
Under review as a conference paper at ICLR 2021

SSELF: ROBUST FEDERATED LEARNING AGAINST
STRAGGLERS AND ADVERSARIES

Anonymous authors
Paper under double-blind review

ABSTRACT

While federated learning allows efficient model training with local data at edge
devices, two major issues that need to be resolved are: slow devices known as
stragglers and malicious attacks launched by adversaries. While the presence
of both stragglers and adversaries raises serious concerns for the deployment of
practical federated learning systems, no known schemes or known combinations of
schemes, to our best knowledge, effectively address these two issues at the same
time. In this work, we propose Sself, a semi-synchronous entropy and loss based
filtering/averaging, to tackle both stragglers and adversaries simultaneously. The
stragglers are handled by exploiting different staleness (arrival delay) informa-
tion when combining locally updated models during periodic global aggregation.
Various adversarial attacks are tackled by utilizing a small amount of public data
collected at the server in each aggregation step, to first filter out the model-poisoned
devices using computed entropies, and then perform weighted averaging based on
the estimated losses to combat data poisoning and backdoor attacks. A theoretical
convergence bound is established to provide insights on the convergence of Sself.
Extensive experimental results show that Sself outperforms various combinations
of existing methods aiming to handle stragglers/adversaries.

1 INTRODUCTION

Large volumes of data collected at various edge devices (i.e., smart phones) are valuable resources in
training machine learning models with a good accuracy. Federated learning (McMahan et al., 2017; Li
et al., 2019a;b; Konečnỳ et al., 2016) is a promising direction for large-scale learning, which enables
training of a shared global model with less privacy concerns. However, current federated learning
systems suffer from two major issues. First is the devices called stragglers that are considerably
slower than the average, and the second is the adversaries that enforce various adversarial attacks.
Regarding the first issue, waiting for all the stragglers at each global round can significantly slow
down the overall training process in a synchronous setup. To address this, an asynchronous federated
learning scheme was proposed in (Xie et al., 2019a) where the global model is updated every time the
server receives a local model from each device, in the order of arrivals; the global model is updated
asynchronously based on the device’s staleness t− τ , the difference between the current round t and
the previous round τ at which the device received the global model from the server. However, among
the received results at each global round, a significant portion of the results with large staleness does
not help the global model in a meaningful way, potentially making the scheme ineffective. Moreover,
since the model update is performed one-by-one asynchronously, the scheme in (Xie et al., 2019a)
would be vulnerable to various adversarial attacks; any attempt to combine this type of asynchronous
scheme with existing adversary-resilient ideas would not likely be fruitful.
There are different forms of adversarial attacks that significantly degrade the performance of current
federated learning systems. First, in untargeted attacks, an attacker can poison the updated model at
the devices before it is sent to the server (model update poisoning) (Blanchard et al., 2017; Lamport
et al., 2019) or can poison the datasets of each device (data poisoning) (Biggio et al., 2012; Liu
et al., 2017), which degrades the accuracy of the model. In targeted attacks (or backdoor attacks)
(Chen et al., 2017a; Bagdasaryan et al., 2018; Sun et al., 2019), the adversaries cause the model to
misclassify the targeted subtasks only, while not degrading the overall test accuracy. To resolve these
issues, a robust federated averaging (RFA) scheme was recently proposed in (Pillutla et al., 2019)
which utilizes the geometric median of the received results for aggregation. However, RFA tends to
lose performance rapidly as the portion of adversaries exceeds a certain threshold. In this sense, RFA

1

Under review as a conference paper at ICLR 2021

is not an ideal candidate to be combined with known straggler-mitigating strategies (e.g., ignoring
stragglers) where a relatively small number of devices are utilized for global aggregation; the attack
ratio can be very high, significantly degrading the performance. To our knowledge, there are currently
no existing methods or known combinations of ideas that can effectively handle both stragglers and
adversaries at the same time, an issue that is becoming increasingly important in practical scenarios.
Contributions. In this paper, we propose Sself, semi-synchronous entropy and loss based filter-
ing/averaging, a robust federated learning strategy which can tackle both stragglers and adversaries
simultaneously. In the proposed idea, the straggler effects are mitigated by semi-synchronous global
aggregation at the server, and in each aggregation step, the impact of adversaries are countered by a
new aggregation method utilizing public data collected at the server. The details of our key ideas
are as follows. Targeting the straggler issue, our strategy is to perform periodic global aggregation
while allowing the results sent from stragglers to be aggregated in later rounds. The key strategy
is a judicious mix of both synchronous and asynchronous approaches. At each round, as a first
step, we aggregate the results that come from the same initial models (i.e., same staleness), as in
the synchronous scheme. Then, we take the weighted sum of these aggregated results with different
staleness, i.e., coming from different initial models, as in the asynchronous approach.
Regarding the adversarial attacks, robust aggregation is realized via entropy-based filtering and
loss-weighted averaging. This can be employed at the first step of our semi-synchronous strategy
described above, enabling protection against model/data poisoning and backdoor attacks. To this end,
our key idea is to utilize public IID (independent, identically distributed) data collected at the server.
We can imagine a practical scenario where the server has some global data uniformly distributed over
classes, as in the setup of (Zhao et al., 2018). This is generally a reasonable setup since data centers
mostly have some collected data (although they can be only a few) of the learning task. For example,
different types of medical data are often open to public in various countries. Based on the public data,
the server computes entropy and loss of each received model. We use the entropy of each model to
filter out the devices whose models are poisoned. In addition, by taking the loss-weighted averaging
of the survived models, we can protect the system against local data poisoning and backdoor attacks.
We derive a theoretical bound for Sself to ensure acceptable convergence behavior. Experimental
results on different datasets show that Sself outperforms various combinations of straggler/adversary
defense methods with only a small portion of public data at the server.
Related works. The authors of (Li et al., 2019c; Wu et al., 2019; Xie et al., 2019a) have recently
tackled the straggler issue in a federated learning setup. The basic idea is to allow the devices and the
server to update the models asynchronously. Especially in (Xie et al., 2019a), the authors proposed
an asynchronous scheme where the global model is updated every time the server receives a local
model of each device. However, a fair portion of the received models with large staleness does not
help the global model in meaningful ways, potentially slowing down the convergence speed. A more
critical issue here is that robust methods designed to handle adversarial attacks, such as RFA (Pillutla
et al., 2019), Multi-Krum (Blanchard et al., 2017) or the presently proposed entropy/loss based idea,
are hard to be implemented in conjunction with this asynchronous scheme.
To combat adversaries, various aggregation methods have been proposed in a distributed learning
setup with IID data across nodes (Yin et al., 2018a;b; Chen et al., 2017b; Blanchard et al., 2017; Xie
et al., 2018). The authors of (Chen et al., 2017b) suggests a geometric median based aggregation rule
of the received models or the gradients. In (Yin et al., 2018a), a trimmed mean approach is proposed
which removes a fraction of largest and smallest values of each element among the received results.
In Multi-Krum (Blanchard et al., 2017), among N workers in the system, the server tolerates f
Byzantine workers under the assumption of 2f + 2 < N . Targeting federated learning with non-IID
data, the recently introduced RFA method of (Pillutla et al., 2019) utilizes the geometric median
of models sent from devices, similar to (Chen et al., 2017b). However, as mentioned above, these
methods are ineffective when combined with a straggler-mitigation scheme, potentially degrading the
performance of learning. Compared to Multi-Krum and RFA, our entropy/loss based scheme can
tolerate adversaries even with a high attack ratio, showing remarkable advantages, especially when
combined with straggler-mitigation schemes.

Finally, we note that the authors of (Xie et al., 2019c) considered both stragglers and adversaries but
in a distributed learning setup with IID data across the nodes. Compared to these works, we target
non-IID data distribution setup in a federated learning scenario.

2

Under review as a conference paper at ICLR 2021

2 PROPOSED FEDERATED LEARNING WITH SSELF

We consider the following federated optimization problem:

w∗ = argmin
w

F (w) = argmin
w

N∑
k=1

mk

m
Fk(w), (1)

whereN is the number of devices, mk is the number of data samples in device k, andm =
∑N
k=1mk

is the total number of data samples of all N devices in the system. By letting xk,j be the j-
th data sample in device k, the local loss function of device k, Fk(w), is written as Fk(w) =

1
mk

∑mk

j=1 `(w;xk,j). In the following, we provide solutions aiming to solve the above problem
under the existence of stragglers (subsection 2.1) and adversaries (subsection 2.2), and finally propose
Sself handling both issues (subsection 2.3).

2.1 SEMI-SYNCHRONOUS SCHEME AGAINST STRAGGLERS

In the t-th global round, the server sends the current model wt to K devices in St (|St| = K ≤ N),
which is a set of indices randomly selected from N devices in the system. We let C = K/N be the
ratio of devices that participate at each global round. Each device in St performs E local updates
with its own data and sends the updated model back to the server. In conventional federated averaging
(FedAvg), the server waits until the results of allK devices in St arrive and then performs aggregation
to obtain wt+1 =

∑
k∈St

mk∑
k∈St

mk
wt(k), where wt(k) is the model after E local updates at device

k starting from wt. However, due to the effect of stragglers, waiting for all K devices at the server
can significantly slow down the overall training process.
In resolving this issue, our idea assumes periodic global aggregation at the server. At each global
round t, the server transmits the current model/round (wt, t) to the devices in St. Instead of waiting
for all devices in St, the server aggregates the models that arrive until a fixed time deadline Td to
obtain wt+1, and moves on to the next global round t+ 1. Hence, model aggregation is performed
periodically with every Td. A key feature here is that we do not ignore the results sent from stragglers
(not arrived by the deadline Td). These results are utilized at the next global aggregation step, or even
later, depending on the delay or staleness. Let U (t)

i be the set of devices 1) that are selected from
the server at global round t, i.e., U (t)

i ⊆ St and 2) that successfully sent their results to the server at
global round i for i ≥ t. Then, we can write St = ∪∞i=tU

(t)
i , where U (t)

i ∩ U
(t)
j = ∅ for i 6= j. Here,

U
(t)
∞ can be viewed as the devices that are selected at round t but failed to successfully send their

results back to the server. According to these notations, the devices whose training results arrive at
the server during global round t belong to one of the following t+ 1 sets: U (0)

t , U (1)
t , ..., U

(t)
t . Note

that the result sent from device k ∈ U (i)
t is the model after E local updates starting from wi, and we

denote this model by wi(k). At each round t, we first perform FedAvg as

v
(i)
t+1 =

∑
k∈U(i)

t

mk∑
k∈U(i)

t
mk

wi(k) (2)

for all i = 0, 1, ..., t, where v(i)
t+1 is the aggregated result of locally updated models (starting from wi)

received at round t with staleness t− i+ 1. Then from v
(0)
t+1, v(1)

t+1,..., v(t)
t+1, we take the weighted

averaging of results with different staleness to obtain
∑t
i=0 αt(i)v

(i)
t+1. Here, αt(i) ∝

∑
k∈U(i)

t

mk

(t−i+1)c

is a normalized coefficient that is proportional to the number of data samples in U (i)
t and inversely

proportional to (t− i+ 1)c, for a given hyperparameter c ≥ 0. Hence, we have a larger weight for
v

(i)
t+1 with a smaller t− i+ 1 (staleness). This is to give more weights to more recent results. Based

on the weighted sum
∑t
i=0 αt(i)v

(i)
t+1, we finally obtain wt+1 as

wt+1 = (1− γ)wt + γ

t∑
i=0

αt(i)v
(i)
t+1, (3)

where γ combines the aggregated result with the latest global model wt. Now we move on to the
next round t + 1, where the server selects St+1 and sends (wt+1, t+ 1) to these devices. Here, if
the server knows the set of active devices (which are still performing computation), St+1 can be

3

Under review as a conference paper at ICLR 2021

𝒰

𝒰

Received at global
round t-1

Received at global
round t

…

Received at
global round 0

…

…

…

Entropy
based

filtering

Loss weighted
averaging

Server

Weighted averaging

…

Received at
global round t-1

Received at
global round t

…

…

…

Figure 1: Overall procedure for Sself at the server. At global round t, the received models belong
to one of the following t + 1 sets: U (0)

t , U (1)
t , ..., U

(t)
t . After entropy-based filtering, the server

performs loss-weighted averaging for the results that belong to U (i)
t to obtain v

(i)
t+1. Now by taking

the weighted averaging of v(i)
t+1 for all i = 0, 1, ..., t and combining with wt, we finally obtain wt+1

and move on to the next round t+ 1.

constructed to be disjoint with the active devices. If not, the server randomly chooses St+1 among all
devices in the system and the selected active devices can ignore the current request of the server. The
left-hand side of Fig. 1 describes our semi-synchronous scheme.
The key characteristics of our scheme can be summarized as follows. First, by periodic global
aggregation at the server, our scheme is not delayed by the effect of stragglers. Secondly, our scheme
fully utilizes the results sent from stragglers in the future global rounds; we first perform federated
averaging for the devices with same staleness (as in the synchronous scheme), and then take the
weighted sum of these averaged results with different staleness (as in the asynchronous scheme).

2.2 ENTROPY AND LOSS BASED FILTERING/AVERAGING AGAINST ADVERSARIES

In this subsection, we propose entropy-based filtering and loss-weighted averaging which not only
show better performance with or without attacks but also combine well with the semi-synchronous
scheme compared to existing adversary-resilient aggregation methods. Our key idea is to utilize the
public IID data collected at the server. We can imagine a practical scenario where the server (or data
center) has its own data samples as in(Zhao et al., 2018), e.g., various medical data that are open
to public. Using these public data at the server, we provide the following two solutions which can
protect the system against model update poisoning, data poisoning and backdoor attacks.
1) Entropy-based filtering: Let npub be the number of public data samples in the server. We also let
xpub,j be the j-th sample in the server. When the server receives the locally updated models from the
devices, it measures the entropy of each device k by utilizing the public data as

Eavg(k) =
1

npub

npub∑
j=1

Expub,j
(k), (4)

where Expub,j(k) is the shannon entropy of the model of k-th device on the sample xpub,j written as
Expub,j

(k) = −
∑Q
q=1 P

(q)
xpub,j (k) log P

(q)
xpub,j (k). Here, Q is the number of classes of the dataset and

P
(q)
xpub,j (k) is the probability of prediction for the q-th class on a sample xpub,j , using the model of

the k-th device. In supervised learning tasks, the model produces a high-confident prediction for the
ground truth label of the trained samples and thus has a low entropy for the prediction. However, if
the local model is poisoned, e.g., by reverse sign attack, the model is more likely to predict randomly
for all classes and thus has a high entropy. Based on this observation, the server filters out the models
that have entropy greater than some threshold value Eth. It can be seen later in Section 4 that Eth is
a hyperparameter that can be easily tuned since there is a huge gap between the entropy values of
benign and adversarial devices for all datasets. Note that the above method is robust against model
update poisoning even with a large portion of adversaries because it just filters out the results whose
entropy is greater than Eth. This is a significant advantage compared to the median based method
(Pillutla et al., 2019) whose performance is significantly degraded when the attack ratio is high.
2) Loss-weighted averaging: The server also measures the loss of each received model using the
public data. Based on the loss values, the server then aggregates the received models as follows:

4

Under review as a conference paper at ICLR 2021

wt+1 =
∑
k∈St

βt(k)wt(k) where βt(k) ∝ mk

{Fpub(wt(k))}δ
and

∑
k∈St

βt(k) = 1 (5)

Here, wt(k) is the locally updated model of the k-th device at global round t. Fpub(wt(k)) is
defined as the averaged loss of wt(k) computed on public data at the server, i.e., Fpub(wt(k)) =

1
npub

∑npub

j=1 `(wt(k);xpub,j). Finally, δ(≥ 0) in {Fpub(·)}δ is a parameter related to the impact of
the loss on public data. We note that setting δ = 0 in (5) makes our loss-weighted averaging method
equal to FedAvg of (1). Under the data poisoning or backdoor attacks, the models of malicious
devices would have relatively larger losses compared to others. By the definition of βt(k), such
devices would be given a small weight and has a less impact on the next global update. By replacing
the federated averaging with the above loss-weighted averaging, we are able to build a system which
is robust against local data poisoning and backdoor attacks.

Algorithm 1 Semi-Synchronous Entropy and Loss based Filtering/Averaging (Sself)
Input: Initialized model w0, Output: Final global model wT

Algorithm at the Server
1: for each global round t = 0, 1, ..., T − 1 do
2: Choose St and send the current model and the global round (wt, t) to the devices
3: Wait for Td and then:
4: for i = 0, 1, ..., t do
5: for k ∈ U (i)

t do
6: U

(i)
t ← U

(i)
t − {k}, if Eavg(k) > Eth // Entropy-based filtering

7: end for
8: end for
9: for i = 0, 1, ..., t do

10: v
(i)
t+1 =

∑
k∈U(i)

t
βt(k)wi(k) // Loss-weighted average of results with same staleness

11: end for
12: wt+1 = (1−γ)wt+γ

∑t
i=0 αt(i)v

(i)
t+1 // Weighted average of results with different staleness

13: end for
Algorithm at the Devices: If device k receives (wt, t) from the server, it performs E local updates
to obtain wt(k). Then each benign device k sends (wt(k), t) to the server, while an adversarial
device transmits a poisoned model depending on the type of attack.

The above two methods can be easily combined to tackle model update poisoning, data poisoning and
backdoor attack issues. The server first filters out the model-poisoned devices based on the entropy,
and then take the loss-weighted average with the survived devices to combat data poisoning and
backdoor attacks.

2.3 SEMI-SYNCHRONOUS ENTROPY AND LOSS BASED FILTERING/AVERAGING (SSELF)
The details of overall Sself operation are described in Algorithm 1 and Fig. 1. At global round
t, the server chooses St and sends (wt, t) to devices. The server collects the results from the
devices for a time period Td, and calculates entropy Eavg(k) and loss Fpub(wt(k)) as in (4) and
(5), respectively. Based on the entropy, the server first filters out the results sent from the model
poisoned devices. Then, the server aggregates the models that have the same staleness, to obtain
v

(i)
t+1 for i = 0, 1, ..., t. In this aggregating process, we take loss-weighted averaging as in (5) instead

of conventional averaging of FedAvg, to defend the system against data poisoning or backdoor
attacks. Now using v

(0)
t+1,v

(1)
t+1, ...,v

(t)
t+1, we finally obtain wt+1 as in (3). Here we note that the

server can compute entropy and loss whenever the model is received, i.e., based on the order of
arrival. After computing entropy and loss of the last model of global round t, the server just needs to
compute the weighted sum of the results. Hence, in practical setups where cloud servers have large
enough computing powers, Sself does not cause a significant time delay at the server, compared to
FedAvg. The computational complexity of Sself depends on the number of received models at each
global round, and the running time for computing the entropy/loss with each model. Although direct
comparison with other baselines is tricky, if we assume that the complexity of computing entropy or
loss is linear to the number of model parameters as in (Xie et al., 2019b), Sself has larger complexity
than that of RFA by a factor of npub. The additional computational complexity of Sself compared to
RFA is the cost for better robustness against adversaries.

5

Under review as a conference paper at ICLR 2021

At the device-side, each device starts local model update whenever it receives (wt, t) from the server.
After performing E local updates, device k transmits (wt(k), t) to the server. These processes at the
server and the devices are performed in parallel and asynchronously, until the last global round ends.

3 CONVERGENCE ANALYSIS

In this section, we provide insights on the convergence of Sself with the following standard assump-
tions in federated learning (Li et al., 2019b; Xie et al., 2019a).

Assumption 1 The global loss fuction F defined in (1) is µ-strongly convex and L-smooth.

Assumption 2 Let ξit(k) be a set of data samples that are randomly selected from the k-th device
during the i-th local update at global round t. Then, E‖∇Fk(wt(k), ξit(k)) − ∇F (wt(k))‖2 ≤
ρ1 holds for all t and k = 1, . . . , N and i = 1, . . . , E.

Assumption 3 The second moments of stochastic gradients in each device is bounded, i.e.,
E‖∇Fk(wt(k), ξit(k))‖2 ≤ ρ2 for all t and k = 1, . . . , N and i = 1, . . . , E.

We also have another assumption that describes the bounds on the error for the adversaries. Let
B

(i)
t and M (i)

t be the set for benign and adversarial devices of U (i)
t respectively, satisfying U (i)

t =

B
(i)
t ∪M

(i)
t and B(i)

t ∩M
(i)
t = ∅. Let

Ω
(i)
t =

∑
k∈M(i)

t

βi(k) (6)

be the sum of loss weights for the adversarial devices in U (i)
t . Now we have the following assumption.

Assumption 4 For an adversarial device k ∈ M (i)
t , there exists an arbitrarily large Γ such that

E[F (wt(k))− F (w∗)] ≤ Γ <∞ holds for all i = 1, . . . , t.

Based on the above assumptions, we state the following theorem which provides the convergence
bound of our scheme. The proof can be found in Supplementary Material.
Theorem 1 Suppose Assumptions 1, 2, 3, 4 hold and the learning rate η is set to be less than 1

L . If
U

(t)
t 6= ∅ for all t ∈ {0, 1, ..., T}, then Sself satisfies

E[F (wT)− F (w∗)] ≤ νT [F (w0)− F (w∗)] + (1− νT)C ′ (7)

where ν = 1− γ + γ(1− ηµ)E , C ′ = ρ1+ρ2+2µΩmaxΓ
2ηµ2 , Ωmax = max

0≤i≤t,0≤t≤T
Ω

(i)
t .

We have the following important observations from Theorem 1. First, we can observe a trade-off
between convergence rate νT and the error term (1 − νT)C ′. If we increase γ, the convergence
rate improves but the error term increases as in (Xie et al., 2019a). By adjusting this γ, we can
make the convergence speed faster at the beginning of training while reducing the error at the end of
training. Another important observation is the impact of the adversaries. If we have a large Ωmax
for a fixed ν, it can be seen from the definition of C ′ that we have a large error term (1 − νT)C ′.
However, if the entropy-based filtering method successfully filters out the model poisoned devices,
and the loss-weights βi(k) of the adversaries are significantly small for data poisoning and backdoor
attacks, we have a small Ω

(i)
t (close to zero) from (6). This means that we have a significantly small

Ωmax, i.e., a small error term (1− νT)C ′. In the next section, we show via experiments that Sself
successfully combats both stragglers and adversaries simultaneously and achieves fast convergence
with a small error term.

4 EXPERIMENTS

In this section, we validate Sself on MNIST (LeCun et al., 1998), FMNIST (Xiao et al., 2017) and
CIFAR-10 (Krizhevsky et al., 2009). The overall dataset is split into 60,000 training and 10,000
test samples for MNIST and FMNIST, and split into 50,000 training and 10,000 test samples for
CIFAR-10. A simple convolutional neural network (CNN) with 2 convolutional layers and 2 fully
connected layers is utilized for MNIST, while CNN with 2 convolutional layers and 1 fully connected
layer is used for FMNIST. When training with CIFAR-10, we utilized VGG-11. We consider

6

Under review as a conference paper at ICLR 2021

0 20 40 60 80

Running time

20

40

60

80

100

T
e

s
t

a
c
c
u

ra
c
y

Sself

FedAsync

Ignore stragglers + FedAvg

Wait for stragglers + FedAvg

(a) MNIST, C = 0.1

0 20 40 60 80

Running time

20

30

40

50

60

70

80

90

T
e

s
t

a
c
c
u

ra
c
y

Sself

FedAsync

Ignore stragglers + FedAvg

Wait for stragglers + FedAvg

(b) FMNIST, C = 0.1

0 200 400 600 800 1000 1200

Running time

10

20

30

40

50

60

70

T
e

s
t

a
c
c
u

ra
c
y

Sself

FedAsync

Ignore stragglers + FedAvg

Wait for stragglers + FedAvg

(c) CIFAR-10, C = 0.1

0 10 20 30 40 50 60 70 80 90

Running time

50

60

70

80

90

100

T
e

s
t

a
c
c
u

ra
c
y

Sself

FedAsync

Ignore stragglers + FedAvg

Wait for stragglers + FedAvg

(d) MNIST, C = 0.2

0 20 40 60 80 100

Running time

20

30

40

50

60

70

80

90

T
e

s
t

a
c
c
u

ra
c
y

Sself

FedAsync

Ignore stragglers + FedAvg

Wait for stragglers + FedAvg

(e) FMNIST, C = 0.2

0 200 400 600 800 1000 1200

Running time

10

20

30

40

50

60

70

T
e

s
t

a
c
c
u

ra
c
y

Sself

FedAsync

Ignore stragglers + FedAvg

Wait for stragglers + FedAvg

(f) CIFAR-10, C = 0.2

Figure 2: Test accuracy versus training time with only stragglers. Sself is our scheme.

N = 100 devices each having the same number of data samples. We randomly assigned two classes
to each device to create non-IID situations. Considering the non-IID cases, we ignored the batch
normalization layers when training VGG-11 with CIFAR-10. At each global round, we randomly
selected a fraction C of devices in the system to participate. For the proposed Sself method, we let 2%
of the entire training data to be the public data and performed federated training with the remaining
98% of the training set. The number of local epochs at each device is set to 5 for all experiments and
the local batch size is set to 10 for all experiments except for the backdoor attack. In addition, we used
stochastic gradient descent and tuned hyperparameters for Sself and other comparison schemes; the
details are described in Supplementary Material. Here, we emphasize that Sself outperforms existing
methods even with naively chosen hyperparameters, as also shown in Supplementary Material.

Experiments with stragglers. To confirm the advantage of Sself, we first consider the scenario with
only the stragglers. The adversarial attacks are not considered here. We compare Sself with the
following methods. First is the wait for stragglers approach where FedAvg is applied after waiting
for all the devices at each global round. The second scheme is the ignore stragglers approach where
FedAvg is applied after waiting for a certain timeout threshold and ignore the results sent from slow
devices. Finally, we consider the asynchronous scheme (FedAsync) (Xie et al., 2019a) where the
global model is updated every time the result of each device arrives. For Sself and FedAsync, γ is
decayed while the learning rate is decayed in other schemes.
In Fig. 2, we plot the test accuracy versus running time on different datasets and C values. For a
fair comparison, the global aggregation at the server is performed with every Td = 1 periodically
for Sself and other comparison schemes (ignore stragglers, FedAsync). To model stragglers, each
device can have delay of 0, 1, 2 which is determined independently and uniformly random. In other
words, at each global round t, we have St = U

(t)
t ∪ U

(t)
t+1 ∪ U

(t)
t+2. Our first observation from Fig. 2

is that the ignore stragglers scheme can lose significant data at each round and often converges to a
suboptimal point with less accuracy. The wait for stragglers scheme requires the largest running time
until convergence due to the delays caused by slow devices. Finally, it is observed that Sself performs
the best, even better than the state-of-the-art FedAsync.
Experiments with adversaries. Next, we confirm the performance of Sself in Fig. 3 under the
scenario with only the adversaries in a synchronous setup. We compare our method with geometric
median-based RFA (Pillutla et al., 2019) and FedAvg under the model update/data poisoning and
backdoor attacks. Comparison with the Multi-Krum is illustrated in Supplementary Material. For
data poisoning attack, we conduct label-flipping (Biggio et al., 2012), where each label i is flipped
to label i + 1. For model update poisoning, each adversarial device takes the opposite sign of all
weights and scales up 10 times before transmitting the model to the server. For both attacks, we set C
to 0.2 and the portion of adversarial devices is assumed to be r = 0.2 at each global round.

7

Under review as a conference paper at ICLR 2021

0 10 20 30 40 50 60

Global round

50

60

70

80

90

100

T
e

s
t

a
c
c
u

ra
c
y

Sself

RFA

FedAvg

(a) MNIST, data poisoning

0 20 40 60 80 100

Global round

40

50

60

70

80

90

T
e

s
t

a
c
c
u

ra
c
y

Sself

RFA

FedAvg

(b) FMNIST, data poisoning

0 200 400 600 800 1000 1200

Global round

10

20

30

40

50

60

70

T
e

s
t

a
c
c
u

ra
c
y

Sself

RFA

FedAvg

(c) CIFAR-10, data poisoning

0 50 100 150

Global round

0

20

40

60

80

100

T
e

s
t

a
c
c
u

ra
c
y

Sself

RFA

FedAvg

(d) MNIST, model poisoning

0 50 100 150

Global round

10

20

30

40

50

60

70

80

90

T
e

s
t

a
c
c
u

ra
c
y

Sself

RFA

FedAvg

(e) FMNIST, model poisoning

0 200 400 600 800 1000 1200

Global round

10

20

30

40

50

60

70

T
e

s
t

a
c
c
u

ra
c
y

Sself

RFA

FedAvg

(f) CIFAR-10, model poisoning

50 100 150 200 250 300

Global round

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sself

RFA

FedAvg

Norm thresholding

(g) MNIST, backdoor attack

50 100 150 200 250 300

Global round

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sself

RFA

FedAvg

Norm thresholding

(h) FMNIST, backdoor attack

800 1000 1200 1400 1600 1800 2000

Global round

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sself

RFA

FedAvg

Norm thresholding

(i) CIFAR-10, backdoor attack
Figure 3: Performance of different schemes with only adversaries.

For the backdoor, we use the model replacement method (Bagdasaryan et al., 2018) in which
adversarial devices transmit the scaled version of the corrupted model to replace the global model
with a bad model. We conduct the pixel-pattern backdoor attack (Gu et al., 2017) in which the specific
pixels are embedded in a fraction of images, where these images are classified as a targeted label.
We embedded 12 white pixels in the top-left corner of the image and the labels of these poisoned
images are set to 2. We utilize the Dirichlet distribution with parameter 0.5 for distributing training
samples to N = 100 devices. We let C = 0.1, r = 0.1, and the local batch size is set to 64. The
number of poisoned images in a batch is set to 20, and we do not decay the learning rate here. In this
backdoor scenario, we additionally compare Sself with the norm-thresholding strategy (Sun et al.,
2019), in which the server ignores the models with the norm greater than a pre-defined threshold.
We measure the attack success rate of the backdoor task by embedding the pixel-pattern into all test
samples (except data with label 2) and then comparing the predicted label with the targeted label 2.
We applied backdoor attack in every round after the 10-th global round for MNIST and FMNIST, and
after the 1000-th global round for CIFAR-10.
Fig. 3 shows the performance of each scheme over global round under three attack scenarios. For
both data and model poisoning attacks, it can be seen that Sself shows better performance than other
schemes. FedAvg does not work well on all datasets, and the performance of RFA gets worse as the
dataset/neural network model become more complex. In the backdoor attack scenario, Sself and the
norm-thresholding method have low attack success rates on all datasets. The other schemes cannot
defend the backdoor attack having the high attack success rate as global round increases.
Experiments with both stragglers and adversaries. Finally in Fig. 4, we consider the setup
with both stragglers and adversaries. We compare Sself with various straggler/adversary defense
combinations. Comparison with the Multi-Krum is illustrated in Supplementary Material. We set
C = 0.2, r = 0.2 for model/data poisoning while the results on the backdoor attack are also shown in
Supplementary Material. The stragglers and adversaries are modeled as in Figs. 2 and 3, respectively.
We have the following observations from Fig. 4. First, FedAsync (Xie et al., 2019a) does not perform
well when combined with entropy-based filtering and loss-weighted averaging, since the model

8

Under review as a conference paper at ICLR 2021

0 20 40 60 80

Running time

30

40

50

60

70

80

90

100

T
e
s
t
a
c
c
u
ra

c
y

Sself ' Semi-Synchronous + RFA

(a) MNIST, data poisoning

0 50 100 150

Running time

20

30

40

50

60

70

80

90

T
e
s
t
a
c
c
u
ra

c
y

FedAsync + ELF ' Ignore stragglers + RFA .

(b) FMNIST, data poisoning

0 200 400 600 800 1000

Running time

10

20

30

40

50

60

70

T
e
s
t
a
c
c
u
ra

c
y

Wait for stragglers + RFA

(c) CIFAR-10, data poisoning

0 20 40 60 80

Running time

20

40

60

80

100

T
e

s
t

a
c
c
u

ra
c
y

(d) MNIST, model poisoning

0 50 100 150

Running time

10

20

30

40

50

60

70

80

90

T
e

s
t

a
c
c
u

ra
c
y

(e) FMNIST, model poisoning

0 200 400 600 800 1000 1200

Running time

10

20

30

40

50

60

70

T
e

s
t

a
c
c
u

ra
c
y

(f) CIFAR-10, model poisoning

Figure 4: Performance of different schemes with both stragglers and adversaries.

update is conducted one-by-one in the order of arrivals. Due to the same issue, FedAsync cannot
be combined with RFA. Our second observation is that the semi-synchronous or ignore stragglers
method combined with RFA exhibits poor performance. The reason is that the attack ratio could
often be very high (larger than r) for these deadline-based schemes, which degrades the performance
of RFA. Compared to RFA, our entropy and loss based filtering/averaging can be applied even with
a high attack ratio. It can be also seen that the wait for stragglers scheme combined with RFA
suffers from the straggler issue. Overall, the proposed Sself algorithm performs the best, confirming
significant advantages of our scheme under the existence of both stragglers and adversaries.

5 CONCLUSION

We proposed Sself, a robust federated learning scheme against both stragglers and adversaries. The
semi-synchronous component allows the server to fully utilize the results sent from the stragglers
by taking advantages of both synchronous and asynchronous elements. In each aggregation step
of the semi-synchronous approach, entropy-based filtering screens out the model-poisoned devices
and loss-weighted averaging reduces the impact of data poisoning and backdoor attacks. Extensive
experimental results show that Sself enables fast and robust federated learning in practical scenarios
with a large number of slow devices and adversaries.

REFERENCES

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. arXiv preprint arXiv:1807.00459, 2018.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
arXiv preprint arXiv:1206.6389, 2012.

Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine learning with adversaries: Byzantine
tolerant gradient descent. In Advances in Neural Information Processing Systems, pp. 119–129,
2017.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017a.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial settings:
Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 1(2):44, 2017b.

9

Under review as a conference paper at ICLR 2021

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. In Concur-
rency: the Works of Leslie Lamport, pp. 203–226. 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. arXiv preprint arXiv:1908.07873, 2019a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019b.

Yanan Li, Shusen Yang, Xuebin Ren, and Cong Zhao. Asynchronous federated learning with
differential privacy for edge intelligence. arXiv preprint arXiv:1912.07902, 2019c.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
arXiv preprint arXiv:1912.13445, 2019.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

Wentai Wu, Ligang He, Weiwei Lin, Stephen Jarvis, et al. Safa: a semi-asynchronous protocol for
fast federated learning with low overhead. arXiv preprint arXiv:1910.01355, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd. International
Conference on Machine Learning, 2018.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv preprint
arXiv:1903.03934, 2019a.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent with
suspicion-based fault-tolerance. In International Conference on Machine Learning, pp. 6893–6901.
PMLR, 2019b.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno++: Robust fully asynchronous sgd. arXiv
preprint arXiv:1903.07020, 2019c.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. arXiv preprint arXiv:1803.01498, 2018a.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Defending against saddle point
attack in byzantine-robust distributed learning. arXiv preprint arXiv:1806.05358, 2018b.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

10

Under review as a conference paper at ICLR 2021

A HYPERPARAMETER SETTING

A.1 SCENARIO WITH ONLY STRAGGLERS

The hyperparameter settings for Sself are shown in Table 1. For the schemes ignore stragglers and
wait for stragglers combined with FedAvg, we decayed the learning rate during training. For the
FedAsync scheme in (Xie et al., 2019a), we take a polynomial strategy with hyperparameters a = 0.5,
α = 0.8, and decayed γ during training.

Table 1: Hyperparameters for Sself with only stragglers

Dataset γ c δ Eth Learning rate γ decay

MNIST 0.5 0.5 1 1 0.01 Every 15 global epochs
FMNIST 0.5 0.5 1 1 0.01 Every 15 global epochs
CIFAR10 0.5 1.5 1 1 0.01 Every 300 global epochs

A.2 SCENARIO WITH ONLY ADVERSARIES

Data poisoning and model update poisoning attacks: Table 2 describes the hyperparameters for
Sself with only adversaries, under data poisoning and model update poisoning attacks. For the RFA
in (Pillutla et al., 2019), maximum iteration is set to 10. In this setup, the learning rate is decayed for
all three schemes (Sself, RFA, FedAvg).

Table 2: Hyperparameters for Sself with only adversaries, under data and model update poisoning

Dataset γ c δ Eth Learning rate γ decay

MNIST 1 - 1 1 0.01 No decay
FMNIST 1 - 1 1 0.01 No decay
CIFAR10 1 - 1 1 0.01 No decay

Backdoor attack: In this backdoor attack scenario, note that we utilized the Dirichlet distribution
with parameter 0.5 for distributing training samples to N = 100 devices. Local batch size is set to 64
and the number of poisoned images is 20. In this experiment, we additionally compared our scheme
with the norm-thresholding strategy (Sun et al., 2019) where the threshold value is set to 2. The
hyperparameter details for Sself are shown in Table 3.

Table 3: Hyperparameters for Sself with only adversaries, under backdoor attack

Dataset γ c δ Eth Learning rate γ decay

MNIST 1 - 5 2 0.01 No decay
FMNIST 1 - 5 2 0.01 No decay
CIFAR10 1 - 5 2 0.01 No decay

A.3 SCENARIO WITH BOTH STRAGGLERS AND ADVERSARIES

Data poisoning and model update poisoning attacks: The hyperparameters for Sself are exactly
the same as in Table 2.

Backdoor attack: The hyperparameter details are shown in Table 4.

For the comparison schemes, we considered: 1) Semi-synchronous + RFA, 2) FedAsync + ELF
(entropy and loss based filtering/averaging), 3) Ignore stragglers + RFA, 4) Wait for stragglers + RFA.
Each setting is set to be the same as in the previous experiments.

11

Under review as a conference paper at ICLR 2021

Table 4: Hyperparameters for Sself with both stragglers and adversaries, under backdoor attack

Dataset γ c δ Eth Learning rate γ decay

MNIST 0.5 0.5 5 2 0.01 No decay
FMNIST 0.5 0.5 5 2 0.01 No decay
CIFAR10 0.5 1.5 5 2 0.01 Every 1000 global epochs

0 100 200 300

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sself

Semi-Synchronous + RFA

FedAsync + ELF

Ignore stragglers + RFA

Wait for stragglers + RFA

(a) MNIST

0 100 200 300

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sself

Semi-Synchronous + RFA

FedAsync + ELF

Ignore stragglers + RFA

Wait for stragglers + RFA

(b) FMNIST

1000 1200 1400 1600 1800 2000

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sself

Semi-Synchronous + RFA

FedAsync + ELF

Ignore stragglers + RFA

Wait for stragglers + RFA

(c) CIFAR-10

Figure B.1: Performance of different schemes with both stragglers and adversaries under backdoor
attack. We set C = 0.1, r = 0.1.

B ADDITIONAL EXPERIMENTS UNDER BACKDOOR ATTACK

B.1 EXPERIMENTS WITH BOTH STRAGGLERS AND ADVERSARIES UNDER BACKDOOR ATTACK

Based on the hyperparameters described in Table 4, we show experimental results with both stragglers
and adversaries under backdoor attack. It can be observed from Fig. B.1 that Sself successfully
defends against the backdoor attack while other schemes show high attack ratios as global round
increases.

B.2 EXPERIMENTS UNDER NO-SCALED BACKDOOR ATTACK

In addition to model replacement backdoor attack we considered so far, we perform additional
experiments under no-scaled backdoor attack (Bagdasaryan et al., 2018) where the adversarial
devices do not scale the weights and only transmit the corrupted model to the server. Fig. B.2 shows
the performance under no-scaled backdoor attack with only adversaries (no stragglers). It can be seen
that our Sself consistently achieves low attack success rates compared to others. Since the adversaries
do not scale the weights, the norm-thresholding approach cannot defend against the attack.

50 100 150 200 250 300

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sself

RFA

FedAvg

Norm thresholding

(a) MNIST

0 20 40 60

Global round

0

20

40

60

80

100

A
tt
a
c
k
 s

u
c
c
e
s
s
 r

a
te

Sself

RFA

FedAvg

Norm thresholding

(b) FMNIST

Figure B.2: Performance comparison with no-scaled backdoor attack. We set C = 0.1, r = 0.1.

12

Under review as a conference paper at ICLR 2021

0 20 40 60 80 100

Global round

10

20

30

40

50

60

70

80

90

T
e
s
t
a
c
c
u
ra

c
y

=0.5

=1

=1.2

=1.5

=3

(a) FMNIST, data poisoning

0 20 40 60 80 100

Global round

20

40

60

80

T
e
s
t
a
c
c
u
ra

c
y

E
th

=0.67

E
th

=1

E
th

=1.5

E
th

=2

E
th

=2.5

(b) FMNIST, model update poisoning

0 200 400 600 800 1000 1200

Global round

10

20

30

40

50

60

70

T
e
s
t
a
c
c
u
ra

c
y

=0.5

=1

=1.2

=1.5

=3

(c) CIFAR-10, data poisoning

0 200 400 600 800 1000

Global round

10

20

30

40

50

60

70

T
e
s
t
a
c
c
u
ra

c
y

E
th

=0.67

E
th

=1

E
th

=1.5

E
th

=2

E
th

=2.5

(d) CIFAR-10, model update poisoning

Figure C.1: Impact of varying hyperparameters under model update poisoning and data poisoning
attacks. We set C = 0.2, r = 0.2.

C EXPERIMENTAL RESULTS FOR VARYING HYPERPARAMETERS

To observe the impact of hyperparameter setting, we performed additional experiments with various
δ and Eth values, the key hyperparameters of Sself. The results are shown in Fig. C.1 with only
adversaries. We performed data poisoning attack for varying δ and model update poisoning attack
for varying Eth. It can be seen that our scheme still performs well (better than RFA), even with
naively chosen hyperparameters, confirming the advantage of Sself in terms of reducing the overhead
associated with hyperparameter tuning.

D PERFORMANCE COMPARISON WITH MULTI-KRUM

While we compared Sself with RFA in our main manuscript, here we compare our scheme with
Multi-Krum (Blanchard et al., 2017) which is a Byzantine-resilient aggregation method targeting
conventional distributed learning setup with IID data across nodes. In Multi-Krum, among N workers
in the system, the server tolerates f Byzantine workers under the assumption of 2f + 2 < N . After
filtering f worker nodes based on squared-distances, the server chooses N workers among N − f
remaining workers with the best scores and aggregates them. We set M = N − f for comparing our
scheme with Multi-Krum.

Fig. C.2 compares Sself with Multi-Krum under model update poisoning. We first observe Figs. 2(a)
and 2(b) which show the results with only adversaries. It can be seen that if the number of adversaries
exceed f , the performance of Multi-Krum significantly decreases. Compared to Multi-Krum, the
proposed Sself method can filter out the poisoned devices and then take the weighted sum of the
survived results even when the portion of adversaries is high. Figs. 2(c) and 2(d) show the results
under the existence of both stragglers and adversaries, under model update poisoning attack. The
parameter f of Multi-Krum is set to the maximum value satisfying 2f +2 < N , where N depends on
the number of received results for both semi-synchronous and ignore stragglers approaches. However,
even when we set f to the maximum value, the number of adversaries can still exceed f , which
degrades the performance of Multi-Krum combined with semi-synchronous and ignore stragglers
approaches. Obviously, Multi-Krum can be combined with the wait for stragglers approach by setting

13

Under review as a conference paper at ICLR 2021

0 50 100 150

Global round

0

20

40

60

80

100

T
e

s
t

a
c
c
u

ra
c
y

Sself

Multi-Krum: f=3

Multi-Krum: f=4

(a) FMNIST, only adversaries

0 200 400 600 800 1000 1200

Global round

10

20

30

40

50

60

70

T
e

s
t

a
c
c
u

ra
c
y

Sself

Multi-Krum: f=3

Multi-Krum: f=4

(b) CIFAR-10, only adversaries

0 20 40 60 80 100

Running time

0

10

20

30

40

50

60

70

80

90

T
e

s
t

a
c
c
u

ra
c
y

Sself

Semi-Synchronous + Multi-Krum (f=max)

Ignore stragglers + Multi-Krum (f=max)

Wait for stragglers + Multi-Krum (f=max)

(c) FMNIST, both stragglers/adversaries

0 200 400 600 800 1000 1200

Running time

10

20

30

40

50

60

70

T
e

s
t

a
c
c
u

ra
c
y

Sself

Semi-Synchronous + Multi-Krum (f=max)

Ignore stragglers + Multi-Krum (f=max)

Wait for stragglers + Multi-Krum (f=max)

(d) CIFAR-10, both stragglers/adversaries

Figure C.2: Performance comparison with Multi-Krum under model update poisoning. We set
C = 0.2 and r = 0.2.

0 50 100 150 200 250 300

Global round

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sself

Multi-Krum: f=1

(a) FMNIST, only adversaries

800 1000 1200 1400 1600 1800 2000

Global round

0

10

20

30

40

50

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sself

Multi-Krum: f=1

(b) CIFAR-10, only adversaries

0 100 200 300
Running time

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Sself

Semi-Synchronous + Multi-Krum (f=max)

Ignore stragglers + Multi-Krum (f=max)

Wait for stragglers + Multi-Krum (f=1)

(c) FMNIST, both stragglers/adversaries

1000 1200 1400 1600 1800 2000

Global round

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te Sself

Semi-Synchronous + Multi-Krum (f=max)

Ignore stragglers + Multi-Krum (f=max)

Wait for stragglers + Multi-Krum (f=1)

(d) CIFAR-10, both stragglers/adversaries

Figure C.3: Performance comparison with Multi-Krum under backdoor attack. We set C = 0.1 and
r = 0.1.

14

Under review as a conference paper at ICLR 2021

0 20 40 60 80 100 120

Global round

10

20

30

40

50

60

70

80

90

T
e

s
t

a
c
c
u

ra
c
y

Portion of Public Data: 0.03%

Portion of Public Data: 1%

Portion of Public Data: 2%

Portion of Public Data: 6%

(a) Data poisoning

0 50 100 150

Global round

20

30

40

50

60

70

80

90

T
e

s
t

a
c
c
u

ra
c
y

Portion of Public Data: 0.03%

Portion of Public Data: 1%

Portion of Public Data: 2%

Portion of Public Data: 6%

(b) Model update poisoning

0 100 200 300

Global round

0

20

40

60

80

100

A
tt

a
c
k
 s

u
c
c
e

s
s
 r

a
te

Portion of Public Data: 0.03%

Portion of Public Data: 1%

Portion of Public Data: 2%

Portion of Public Data: 6%

(c) Backdoor attack

Figure D.1: Impact of portion of public data at the server using FMNIST. We set C = 0.1, r = 0.1
for the backdoor attack and C = 0.2, r = 0.2 for the others.

f large enough. However, this scheme still suffers from the effect of stragglers, which significantly
slows down the overall training process.

Fig. C.3 compares Sself with Multi-Krum under scaled backdoor attack. The results are consistent
with the results in Fig. C.2, confirming the advantage of Sself over Multi-Krum combined with
straggler-mitigating schemes.

E IMPACT OF PUBLIC DATA

In the experiments in our main manuscript, we utilized 2% of the training data samples as public data
to defend against adversarial attacks. In this section, to observe the impact of the portion of public
data, we performed additional experiments by changing the portion of public data under three attack
scenarios in a synchronous setup. In the main manuscript, we let 2% of the entire training set to be
the public data and the remaining data to be the training data at the devices for a fair comparison
with other schemes. Here, the overall training set is utilized at the devices and among them, a certain
portion of data are collected at the server. Fig. D.1 shows the results with various portions of public
data on FMNIST. From the results, it can be seen that our Sself protects the system against adversarial
attacks with only a small amount of public data. But as shown in the plot where the portion of the
public data is 0.03%, if the amount of public data becomes smaller than a certain threshold, the
robustness of Sself does suffer.

F EXPERIMENTS ON COVID-19 DATASET OPEN TO PUBLIC

In this section, we performed additional experiments on Kaggle’s Covid-19 dataset1 which is open to
public. We consider both model update poisoning and data poisoning attacks in a synchronous setup.
Image classification is performed to detect Covid-19 using Chest X-ray images. The dataset consists
of 317 color images of 3480 × 4248 pixels in 3 classes (Normal, Covid and Viral-Pneumonia). There
are 251 training images and 66 test images. We resized the images into 224 × 224 pixels and used
convolutional neural network with 6 convolutional layers and 1 fully connected layer. We used 6% of
the training data as the public data. We divided the remaining training samples into 10 devices and
set C = 1 and r = 0.1.

Fig. F.1 shows the results of different schemes under data poisoning and model update poisoning
attacks on Covid-19 dataset. As other baseline schemes, our Sself shows robustness against model
update poisoning attack. In data poisoning attack, our Sself shows the best performance compared to
other schemes. In conclusion, utilizing part of the open medical dataset as public data, we show that
our Sself could effectively defend against model update and data poisoning attacks.

1https://www.kaggle.com/pranavraikokte/covid19-image-dataset

15

Under review as a conference paper at ICLR 2021

0 50 100 150 200 250 300

Global round

30

40

50

60

70

80

90

100

T
e

s
t

a
c
c
u

ra
c
y

Sself

RFA

Multi-Krum: f=1

Federated averaging

(a) Data poisoning

0 50 100 150 200 250 300

Global round

30

40

50

60

70

80

90

100

T
e

s
t

a
c
c
u

ra
c
y

Sself

RFA

Multi-Krum: f=1

Federated averaging

(b) Model update poisoning

Figure F.1: Performance of different schemes on medical dataset (Covid-19 image dataset) under
data and model update poisoning attacks. We set C = 1, r = 0.1.

0 50 100 150

Running time

10

30

50

70

90

T
e

s
t

a
c
c
u

ra
c
y

Sself

Semi-Synchronous + RFA

Ignore stragglers + RFA

Wait for stragglers + RFA

(a) FMNIST, data poisoning

0 50 100 150

Running time

0

20

40

60

80

100

T
e

s
t

a
c
c
u

ra
c
y

Sself

Semi-Synchronous + RFA

Ignore stragglers + RFA

Wait for stragglers + RFA

(b) FMNIST, model-update poisoning

Figure G.1: Performance in a more severe straggler scenario where each device can have delay of 0 to
4. Data and model-update poisoning attacks are considered with FMNIST. We set C = 0.4, r = 0.2.

G EXPERIMENTS IN A MORE SEVERE STRAGGLER SCENARIO

When modeling stragglers, we gave a delay of 0, 1, 2 to each device in the experiments of main
manuscript. In this section, each device can have delay of 0 to 4 which is again determined indepen-
dently and uniformly random. In Fig. G.1, we show the results with both stragglers and adversaries
under data and model-update poisoning on FMNIST dataset. We set C to 0.4 and r to 0.2. It can
be seen that our Sself still shows the best performance under both data poisoning and model-update
poisoning compared to other baseline schemes.

H EXPERIMENTS WITH VARYING PORTION OF ADVERSARIES

In this section, we show the performance of Sself with varying portion of adversaries under data
and model poisoning attacks. We do not consider stragglers here. We set δ to 1 and Eth to 1 as in
the experiments of the main manuscript. Fig. H.1 shows the results with different attack ratio on
FMNIST dataset. For data poisoning, our Sself shows robustness against up to 0.4 of the attack ratio,
but with 0.5 or higher, performance is degraded. For model update poisoning, it can be seen that our
Sself performs well even with a higher attack ratio.

I PROOF OF THEOREM 1

I.1 ADDITIONAL NOTATIONS FOR PROOF

After receiving the results at global round t, the server first performs entropy-based filtering and
obtain U (0)

t , U (1)
t ,..., U (t)

t . Let wj
t (k) be the model of the k-th benign device after j local updates

16

Under review as a conference paper at ICLR 2021

0 50 100 150

Global round

0

20

40

60

80

100

T
e

s
t

a
c
c
u

ra
c
y

Attack ratio(r):0.2
Attack ratio(r):0.3
Attack ratio(r):0.4
Attack ratio(r):0.5
Attack ratio(r):0.6

(a) FMNIST, Data poisoning

0 50 100 150

Global round

20

40

60

80

90

T
e

s
t

a
c
c
u

ra
c
y

Attack ratio(r):0.2
Attack ratio(r):0.3
Attack ratio(r):0.4
Attack ratio(r):0.5
Attack ratio(r):0.6

(b) FMNIST, Model update poisoning

Figure H.1: Performance with varying portion of adversaries. Data and model-update poisoning
attacks are considered with FMNIST. We set C = 0.2.

starting from global round t. At global round t, each device receives the current global model wt and
round index t from the server, and sets its initial model to wt, i.e., w0

t (k)← wt for all k = 1, . . . , N .
Then each k-th benign device performs E local updates of stochastic gradient descent (SGD) with
learning rate η:

wj
t (k)← wj−1

t (k)− η∇Fk(wj−1
t (k), ξj−1

t (k)) for j = 1, . . . , E, (8)

where ξjt (k) is a set of data samples that are randomly selected from the k-th device during the j-th
local update at global round t. After E local updates, the k-th benign device transmits wE

t (k) to the
server. However, in each round, the adversarial devices transmit poisoned model parameters.

Using these notations, the parameters defined in Section 2 can be rewritten as follows:

v
(i)
t+1 =

∑
k∈U(i)

t

βi(k)wE
i (k) where βi(k) ∝ mk

{Fpub(wE
i (k))}δ

and
∑
k∈U(i)

t

βi(k) = 1 (9)

zt+1 =

t∑
i=0

αt(i)v
(i)
t+1 where αt(i) ∝

∑
k∈U(i)

t
mk

(t− i+ 1)c
and

t∑
i=0

αt(i) = 1 (10)

wt+1 = (1− γ)wt + γzt+1 (11)

I.2 KEY LEMMA

We introduce the following key lemma for proving Theorem 1. Our proof is largely based on the
convergence proof of FedAsync in (Xie et al., 2019a).

Lemma 1 Suppose Assumptions 1, 2 hold and the learning rate η is set to be less than 1
L . Consider

the k-th benign device that received the current global model wt from the server at global round t.
After E local updates, the following holds:

E[F (wE
t (k))− F (w∗)|w0

t (k)] ≤ (1− ηµ)E [F (w0
t (k))− F (w∗)] +

Eρ1η

2
. (12)

Proof of Lemma 1. First, consider one step of SGD in the k-th local device. For a given wj−1
t (k), for

all global round t and for all local updates j ∈ {1, . . . , E}, we have

17

Under review as a conference paper at ICLR 2021

E[F (wj
t (k))− F (w∗)|wj−1

t (k)]

≤ F (wj−1
t (k))− F (w∗)− ηE[∇F (wj−1

t (k))T∇Fk(wj−1
t (k), ξj−1

t (k))|wj−1
t (k)]

+
Lη2

2
E[‖∇Fk(wj−1

t (k), ξj−1
t)‖2|wj−1

t (k)] I SGD update and L-smoothness

≤ F (wj−1
t (k))− F (w∗) +

η

2
E[‖∇F (wj−1

t (k))−∇Fk(wj−1
t (k), ξj−1

t (k))‖2|wj−1
t (k)]

− η

2
‖∇F (wj−1

t (k))‖2 I η <
1

L

≤ F (wj−1
t (k))− F (w∗)− η

2
‖∇F (wj−1

t (k))‖2 +
ηρ1

2
I Assumption 2

≤ (1− ηµ)[F (wj−1
t (k))− F (w∗)] +

ηρ1

2
I µ-strongly convexity

(13)

Applying above result to E local updates in k-th local device, we have

E
[
F (wE

t (k))− F (w∗)|w0
t (k)

]
= E[E[F (wE

t (k))− F (w∗)|wE−1
t (k)]|w0

t (k)] I Law of total expectation

≤ (1− ηµ)E[[F (wE−1
t (k))− F (w∗)]|w0

t (k)] +
ηρ1

2
I Inequality (13)

...

≤ (1− ηµ)E [F (w0
t (k))− F (w∗)] +

ηρ1

2

E∑
j=1

(1− ηµ)j−1

= (1− ηµ)E [F (w0
t (k))− F (w∗)] +

ηρ1

2

1− (1− ηµ)E

ηµ
I From η <

1

L
≤ 1

µ
, ηµ < 1

≤ (1− ηµ)E [F (w0
t (k))− F (w∗)] +

Eηρ1

2
I From ηµ < 1, 1− (1− ηµ)E ≤ Eηµ

I.3 PROOF OF THEOREM 1

Now utilizing Lemma 1, we provide the proof for Theorem 1. First, consider one round of global
aggregation at the server. For a given wt−1, the server updates the global model according to equation

18

Under review as a conference paper at ICLR 2021

(11). Then for all t ∈ 1, . . . , T , we have

E[F (wt)− F (w∗)|wt−1]

(a)

≤ (1− γ)[F (wt−1)− F (w∗)] + γE[F (zt)− F (w∗)|wt−1]

(b)

≤ (1− γ)[F (wt−1)− F (w∗)] + γ

t−1∑
i=0

αt−1(i)E[F (vit)− F (w∗)|wt−1]

(c)

≤ (1− γ)[F (wt−1)− F (w∗)] + γ

t−1∑
i=0

αt−1(i)
∑

k∈U(i)
t−1

βi(k)E[F (wE
i (k))− F (w∗)|wt−1]

= (1− γ)[F (wt−1)− F (w∗)] + γ

t−1∑
i=0

αt−1(i)
{ ∑
k∈B(i)

t−1

βi(k)E[F (wE
i (k))− F (w∗)|wt−1]

+
∑

k∈M(i)
t−1

βi(k)E[F (wE
i (k))− F (w∗)|wt−1]

}
(d)

≤ (1− γ + γαt−1(t− 1)(1− Ωt−1
t−1)(1− ηµ)E)[F (wt−1)− F (w∗)] +

Eηρ1γ

2

+ γ(1− ηµ)E
t−2∑
i=0

αt−1(i)
∑

k∈B(i)
t−1

βi(k)
[
F (w0

i (k))− F (w∗)
]

+ γ

t−1∑
i=0

αt−1(i)
∑

k∈M(i)
t−1

βi(k)E[F (wE
i (k))− F (w∗)|wt−1]

(e)

≤ (1− γ + γαt−1(t− 1)(1− Ωt−1
t−1)(1− ηµ)E)[F (wt−1)− F (w∗)] + γΩmaxΓ

+ γ(1− ηµ)E
t−2∑
i=0

αt−1(i)
∑

k∈B(i)
t−1

βi(k)
[
F (w0

i (k))− F (w∗)
]

+
Eηρ1γ

2

(f)

≤ (1− γ + γαt−1(t− 1)(1− Ωt−1
t−1)(1− ηµ)E)[F (wt−1)− F (w∗)] + γΩmaxΓ

+ γ(1− ηµ)E
t−2∑
i=0

αt−1(i)
∑

k∈B(i)
t−1

βi(k)
1

2µ
‖∇F (w0

i (k))‖2 +
Eηρ1γ

2

(g)

≤ (1− γ + γαt−1(t− 1)(1− Ωt−1
t−1)(1− ηµ)E)[F (wt−1)− F (w∗)] + γΩmaxΓ

+
Eηρ1γ

2
+
γ(1− αt−1(t− 1))(1− ηµ)Eρ2

2µ
(h)

≤ (1− γ + γαt−1(t− 1)(1− Ωt−1
t−1)(1− ηµ)E)[F (wt−1)− F (w∗)]

+
γ(Eρ1 + (1− αt−1(t− 1))ρ2 + 2µΩmaxΓ)

2µ
(14)

where (a), (b), (c) come from convexity, (d) follows Lemma 1, (e) comes from
Ωmax = max

0≤i≤t,0≤t≤T
Ω

(i)
t and the Assumption 4. (f) is due to µ-strongly convexity, (g) is

from Assumption 3 and (h) comes from ηµ < 1. Note that
∑t−1
i=0 αt−1(i) = 1 for all t.

19

Under review as a conference paper at ICLR 2021

Applying the above result to T global aggregations in the server, we have

E[F (wT)− F (w∗)|w0]

(a)
= E [E[F (wT)− F (w∗)|wT−1]|w0]

(b)

≤ E
[
(1− γ + γαT−1(T − 1)(1− ΩT−1

T−1)(1− ηµ)E)[F (wT−1)− F (w∗)]|w0

]
+
γ(Eρ1 + (1− αt−1(t− 1))ρ2 + 2µΩmaxΓ)

2µ

(c)

≤
T−1∏
τ=0

(1− γ + γατ (τ)(1− Ωττ)(1− ηµ)E)[F (w0)− F (w∗)] +
γ(Eρ1 + (1− αT−1(T − 1))ρ2 + 2µΩmaxΓ)

2µ

+

T−1∑
τ=1

γ(Eρ1 + (1− αT−1−τ (T − 1− τ))ρ2 + 2ΩmaxΓ)

2µ

τ∏
k=1

(1− γ + γαT−k(T − k)(1− ΩT−kT−k)(1− ηµ)E)

(d)

≤ (1− γ + γ(1− ηµ)E)T [F (w0)− F (w∗)] +
[
1− {1− γ + γ(1− ηµ)E}T

] Eρ1 + ρ2 + 2µΩmaxΓ

2µ(1− (1− ηµ)E)

(e)

≤ (1− γ + γ(1− ηµ)E)T [F (w0)− F (w∗)] +
[
1− {1− γ + γ(1− ηµ)E}T

] ρ1 + ρ2 + 2µΩmaxΓ

2ηµ2

= νT [F (w0)− F (w∗)] + (1− νT)C ′

which completes the proof. Here, (a) comes from the Law of total expectation, (b), (c) are due to
inequality (14). And (d) comes from 0 ≤ αt(i) ≤ 1 and 0 ≤ Ω

(i)
t < 1 for all i, t. In addition, (e) is

from ηµ ≤ 1 and E is a positive integer.

20

	Introduction
	Proposed Federated Learning with Sself
	Semi-Synchronous Scheme against Stragglers
	Entropy and Loss based Filtering/Averaging against Adversaries
	Semi-Synchronous Entropy and Loss based Filtering/Averaging (Sself)

	Convergence Analysis
	Experiments
	Conclusion
	Hyperparameter Setting
	Scenario with only stragglers
	Scenario with only adversaries
	Scenario with both stragglers and adversaries

	Additional Experiments under Backdoor Attack
	Experiments with both stragglers and adversaries under backdoor attack
	Experiments under no-scaled backdoor attack

	Experimental Results for Varying Hyperparameters
	Performance Comparison with Multi-Krum
	Impact of Public Data
	Experiments on Covid-19 dataset open to public
	Experiments in a more severe straggler scenario
	Experiments with varying portion of adversaries
	Proof of Theorem 1
	Additional Notations for Proof
	Key Lemma
	Proof of Theorem 1

