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ABSTRACT

A plethora of sentence embedding models makes it challenging to choose one,
especially for technical domains rich with specialized vocabulary. In this work, we
domain adapt embeddings using telecom, health and science datasets for question
answering. We evaluate embeddings obtained from publicly available models and
their domain-adapted variants, on both point retrieval accuracies, as well as their
(95%) confidence intervals. We establish a systematic method to obtain thresholds
for similarity scores for different embeddings. As expected, we observe that fine-
tuning improves mean bootstrapped accuracies. We also observe that it results in
tighter confidence intervals, which further improve when pre-training is preceded by
fine-tuning. We introduce metrics which measure the distributional overlaps of top-
K, correct and random document similarities with the question. Further, we show
that these metrics are correlated with retrieval accuracy and similarity thresholds.
Recent literature shows conflicting effects of isotropy on retrieval accuracies.
Our experiments establish that the isotropy of embeddings (as measured by two
independent state-of-the-art isotropy metric definitions) is poorly correlated with
retrieval performance. We show that embeddings for domain-specific sentences
have little overlap with those for domain-agnostic ones, and fine-tuning moves
them further apart. Based on our results, we provide recommendations for use of
our methodology and metrics by researchers and practitioners.

1 INTRODUCTION

Document Question Answering (QA) methods such as Retrieval Augmented Generation (RAG)
typically involve retrieval of sections, paragraphs or sentences from a document corpus to accurately
answer user queries. Embedding models are used to map the questions or documents to a semantic
space. Retrieval is typically achieved by computing similarity between embeddings of questions and
those of documents. The most similar top-K documents are considered to be the relevant answers.

While many state-of-the-art (SOTA) models trained on publicly available datasets are easily accessible
(Reimers & Gurevych, 2019; Chen et al., 2024; Zhang et al., 2023; Xiao et al., 2023), obtaining good
retrieval accuracies for domain specific tasks is challenging (Roychowdhury et al., 2024). It is well
acknowledged in literature that domain adaptation and fine-tuning can improve retrieval performance
(Li et al., 2020), but making an informed choice among several available models involves extensive
evaluation over parameters such as the number of relevant documents retrieved for a test set.

Some studies (Zhou et al., 2022) have identified limitations of cosine similarities to retrieve embed-
dings - a sample limitation is underestimation of similarity of frequent words with their homonyms. It
has been shown that cosine similarities can be arbitrary or dependent on regularization, making them
unreliable for retrieval tasks (Steck et al., 2024) - although this study was limited to linear models
the authors have conjectured that the same may be true for non-linear models. In fact, variations
in embedding space representations obtained from different architectures have been widely studied
(Mistry & Minai, 2023; Biś et al., 2021; Timkey & Van Schijndel, 2021). Another limitation observed
is reporting of point accuracies, without any error bars, for retrieval tasks. This limits estimation of
performance on new questions, especially when evaluated with relatively small datasets.

Recent work has explored isotropy as a measure for quantifying robust embedding space representa-
tions (Jung et al., 2023; Rudman & Eickhoff, 2023; Rudman et al., 2021), though it has also been
argued otherwise (Hou et al., 2024; Ait-Saada & Nadif, 2023; Godey et al., 2023; Razzhigaev et al.,
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2023). In particular, Jung et al. (2023) suggests that isotropic embeddings improve retrieval whereas
Rudman & Eickhoff (2023) propose that reduced isotropy or anisotropy helps retrieval. Rajaee &
Pilehvar (2021) looks at isotropy of embeddings and show that increasing the isotropy of fine-tuned
models leads to poorer performance.

We observe a few limitations with the current practice of measuring retrieval performance in both
research and practice. First, reporting point accuracies do not provide insight into error bars (con-
fidence intervals). This is especially important for relatively smaller datasets. Second, the lack of
confidence intervals does not allow for tests of statistical significance when comparing different
embedding models or domain adaptation strategies. Third, to the best of our knowledge, we have not
found prior work which has provided a systematic approach to choose the best threshold. In practice,
such thresholds are often chosen by inspection of similarity scores. Our approach of bootstrapping
provides the ability to perform tests for statistical significance on the results, and we choose the
maximum threshold such that our results are not statistically worse off. Finally, although prior work
Gao et al. (2021); Ethayarajh (2019) have looked at the effect of domain adaptation on embeddings,
the separation of domain-specific embeddings from general purpose embeddings under domain
adaptation has not been studied. This does not allow a clear understanding of why performance
changes on general purpose retrieval post domain adaptation.

1.1 RESEARCH QUESTIONS AND CONTRIBUTIONS

The primary research questions in this work are:

• RQ1: What are the confidence intervals (CI) of accuracies of SOTA retrieval models and
their fine-tuned versions when considering domain specific tasks?

• RQ2: What facets apart from retrieval accuracies can characterise an embedding model?
How does the distribution of cosine similarities vary across embeddings?

• RQ3: Can the variation of retrieval accuracies be attributed to only the isotropy of the
embeddings?

Our primary contributions are:

• Demonstrate that fine-tuning improves mean accuracies as well as CI. Pre-training followed
by fine-tuning improves CI further.

• Propose a systematic method to introduce thresholds with minimal effect on retrieval
accuracies.

• Show that although domain adaptation via fine tuning leads to higher isotropy scores,
retrieval performance across models is poorly correlated with the isotropy scores of the
models; improving isotropy scores via transformations does not improve accuracies.

• We introduce metrics which measure the distributional overlaps of top-K, correct and
random document similarities with the question.

• Show empirically that these metrics are correlated with accuracies and similarity thresholds.

• Demonstrate that domain adaptation shifts the embeddings of the target domain farther away
from embeddings of sentences from domain agnostic datasets.

The rest of the paper is structured as follows: the methodology is detailed in Section 2. We detail the
domains considered along with the corresponding datasets and models in Section 3.1 and Section
3.2 respectively. We report experimental results of multiple embeddings (with and without domain
adaptation) in Section 4. We summarize our findings and discuss limitations and scope for future
work in Section 5.

2 METHODOLOGY

We consider the following in this study viz. computing bootstrapped accuracies, estimating proba-
bilities of overlap between different distributions, analysis of minimum thresholds for similarities
and study the effects of isotropy scores. We describe each of these formally in this section. For most
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of our experiments, we choose a bootstrapped approach to get both point estimates and CI for our
estimates.

Consider a dataset D = [s1, s2, . . . , sN ], where si is the ith sentence and i ∈ [1, N ]. Let D be
associated with a question set Q, containing Q questions. Each question q ∈ Q can be uniquely
answerable by one sentence sq ∈ D, which we consider as the correct answer for the question q. Let
the embedding representation of si using a sentence embedding model M be represented by EM(si),
and correspond to dimension Mp. Similarly, let EM(q) represent the embedding (using sentence
embedding model M) for a question, q ∈ Q. Henceforth, in this work, all sentence embeddings will
be referred to as embeddings.

Like in any typical QA retrieval methodology, D and Q result in embedding matrices of sizes
N × Mp and Q × Mp respectively. All embeddings are normalized to have unit L2 norm. We
draw m bootstrap samples from Q, each containing l questions i.e., |Qj | = l with | · | indicative of
the cardinality of the corresponding set and j ∈ [1,m]. We use these bootstrapped samples in our
experiments.

2.1 BOOTSTRAPPED ACCURACIES

Consider any jth bootstrap sample Qj ∈ Q. For each question q ∈ Qj , we find the set tKq of the
top-K most similar sentences based on highest cosine similarity and check if sq is included in this set.
The top-K accuracy, aj , is the proportion of questions in this bootstrap sample for which sq ∈ tKq .
The mean bootstrapped retrieval accuracy is given by a = 1

m

∑m
j=1 aj .

The 95% confidence interval (alower, aupper) is defined by the 2.5th and 97.5th percentiles of the set
of ai values.

2.2 COMPUTATION OF THRESHOLDS

It is often desirable to have thresholds on similarity scores between questions embeddings and
retrieved sentence embeddings from the dataset via top-K similarity scores, thus ignoring any
sentence with similarity score below this threshold. This reduces retrieval of sentences that may
not necessarily answer the question. A low threshold runs the risk of including wrong/irrelevant
documents in retrieval results, and a high threshold can reduce the top-K accuracy.

However, there is no reliable way to estimate a threshold, given that the distribution of similarities
can be different based on choice of the embedding model. Hence, we follow a bootstrapped analysis.

Consider each of the bootstrap samples, Qj . We construct a similarity matrix Sj
M = EM(Qj) ·

EM(D)T , where (·) denotes the dot product, ()T denotes the matrix transpose and Sj
M ∈ R(l×N).

Let T j
M be constructed such that, each row of T j

M has the top-K similarity scores from Sj
M. We

define γj = min(T j
M) and Γ ≜ {γj : j ∈ [1,m]}.

Let us choose a threshold, using ψth percentile of Γ, defined by τ(ψ) s.t. PΓ(x < τ(ψ)) = ψ.
We study the effect of τ(ψ) on bootstrapped retrieval accuracies. We substitute all similarities of
Sj
M < τ(ψ) to be zero. We consider the threshold as the highest τ(ψ) such that the accuracy from

this substitution is not statistically different from the mean bootstrap accuracy, a (refer Section 2.1).
We would like to clarify that γj is the set of minimum similarities in the bootstrapped samples, thus ψ
can be interpreted as the percentile of irrelevant documents - however there is no direct interpretation
with respect to the total number of documents retrieved.

2.3 ANALYSIS OF DISTRIBUTION OF VECTOR EMBEDDINGS

To understand the vector embeddings in the semantic space and their effect on the retrieval perfor-
mance, we study the distributions of cosine similarities of vector embeddings from selected models.
As mentioned earlier, all embeddings have unit L2 norm.

We first consider Q and estimate the following distributions:

3
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• Distribution of correct similarity scores - Let simcorr
q represent the cosine similarity

between EM(q) and EM(sq), ∀q ∈ Q. Let Scorr = {simcorr
q : q ∈ Q} represent the set

of correct similarity scores.

• Distribution of top-k similarity scores - Let simtopK
q represent cosine similarities between

any question and the corresponding top-K retrieved sentences. Let this set be represented
by StopK = {simtopK

q : q ∈ Q}.

• Distribution of random similarity scores - Let simrand
q represent the cosine similarity

between embedding of any question, EM(q), ∀q ∈ Q and that of a randomly chosen
statement EM(sr), s.t. sr ∈ D. Let this set be represented by Srand = {simrand

q : q ∈ Q}.

Evidently, |Scorr| = Q, |StopK | = KQ and |Srand| = Q.

We estimate the Empirical Cumulative Distribution Function (ECDF) 1 for each of these sets; let
these be represented by Ccorr, CtopK and Crand for Scorr, StopK and Srand respectively.

Consider each bootstrapped sample Qj . Let θj be defined as the similarity score at the ψth percentile
of the set StopK i.e., PStopK

(simtopK ≤ θj) = ψ. Now, we define the following ECDF estimates:

Ccorr(θj) ≜ PScorr
(simcorr > θj) (1)

Crand(θj) ≜ PSrand
(simrand > θj) (2)

These are a measure of the overlap of cosine similarities between top-K and correct, top-K and
random QA sentence pairs. The mean of these across the bootstrapped samples can be calculated as
C̄corr(θ) =

1
m

∑m
j=1 Ccorr(θj) and C̄rand(θ) =

1
m

∑m
j=1 Crand(θj). We refer to them as correct-

overlap-ECDF (COE) and random-overlap-ECDF (ROE) estimates.

We also estimate the 95% CI for both COE and ROE by the using the 2.5th and 97.5th percentile of
Ccorr(θj) and Crand(θj) as lower and upper bounds respectively.

2.4 DOMAIN ADAPTATION

One of the key challenges in leveraging embedding models for technical domains is the lack of
domain specific knowledge, since the SOTA (base) models have been trained on publicly available
datasets which may be minimally introduced to domain specific terminology. We evaluate various
domain adaptation techniques on the base models:

• Pre-training Li et al. (2020): We use Masked Language Modeling (MLM) (Salazar et al.,
2019) approach for this. Sentences from the corpus of technical documents (of a domain)
are used.

• Fine-tuning (Mosbach et al., 2020): We prepare triplets of the form < q, p, n > where q
corresponds to the user query, p represents the correct (positive) answer and n is a list of
incorrect (negative) answers. The base model is fine-tuned using these triplets. It may be
noted here that the fine-tuning may be performed post pre-training or independently on the
base model (without pre-training).

Thus, we evaluate the following variants of embedding models - base model, pre-trained only (PT),
fine-tuned only (FT) and pre-training followed by fine-tuning (PT-FT). As recommended2, post
fine-tuning, we merge the base model with the domain adapted model.

2.5 ISOTROPY SCORES

Isotropy measures distribution of embeddings on the high-dimensional unit hyper-sphere (since all
embeddings have unit-L2 norm). If the embeddings are uniformly distributed over the unit sphere i.e.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ecdf.
html

2https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/
finetune/README.md
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there is no preferred direction, then, they are said to be isotropic Arora et al. (2016); Mu et al. (2017).
We use two different measures of isotropy to validate our findings (for details refer to Appendix
A.3). We represent the isotropic scores as, IA, the second order approximation as defined in Mu et al.
(2017) and IB to be isoscores as per Rudman et al. (2021; 2022). These measure isotropy differently
and thus their scores can be quite different. Higher isotropic scores implies embeddings being well
distributed in the unit hyper-sphere.

Various transformations have been proposed in literature to improve the isotropy scores. We choose
the following to study the effect of isotropy (measured using both IA, IB) on retrieval accuracies.

• Whitened: Whitening of embeddings (Jung et al., 2023)
• PCA: Post-processing embeddings by centering and eliminating the top principal compo-

nents (Mu et al., 2017)
• Standardized: Mean subtraction and unit standard deviation (Timkey & Van Schijndel, 2021)

2.6 COMPARISON OF EMBEDDINGS POST DOMAIN ADAPTATION

We analyze the effect of pre-training and fine-tuning base embedding models with domain-specific
data by comparing distribution of the resultant embeddings with that of embeddings from a domain
agnostic dataset.

Let D represent domain-specific data, D′ represent domain-agnostic dataset. Let M be the base model,
M′ be the pre-trained, fine-tuned version of the base model. Let similarity between the datasets be
defined ∆M(D,D′) ≜ {min(||EM(d), EM(d′)||2) : d ∈ D, d′ ∈ D′}, and |∆M(D,D′)| = |D|.
We compare the distributions of ∆M and ∆M′ . Our motivation here is to analyse the separation of
the distributions post domain adaptation.

3 EXPERIMENTAL SETUP

3.1 DATASETS

For our experiments, we consider three domains - telecom, medical and science and use one dataset
from each of them. We also consider one domain agnostic dataset. Table 1 has a brief summary of the
size of the train and test splits. Note that, we do not do any pre-training/fine-tuning for the domain
agnostic dataset hence train dataset size for this is "Not Applicable" (N/A). The TelecomQuad dataset
is propiertary and the citation for the same is masked for blind review.

Domain Dataset Reference Train Dataset Size Test Dataset Size
Telecom TelecomQuad Masked 4186 981
Health PubMedQA Jin et al. (2019) 4000 500
Science Sciq Johannes Welbl (2017) 10481 884
Domain Agnostic SQuAD Rajpurkar et al. (2016) N/A 1009

Table 1: Summary of Datasets used in our experiments

We choose K = 5 for reporting top-K accuracies. For bootstrap experiments, we consider l = 100,
m = 500.

3.2 EMBEDDING MODELS

We consider the following embedding models for our experiments:

• From the BAAI family of embedding models, we consider bge-large-en (Xiao et al., 2023)
and llm-embedder (Zhang et al., 2023) with Mp = 1024, 768 respectively. We PT, FT,
PT-FT these models for further experiments.

• In addition, only for the telecom dataset
– We evaluate a telecom-domain adapted BERT-based model General-Telecom-

Embeddings (GTE) with Mp = 768.
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Embedding Model Bootstrapped Acc CI Width COE ROE (τ, ψ) Acc @ τ
Dataset: TelecomQuAD, k=5

bge_large 66.87 17.04 87.98 4.81 0.5 (35) 67.18
bge_large_pretrained 62.64 17 85.94 2.18 0.58 (25) 61.36
bge_large_finetuned 81.61 14.04 91.98 0.22 0.43 (25) 79.46
bge_large_pretrained_finetuned 81.67 13.04 91.06 0.23 0.4 (35) 77.73
llm_embedder 70.06 14.52 87.26 5.77 0.78 (30) 69.9
llm_embedder_pretrained 57.12 19.57 84.88 6.32 0.75 (30) 52.53
llm_embedder_finetuned 81.58 13.52 90.73 0.10 0.56 (40) 80.69
llm_embedder_pretrained_finetuned 80.37 12.52 90.74 0.21 0.53 (25) 77.97

Dataset: sciq, k=5
bge_large 92.7 10 96.98 4.14 0.508 (85) 92.8
bge_large_pretrained 92.08 9 95.48 1.99 0.5 (15) 92.1
bge_large_finetuned 94.45 8 97.79 3.72 0.883 (85) 94.8
bge_large_pretrained_finetuned 95.5 7 98.15 3.25 0.771 (85) 95.4
llm_embedder 91.69 9 97.2 6.85 0.809 (85) 91.8
llm_embedder_pretrained 91.03 10 94.42 2.21 0.682 (85) 91.2
llm_embedder_finetuned 94.37 8 98.18 7.4 0.883 (85) 94.7
llm_embedder_pretrained_finetuned 94 8 98.24 6.28 0.824 (85) 93.9

Dataset: PubMedQA, k=5
bge_large 94 9 96.2 3.21 0.426 (5) 93.8
bge_large_pretrained 84.3 12 93.8 7.52 0.492 (5) 83.4
bge_large_finetuned 98.51 5 99.5 4.81 0.791 (85) 98.5
bge_large_pretrained_finetuned 97.83 4 98.95 6.71 0.755 (45) 97.7
llm_embedder 95.42 8 97.7 4.49 0.732 (5) 95.8
llm_embedder_pretrained 91.87 10 96.94 4.1 0 (100) 92.0
llm_embedder_finetuned 97.53 6 99.28 5.55 0.797 (30) 97.5
llm_embedder_pretrained_finetuned 97.5 5 99 6.15 0.783 (30) 97.2

Table 2: Different metrics for various datasets (D) dataset, K=5

– From the sentence transformers (Reimers & Gurevych, 2019) library, we consider
MPNET (Song et al., 2020) and MiniLM (all-MiniLM-L6-v2). Their Mp are 768 and
384 respectively.

– From OpenAI family3, we evaluate on text-embedding-3-small, text-embedding-3-large
and ada_002, Mp being 1536, 3072 and 1536 respectively.

All experiments have been conducted using a A100-SXM4-80GB GPU.

4 RESULTS

4.1 ACCURACIES AND CONFIDENCE INTERVALS

Table 2 reports retrieval accuracy scores along with confidence intervals across 3 datasets. Here we
only present the results for models (BAAI family) which have been domain-adapted. Additional
results for telecom domain with public models, custom telecom model and OpenAI models are
provided in Appendix A.1.

We observe a consistent accuracy improvements across models and domains on FT and PT-FT.
However, we observe that fine-tuning a base model and that of a pre-trained model is not much
different from the mean accuracies perspective. More importantly, and to the best of our knowledge
not reported previously, is the insight that confidence intervals become tighter with FT and further,
with PT-FT. Since only PT is trained with a MLM objective, it is not surprising, and previously
observed (Li et al., 2020), that there is a reduction in accuracies for PT models.

We report COE (as defined in Section 2.3) for the various models and domain-specific datasets in
Table 2. The correlation between COE and accuracy is reported in Table. 3. We see a strong positive
correlation between them across domain-specific datasets.

The column τ(ψ) in Table 2 indicates the thresholds as per the method described in Section 2.2.
While the accuracies have slightly reduced with introduction of thresholds (refer Acc @τ column),
this can be interpreted as the accuracy obtained with removal of less relevant documents in retrieved

3https://platform.openai.com/docs/guides/embeddings/embedding-models
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Figure 1: Density plots for telecom dataset. Red, green and blue indicate distribution of Srand, Scorr

and StopK respectively. Refer Sec. 2.3 for definitions

results. Additionally, Acc @τ is not statistically different from the bootstrapped accuracy for
the whole dataset (refer column 7 vs column 2). Thus, our choice of threshold does not lead to
degradation of accuracies in a statistical sense. We repeat here, from Section 2.2, that there is no
direct interpretation of ψ with respect to the total number of documents retrieved.

Corr Telecom SciQ PubMedQA Average
Acc vs. COE 0.882 0.838 0.961 0.894
Acc vs. ROE -0.121 0.232 -0.277 -0.05
Threshold vs ROE 0.391 0.611 0.378 0.46
Acc vs IA 0.014 -0.082 -0.255 -0.108
Acc vs IB 0.05 0.008 -0.042 0.005

Table 3: Correlation values

As expected, the correlation between ROE and accuracy is low (refer Table 3) across domains. We
also analyse the correlation between threshold (τ(ψ)) with ROE. This is found to be positively
correlated. These correlations are not obvious - this indicates that for a model to perform well,
questions must be well interspersed with answers in the embedding space. This is also reflected in the
distribution of embeddings as shown in Figure 1. While Figure 1 is for telecom domain, we report
the distribution of embeddings for other domains in Appendix A.4.

On further analysing Figure 1, we notice that the llm_embedder model has a very peaky distribution
of cosine similarities (even for Srand). This is indicative of a model with low isotropy. Despite being
less isotropic, the retrieval accuracies of the model is similar to the bge_large model which is more
isotropic. The domain adaptation of llm_embedder model creates a wider distribution of the cosine
similarities indicating better isotropy. The improvement in isotropy post domain-adaptation has also
been reported in Gao et al. (2021).

Retrieval accuracies for SQuAD dataset, D′ are reported in Table 4 using various domain-adapted
models. The domain for which the models are trained on is indicated by the merged rows in
between. We observe that except llm_embedder_ptft on TelecomQuAD, there is a consistent decrease
in accuracy of the domain-adapted models. The small improvement in telecomQuAD adapted
llm_embedder_ptft is perhaps indicative of domain-specific data in the original training of the
publicly available models but is hard to quantify. The results in Table 4 demonstrates that domain-
adapted models show reduced performance when evaluated on domain-agnostic datasets. NDCG
scores are also provided in Appendix A.5

7
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Embedding Model Bootstrapped Acc (CI) IA IB ,
bge_large 87.68, (81.0, 93.0) 13.33 45.72
llm_embedder 86.74, (81.0, 92.0) 13.63 22.88

TelecomQuAD
bge_pretrain 69.31 (60.0, 78.0) 8,76 23.03
bge_ft 79.21 (69.47, 84.52) 14.26 48.63
bge_pt_ft 74.23 (66.0, 83.05) 8.25 33.93
llm_embedder_pretrain 62.93 (54.0, 72.0) 11.26 38.42
llm_embedder_ft 81.21 (68.47, 85.92) 14.26 48.63
llm_embedder_ptft 87.25 (80.48, 92.0) 7.84 44.73

sciq
bge_pretrain 76.36 (68.0, 84.0) 5.46 39.54
bge_ft 84.79 (77.48, 91.0) 6.69 26.84
bge_pt_ft 83.05 (76.48, 90.0) 6.21 26.12
llm_embedder_pretrain 77.73 (71.0, 84.0) 8.53 26.07
llm_embedder_ft 82.23 (75.0, 89.0) 10.45 20.23
llm_embedder_ptft 85.23 (78.0, 92.0) 11.91 21.82

PubMedQA
bge_pretrain 70.38 (62.0, 79.0) 6.38 35.84
bge_ft 84.85 (78.0, 91.0) 8.32 29.08
bge_pt_ft 83.28 (76.0, 89.52) 7.22 30.42
llm_embedder_pretrain 80.84 (74.0, 87.52) 9.20 25.42
llm_embedder_ft 83.47 (77.0, 90.0) 11.38 21.95
llm_embedder_ptft 81.18 (74.0, 88.0) 9.04 22.60

Table 4: Accuracies (k=5) and isotropy scores for SQuAD dataset (D′) Intermediate rows indicate
dataset used for domain adaptation on which we evaluate on D′

Embedding Model Baseline Standardized Whitened PCA
Acc IA, IB Acc IA, IB Acc IA, IB Acc IA, IB

TelecomQuAD
bge_large 66.87 9.24, 27.81 66.63 9.71, 97.23 65.11 9.41, 79.15 68.43 16.91, 95
bge_large_pretrained 62.64 6.34, 23.77 59.24 6.82, 96.26 63.17 6.78, 24.96 57.02 12.36, 92.75
bge_large_finetuned 81.61 11.45, 40.58 82.66 11.89, 97.54 82.03 11.87, 40.10 78.76 18.09, 97.99
bge_large_pretrained_finetuned 81.67 10.34, 45.27 80.48 10.78, 97.26 81.44 73.0, 88.0 77.46 15.54, 98.35
llm_embedder 70.06 10.83, 14.54 68.26 11.59, 96.83 69.66 11.59. 13.93 68.58 20.5, 96.71
llm_embedder_pretrained 57.12 5.42, 15.4 53.09 5.94, 95.77 56.56 47.0, 65.52 56.55 11.31, 95.77
llm_embedder_finetuned 81.58 13.94, 22.1 82.28 14.66, 97.34 81.52 14.63, 19.88 79.14 20.73, 97.78
llm_embedder_pretrained_finetuned 80.37 10.74, 25.01 81.2 11.25, 97.32 80.79 11.23,23.22 79.44 15.82, 98.11

sciq
bge_large 92.7 9.29, 82.99 93.2 9.58, 97.89 92.7 9.73, 82.77 89.4 30.41, 91.88
bge_large_pretrained 92.1 5.04, 85.08 92.6 5.29, 97.05 91.9 5.31, 85.13 86.4 31.95, 91.82
bge_large_finetuned 94.5 5.77, 73.93 94.8 6.21, 97.26 94.8 6.18, 73.94 89.8 24.63, 91.84
bge_large_pretrained_finetuned 95.5 6.83, 76.76 94.7 7.22, 97.51 95.5 7.21, 76.83 89.4 28.32, 91.82
llm_embedder 91.7 10.62, 67.87 93.0 10.96, 96.77 91.1 11.8, 66.38 86.9 29.65, 91.24
llm_embedder_pretrained 91.0 6.43, 73.75 91.3 6.78, 96.1 91.0 6.8, 72 83.7 25.18, 91.13
llm_embedder_finetuned 94.4 8.49, 65.9 93.9 9.06, 96.51 94.1 9.05, 65.25 86.8 28.81, 91.15
llm_embedder_pretrained_finetuned 94.0 10.08, 67.46 93.5 10.48, 96.92 93.5 10.57, 66.48 86.5 27.02, 91.13

PubMedQA
bge_large 94.0 11.09, 79.17 95.8 11.59, 97.83 93.7 11.48, 79 91.5 26.6, 92.78
bge_large_pretrained 84.3 4.96, 76.3 81.1 5.39, 95.8 81.1 84.07, 76.44 80.2 27.01, 92.76
bge_large_finetuned 98.5 8.25, 72.33 97.3 8.76, 97.18 98.2 8.76, 71.56 93.4 27.3, 92.77
bge_large_pretrained_finetuned 97.8 6.42, 72.42 96.8 6.92, 96.69 98.2 6.88, 72.52 94.0 27, 92.74
llm_embedder 95.4 14.93, 63.95 95.3 15.67, 96.75 95.3 15.6, 62.68 90.6 33.86, 90.33
llm_embedder_pretrained 91.9 6.41, 68.04 90.7 7.09, 94.19 91.4 7.08, 67.35 85.7 28.7, 90.19
llm_embedder_finetuned 97.5 12.81, 63.51 97.5 13.53, 96.42 97.9 13.53, 62.33 92.6 33.97, 90.39
llm_embedder_pretrained_finetuned 97.5 8.96, 63.96 97.1 9.77, 95.59 97.0 9.67, 62.5 91.8 32.72, 90.35

Table 5: Accuracy, IA and IB for embeddings under different transformations.

4.2 ISOTROPY SCORE ANALYSIS

Table 5 lists the retrieval accuracies for the telecom dataset D, isotropic measures IA and IB of base
and adapted models for various transformations (intended to increase isotropy scores and described
in Section 2.5).

Correlation of IA and IB with accuracies across base, fine-tuned models with and without post-
processing using transformations described in Section 2.5 is presented in Table 3. We see that,
accuracy and both the isotropy scores are not correlated across datasets. Contrary to the conflicting
claims in Jung et al. (2023) and Rudman & Eickhoff (2023), our experiments across domains establish
that accuracy and isotropy scores are not correlated.
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Combining these observations, we conclude that fine tuning improves the isotropy but isotropy cannot
be attributed to retrieval accuracies. Our studies indicate that this may be the right resolution between
the contradictions among studies by Jung et al. (2023) and Rudman & Eickhoff (2023) which we
have discussed in Section 1.

4.3 EMBEDDING ANALYSIS POST DOMAIN ADAPTATION

As described in Section 2.6, Figure 2 shows the distribution of distances ∆M and ∆M′ for both
bge_large and llm_embedder, respectively. The plots show that post domain-adaptation, the em-
beddings move away from the domain-agnostic embeddings. For llm_embedder, the farthest points
between D and D′ on public models is closer than the closest ones post domain adaptation. For
bge_large, it is clear that distance between embeddings increase post domain adaptation, but this is
less pronounced on Sci-Q and PubMedQA datasets. This is one of the effects of domain-adaption
and needs further study.

5 RECOMMENDATIONS AND CONCLUSIONS

5.1 RECOMMENDATIONS

In this work, we have done a series of experiments to establish the impact of domain adaptation for
embedding models. Based on this, we provide a set of recommendations to a researcher/practitioner
on best using our findings. We provide anonymized code4 to perform the suggested steps, except
domain adaptation, below

• Use a bootstrapped approach for obtaining accuracies as this will give not only point
accuracies but also 95% confidence intervals.

• If possible, use domain adaptation - preferably pretraining followed by fine-tuning (PTFT)
• Identify thresholds for the similarity scores - this will lead to bootstrapped accuracy which

is statistically same as the full dataset bootstrapped accuracy, while suppressing less relevant
documents to end-users / downstream tasks

• We propose two new metrics COE and ROE. The observed correlations, across 3 datasets, of
the COE with accuracy and the ROE with thresholds indicate that they are reliable measures
for the generalisation of performance on unseen data of that domain.

• Our results establish the lack of correlation of accuracies to isotropy scores. We thus suggest
that computing isotropy scores to interpret retrieval accuracies is unlikely to be beneficial.

5.2 CONCLUSION AND FUTURE WORK

We have reported mean bootstrapped retrieval accuracies along with confidence intervals for various
SOTA embedding models with and without domain-adaptations. We observe that fine-tuning (with
or without pre-training) improves both mean and CI of retrieval accuracies. However, pre-training
followed by fine-tuning improves CI further. We propose a bootstrapped approach for choosing
thresholds and observe that we can significantly reduce the number of retrieved sentences without any
statistical deviation in retrieval performance. Our proposed cumulative distribution metrics, COE and
ROE, to measure overlap between distributions of cosine similarities show strong correlations with
retrieval performance and similarity thresholds respectively. We measure isotropy of embeddings
using two independent SOTA isotropy metrics. We perform extensive evaluations on embeddings
with and without isotropic transformations. We conclude that isotropy can be considered to be
neither necessary nor sufficient from a retrieval accuracy perspective. Finally, we observe that with
domain adaption, domain specific embedding show improved isotropy scores and move away from
general domain embeddings. Our study establishes systematic methods of analysing embeddings in
specialised domains. Our results hold across three different domain, which makes us believe that they
hold for other specialised domains too. The current work considers QA task only. Future work may
involve other tasks like summarization, or multimodal settings.

4https://anonymous.4open.science/r/embedingStudy-E3B5/
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(a) bge-large-en, TeleQuAD (b) bge-large-en, PubMedQA (c) bge-large-en, sci-q

(d) llm-embedder, TeleQuAD (e) llm-embedder, PubMedQA (f) llm-embedder, sci-q

Figure 2: Distribution of distances for embedding models. Blue histogram represents ∆M and orange
represents ∆M′ using bge_large and llm_embedder models as M. Refer Sec. 2.6 for definitions
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Daniel Biś, Maksim Podkorytov, and Xiuwen Liu. Too much in common: Shifting of embeddings
in transformer language models and its implications. In Proceedings of the 2021 conference of
the North American chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 5117–5130, 2021.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. arXiv preprint arXiv:2402.03216, 2024.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 55–65, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

Nathan Godey, Éric de la Clergerie, and Benoît Sagot. Is anisotropy inherent to transformers? arXiv
preprint arXiv:2306.07656, 2023.

Feng Hou, Ruili Wang, See-Kiong Ng, Fangyi Zhu, Michael Witbrock, Steven F Cahan, Lily Chen,
and Xiaoyun Jia. Anisotropic span embeddings and the negative impact of higher-order inference
for coreference resolution: An empirical analysis. Natural Language Engineering, pp. 1–22, 2024.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. Pubmedqa: A dataset
for biomedical research question answering. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2567–2577, 2019.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Euna Jung, Jungwon Park, Jaekeol Choi, Sungyoon Kim, and Wonjong Rhee. Isotropic representation
can improve dense retrieval. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 125–137. Springer, 2023.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence
embeddings from pre-trained language models. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 9119–9130, 2020.

Deven M Mistry and Ali A Minai. A comparative study of sentence embedding models for assessing
semantic variation. In International Conference on Artificial Neural Networks, pp. 1–12. Springer,
2023.

Marius Mosbach, Anna Khokhlova, Michael A Hedderich, and Dietrich Klakow. On the interplay
between fine-tuning and sentence-level probing for linguistic knowledge in pre-trained transformers.
In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 2502–2516, 2020.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. All-but-the-top: Simple and effective postprocessing
for word representations. arXiv preprint arXiv:1702.01417, 2017.

Sara Rajaee and Mohammad Taher Pilehvar. How does fine-tuning affect the geometry of embedding
space: A case study on isotropy. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 3042–3049, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Anton Razzhigaev, Matvey Mikhalchuk, Elizaveta Goncharova, Ivan Oseledets, Denis Dimitrov, and
Andrey Kuznetsov. The shape of learning: Anisotropy and intrinsic dimensions in transformer-
based models. arXiv preprint arXiv:2311.05928, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 3982–3992, 2019.

Sujoy Roychowdhury, Sumit Soman, HG Ranjani, Neeraj Gunda, Vansh Chhabra, and Sai Krishna
Bala. Evaluation of rag metrics for question answering in the telecom domain. arXiv preprint
arXiv:2407.12873, 2024.

William Rudman and Carsten Eickhoff. Stable anisotropic regularization. arXiv preprint
arXiv:2305.19358, 2023.

William Rudman, Nate Gillman, Taylor Rayne, and Carsten Eickhoff. Isoscore: Measuring the
uniformity of embedding space utilization. arXiv preprint arXiv:2108.07344, 2021.

William Rudman, Nate Gillman, Taylor Rayne, and Carsten Eickhoff. Isoscore: Measuring the
uniformity of embedding space utilization. In Findings of the Association for Computational
Linguistics: ACL 2022, pp. 3325–3339, 2022.

Julian Salazar, Davis Liang, Toan Q Nguyen, and Katrin Kirchhoff. Masked language model scoring.
arXiv preprint arXiv:1910.14659, 2019.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding. Advances in neural information processing systems, 33:
16857–16867, 2020.

Harald Steck, Chaitanya Ekanadham, and Nathan Kallus. Is cosine-similarity of embeddings really
about similarity? In Companion Proceedings of the ACM on Web Conference 2024, pp. 887–890,
2024.

William Timkey and Marten Van Schijndel. All bark and no bite: Rogue dimensions in transformer
language models obscure representational quality. arXiv preprint arXiv:2109.04404, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis of ndcg type
ranking measures. In Conference on learning theory, pp. 25–54. PMLR, 2013.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng Dou, and Jian-Yun Nie. Retrieve anything to
augment large language models, 2023.

Kaitlyn Zhou, Kawin Ethayarajh, Dallas Card, and Dan Jurafsky. Problems with cosine as a measure
of embedding similarity for high frequency words. arXiv preprint arXiv:2205.05092, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DETAILED METRICS FOR VARIOUS DATASETS

Embedding Model Bootstrapped Acc (CI) COE (CI) ROE (CI) τ, ψ Acc @ τ
Dataset: TeleQuAD, k=5

gte 72.55 (64.48, 81.0) 87.66 (83.08, 92.35) 0.31 (0.20, 1.02) 0.28 (20) 69.75
bge_large 66.87 (58.48, 75.52) 87.98 (82.06, 94.70) 4.81 (1.22, 18.04) 0.5 (35) 67.18
bge_large_pretrained 62.64 (53.0, 70.0) 85.94 (79.92, 93.68) 2.18 (0.61, 6.52) 0.58 (25) 61.36
bge_large_finetuned 81.61 (74.48, 88.52) 91.98 (90.42, 94.09) 0.22 (0.00, 0.82) 0.43 (25) 79.46
bge_large_pretrained_finetuned 81.67 (74.48, 87.52) 91.06 (89.81, 93.07) 0.23 (0.20, 0.31) 0.4 (35) 77.73
llm_embedder 70.06 (63.0, 77.52) 87.26 (80.63, 96.13) 5.77 (0.92, 26.71) 0.78 (30) 69.9
llm_embedder_pretrained 57.12 (47.48, 67.05) 84.88 (79.71, 91.34) 6.32 (1.94, 19.27) 0.75 (30) 52.53
llm_embedder_finetuned 81.58 (75.0, 88.52) 90.73 (88.38, 95.11) 0.10 (0.00, 0.82) 0.56 (40) 80.69
llm_embedder_pretrained_finetuned 80.37 (74.0, 86.52) 90.74 (88.99, 94.70) 0.21 (0.10, 0.41) 0.53 (25) 77.97
ada_002 75.48 (68.47, 83.0) 90.19 (85.02, 95.92) 3.21 (1.33, 9.28) 0.75 (25) 75.3
text-embedding-3-small 69.91 (62.0, 79.0) 87.59 (83.38, 95.01) 1.90 (0.61, 8.05) 0.31 (20) 68.43
text-embedding-3-large 75.96 (69.0, 82.0) 90.32 (86.03, 96.74) 5.99 (2.14, 23.75) 0.26 (20) 73.72
mpnet 61.49 (54.0, 71.0) 81.74 (75.54, 91.34) 2.91 (0.82, 11.21) 0.29 (45) 59.78
minilm 67.26 (60.0, 75.0) 83.25 (78.90, 90.72) 0.77 (0.20, 3.47) 0.27 (25) 64.98

Dataset: sci-qa, k=5
bge_large 92.7 (87, 97) 96.98 (95.85, 99.39) 4.14 (2.2, 13.9) 0.508 (85) 92.8
bge_large_pretrained 92.08 (87, 96) 95.48 (94.02, 97.8) 1.99 (1.34, 4.39) 0.5 (15) 92.1
bge_large_finetuned 94.45 (90, 98) 97.79 (96.95, 99.27) 3.72 (2.07, 8.54) 0.883 (85) 94.8
bge_large_pretrained_finetuned 95.5 (91, 98) 98.15 (97.2, 99.27) 3.25 (1.71, 8.05) 0.771 (85) 95.4
llm_embedder 91.69 (87, 96) 97.2 (95.49, 99.27) 6.85 (2.93, 22.68) 0.809 (85) 91.8
llm_embedder_pretrained 91.03 (86, 96) 94.42 (92.56, 98.17) 2.21 (1.22, 5.61) 0.682 (85) 91.2
llm_embedder_finetuned 94.37 (90, 98) 98.18 (97.32, 99.51) 7.4 (3.17, 24.39) 0.883 (85) 94.7
llm_embedder_pretrained_finetuned 94 (90, 98) 98.24 (97, 99.51) 6.28 (2.32, 23.05) 0.824 (85) 93.9

Dataset: PubMedQA, k=5
bge_large 94 (89, 98) 96.2 (95.1, 98.4) 3.21 (1.3, 13.1) 0.426 (5) 93.8
bge_large_pretrained 84.3 (78, 90) 93.8 (90.3, 99) 7.52 (3.2, 23.8) 0.492 (5) 83.4
bge_large_finetuned 98.51 (95, 100) 99.5 (99.3, 99.7) 4.81 (2.8, 10.1) 0.791 (85) 98.5
bge_large_pretrained_finetuned 97.83 (96, 100) 98.95 (98.4, 99.6) 6.71 (3.2, 21) 0.755 (45) 97.7
llm_embedder 95.42 (91, 99) 97.7 (97, 99.5) 4.49 (1, 24.1) 0.732 (5) 95.8
llm_embedder_pretrained 91.87 (86, 96) 96.94 (95.3, 99.2) 4.1 (1.6, 18.7) 0 (100) 92.0
llm_embedder_finetuned 97.53 (94, 100) 99.28 (98.8, 99.8) 5.55 (2.5, 14.88) 0.797 (30) 97.5
llm_embedder_pretrained_finetuned 97.5 (95, 100) 99 (98.6, 99.7) 6.15 (3, 22.8) 0.783 (30) 97.2

Table 6: Different metrics for various datasets (D), K=5

Embedding Model Baseline Standardized Whitened PCA
Acc IA, IB Acc IA, IB Acc IA, IB Acc IA, IB

TelecomQuAD
gte 72.55 11.33, 42.4 72.22 11.64, 96.75 71.98 11.64,43.14 70.85 21.34, 97.49
bge_large 66.87 9.24, 27.81 66.63 9.71, 97.23 65.11 9.41, 79.15 68.43 16.91, 95
bge_large_pretrained 62.64 6.34, 23.77 59.24 6.82, 96.26 63.17 6.78, 24.96 57.02 12.36, 92.75
bge_large_finetuned 81.61 11.45, 40.58 82.66 11.89, 97.54 82.03 11.87, 40.10 78.76 18.09, 97.99
bge_large_pretrained_finetuned 81.67 10.34, 45.27 80.48 10.78, 97.26 81.44 73.0, 88.0 77.46 15.54, 98.35
llm_embedder 70.06 10.83, 14.54 68.26 11.59, 96.83 69.66 11.59. 13.93 68.58 20.5, 96.71
llm_embedder_pretrained 57.12 5.42, 15.4 53.09 5.94, 95.77 56.56 47.0, 65.52 56.55 11.31, 95.77
llm_embedder_finetuned 81.58 13.94, 22.1 82.28 14.66, 97.34 81.52 14.63, 19.88 79.14 20.73, 97.78
llm_embedder_pretrained_finetuned 80.37 10.74, 25.01 81.2 11.25, 97.32 80.79 11.23,23.22 79.44 15.82, 98.11
ada_002 75.48 6.64, 25.52 68.83 7.08, 97.09 75.46 7.06.26.18 69.31 15.67, 93.8
text-embedding-3-small 69.91 6.33, 45.86 67.18 6.79, 93.14 69.52 6.72, 45.88 66.26 14.46, 89.17
text-embedding-3-large 75.96 3.64, 63.78 71.47 4.11, 94.38 74.84 4.08, 64.33 70.94 11.83, 89.12
mpnet 61.49 9.51, 36.41 57.62 10.25, 96.66 59.99 10.22, 27.68 56.39 16.35, 93.72
minilm 67.26 19.43, 26.59 63.99 20.54, 95.56 66.19 20.37,26.36 62.22 25.67, 95.32

sciq
bge_large 92.7 9.29, 82.99 93.2 9.58, 97.89 92.7 9.73, 82.77 89.4 30.41, 91.88
bge_large_pretrained 92.1 5.04, 85.08 92.6 5.29, 97.05 91.9 5.31, 85.13 86.4 31.95, 91.82
bge_large_finetuned 94.5 5.77, 73.93 94.8 6.21, 97.26 94.8 6.18, 73.94 89.8 24.63, 91.84
bge_large_pretrained_finetuned 95.5 6.83, 76.76 94.7 7.22, 97.51 95.5 7.21, 76.83 89.4 28.32, 91.82
llm_embedder 91.7 10.62, 67.87 93.0 10.96, 96.77 91.1 11.8, 66.38 86.9 29.65, 91.24
llm_embedder_pretrained 91.0 6.43, 73.75 91.3 6.78, 96.1 91.0 6.8, 72 83.7 25.18, 91.13
llm_embedder_finetuned 94.4 8.49, 65.9 93.9 9.06, 96.51 94.1 9.05, 65.25 86.8 28.81, 91.15
llm_embedder_pretrained_finetuned 94.0 10.08, 67.46 93.5 10.48, 96.92 93.5 10.57, 66.48 86.5 27.02, 91.13

PubMedQA
bge_large 94.0 11.09, 79.17 95.8 11.59, 97.83 93.7 11.48, 79 91.5 26.6, 92.78
bge_large_pretrained 84.3 4.96, 76.3 81.1 5.39, 95.8 81.1 84.07, 76.44 80.2 27.01, 92.76
bge_large_finetuned 98.5 8.25, 72.33 97.3 8.76, 97.18 98.2 8.76, 71.56 93.4 27.3, 92.77
bge_large_pretrained_finetuned 97.8 6.42, 72.42 96.8 6.92, 96.69 98.2 6.88, 72.52 94.0 27, 92.74
llm_embedder 95.4 14.93, 63.95 95.3 15.67, 96.75 95.3 15.6, 62.68 90.6 33.86, 90.33
llm_embedder_pretrained 91.9 6.41, 68.04 90.7 7.09, 94.19 91.4 7.08, 67.35 85.7 28.7, 90.19
llm_embedder_finetuned 97.5 12.81, 63.51 97.5 13.53, 96.42 97.9 13.53, 62.33 92.6 33.97, 90.39
llm_embedder_pretrained_finetuned 97.5 8.96, 63.96 97.1 9.77, 95.59 97.0 9.67, 62.5 91.8 32.72, 90.35

Table 7: Accuracy, IA and IB for embeddings under transformations, detailed results.
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A.2 SAMPLE QUESTIONS FROM TELECOMQUAD

Question Answer
What does AoA stand for? AoA stands for Angle of Arrival.
Who specifies the chargeable events? Chargeable events are specified by mid-

dle tier TS.
What architecture is defined in 3GPP TS
32.240 V15.5.0?

Single IMSI Architecture is defined in
3GPP TS 32.240 V15.5.0.

Table 8: Sample questions and their correct answers - based on 3GPP Release 17.

A.3 ISOTROPY SCORES

We provide brief details of isotropy measures used in this work. According to Mu et al. (2017),
isotropy Ia(v) can be defined by (3).

Ia(v) =
min|c|=1 Z(c)

max|c|=1 Z(c)
, (3)

where Z(c) is a partition function as given by (4)

Z(c) =
∑
∀v

exp(cT v), (4)

such that Z(c) is constant with any unit function.

If V is the matrix stacked by all embedding vectors, 1|V | be the vectors with all entries equal to one,
then the second order approximation of isotropy is given by (5).

IA({v}) =
|V | − ||IT|V |V ||+ 0.5σ2

min

|V |+ ||IT|V |V ||+ 0.5σ2
max

, (5)

where σmin and σmax correspond to smallest and largest singular value of V , respectively.

Further, Rudman et al. (2021) define isotropy as given by (6).

IB(v) =
(n− δ(v)2(n−

√
n))2 − n

n(n− 1)
, (6)

where for any embedding v ∈ Rn, δ(v) = ||ΣD−1||√
2(n−

√
n)

, 1 = (1, 1, ..., 1)T ∈ Rn, and ΣD ∈ Rn is the

normalized diagonal of covariance matrix of PCA(V ), which is the set of embeddings transformed
by the first n principal components.
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Figure 3: Density plots for health dataset. Red, green and blue indicate distribution of Srand, Scorr

and StopK respectively. Refer Sec. 2.3 for definitions

Figure 4: Density plots for science dataset. Red, green and blue indicate distribution of Srand, Scorr

and StopK respectively
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A.4 DISTRIBUTION PLOTS

Figure 5: Density plots for SQuAD dataset D′ - the PTFT model is domain adapted using telecom
data. Red, green and blue indicate distribution of Srand, Scorr and StopK respectively

A.5 NDCG SCORES

Table 9 shows Normalized Discounted Cummulative Gain (NDCG) Wang et al. (2013) scores for
various datasets for base, PT, FT and PT-FT variants of embedding models. The columns indicate the
NDCG score, lower, upper bound and width of confidence interval, as well as accuracy and NDCG
on the full dataset.

We observe that the bootstrapped accuracy numbers are comparable to those on the full dataset,
this validates our approach. Further, if we consider the NDCG scores, they improve with domain
adaptation. NDCG scores are relatively lower because we have only one correct answer per question.
However, the improvement of NDCG scores show that not only do we get tighter confidence intervals
on domain adaptation, our correct answers are retrieved with better ranks.
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Model Variant TeleQuAD
NDCG NDCG-LOW NDCG-HIGH CI WIDTH Full Data Acc Full Data NDCG

bge-large

Base 29.6 29.4 30.0 0.6 66.0 29.9
PT 27.2 27.0 27.4 0.4 63.1 27.5
FT 34.2 33.2 34.3 1.2 82.0 34.2
PT-FT 34.9 34.8 35.4 0.5 81.5 34.9

LLM-embedder

Base 29.2 27.9 29.5 1.6 69.2 29.3
PT 25.2 24.6 25.3 0.8 57.0 25.2
FT 34.3 33.8 34.4 0.6 81.8 34.4
PT-FT 33.7 33.3 33.8 0.5 80.8 33.8

PubMedQA
NDCG NDCG-LOW NDCG-HIGH CI WIDTH Full Data Acc Full Data NDCG

bge-large

Base 37.2 37.2 37.3 0.1 94.0 37.2
PT 35.1 34.9 35.2 0.4 84.3 35.0
FT 38.5 38.3 38.5 0.3 97.8 38.5
PT-FT 38.9 38.9 38.9 0.1 98.5 38.9

LLM-embedder

Base 37.5 37.4 37.7 0.3 95.4 37.5
PT 37.0 36.8 37.2 0.4 91.8 37.0
FT 38.1 38.1 38.2 0.1 97.6 38.1
PT-FT 38.1 37.9 38.2 0.3 97.3 38.1

Sci-QA
NDCG NDCG-LOW NDCG-HIGH CI WIDTH Full Data Acc Full Data NDCG

bge-large

Base 36.8 36.8 36.9 0.1 92.8 36.9
PT 36.7 36.6 36.8 0.2 92.1 36.7
FT 37.4 37.2 38.5 1.4 94.5 37.5
PT-FT 37.8 37.7 37.9 0.2 95.4 37.9

LLM-embedder

Base 36.9 36.8 37.2 0.4 91.8 36.8
PT 36.3 36.1 36.4 0.3 91.0 36.3
FT 37.7 37.6 37.9 0.3 94.0 37.6
PT-FT 37.7 37.5 37.7 0.1 94.0 37.7

Table 9: NDCG Scores for various datasets.
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