abstract
We explore the single-spiked covariance model
within the context of sparse principal component
analysis (PCA), which aims to recover a
sparse unit vector from noisy samples. From
an information-theoretic perspective, O(k log p)
observations are sufficient to recover a k-sparse
p-dimensional vector v. However, existing
polynomial-time methods require at least O(k2)
samples for successful recovery, highlighting a
significant gap in sample efficiency. To bridge
this gap, we introduce a novel thresholding-based
algorithm that requires only Ω(k log p) samples,
provided the signal strength λ = Ω(∥v∥−1

∞ ). We
also propose a two-stage nonconvex algorithm
that further enhances estimation performance.
This approach integrates our thresholding algo-
rithm with truncated power iteration, achieving
the minimax optimal rate of statistical error
under the desired sample complexity. Numerical
experiments validate the superior performance of
our algorithms in terms of estimation accuracy
and computational efficiency.

1. Introduction
Principal component analysis (PCA) is a cornerstone
technique for dimension reduction, data preprocessing, clus-
tering and feature extraction. However, in high–dimensional
regimes, its dependence on all variables often leads to
overfitting and poor interpretability, obscuring the truly
important features (Johnstone & Lu, 2009). By introducing
sparsity into principal components, sparse PCA can mitigate
issues of overfitting and loss of interpretability that often
arise in high-dimensional settings, particularly when the
number of variables surpasses the number of samples (Zou
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et al., 2006; Shen & Huang, 2008), which offers a robust
alternative to traditional PCA.

In this paper, we investigate the single-spiked covariance
model (Johnstone, 2001), which involves recovering a
sparse vector v from n noisy samples:

xi =
√
λgiv + ξi, i = 1, . . . , n, (1)

where xi ∈ Rp denotes the i-th observation and v ∈ Rp

is the unknown vector to be estimated, characterized by
∥v∥0 ≤ k and ∥v∥2 = 1. The coefficients gi are sampled
independently from a standard normal distribution N (0, 1),
and the noise vectors ξi are likewise independently drawn
from a multivariate normal distribution N (0, I), with each
gi and ξi being mutually independent. The parameter λ > 0
quantifies the strength of the signal.

From an information-theoretic perspective, it has been
shown that n = Ω(k log p) samples are sufficient to estimate
a k-sparse p-dimensional vector v up to a constant error (Vu
& Lei, 2013; Berthet & Rigollet, 2013). However, achieving
such an estimate are nonpolynomial-time algorithms such
as exhaustive search. In contrast, all known polynomial-
time algorithms, including diagonal thresholding (Johnstone
& Lu, 2009), covariance thresholding (Krauthgamer
et al., 2015; Deshpande & Montanari, 2016), and convex
relaxation techniques (d’Aspremont et al., 2004; Amini
& Wainwright, 2009; Ma & Wigderson, 2015), need at
least Ω(k2) observations to estimate v. Moreover, the
known lower bounds for these methods are considered
tight (Krauthgamer et al., 2015; Ma & Wigderson, 2015;
Deshpande & Montanari, 2016; Gao et al., 2017) when the
signal strength λ is treated as a constant.

Thus, for k = Ω(log p), there exists a notable gap between
the number of samples needed from an information-theoretic
perspective, Ω(k log p), and the number required by existing
polynomial-time algorithms, Ω(k2). Moreover, reductions
from the planted-clique conjecture imply that, without
further assumptions, no polynomial-time algorithm can
attain the information-theoretic rate (Berthet & Rigollet,
2013; Krauthgamer et al., 2015; Wang et al., 2016; Gao
et al., 2017; Brennan et al., 2018). This motivates the key
question of our work:
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Can we design a polynomial-time algorithm to bridge this
sample-complexity gap, under certain mild assumptions on
the model?

We answer this question affirmatively by designing a
novel thresholding-based algorithm. We demonstrate that
Ω(k log p) is sufficient for our algorithm to estimate v up to
a constant error (in euclidean norm), given that the signal
strength λ = Ω(∥v∥−1

∞ ). By imposing a condition on
λ and the maximum absolute value of v, we effectively
reduce the parameter space of the model. Consequently, our
algorithm achieves the desired sample complexity within
this constrained parameter space. While the theoretical
analysis of sparse PCA conditioned on the signal strength
λ has been studied in the literature (Johnstone & Lu, 2009;
Deshpande & Montanari, 2016; Novikov, 2023; Ding et al.,
2024), these studies predominantly focus on scenarios with
relatively large sparsity k and correspondingly high sample
complexities, such as n = Ω(p). In contrast, our work aims
to achieve a reduced sample complexity of n = Ω(k log p),
operating under a specific condition on λ.

Although the methods previously mentioned, such as
diagonal thresholding (Johnstone & Lu, 2009), covariance
thresholding (Krauthgamer et al., 2015; Deshpande &
Montanari, 2016), and semidefinite programming (SDP)
(d’Aspremont et al., 2004; Amini & Wainwright, 2009;
Vu et al., 2013; Ma & Wigderson, 2015), are all
computable in polynomial time, the SDP approach entails
a significantly higher computational burden compared
to thresholding-based methods. For instance, the SDP
implementation by (d’Aspremont et al., 2004) incurs a
computational complexity exceeding O(p4), rendering
it intractable in the big data scenarios. Among the
thresholding-based algorithms, covariance thresholding
(Krauthgamer et al., 2015; Deshpande & Montanari, 2016)
generally offers better estimation performance than diagonal
thresholding (Johnstone & Lu, 2009). However, it requires
eigendecomposition of a typically p × p matrix, costing
O(np2+p3) totally, whereas diagonal thresholding involves
eigendecomposition of a smaller k × k matrix, leading to a
overall computational cost of O(np+ nk2). In this paper,
we aim to develop an algorithm that achieves both high
estimation accuracy and computational efficiency.

1.1. Contributions

We introduce two complementary algorithms to address both
sample complexity and estimation performance in the single-
spiked covariance model. The first is a thresholding-based,
polynomial-time algorithm that bridges the existing gap in
sample complexity. The second is a two-stage nonconvex
algorithm, which leverages our thresholding algorithm
combined with truncated power iteration to further refine
estimation. Our main contributions are:

• A notable gap exists between the information-theoretic
sample limit of Ω(k log p) to achieve a constant
estimation error and the sample complexity of Ω(k2)
required by existing polynomial-time algorithms. We
bridge this gap by introducing a novel polynomial-time
algorithm based on the thresholding technique, which
requires only Ω(k log p) samples to achieve a constant
error, provided the signal strength λ = Ω(∥v∥−1

∞ ).

In existing work, the signal strength λ is often treated
as a constant when deriving both the information-
theoretic lower bound of Ω(k log p) and the sample
complexities of standard algorithms (e.g., Ω(k2 log p)
for diagonal thresholding and Ω(k2) for covariance
thresholding). Our algorithm achieves the optimal
sample complexity of Ω(k log p), provided that λ =
Ω(∥v∥−1

∞ ). Under this condition, λ remains constant
provided that ∥v∥∞ = Ω(1). This scenario is
naturally satisfied by signals whose nonzero entries
exhibit a power-law decay (Jagatap & Hegde, 2019).
This property is known as compressibility in the
compressive sensing literature (Donoho, 2006; Candes
et al., 2006).

• To enhance estimation performance, we propose a
two-stage nonconvex algorithm. The first stage uses
our thresholding-based approach for initialization,
followed by a refinement through truncated power
iteration. We show that the total estimation error of our
algorithm can be separated into two components: an
optimization error, which decays at a linear rate, and a
statistical error, which achieves the minimax optimal
rate when n = Ω(k log p) and λ = Ω

(
∥v∥−1

∞
)
.

• Numerical experiments demonstrate that our proposed
algorithm offers significant advantages in terms of
both estimation accuracy and computational efficiency.
In contrast, the diagonal thresholding method results
in substantial estimation errors, while the two
covariance thresholding approaches incur considerable
computational costs.

Notations: ∥x∥0 counts the nonzero entries of vector
x, while ∥x∥2 and ∥x∥∞ denote its ℓ2 and ℓ∞ norms
respectively. xT represents the vector of the same length as
x, where elements indexed by T are retained, and elements
indexed by T c are set to zero. [x]T denotes the sub-vector of
x containing only the elements indexed by T . AT denotes
the matrix of the same size as a square matrix A, where
columns and rows indexed by T are retained, and those
indexed by T c are set to zero. [A]T refers to the sub-
matrix of A composed of the columns and rows indexed
by T . We write f(n) = O(g(n)) means f(n) ≤ cg(n)
and f(n) = Ω(g(n)) means f(n) ≥ c′g(n) for positive
constants c and c′, and use [p] to denote the set 1, . . . , p.
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2. Preliminaries and Related Work
In this section, we begin by introducing the preliminaries of
sparse PCA, then present related work.

2.1. Preliminaries

The single-spiked covariance model, initially introduced by
(Johnstone, 2001), has become a foundational framework
for sparse PCA. It outlines a methodology to estimate a
single sparse vector v from n noisy observations, denoted
as x1, . . . ,xn ∈ Rp. Each noisy sample xi is independently
drawn as in (1) and is therefore zero-mean.

We compute the empirical covariance matrix as Σ̂ =
1
n

∑n
i=1 xix

T
i , and its expectation is given by (Ma &

Wigderson, 2015; Krauthgamer et al., 2015):

E
[
Σ̂
]
= λvvT + I. (2)

Given an empirical covariance matrix Σ̂ ∈ Rp×p, the
objective of sparse PCA is to identify a sparse unit vector
w ∈ Rp that maximizes the quadratic form w⊤Σ̂w.
Formally, this can be expressed as:

max
w

wT Σ̂w, subject to ∥w∥2 = 1, ∥w∥0 ≤ k. (3)

Although the solution to (3) yields an estimator for the spike
vector v, its combinatorial ℓ0-norm constraint renders the
problem NP-hard. In this paper, we address these challenges
by proposing a polynomial-time algorithm that bridges
the existing sample-complexity gap and a computationally
efficient nonconvex algorithm that achieves the minimax
optimal rate under the desired sample complexity.

2.2. Related Work

We review related work, specifically thresholding-based
algorithms (Johnstone & Lu, 2009; Krauthgamer et al.,
2015; Deshpande & Montanari, 2016) and convex relaxation
techniques (d’Aspremont et al., 2004; Ma & Wigderson,
2015), which have made significant strides in solving the
sparse PCA optimization problem.

Thresholding-based algorithms for sparse PCA have been
widely adopted due to their simplicity and effectiveness.
These algorithms operate by initially estimating the support
of v and subsequently computing the principal eigenvector
of the corresponding submatrix of Σ̂ to approximate v.
Notable among these are diagonal thresholding (Johnstone
& Lu, 2009) and covariance thresholding algorithms
(Krauthgamer et al., 2015; Deshpande & Montanari, 2016).
Diagonal thresholding leverages the indices of the top
k diagonal entries of the empirical covariance matrix
Σ̂ as an estimate of the support of v. With O(np +
nk2) computational complexity, its sample complexity is

Ω(k2 log p) (Amini & Wainwright, 2009), which is worse
than the information theoretical bound Ω(k log p). To
attain lower sample complexity, covariance thresholding, in
contrast, involves a more intricate process. It applies either
a soft thresholding (Deshpande & Montanari, 2016) or hard
thresholding (Krauthgamer et al., 2015) to the empirical
covariance matrix Σ̂, followed by using the indices of the
top k entries of its principal eigenvector to estimate the
support of v. It has been proved that the sample complexity
of covariance thresholding proposed by (Deshpande &
Montanari, 2016) is Ω(k2), but its computational complexity
is O(np2 + p3) as analysed in Section 1.

Convex relaxation methods, such as SDP relaxation
(d’Aspremont et al., 2004) and degree-4 Sum-of-Squares
(SoS) algorithm (Ma & Wigderson, 2015), offer an
alternative approach. They reframe the non-convex sparse
PCA optimization problem as a convex optimization
problem, so it can be solved in polynomial time. SDP
relaxation rewrites Problem (3) by introducing a new
variable W = wwT and then relaxes the ℓ0-norm
constraint by a convex constraint. Its sample complexity
is Ω(k2 log p) (Amini & Wainwright, 2009) and its
computational complexity exceeds O(p4) (d’Aspremont
et al., 2004). The degree-4 SoS algorithm applies the well-
established SoS method (Lasserre, 2015) to the sparse PCA
optimization problem, which requires larger computational
costs than SDP but proves to be unable to improve its sample
complexity (Ma & Wigderson, 2015).

3. Main Results
In this section, we begin by introducing two algorithms in
Section 3.1. Following this, we examine their computational
complexity in Section 3.2. Finally, in Section 3.3, we
present a detailed theoretical analysis of both algorithms.
This analysis includes establishing the sample complexity
required for the thresholding algorithm to achieve a constant
error, thereby bridging the existing gap regarding the sample
complexity. We also provide bounds for the estimation
error of the two-stage algorithm, detailing how it enhances
performance through a refined estimation process.

3.1. Proposed Algorithms

The first algorithm is a thresholding-based algorithm, an
advanced version of diagonal thresholding. The second
algorithm is a nonconvex two-stage algorithm for enhancing
the estimation performance.

3.1.1. THRESHOLDING-BASED ALGORITHM

Our proposed algorithm extends the well-known diagonal
thresholding method (Johnstone & Lu, 2009), which, while
being one of the most computationally efficient approaches,
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suffers from a high sample complexity of Ω(k2 log p)
(Amini & Wainwright, 2009). This complexity exceeds
the information-theoretic lower bound of Ω(k log p). To
address this discrepancy, we first delve into the operational
principles of diagonal thresholding.

Diagonal thresholding traditionally estimates the true spike
by identifying the support and magnitude of the non-zero
entries separately. This method estimates the support of v
by using the indices of the top k diagonal entries of Σ̂ in
absolute value. This approach is based on the observation
that the expectation values of the diagonal entries of Σ̂ are
given by:

[
E
[
Σ̂
]]

jj
=

{
λv2j + 1, j ∈ S,
1, j ∈ Sc,

(4)

where S denotes the support of v. There exists a gap
between diagonal entries of the expectation in the sets S
and Sc. This statistical gap is defined by:

gd := min
j∈S

∣∣∣[E[Σ̂]]
jj

∣∣∣−max
j∈Sc

∣∣∣[E[Σ̂]]
jj

∣∣∣ = λ ·min
j∈S

v2j .

(5)
A simple analysis for diagonal thresholding is based on the
following proposition about the statistical gap gd.

Proposition 3.1. If
∣∣Σ̂ii−

[
E
[
Σ̂
]]

ii

∣∣ ≤ 1
2gd holds for every

i ∈ [p], then, for any j ∈ S and any j′ ∈ Sc, we have:∣∣Σ̂jj

∣∣ ≥ ∣∣Σ̂j′j′
∣∣.

The proof of Proposition 3.1 is detailed in Appendix A.2.
Given sufficient samples, the concentration error

∣∣Σ̂ii −[
E
[
Σ̂
]]

ii

∣∣ is small enough and the condition in Proposi-
tion 3.1 holds, hence the diagonal entries Σ̂jj for indices
j ∈ S are larger than those for indices j ∈ Sc in absolute
values. Consequently, diagonal thresholding can estimate
the support of v by selecting the indices of the top k
diagonal entries of Σ̂ in absolute value. Additionally, the
sample complexity of diagonal thresholding is governed
by the statistical gap gd. A larger gap gd permits greater
tolerance for the concentration error

∣∣Σ̂ii −
[
E
[
Σ̂
]]

ii

∣∣,
thereby reducing the number of samples required.

Based on the above observations, we aim to distinguish
between two groups of entries corresponding to the sets S
and Sc, aiming for a larger gap between them. Our proposed
thresholding algorithm draws inspiration from spectral
initialization methods designed for sparse phase retrieval
(Wu & Rebeschini, 2021; Cai et al., 2023). Instead of
focusing on the diagonal entries, we examine the magnitudes
of the entries in a specific column of Σ̂. More precisely, we
identify the support of v by selecting the indices of the k
largest entries in the j0-th column of Σ̂ in absolute value,
where j0 is the index of the maximum element among the
diagonal entries of Σ̂.

Our method is motivated by the fact that, when l ∈ S, the
expected values of the entries in the l-th column of Σ̂ can
be expressed as:

[
E
[
Σ̂el

]]
j
=


λv2l + 1, j = l,

λvlvj , j ∈ S \ {l} ,
0, j ∈ Sc,

(6)

where {ej}nj=1 denotes the set of standard basis vectors
in Rn. Similar to (5) for diagonal thresholding, we now
consider the following statistical gap:

gc := min
j∈S

∣∣∣[E[Σ̂el
]]

j

∣∣∣−max
j∈Sc

∣∣∣[E[Σ̂el
]]

j

∣∣∣
≥ λ |vl| ·min

j∈S
|vj | .

(7)

Upon comparison, we observe that the lower bound of
the statistical gap in (7) consistently exceeds that in (5)
when l ∈ S. This indicates that our method more
effectively distinguishes entries in S from those in Sc than
diagonal thresholding, thereby suggesting a reduced sample
complexity requirement (see Section 3.3 for details).

To maximize this lower bound, l should ideally be selected
as the index of the largest absolute element of v, which
aligns with the index of the largest diagonal entry of E[Σ̂]
as shown in (2). However, since we only have the sample
covariance matrix Σ̂ rather than the population covariance
E[Σ̂], we designate l as the index of the largest diagonal
entry of Σ̂, denoted by j0.

Our thresholding-based algorithm is summarized in
Algorithm 1 and consists of two main steps. First, we
estimate the support of the spike vector v by selecting the
indices corresponding to the k largest absolute values in
Σ̂ej0 , which we denote as Ŝ. Second, we estimate v via a
procedure analogous to diagonal thresholding: we perform
an eigendecomposition on the k×k submatrix [Σ̂]Ŝ formed
by restricting to rows and columns indexed by Ŝ.

The support-estimation step is critical for achieving the
optimal Ω(k log p) sample complexity. By amplifying the
separation between in-support and out-of-support entries
relative to diagonal thresholding, our method recovers the
true support with fewer samples. This enhanced separation
constitutes the key innovation of our approach. As an
alternative spike-estimation step, one may simply normalize
the j0-th column of [Σ̂ − I]Ŝ . This variant avoids the
eigendecomposition for faster runtime, at the expense of
a modest loss in estimation accuracy, yet it still achieves the
optimal Ω(k log p) sample complexity.

3.1.2. TWO-STAGE ALGORITHM

To enhance the estimation performance of our thresholding
algorithm presented in Section 3.1.1, we propose a two-stage
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Algorithm 1 Thresholding-based algorithm for bridging the
sample-complexity gap

Input: Samples {xi}ni=1, the sparsity k

Compute
{
Σ̂j,j

}n

j=1
and set j0 = argmax1≤j≤n Σ̂j,j .

Compute Σ̂ej0 and set Ŝ as the indices of the top k

elements of Σ̂ej0 in absolute value.

Compute
[
Σ̂
]
Ŝ , set

[
v0

]
Ŝ as the unit leading eigenvector

of
[
Σ̂
]
Ŝ and set

[
v0

]
Ŝc = 0.

Output: v0

algorithm comprising both initialization and refinement
stages. In the initialization stage, we utilize our thresholding
algorithm to obtain an initial estimate. During the
refinement stage, the estimate is refined by employing a
well-known method called truncated power iteration (Yuan
& Zhang, 2013), which is widely used for finding a sparse
eigenvector of a matrix. By combining these two stages,
our algorithm aims to achieve superior performance in
addressing Problem (3).

The truncated power method (Yuan & Zhang, 2013) extends
the classic power iteration—commonly used to extract
a matrix’s leading eigenvector—by inserting a sparsity-
enforcing truncation at each step. For reference, the standard
power updates are

ṽt = Σ̂vt−1, vt =
ṽt

∥ṽt∥2
, (8)

where ṽt is the intermediate update at t-th iteration and
vt its unit-norm normalization. The iteration (8) typically
converges to a dense vector under suitable conditions.
However, since the sparse PCA problem (3) seeks a
sparse principal eigenvector, we employ the truncated
power method instead of the traditional power method.
The truncated power method modifies each iteration by
truncating to zero all but the top k′ entries in terms of
absolute value:

ṽt = Tk′(Σ̂vt−1), vt =
ṽt

∥ṽt∥2
, (9)

where Tk′(·) represents the truncation operator, which
retains only the top k′ entries of a vector in absolute values
and sets all others to zero. This modification makes the
truncated power method a natural choice for Problem (3),
as it inherently promotes sparsity in the resulting vector. It
is common to set the truncation parameter k′ in the same
order as the sparsity k of the true spike. Moreover, since
Σ̂ = 1

n

∑n
i=1 xix

T
i , Σ̂vt−1 in (9) can be simplified as

1
n

∑n
i=1(x

T
i v

t−1)xi.

The convergence of truncated power iteration was
established in (Yuan & Zhang, 2013), where it was shown
to achieve the optimal statistical rate. However, it hinges
on the assumption that the initial estimate v0 satisfies
|sin∠(v0,v)| ≤ 1−C with C ∈ (0, 1) a constant. Such an
initial point was not provided in (Yuan & Zhang, 2013).

Our proposed thresholding algorithm introduced in
Section 3.1.1 tackles this problem perfectly, which achieves
the desired sample complexity. Building on this foundation,
we propose a two-stage algorithm to solve Problem (3). The
full algorithm is summarized in Algorithm 2.

Algorithm 2 Two-stage algorithm for enhancing estimation

Input: Samples {xi}ni=1, the sparsity k, parameter k′

// Initialization stage:
Compute an initial estimate v0 by Algorithm 1.

// Refinement stage:
for t = 1, 2, . . . do
ṽt = Tk′( 1n

∑n
i=1(x

T
i v

t−1)xi)

vt = ṽt/∥ṽt∥2
end for
Output: vt

3.2. Computational Costs

The computational expenses associated with our thresh-
olding algorithm, as proposed in Section 3.1.1, include:
Computing the diagonal of Σ̂ requires O(np) operations;
Identifying the largest diagonal entry involves O(p)
operations; Computing Σ̂ej0 requires O(np) operations;
Finding the indices of the top k elements of Σ̂ej0 in absolute
value requires O(p log p) operations; Computing the
submatrix

[
Σ̂
]
Ŝ requires O(nk2) operations; Computing

the leading eigenvector of
[
Σ̂
]
Ŝ demands O(k3) operations.

Combining these, the overall computational complexity of
our thresholding algorithm totals O(np+ nk2).

Remarkably, this computational complexity is equivalent
to that of diagonal thresholding (Johnstone & Lu, 2009),
yet significantly less than that of covariance thresholding
(Krauthgamer et al., 2015; Deshpande & Montanari, 2016),
which scales as O(np2 + p3). Moreover, we will show
in Section 3.3 that our approach offers improved sample
complexity compared to both diagonal thresholding and
covariance thresholding.

The two-stage algorithm employs our thresholding algo-
rithm, costing O(np+ nk2), and uses the truncated power
iterations with O(np) in each iteration. Given the limited
number of iterations typically required for convergence, the
overall computational expense of the refinement stage does
not significantly increase the total cost of the algorithm.
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3.3. Theoretical Results

In this section, we delve into the theoretical underpinnings
of both the thresholding algorithm and the two-stage
algorithm. A critical aspect of assessing these algorithms’
effectiveness is quantifying the estimation error. To this end,
we define a loss function that captures the error between the
true vector v and its estimate v̂:

dist(v, v̂) := min {∥v − v̂∥2, ∥v + v̂∥2} . (10)

This loss function is chosen for the sign ambiguity of v̂.
Specifically, if v̂ is a solution of the sparse PCA problem
(3), −v̂ is also a solution of (3), so v can only be estimated
up to a sign.

Theorem 3.2 (Thresholding algorithm). Let v ∈ Rp be a k-
sparse unit vector. Let xi =

√
λgiv + ξi, i = 1, . . . , n,

where λ > 0, gi
iid∼ N (0, 1) and ξi

iid∼ N (0, Ip) are
independent. For any γ ∈ (0, 1], there exists universal
constants C1, C2 > 0 such that if λ ≥ C1∥v∥−1

∞ and n ≥
C2γ

−2k log p, then with probability exceeding 1 − 5p−1,
the output v0 of Algorithm 1 satisfies dist(v,v0) ≤ γ.

The proof of Theorem 3.2 is detailed in Appendix A.3.
Theorem 3.2 demonstrates that our proposed algorithm
requires only n = Ω(k log p) samples to estimate the true
spike v up to constant error, given that the signal strength
λ = Ω(∥v∥−1

∞ ). This result is significant as it effectively
bridges the gap between the information-theoretic lower
bound of Ω(k log p), necessary to achieve a constant
estimation error, and the considerably higher sample
complexity of Ω(k2) demanded by existing polynomial-
time algorithms. Thus, our proposed method not only aligns
with the optimal information-theoretic sample limit but also
significantly reduces the required sample size compared to
other contemporary polynomial-time techniques.

Attaining the optimal sample complexity Ω(k log p) in
polynomial time requires extra structural assumptions.
Indeed, assuming the planted-clique conjecture holds,
reductions show that no polynomial-time algorithm
can recover the spike with only Ω(k log p) samples
without additional conditions (Berthet & Rigollet, 2013;
Krauthgamer et al., 2015; Wang et al., 2016; Gao et al.,
2017; Brennan et al., 2018). We assume λ = Ω(∥v∥−1

∞ ).
In much of the sparse-PCA literature, λ is treated as a
constant when deriving both information-theoretic lower
bounds and algorithmic sample-complexity guarantees. In
settings where the nonzeros of v follow a power-law decay–
a common model in compressive sensing (Donoho, 2006;
Candes et al., 2006)–λ naturally remains of constant order
under this assumption. An analogous phenomenon appears
in sparse phase retrieval (Wang et al., 2017; Cai et al., 2022;
2024), where power-law decay likewise enables optimal
Ω(k log p) recovery (Jagatap & Hegde, 2019).

Under the assumption λ = Ω(∥v∥−1
∞ ) from Theorem 3.2,

diagonal thresholding (Johnstone & Lu, 2009) cannot attain
the optimal Ω(k log p) sample complexity. The reason
is that diagonal thresholding fails to exploit the decay
structure of v in estimation, whereas our method does. By
Proposition 3.1, a larger statistical gap implies lower sample
complexity. When ∥v∥∞ has constant order, our method’s
gap in (7) depends only linearly on minj∈S |vj |, yielding an
order-wise improvement over diagonal thresholding’s gap in
(5); diagonal thresholding cannot exploit the constant-order
∥v∥∞ and thus remains fundamentally limited.

Theorem 3.3 (Two-stage algorithm). Let v ∈ Rp be a k-
sparse unit vector. Let xi =

√
λgiv + ξi, i = 1, . . . , n,

where λ > 0, gi
iid∼ N (0, 1) and ξi

iid∼ N (0, Ip) are
independent. There exist universal constants C3, C4, C5 >
0 such that if λ ≥ C3∥v∥−1

∞ and n ≥ C4k log p, then with
probability exceeding 1− 5p−1, the output vt of Algorithm
2 with parameter k′ = C5k and an initial estimate v0

generated by Algorithm 1 satisfies

dist(vt,v) ≤ dt · dist(v,v0)︸ ︷︷ ︸
Optimization error

+ d′
√
k log p/n︸ ︷︷ ︸

Statistical error

, (11)

where 0 < d < 1 and d′ > 0 are constants.

The proof of Theorem 3.3 is detailed in Appendix A.4.
Theorem 3.3 shows that the estimation error between the
estimated and true spikes is bounded by two terms, i.e., the
optimization error and statistical error. The optimization
error, dt · dist(v,v0), decays to zero at a linear rate with
respect to the iteration number t. The statistical error

of our algorithm is on the order of
√

k log p
n , achieving

the minimax optimal rate (Vu & Lei, 2013; Wang et al.,
2014; 2016). Notably, the algorithm attains this optimal
rate under the desired sample complexity of Ω(k log p),
provided λ = Ω(∥v∥−1

∞ ). We can see the statistical error is
independent of t, implying that it will not decrease during
iterations in the algorithm.

4. Experimental Results
We validate our two-stage algorithm in MATLAB on 2.10
GHz Xeon Gold 6152 machines, confirming the theoretical
results and demonstrating its efficiency. Estimation error is
measured as

Error = dist(v, v̂),

and support recovery by

F-score =
2tp

2tp + fp + fn
,

where tp, fp, and fn denote the counts of true positives, false
positives and false negatives; The F-score ranges from 0 to
1, with 1 indicating perfect support recovery.
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(b) k = 0.02p

Figure 1. Estimation error versus scaled sample size for our
algorithm. We consider two sparsity settings: (a) k = 0.5

√
p

and (b) k = 0.02p. Curves are averaged over 200 executions.

4.1. Validating Theoretical Results

We provide empirical evidence that our algorithm achieves
an estimation error of the order

√
k log p/n, provided the

sample size n ≥ c̃k log p for some constant c̃.

In experiments, we set the dimension p to range from
500 to 10000, with each curve corresponding to a specific
dimension. The sparsity k is set to 0.5

√
p in (a) and 0.02p

in (b). We generate the true spike v with k nonzero entries,
where the support of the k entries is chosen randomly, and
the value of each entry is either 1/

√
k or −1/

√
k. We then

generate n i.i.d. samples xi from the single-spike model.
The signal strength λ is set to 10.

Figure 1 plots the estimation error of our algorithm as a
function of the scaled sample size n

k log p . When n
k log p ≥ 2,

the curves corresponding to different dimensions align well
with each other, indicating they achieve nearly the same
estimation error. For instance, when n

k log p = 2, we have
n = 2k log p. Without loss of generality, we consider the
estimation error to be

√
ck,pk log p/n, where ck,p can be

a function of k and p. By substituting n = 2k log p, the
estimation error simplifies to

√
ck,p/2.
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(a) Comparisons of estimation error
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(b) Comparisons of computational time

Figure 2. Estimation error and computational time versus dimen-
sion for different methods. Our algorithm demonstrates both
estimation accuracy and computational efficiency.

Figure 1 shows that the estimation errors are nearly identical
for different values of p, indicating that ck,p does not depend
on p. Moreover, since k is a function of p in our settings, ck,p
does not depend on k either. Therefore, ck,p is independent
of both p and k. Consequently, empirical evidence shows
that the estimation error of our algorithm is O(

√
k log p/n),

provided the sample size n ≥ 2k log p.

4.2. Demonstrating Estimation Performance

We demonstrate that our algorithm surpasses state-of-the-
art methods in both estimation accuracy and computational
efficiency. Diagonal thresholding (DT) (Johnstone & Lu,
2009) tends to produce large estimation errors, whereas
covariance thresholding (CT) methods, including soft-
thresholding (Soft-CT) (Deshpande & Montanari, 2016) and
hard-thresholding (Hard-CT) (Krauthgamer et al., 2015),
require substantial computational resources. In contrast,
our proposed algorithm consistently achieves superior
performance in terms of both lower estimation error and
reduced computational time.

Figure 2 compares the estimation error and computational
time of different methods across various dimensions. We set
the sparsity as k = 0.02p and the sample size n = 3k log p.
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(b) λ = 10

Figure 3. Estimation error versus sample size for different methods
under the settings of (a) λ = 5 and (b) λ = 10. The dimension is
set to p = 1000. Error bars indicate 95% confidence intervals for
the mean estimation error, calculated from 200 independent runs.

As the dimension p increases from 1000 to 10000, we
observe that the computational time for both Soft-CT and
Hard-CT increases dramatically, while DT and our proposed
method show a steady increase and take significantly less
time. Furthermore, while Soft-CT, Hard-CT, and our
algorithm achieve substantially smaller estimation errors
compared to DT, our algorithm consistently obtains the
smallest estimation error among all methods.

In summary, Figure 2 shows our algorithm excels in
both estimation accuracy and computational efficiency.
In contrast, the diagonal thresholding method incurs
large estimation errors, while the covariance thresholding
methods are computationally intensive.

Figure 3 compares the estimation errors of different
algorithms as a function of sample size, with the signal
strength λ set to 5 in (a) and 10 in (b). Our proposed
algorithm consistently achieves smaller estimation errors
than the other algorithms, except when n = 100, where the
limited number of samples leads to large estimation errors
across all methods. When the signal strength λ is increased
to 10 in Figure 3(b), similar conclusions can be drawn.

4.3. Examining Computational Performance

We assess the scalability of our proposed algorithm by
measuring its running time and iteration count as functions
of dimension p, sample size n, and sparsity k. In each
experiment, we vary one of these parameters while holding
the other two fixed to isolate its impact on per-iteration cost
and convergence behavior.

Table 1 reveals the algorithm’s response to increasing
dimension p. The results demonstrate that while the per-
iteration computational time exhibits near-linear growth
with dimension, the iteration count remains remarkably
stable. This stability in iteration count is particularly
noteworthy, as it results in a total running time that scales
approximately linearly with p. Such behavior strongly
indicates that our method maintains its computational
efficiency even in high-dimensional regimes, a crucial
advantage for modern large-scale applications.

Dimension 5000 7500 10000 12500 15000

Number of iterations 9.05 9.06 9.14 9.13 9.13
Time for an iteration(s) 0.018 0.029 0.040 0.048 0.055
Total running time(s) 0.165 0.264 0.367 0.440 0.506

Table 1. Impact of dimension p on computational time in the
refinement stage of Algorithm 2, with n = 2500 and k = 100.

Table 2 presents an interesting interplay between sample
size n and computational efficiency. While larger sample
sizes induce a linear increase in per-iteration computation
time, they simultaneously yield a compensatory decrease in
the required number of iterations. This trade-off results
in only a modest increase in total running time as n
grows. The reduction in iteration count can be attributed
to the enhanced statistical accuracy of initial estimates
with larger sample sizes—more samples provide a more
precise initialization closer to the optimal solution, thereby
accelerating convergence.

Sample size 2000 2500 3000 3500 4000

Number of iterations 9.38 8.92 8.47 7.53 5.75
Time for an iteration(s) 0.014 0.019 0.022 0.026 0.030
Total running time(s) 0.133 0.167 0.191 0.195 0.175

Table 2. Impact of sample size n on computational time in the
refinement stage of Algorithm 2, with p = 5000 and k = 100.

Table 3 demonstrates the algorithm’s robustness to varying
sparsity levels k. The results show that increased sparsity
leads to a mild increase in iteration count while maintaining
nearly constant per-iteration computation times. This
translates to only a slight growth in total running time with
increasing k, indicating that our method efficiently handles
varying degrees of problem sparsity without significant
computational overhead.
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(b) Soft-CT: Error = 0.2248,
F-score= 0.8038
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(c) Hard-CT: Error = 0.3395,
F-score = 0.7778
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F-score = 0.8325

Figure 4. Comparison of different algorithms in the “three-peak” experiment. The black curve represents the true spike, while the red
points indicate the estimated spike by each algorithm. Our algorithm achieves a smaller estimation error and a higher F-score compared to
state-of-the-art algorithms, demonstrating superior performance in both estimation accuracy and support recovery.

Sparsity 100 125 150 175 200

Number of iterations 8.55 9.24 9.85 10.14 10.39
Time for an iteration(s) 0.022 0.024 0.023 0.023 0.022
Total running time(s) 0.189 0.219 0.224 0.234 0.231

Table 3. Impact of sparsity k on computational time in the
refinement stage of Algorithm 2, with p = 5000 and n = 3000.

The empirical results across Tables 1, 2, and 3 provide
strong validation of our theoretical complexity analysis.
The observed near-linear scaling of per-iteration time with
both p and n aligns precisely with the theoretical O(pn)
complexity bound. This correspondence between theoretical
predictions and empirical measurements, coupled with
the favorable iteration scaling properties, establishes our
method as both theoretically sound and practically efficient
for large-scale sparse principal component analysis.

4.4. Experiments on “Three-Peak” Data

The “three-peak” experiment (Johnstone & Lu, 2009) is a
widely recognized benchmark for assessing the performance
of sparse PCA algorithms. This experiment aims to assess
the effectiveness of an algorithm in recovering a structured
sparse signal from noisy data. In this setup, the true spike
vector v is constructed as a mixture of three Beta densities
on [0, 1], producing a characteristic shape with three distinct
peaks, as illustrated by the black curve in Figure 4. For
our experiments, we set the dimension to p = 2000, the
sample size to n = 1000, and the signal strength to λ = 8.
The choice of these parameters reflect a high-dimensional
setting where the number of variables significantly exceeds
the number of observations, posing a substantial challenge
for accurate signal recovery.

Our proposed algorithm demonstrates superior performance
compared to state-of-the-art methods. Specifically, it
achieves a smaller estimation error and a higher F-score,
reflecting superior accuracy in both estimating the true
spike and correctly identifying the support of v. These
results highlight the advantages of our algorithm in terms of
estimation accuracy and support recovery.

5. Conclusions
In this paper, we have investigated the single-spiked
covariance model for sparse PCA, developing two
complementary algorithms. Our thresholding-based
algorithm operates in polynomial time and successfully
bridges the gap between information-theoretic limits and
computational efficiency, requiring only Ω(k log p) samples
when λ = Ω(∥v∥−1

∞ ). Building upon this foundation, our
two-stage nonconvex algorithm combines the thresholding
technique with truncated power iteration to achieve the
minimax optimal rate of statistical error under the same
sample complexity. Extensive experiments have validated
the superior performance of our algorithms in terms of
estimation accuracy and computational efficiency.

While this work makes significant progress in addressing
the estimation problem for sparse PCA, several promising
directions merit further investigation. First, we have
not addressed the support recovery problem–specifically,
establishing support recovery consistency of the spike with
optimal sample complexity–which poses distinct statistical
and computational challenges. Second, evaluating the
optimality of our signal strength condition and exploring
whether this requirement can be relaxed would deepen our
understanding of the fundamental limits in sparse PCA.
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A. Proofs
We present the proofs for Proposition 3.1, Theorem 3.2 for our thresholding algorithm, and Theorem 3.3 for our two-stage
algorithm. First, we introduce some technical lemmas in Appendix A.1. Subsequently, we present the proofs for Proposition
3.1, Theorem 3.2, and Theorem 3.3 in Appendices A.2, A.3, and A.4, respectively.

Throughout Appendix A, we define a matrix E := Σ̂− E
[
Σ̂
]
. For any symmetric matrix A ∈ Rn×n, we define the largest

and smallest s-sparse eigenvalue by

λmax(A, s) = max
w∈Rn,∥w∥2=1,∥w∥0=s

wTAw, λmin(A, s) = min
w∈Rn,∥w∥2=1,∥w∥0=s

wTAw,

respectively. Also, we define the maximum spectral norm of all s× s submatrices of A by

ρ(A, s) = max {|λmax(A, s)| , |λmin(A, s)|} . (12)

A.1. Technical Lemmas

In this section, we introduce and prove some technical lemmas that will be used for the proofs of Theorem 3.2 and
Theorem 3.3.

The first lemma bounds the quantity ρ(E, s) defined in (12).

Lemma A.1. For any t ∈ (0, 1),

P {ρ(E, s) ≤ 3tλ} ≥ 1− 2

(
9ep
s

)s

exp

(
−C ′

1nt
2λ2

(λ+ 1)2

)
(13)

for some absolute constant C ′
1 > 0.

Proof. Denote the set of s-sparse vectors in Rp by Tp
s := {w|∥w∥2 = 1, ∥w∥0 ≤ s}. For any δ ∈ (0, 1), there exists a

set Nδ ⊂ Tp
s such that for any w ∈ Tp

s , there exists wδ ∈ Nδ such that supp(w) = supp(wδ) and ∥w −wδ∥2 ≤ δ and
|Nδ| ≤

(
p
s

)
( 3δ )

s ≤ ( 3epδs )
s (Baraniuk et al., 2008).

From the definition,
ρ(E, s) = max

y,z∈Tp
s ,

supp(y)=supp(z)

yTEz =: yT
∗ Ez∗.

From the definition of Nδ, there exists yδ, zδ ∈ Nδ such that supp(yδ) = supp(y∗) = supp(z∗) = supp(zδ), ∥y∗ −
yδ∥2 ≤ δ and ∥z∗ − zδ∥2 ≤ δ. Then we have

yT
∗ Ez∗ = yT

∗ E(z∗ − zδ) + (y∗ − yδ)
TEzδ + yT

δ Ezδ

≤ 2δyT
∗ Ez∗ + yT

δ Ezδ,

which implies that
ρ(E, s) ≤ (1− 2δ)−1yT

δ Ezδ ≤ (1− 2δ)−1 max
y,z∈Nδ,

supp(y)=supp(z)

yTEz, (14)

where the inequalities hold when 1− 2δ > 0.

Now for any (y, z) ∈ Nδ , we bound
∣∣yTEz

∣∣ as follows. Recall that

yTEz =
1

n

n∑
i=1

yT
(
xix

T
i − E

[ [
xix

T
i

] ])
z︸ ︷︷ ︸

=:Zi

,

where xi =
√
λgiv + ξi. With the assumption of gi and ξi, we have yTxi

iid∼ N (0, λ(yTv)2 + 1) and xT
i z

iid∼
N (0, λ(zTv)2+1), hence yTxix

T
i z is sub-exponential (Vershynin, 2018). Using the Centering Lemma for sub-exponential

random variables (Vershynin, 2018), we have

∥Zi∥Ψ1 ≤ c1

√
λ(yTv)2 + 1

√
λ(zTv)2 + 1 ≤ c1(λ+ 1),

12
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where c1 > 0 is some absolute constant and the last inequality holds since ∥y∥2 = ∥z∥2 = ∥v∥2 = 1. Therefore, by
Bernstein’s inequality (Vershynin, 2018), for any t ∈ (0, 1), it holds that

P
{∣∣yTEz

∣∣ ≥ tλ
}
≤ 2 exp[−C ′

1n
t2λ2

(λ+ 1)2
], (15)

where C ′
1 > 0 is some absolute constant. By taking union bounds for all (y, z) ∈ Nδ, we obtain that, with probability

exceeding 1− 2( 3ep
δs )

s exp[−C ′
1n

t2λ2

(λ+1)2 ],

max
y,z∈Nδ,

supp(y)=supp(z)

∣∣yTEz
∣∣ ≤ tλ.

Setting δ = 1
3 together with (14) leads to (13).

The next lemma gives the concentration inequality for χ2-square variables.

Lemma A.2 ((Laurent & Massart, 2000)). χ2
(m) denotes a central chi-squared variable with m degrees of freedom. For all

t ≥ 0,

P[χ2
(m) −m ≥ 2

√
mt+ 2t] ≤ exp (−t), (16)

P[χ2
(m) −m ≤ −2

√
mt] ≤ exp (−t). (17)

The next lemma bounds the error between v and a s-sparse largest eigenvector of Σ̂ in unit length.

Lemma A.3. Let Λ ⊂ [p] be such that Λ
⋃
S ≠ ∅ and |Λ| = s. Let u be an eigenvector of unit length corresponding to the

largest eigenvalue of Σ̂Λ. If ρ(E, s) < λ
2 ∥vΛ∥22, then we have

dist(u,vΛ)
2 ≤ ∥vΛ∥22 + 1− 2

∥vΛ∥2√
1 + ρ2(E,s)

(λ∥vΛ∥2
2−2ρ(E,s))

2

.

Proof. Recall that E = Σ̂ − E
[
Σ̂
]
. Denote λ̄ the largest eigenvalue of Σ̂Λ, i.e. λ̄ = λ1(Σ̂Λ). From Weyl’s inequality

(Horn & Johnson, 2012), we have

λ̄ ≥ λ1(E
[
Σ̂Λ

]
) + λn(EΛ) ≥ λ∥vΛ∥22 + 1− ρ(E, s), (18)

where the last inequality holds since E
[
Σ̂
]
= λvvT + I and λn(EΛ) ≥ −ρ(E, s) from the definition. Similarly, we have

for all j ≥ 2,∣∣∣λj(Σ̂Λ)
∣∣∣ ≤ ∣∣∣λj(E

[
Σ̂Λ

]
)
∣∣∣+ ∣∣∣λj(Σ̂Λ)− λj(E

[
Σ̂Λ

]
)
∣∣∣ = 1 +max {|λ1(EΛ)| , |λn(EΛ)|} ≤ 1 + ρ(E, s). (19)

Notice ∥u∥2 = 1 but ∥vΛ∥2 ≤ 1. We divide u as

u = a1
vΛ

∥vΛ∥2
+ a2y

with vT
Λy = 0, ∥y∥2 = 1 and a21 + a22 = 1. Then we have supp(y) ⊂ Λ, and

λ̄a1
vΛ

∥vΛ∥2
+ λ̄a2y = λ̄u = Σ̂Λu = a1

Σ̂ΛvΛ

∥vΛ∥2
+ a2Σ̂Λy.

By taking the inner product with y, we obtain

λ̄a2 = a1
yT Σ̂ΛvΛ

∥vΛ∥2
+ a2y

T Σ̂Λy.
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Since vΛ is the eigenvector of E
[
Σ̂Λ

]
and vT

Λy = 0, we have yTE
[
Σ̂Λ

]
vΛ = 0. This leads to

|a2| = |a1|

∣∣∣yT (EΛ + E
[
Σ̂Λ

]
) vΛ

∥vΛ∥2

∣∣∣∣∣∣λ̄− yT Σ̂Λy
∣∣∣ = |a1|

∣∣∣yTEΛ
vΛ

∥vΛ∥2

∣∣∣∣∣∣λ̄− yT Σ̂Λy
∣∣∣ .

Since supp(y) ⊂ Λ, we have
∣∣∣yTEΛ

vΛ

∥vΛ∥2

∣∣∣ ≤ ρ(E, s). Moreover, since y is perpendicular to vΛ, from (19) we have∣∣∣yT Σ̂Λy
∣∣∣ ≤ max

j≥2

∣∣∣λj(Σ̂Λ)
∣∣∣ ≤ 1 + ρ(E, s).

So from (18) and ρ(E, s) < λ
2 ∥vΛ∥22, we have

|a2|
|a1|

=

∣∣∣yTEΛ
vΛ

∥vΛ∥2

∣∣∣∣∣∣λ̄− yT Σ̂Λy
∣∣∣ ≤ ρ(E, s)

λ∥vΛ∥22 − 2ρ(E, s)
.

Then, since a21 + a22 = 1, we have

a21 ≥ 1

1 + ρ2(E,s)

(λ∥vΛ∥2
2−2ρ(E,s))

2

,

which implies that

dist(u,vΛ)
2 = min

{
∥vΛ − u∥22, ∥vΛ + u∥22

}
= ∥vΛ∥22 + 1− 2 |a1| · ∥vΛ∥2

≤ ∥vΛ∥22 + 1− 2
∥vΛ∥2√

1 + ρ2(E,s)

(λ∥vΛ∥2
2−2ρ(E,s))

2

.

The following two lemmas are used to prove the convergence of truncated power method in our proposed two-stage
algorithm.

Lemma A.4 ((Yuan & Zhang, 2013)). Let z be the eigenvector with the largest eigenvalue (in absolute value) of a symmetric
matrix A, and let κ < 1 be the ratio of the second to the largest eigenvalue in absolute values. Given any y such that
∥y∥2 = 1, let y′ = Ay/∥Ay∥2, then∣∣zTy′∣∣ ≥ ∣∣zTy

∣∣ (1 + 1

2

(
1− κ2

) (
1−

∣∣zTy
∣∣2)) .

Lemma A.5 ((Yuan & Zhang, 2013)). Consider y with ∥y∥0 = s. Consider z and let F = supp(z, s′) be the s′ indices
with the largest absolute values in z. If ∥y∥2 = ∥z∥2 = 1, then∣∣yTzF

∣∣ ≥ ∣∣yTz
∣∣−√

s/s′ min

{√
1− |yTz|2, (1 +

√
s/s′)

(
1−

∣∣yTz
∣∣2)} .

A.2. Proof of Proposition 3.1

Proof of Proposition 3.1. For any j ∈ S and any j′ ∈ Sc, using (4) and (5) obtains:∣∣Σ̂jj

∣∣ ≥ ∣∣∣[E[Σ̂]]
jj

∣∣∣− ∣∣∣Σ̂jj −
[
E
[
Σ̂
]]

jj

∣∣∣ ≥ λv2j + 1− 1

2
gd,∣∣Σ̂j′j′

∣∣ ≤ ∣∣∣[E[Σ̂]]
j′j′

∣∣∣+ ∣∣∣[E[Σ̂]]
j′j′

− Σ̂j′j′

∣∣∣ ≤ 1 +
1

2
gd.

Following from the fact that gd = λ ·minj∈S v2j , one has
∣∣Σ̂jj

∣∣ ≥ ∣∣Σ̂j′j′
∣∣.

14
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A.3. Proof of Theorem 3.2

We organize the proof of Theorem 3.2 in three steps. First, we prove that the index j0 chosen in Algorithm 1 satisfies
|vj0 | ≥

∥v∥∞
2 with high probability. Second, we show that Ŝ chosen in Algorithm 1 contains the indices of most of larger

non-zero entries of v. Finally, we put everything together.

Step 1: Estimating |vj0 |. Recall that j0 = arg max
1≤j≤n

Σ̂j,j .

Lemma A.6. Assume that λ ≥ C ′
2∥v∥−1

∞ and n ≥ C ′
3k log p for some absolute constants C ′

2, C
′
3 > 0. Then, with

probability exceeding 1− p−1, |vj0 | ≥
∥v∥∞

2 .

Proof. Recall that

Σ̂j,j =
1

n

n∑
i=1

(
√
λgivj + ξi,j)(

√
λgivj + ξi,j).

Then we have E
[
Σ̂j,j

]
= λv2j + 1. Since

√
λgivj + ξi,j

iid∼ N (0, λv2j + 1), we obtain nΣ̂j,j/(λv
2
j + 1)

iid∼ χ2
(n).

Firstly, we consider Σ̂j∗,j∗ , where j∗ satisfies |vj∗ | = ∥v∥∞. Then (17) in Lemma A.2 implies that for any ε > 0,

P
{
Σ̂j∗,j∗ ≤ (1− ε)λ∥v∥2∞ + 1

}
= P

{
χ2
(n) − n ≤ −n

ελ∥v∥2∞
λ∥v∥2∞ + 1

}
≤ exp[−n

4

ε2λ2∥v∥4∞
(λ∥v∥2∞ + 1)2

].

(20)

Secondly, we consider S1 :=
{
j ∈ [p]| |vj | < ∥v∥∞

2

}
. By using (16) in Lemma A.2 and taking union bound, we have,

P
{
max
j∈S1

Σ̂j,j ≥ (1− ε)λ∥v∥2∞ + 1

}
≤ (p− 1)P

{
χ2
(n) ≥ n

(1− ε)λ∥v∥2∞ + 1
1
4λ∥v∥2∞ + 1

}

≤ (p− 1) exp[−
n

( 3
4−ε)2λ2∥v∥4

∞
( 1
4λ∥v∥2

∞+1)2

(1 +

√
( 7
4−2ε)λ∥v∥2

∞+1
1
4λ∥v∥2

∞+1
)2
]

≤ (p− 1) exp[−
( 34 − ε)2nλ2∥v∥4∞

4( 14λ∥v∥2∞ + 1)(1 + (1− ε)λ∥v∥2∞)
],

(21)

where the second inequality holds from the definition of S1.

Now we combine (20)(21) and set ε = 1
2 . The complementary events in (20)(21) lead to maxj∈S1

Σ̂j,j <
1
2λ∥v∥

2
∞ + 1 <

Σ̂j∗,j∗ ≤ Σ̂j0,j0 , which implies that j0 /∈ S1, i.e. |vj0 | ≥
∥v∥∞

2 . Therefore, we obtain

P
{
|vj0 | ≥

∥v∥∞
2

}
≥ 1− p exp[− nλ2∥v∥4∞

16(λ∥v∥2∞ + 1)2
]. (22)

Together with the assumptions of λ and n, (22) leads to the desired result.

Remark A.7. From (22), a sufficient condition for constants C ′
2 and C ′

3 in Lemma A.6 is

√
C ′

3

C ′
2

C ′
2∥v∥∞ + 1

≥ 4
√
2√

k∥v∥∞
,

which can be simplified as √
C ′

3

C ′
2

C ′
2 + 1

≥ 4
√
2.

15
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Step 2: Estimating ∥vŜ∥2. For any γ ∈ (0, 1], we define S−
γ :=

{
j ∈ S| |vj | < γ

2
√
k

}
and S+

γ = S \ S−
γ . Then we have

∥vS−
γ
∥22 < γ2

4k · k = γ2

4 and ∥vS+
γ
∥22 ≥ 1 − γ2

4 . Since ∥v∥∞ ≥ 1√
k

, Lemma A.6 implies that |vj0 | ≥ 1
2
√
k
≥ γ

2
√
k

with

high probability, and thus j0 ∈ S+
γ . The following lemma shows that S+

γ ⊂ Ŝ with high probability, where Ŝ is chosen in
Algorithm 1.

Lemma A.8. For any γ ∈ (0, 1], if λ ≥ C ′
4∥v∥−1

∞ and n ≥ C ′
5γ

−2k log p for some absolute constants C ′
4, C

′
5 > 0, then,

with probability exceeding 1− 3p−1, S+
γ ⊂ Ŝ.

Proof. It suffices to show that with high probability,

min
j∈S+

γ

∣∣∣Σ̂j,j0

∣∣∣ > max
j∈Sc

∣∣∣Σ̂j,j0

∣∣∣ .
To prove this, first, we show that for any l ∈ S2, where S2 :=

{
j ∈ S| |vj | ≥ ∥v∥∞

2

}
,

min
j∈S+

γ

∣∣∣Σ̂j,l

∣∣∣ > max
j∈Sc

∣∣∣Σ̂j,l

∣∣∣ ,
which needs to bound

∣∣∣Σ̂j,l

∣∣∣ and
∣∣∣Σ̂j,l − E

[
Σ̂j,l

]∣∣∣ for all j ∈ Sc and j ∈ S+
γ .

For any l ∈ S2, we consider maxj∈Sc

∣∣∣Σ̂j,l

∣∣∣. From the definition, for all j ∈ Sc,

Σ̂j,l =
1

n

n∑
i=1

ξi,j(
√
λgivl + ξi,l),

hence we have E
[
Σ̂j,l

]
= 0. Since ξi,j

iid∼ N (0, 1) and
√
λgivl + ξi,l

iid∼ N (0, λv2l + 1), ξi,j(
√
λgivl + ξi,l) is sub-

exponential (Vershynin, 2018) with

∥ξi,j(
√
λgivl + ξi,l)∥Ψ1

≤ c3
√
λ∥v∥2∞ + 1,

where c3 > 0 is some absolute constant. Then, by taking union bound and using Bernstein’s inequality (Vershynin, 2018),
for any ε1 > 0, we have

P
{
max
j∈Sc

∣∣∣Σ̂j,l

∣∣∣ ≥ ε1

}
≤ 2(p− k) exp[−c4nmin

{
ε21

λ∥v∥2∞ + 1
,

ε1√
λ∥v∥2∞ + 1

}
], (23)

where c4 > 0 is some absolute constant.

For any l ∈ S2, we consider maxj∈S+
γ

∣∣∣Σ̂j,j0 − E
[
Σ̂j,j0

]∣∣∣. From the definition, for all j ∈ S+
γ ,

Σ̂j,l =
1

n

n∑
i=1

(
√
λgivj + ξi,j)(

√
λgivl + ξi,l),

which implies that E
[
Σ̂j,l

]
≥ λvjvl for all j ∈ S+

γ , and thus
∣∣∣E[Σ̂j,l

]∣∣∣ ≥ γλ∥v∥∞

4
√
k

. On the other hand, since
√
λgivj+ξi,j

iid∼
N (0, λv2j + 1), (

√
λgivj + ξi,j)(

√
λgivl + ξi,l) is sub-exponential (Vershynin, 2018). Using the Centering Lemma for

sub-exponential random variables (Vershynin, 2018), we have

∥(
√
λgivj + ξi,j)(

√
λgivl + ξi,l)− E

[
Σ̂j,l

]
∥Ψ1

≤ c5(λ∥v∥2∞ + 1),

where c5 > 0 is an absolute constant. Then, from Bernstein’s inequality (Vershynin, 2018), we have

P

{
max
j∈S+

γ

∣∣∣Σ̂j,l − E
[
Σ̂j,l

]∣∣∣ ≥ ε2

}
≤ 2k exp[−c6nmin

{
ε22

(λ∥v∥2∞ + 1)2
,

ε2
λ∥v∥2∞ + 1

}
], (24)
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where c6 > 0 is an absolute constant.

Now we combine (23)(24) and set ε1 = ε2 = γλ∥v∥∞

8
√
k

. The complementary event in (23) is

max
j∈Sc

∣∣∣Σ̂j,l

∣∣∣ ≤ γλ∥v∥∞
8
√
k

.

Moreover, the complementary event in (24) leads to∣∣∣Σ̂j,l

∣∣∣ > ∣∣∣∣∣∣E[Σ̂j,l

]∣∣∣− ∣∣∣Σ̂j,l − E
[
Σ̂j,j0

]∣∣∣∣∣∣ > γλ∥v∥∞
4
√
k

− γλ∥v∥∞
8
√
k

=
γλ∥v∥∞
8
√
k

,∀j ∈ S+
γ .

These two inequalities implies that min
j∈S+

γ

∣∣∣Σ̂j,l

∣∣∣ > max
j∈Sc

∣∣∣Σ̂j,l

∣∣∣ for any l ∈ S2.

Finally, by taking union bound and using (22)(23)(24),

P
{
S+
γ ⊂ Ŝ

}
=

∑
l∈S2

P

{
min
j∈S+

γ

∣∣∣Σ̂j,l

∣∣∣ > max
j∈Sc

∣∣∣Σ̂j,l

∣∣∣ , j0 = l

}

≥
∑
l∈S2

(1− P

{
min
j∈S+

γ

∣∣∣Σ̂j,l

∣∣∣ ≤ max
j∈Sc

∣∣∣Σ̂j,l

∣∣∣}− P {j0 ̸= l})

≥
∑
l∈S2

(P {j0 = l} − P

{
min
j∈S+

γ

∣∣∣Σ̂j,l

∣∣∣ ≤ max
j∈Sc

∣∣∣Σ̂j,l

∣∣∣})

≥ 1− p exp[− nλ2∥v∥4∞
16(λ∥v∥2∞ + 1)2

]−

2p2 exp[−c7nmin

{
γ2λ2∥v∥2∞

64k(λ∥v∥2∞ + 1)2
,

γλ∥v∥∞
8
√
k(λ∥v∥2∞ + 1)

}
].

(25)

where c7 = min {c4, c6}. Together with the assumption of λ and n and since γ ∈ (0, 1], (25) leads to the desired result.

Remark A.9. From (25), a sufficient condition for constants C ′
4 and C ′

5 in Lemma A.6 is√
C ′

5

C ′
4

C ′
4∥v∥∞ + 1

≥ 4
√
2√

k∥v∥∞
,

√
C ′

5

C ′
4

C ′
4∥v∥∞ + 1

≥ 8

√
3

c7
,

C ′
5

C ′
4

C ′
4∥v∥∞ + 1

≥ 24

c7
√
k
.

It can be simplified as √
C ′

5

C ′
4

C ′
4∥v∥∞ + 1

≥ 4
√
2max

{ √
6

√
c7

,
1√

k∥v∥∞

}
,

or √
C ′

5

C ′
4

C ′
4 + 1

≥ 4
√
2max

{ √
6

√
c7

, 1

}
.

Step 3: Putting everything together. Now we estimate dist(v0,v) and prove Theorem 3.2.

Proof of Theorem 3.2. For any γ ∈ (0, 1], we assume λ ≥ C1∥v∥−1
∞ and n ≥ C2γ

−2k log p with some absolute constants
C1, C2 > 0. For simplicity, we denote ρ = ρ(E, k). Under the above assumptions, by applying Lemma A.1 with
t = 1

16γ, s = k and Lemma A.8, we have

P
{
ρ ≤ 3

16
γλ, j0 ∈ S+

γ ⊂ Ŝ
}

≥ 1− 2p−k − 3p−1 ≥ 1− 5p−1. (26)
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Under the event in (26), we estimate dist(v0,v). Since supp(v0) = Ŝ, we have

dist(v0,v)2 = dist(v0,vŜ)
2 + ∥vŜc∥22. (27)

Firstly, we estimate ∥vŜc∥22. Since Ŝc ⊂ (S \ S−
γ )c = S−

γ

⋃
Sc, we have

∥vŜc∥22 ≤ ∥vS−
γ
∥22 + ∥vSc∥22 <

γ2

4
<

1

4
, ∥vŜ∥

2
2 > 1− γ2

4
>

3

4
.

Secondly, we estimate dist(v0,vŜ)
2. Applying Lemma A.3 with Λ = Ŝ and s = k, we obtain

dist(v0,vŜ)
2 ≤ ∥vŜ∥2 + 1− 2

∥vŜ∥2√
1 + ρ2

[λ∥vŜ∥2
2−2ρ]

2

≤ ∥vŜ∥2 + 1− 2
∥vŜ∥2√

1 + ρ2

( 3
4λ−2ρ)2

,

where the last inequality holds since ∥vŜ∥22 > 3
4 . Therefore, by using Lemma A.3 and ∥vŜc∥22 ≤ γ2

4 , we have

dist(v0,vŜ)
2 ≤ max

2− γ2

4
−

2
√

1− γ2

4√
1 + ρ2

( 3
4λ−2ρ)2

, 2− 2√
1 + ρ2

( 3
4λ−2ρ)2


≤ max

2− γ2

4
− 2

1− γ2

4

1 + ρ2

( 3
4λ−2ρ)2

, 2− 2
1

1 + ρ2

( 3
4λ−2ρ)2


= max

{
γ2

4 ( 34λ− 2ρ)2 + (2− γ2

4 )ρ2

( 34λ− 2ρ)2 + ρ2
,

2ρ2

( 34λ− 2ρ)2 + ρ2

}

≤ γ2

4
+

2ρ2

( 34λ− 2ρ)2 + ρ2
.

It follows from (27) and ρ ≤ 3
16γλ that

dist(v0,v)2 ≤ γ2

2
+

γ2

2
= γ2,

completing the proof.

Remark A.10. From (13)(25), similar to Remark A.9, a sufficient condition for constants C1 and C2 in Theorem 3.2 is

√
C2

C1

C1 + ∥v∥∞
≥ 16

√
2 + log2(9e)

C ′
1

,

√
C2

C1

C1∥v∥∞ + 1
≥ 4

√
2max

{ √
6

√
c7

,
1√

k∥v∥∞

}
,

which can be simplified as

√
C2

C1

C1 + 1
≥ max

{
16

√
2 + log2(9e)

C ′
1

, 4
√
2max

{ √
6

√
c7

, 1

}}
.
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A.4. Proof of Theorem 3.3

We organize the proof of Theorem 3.3 into two parts. First, we show that v0 falls into a small constant neighborhood of v.
Subsequently, we prove the convergence of the truncated power method.

Proof of Theorem 3.3. Throughout the proof, we assume λ ≥ C3∥v∥−1
∞ and n ≥ C4k log p with some absolute constants

C3, C4 > 0. We denote k̃ = k+2k′, ρ = ρ(E, k̃) and Ft = supp(vt), where k′ = C5k for some absolute constant C5 ≥ 1.

Setting t = 1
3ζ

√
k log p

n and s = k̃ in Lemma A.1 and γ = 1 in Lemma A.8 for some constant 0 < ζ < 0.001
√
C4, together

with the above assumptions, similar to Theorem 3.2, with the probability exceeding 1 − 2p−k − 3p−1 ≥ 1 − 5p−1, the
following event holds:

E =

{
ρ ≤ ζ

√
k log p

n
λ, dist(v0,v) ≤ 1

}
.

We will continue the proof under this event.

Step 1: Estimating
∣∣vTv0

∣∣. Since 1 ≥ dist(v,v0)2 = 2− 2
∣∣vTv0

∣∣, we have
∣∣vTv0

∣∣ ≥ 0.5.

Step 2: Convergence of truncated power method. To prove (11), we will first show that dist(v,vt) ≤ 1 by induction.

We denote Λt = Ft−1 ∪ Ft ∪ S , then |Λt| ≤ k + 2k′ = k̃. Also, we define

ut = Σ̂Λtv
t−1/∥Σ̂Λtv

t−1∥2, (28)

hence we have ut = ut
Ft
/∥ut

Ft
∥2. Let κ be the ratio of the second largest (in absolute value) to the largest eigenvalue of

Σ̂Λt
. Then, since S ⊂ Λt, similar to (18)(19), we obtain

κ =
maxj ̸=1

∣∣∣λj(Σ̂Λt
)
∣∣∣∣∣∣λ1(Σ̂Λt

)
∣∣∣ ≤ 1 + ρ

λ∥vΛt
∥22 + 1− ρ

≤ 1 + 0.001λ

1 + 0.999λ
≤ ∥v∥∞ + 0.001C3

∥v∥∞ + 0.999C3
=: B1,

where in the second inequality we use ρ ≤ ζ
√

k log p
n λ ≤ 0.001λ, and in the last inequality we use λ ≥ C3∥v∥−1

∞ . Obviously
we have κ ≤ B1 < 1.

Let v̄ be a unit eigenvector corresponding to the largest eigenvalue of Σ̂Λt
and satisfying vT v̄ ≥ 0. hence we have

dist(v, v̄) = ∥v − v̄∥2. Then, using (28) and Lemma A.4, we have∣∣v̄Tut
∣∣ ≥ ∣∣v̄Tvt−1

∣∣ (1 + 1

2
(1− κ2)

(
1−

∣∣v̄Tvt−1
∣∣2)) ,

which implies that

1−
∣∣v̄Tut

∣∣ ≤ (
1−

∣∣v̄Tvt−1
∣∣)(1− 1−B2

1

2

(∣∣v̄Tvt−1
∣∣+ ∣∣v̄Tvt−1

∣∣2)) . (29)

Since S ⊂ Λt, Lemma A.3 gives

∥v − v̄∥22 = dist(v, v̄)2 ≤ 2− 2
1√

1 + ρ2

(λ−2ρ)2

≤ ρ2

(λ− 2ρ)2
≤ ζ2

0.9982
k log p

n
≤ 1

9982
, (30)

where in the second inequality we use 1− 1√
1+a

≤ a
2 for a ≥ 0, and in the last two inequalities we use ρ ≤ ζ

√
k log p

n λ ≤
0.001λ and the conditions of n and ζ. Note that the induction assumption dist(v,vt−1) ≤ 1 implies that

∣∣vTvt−1
∣∣ ≥ 0.5,

which with (30) further leads to∣∣v̄Tvt−1
∣∣ ≥ ∣∣vTvt−1

∣∣− ∣∣(v − v̄)Tvt−1
∣∣ ≥ ∣∣vTvt−1

∣∣− ∥v − v̄∥2∥vt−1∥2 ≥ 0.4989. (31)

Plugging (31) into (29), we have

1−
∣∣v̄Tut

∣∣ ≤ (
0.6261 + 0.374B2

1

)
(1−

∣∣v̄Tvt−1
∣∣),
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which is equivalent to

dist(v̄,ut) ≤
√
0.6261 + 0.374B2

1 · dist(v̄,vt−1), (32)

where we use ∥v̄∥2 = ∥ut∥2 = ∥vt−1∥2 = 1. For unit vectors v̄,vt−1,v, we obtain

dist(v̄,vt−1) ≤ dist(v̄,v) + dist(vt−1,v). (33)

This is because
dist(v̄,v) + dist(vt−1,v) = ∥τ1v̄ − v∥2 + ∥v + τ2v

t−1∥2
≥ ∥τ1v̄ + τ2v

t−1∥2
≥ dist(v̄,vt−1),

where τ1, τ2 ∈ {±1} and we use (10). Similarly, for unit vectors v,ut, v̄, it holds that

dist(v,ut) ≤ dist(v, v̄) + dist(ut, v̄). (34)

Using (30), (32), (33), and (34), we have

dist(v,ut)

≤
√
0.6261 + 0.374B2

1 · dist(v,vt−1) +
ζ

0.998
(1 +

√
0.6261 + 0.374B2

1)

√
k log p

n
.

(35)

Since k′ = C5k, Lemma A.5 generates∣∣vT [ut]Ft

∣∣ ≥ ∣∣vTut
∣∣− C

−1/2
5 min

{√
1− |vTut|2, (1 + C

−1/2
5 )

(
1−

∣∣vTut
∣∣2)}

≥
∣∣vTut

∣∣− C
−1/2
5 (1 + C

−1/2
5 )

(
1−

∣∣vTut
∣∣2) ,

which implies that

1−
∣∣vT [ut]Ft

∣∣ ≤ 1−
∣∣vTut

∣∣+ C
−1/2
5 (1 + C

−1/2
5 )

(
1−

∣∣vTut
∣∣2) ≤ B2

2(1−
∣∣vTut

∣∣),
where B2 :=

√
1 + 2C

−1/2
5 (1 + C

−1/2
5 ). Recall that vt = ut

Ft
/∥ut

Ft
∥2. Then we have

dist(v,vt)

=
√

2− 2 |vTvt| =
√
2− 2 |vT [ut]Ft | /∥[ut]Ft∥2

≤
√

2− 2 |vT [ut]Ft
| ≤ B2 ·

√
2(1− |vTut|)

= B2 · dist(v,ut)

≤ B2

√
0.6261 + 0.374B2

1 · dist(v,vt−1) +
ζB2

0.998

(
1 +

√
0.6261 + 0.374B2

1

)√
k log p

n

≤ B2

√
0.6261 + 0.374B2

1 · dist(v,vt−1) +
B2

998

(
1 +

√
0.6261 + 0.374B2

1

)
,

(36)

where in the last second inequality we use (35), and the last inequality holds from the conditions of n and ζ. Since
dist(v,vt−1) ≤ 1, the above inequality also implies that dist(v,vt) ≤ 1 with suitable constants C3, C5 (constants B1, B2).
Therefore, we complete the induction, which proves that dist(v,vt) ≤ 1 for all t. As a result, the above inequality holds for
all t, which leads to

dist(v,vt) = d · dist(v,vt−1) +B3

√
k log p

n

≤ d2 · dist(v,vt−2) + d ·B3

√
k log p

n
+B3

√
k log p

n

≤ · · ·

≤ dt · dist(v,v0) +
B3

1− d

√
k log p

n
,

20



Fast and Provable Algorithms for Sparse PCA with Improved Sample Complexity

where d := B2

√
0.6261 + 0.374B2

1 and B3 := ζB2

0.998

(
1 +

√
0.6261 + 0.374B2

1

)
. Denoting d′ := B3

1−d , the above
inequality is the desired result.

Remark A.11. From (13)(25)(36), similar to Remark A.10, a sufficient condition for constants C3, C4, C5, ζ in Theorem 3.3
is

ζ ≤ 0.001
√
C4,

ζ√
C5

C3

C3 + ∥v∥∞
≥ 1

3

√
4 + 3 log2(3e)

3C ′
1

,

√
C4

C3

C3∥v∥∞ + 1
≥ 4

√
2max

{ √
6

√
c7

,
1√

k∥v∥∞

}
,

999B2

√
0.6261 + 0.374B2

1 +B2 ≤ 998,

where B1 = ∥v∥∞+0.001C3

∥v∥∞+0.999C3
and B2 =

√
1 + 2C

−1/2
5 (1 + C

−1/2
5 ). It can be simplified as

ζ ≤ 0.001
√
C4,

ζ√
C5

C3

C3 + 1
≥ 1

3

√
4 + 3 log2(3e)

3C ′
1

,

√
C4

C3

C3 + 1
≥ 4

√
2max

{ √
6

√
c7

, 1

}
,

999B2

√
0.6261 + 0.374B̃1

2
+B2 ≤ 998,

where B̃1 = 1+0.001C3

1+0.999C3
.
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B. Additional Experiments
To further validate and analyze the behavior of our proposed Algorithm 2, we conduct two complementary studies. First, we
assess the robustness of the algorithm under suboptimal signal-strength conditions by varying the parameter λ, using the
same data-generation procedure as in Section 4.2. Second, we isolate the contribution of the refinement stage by comparing
the estimation accuracy after the initialization step alone with that of the full two-stage pipeline.

B.1. Robustness of Algorithm 2

To assess the robustness of Algorithm 2 when theoretical assumptions are relaxed, we conduct experiments across a range of
signal strength values λ. Following the experimental protocol from Section 4.2, we generate sparse eigenvectors v with
dimension p = 1000 and sparsity level k = 20. All reported results represent averages over 200 independent trials.

Table 4. Estimation error verus sample size n under different λ

Sample size n 100 200 300 400 500 600 700 800 900 1000

λ = 0.5 1.4003 1.3971 1.3973 1.3996 1.3976 1.3903 1.3939 1.3943 1.3927 1.3897
λ = 2.5 1.3174 1.1650 0.7896 0.5427 0.3980 0.2459 0.1736 0.1535 0.1331 0.1280
λ = 5 0.7188 0.2635 0.1347 0.1062 0.0943 0.0863 0.0789 0.0751 0.0701 0.0664
λ = 7.5 0.2762 0.1246 0.0961 0.0843 0.0749 0.0683 0.0626 0.0596 0.0556 0.0526

Table 4 presents the estimation error as a function of sample size for varying signal strengths. The results show that larger
λ values yield substantially lower estimation errors, and that the advantage of strong-signal settings over weak-signal
settings becomes increasingly pronounced as n grows. Crucially, even under weak signals (small λ), the algorithm degrades
gracefully—maintaining robust accuracy rather than failing catastrophically. These findings underscore the practical
resilience of our method across a broader range of scenarios than our theoretical guarantees alone would cover.

B.2. Improvement of Refinement Stage in Algorithm 2

To quantify the contribution of the refinement stage in Algorithm 2, we compare the estimation accuracy after the initialization
stage alone versus the complete two-stage procedure. We maintain the experimental protocol from Section 4.2 for generating
v, setting dimension p = 1000 and sparsity level k = 20. Results are averaged over 200 independent trials.

Table 5. Estimation error verus sample size n after different stages in Algorithm 2

Sample size n 100 200 300 400 500 600 700 800 900 1000

Initialization 1.0553 0.6733 0.4183 0.2880 0.1981 0.1401 0.1028 0.0848 0.0750 0.0697
Refinement 0.7188 0.2635 0.1347 0.1062 0.0943 0.0863 0.0789 0.0751 0.0701 0.0664

Table 5 reveals the substantial improvement achieved by the refinement stage. The truncated power iteration consistently
reduces estimation error across all sample sizes, with the most dramatic gains occurring at smaller sample sizes—for
instance, reducing error by over 60% when n = 200. As the sample size increases, both stages converge toward similar
performance, yet the refinement stage maintains a consistent advantage. These empirical findings validate our two-stage
design and demonstrate that combining careful initialization with iterative refinement is essential for achieving optimal
statistical performance.
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