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Abstract

Implicit deep learning allows one to compute with implicitly defined features, for exam-
ple features that solve optimisation problems. We consider the problem of computing
with implicitly defined features in a kernel regime. We call such a kernel a deep equilib-
rium kernel (DEKer). Specialising on a stochastic gradient descent (SGD) update rule
applied to features (not weights) in a latent variable model, we find an exact determin-
istic update rule for the DEKer in a high dimensional limit. This derived update rule
resembles previously introduced infinitely wide neural network kernels. To perform our
analysis, we describe an alternative parameterisation of the link function of exponen-
tial families, a result that may be of independent interest. This new parameterisation
allows us to draw new connections between a statistician’s inverse link function and a
machine learner’s activation function. We describe an interesting property of SGD in
this high dimensional limit: even though individual iterates are random vectors, inner
products of any two iterates are deterministic, and can converge to a unique fixed point
as the number of iterates increases. We find that the DEKer empirically outperforms
related neural network kernels on a series of benchmarks. 1

1 Kernel methods, deep learning and implicit deep learning

Kernel methods are a classical paradigm for analysing representational capacity, bias, generalisation
performance and practical algorithms for nonparametric prediction (Schölkopf et al., 2002). Many
classical nonparametric models can be seen as extensions of parametric models (Saunders, 1998; Ras-
mussen & Williams, 2006, § 2.2) that allow for increased representational capacity while retaining some
statistical model-based properties. Examples of model-based qualities may include the smoothness,
stationarity or periodicity of the predictor (Duvenaud, 2014, § 2) or the statistical interpretation of the
learning procedure (Sollich, 2002; Rasmussen & Williams,§ 3), which may be understood by examining
the kernel or the loss function (Banerjee et al., 2005, Theorem 4).

Despite early successes of kernel methods, when data is plentiful and/or modelling is hard, over-
parameterised and under-regularised deep learning is now seen as the dominant paradigm for practical
nonparametric-style prediction (OpenAI et al., 2019; Adiwardana et al., 2020; Rombach et al., 2022).
Unlike parametric and classical nonparametric approaches, the architecture and loss functions of many
explicit neural networks are driven purely from the perspective of representational power or predictive
performance (either empirical (Vaswani et al., 2017) or mathematical (Raghu et al., 2017)) rather than
model-based qualities.

A fruitful direction is to analyse deep learning predictors through the reductionist lens of kernel methods
through sufficiently well-behaved neural networks in certain large parameter count regimes (Neal, 1995).

1Code available at https://github.com/RussellTsuchida/dek.git.
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Figure 1: We establish links between kernel methods and implicit functions to design a kernel with
corresponding statistical assumptions about a latent variable model.

However, to the best of our knowledge, no current theory describes architectural properties of neural
networks in the kernel regime such as choice of activation function, depth and skip connections, in
terms of model-based properties. It is desirable to motivate predictive deep learning architectures from
a more fundamental, statistical model-based perspective (Rudin, 2019; Efron, 2020) in a kernel regime.

Implicit neural networks are an emerging approach to model-based deep learning. We describe such net-
works as model-based because the layers are defined and guaranteed to implicitly satisfy the solution to
a problem arising from a model that is not only purely predictive, but also conceptually elegant. Implicit
networks use solutions to problems as feature representations. For example, deep declarative networks
(DDNs) (Gould et al., 2021) solve optimisation problems, deep equilibrium models (DEQs) (Bai et al.,
2019) solve fixed point (algebraic) problems and neural ODEs solve differential equations (Chen et al.,
2018). Example applications of implicit neural network layers include layers that model optimal trans-
port layers (Campbell et al., 2020; Eisenberger et al., 2022) and layers that perform point estimation
of specific statistical models (Tsuchida et al., 2022; Tsuchida & Ong, 2023). Such problems are usu-
ally computed numerically via the (approximate) fixed point of an iterative procedure. This leads to
the view that implicit layers are themselves a composition of infinitely many functions. Owing to the
complexity of deep learning algorithms, theory falls short of explaining the empirically demonstrated
successes of both implicit and explicit models. To the best of our knowledge, no general notion of an
implicit kernel is currently described in the literature.

We define a new type of kernel called a deep equilibrium kernel. This kernel is defined as the inner
product of features, where features are taken to be solutions to a given problem depending on inputs,
using a given algorithm, at a given iteration of the algorithm. We focus on the special case where the
problem is an optimisation problem for point estimates of a particular latent variable model and the
algorithm is stochastic gradient descent. We find that in the limit as the dimensionality of the features
goes to infinity, the deep equilibrium kernel at any iterate can be represented as a function of the deep
equilibrium kernel at the previous iterate. We describe our contributions in more detail in § 1.1. Our
analysis brings together elements of implicit functions, kernel methods, and deep learning (Figure 1).

1.1 Our contributions: an implicit kernel and an update rule in kernel space

Updates in feature space Solutions to optimisation, fixed point or differential equation problems are
in practice most often obtained via a possibly stochastic iterative update procedure. Let X1 ∈ X ⊆ Rl

be an input to the problem and ψX1 ∈ ψψ ⊆ Rm be the solution to the problem. Note that ψX1 is
the evaluation of an implicit function of X1. The function is implicit because the mapping is defined
through the solution to a problem, rather than an explicit closed-form expression. Let ψ(0)

X1
be an initial

guess for solution at iterate 0. Suppose there exists some possibly stochastic function g(t)( · ;X) : ψψ→
ψψ that maps solutions at iterate t to solutions at iterate t+ 1, so that

ψ
(t+1)
X = g(t)(ψ(t)

X ;X
)
. (1)
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We call ψ(t)
X features and g(t) the update rule in feature space. We emphasise that we consider the

problem where features are updated, not weight parameters as in some other settings. This is unlike
typical settings for the neural tangent kernel (Jacot et al., 2018), where weight and parameter updates
are performed for a fixed depth.

Deep equilibrium kernels We find helpful the notion of an implicitly defined kernel, which we
call a deep equilibrium kernel (DEKer). This allows us to draw parallels between infinitely wide
implicit neural networks and implicitly defined kernel machines. Let ψ(t+1)

X1
and ψ

(t+1)
X2

be two features
corresponding to inputs X1 and X2. Recall that m is the dimension of the feature mapping and t is the
iteration of the solver. We consider three kernel evaluations in terms of the implicit updates in feature
space,

Ψ(t+1)
12 ≜ ψ

(t+1)
X1

⊤
ψ

(t+1)
X2

,︸ ︷︷ ︸
finite feature DEKer (ffDEKer)

Ψ(t+1)
12 ≜ plim

m→∞
Ψ(t+1)

12 ,︸ ︷︷ ︸
DEKer

and Ψ12 ≜ lim
τ→∞

Ψ(τ)
12 ,︸ ︷︷ ︸

limiting DEKer (ℓDEKer)

(2)

where defined, where plim denotes convergence in probability. Note the order of the limits. We will simi-
larly write Ψ11 and Ψ22 to represent evaluations of such DEKers at (X1, X1) and (X2, X2) respectively.
We write

Ψ(t+1) =
(

Ψ(t+1)
11 Ψ(t+1)

12
Ψ(t+1)

21 Ψ(t+1)
22

)
for the corresponding 2 × 2 PSD matrices (and likewise for the ffDEKer and ℓDEKer). The dimen-
sionality of features are allowed to grow to infinity, but only after taking the inner product, resulting
in a scalar value for examination. The mathematical construction of 2 × 2 matrices suffices for our
purposes to analyse algorithms that utilise N examples X1, . . . , XN , since every element of an N ×N
kernel matrix is an element of a corresponding 2 × 2 matrix. Defining such a kernel allows one to build
predictive algorithms that operate on kernel matrices instead of feature space, avoiding the necessity of
describing, analysing and building algorithms involving infinite dimensional feature spaces.

Updates in kernel space Let S2
+ = {K ∈ R2×2 | K = K⊤,K ⪰ 0} denote the space of

2 × 2 PSD matrices. Our central questions are as follows. Firstly, as m → ∞, does there exist
an update that may be performed on 2 × 2 PSD DEKer matrices instead of 2m-dimensional
feature space? Secondly, can we write a closed form for the update? Finally, do repeated
iterations of the update converge? That is, does there exist a closed-form update rule in kernel
space G( · ;X1, X2) : S2

+ → S2
+ such that

Ψ(t+1) = G(Ψ(t);X1, X2) ? (3)
And does Ψ = G(Ψ) = lim

τ→∞
G ◦ . . . ◦ G︸ ︷︷ ︸

τ compositions

(Ψ(0);X1, X2) ? (4)

For convenience, we notationally decompose G into components via a function G satisfying for each
ij ∈ {11, 22, 12}

G(Φ;X1, X2) =
(
G11 G12
G12 G22

)
, where

Gij ≜ G(Φii,Φjj ,Φij ;Xi, Xj) ≜
(

G(Φ;X1, X2)
)

ij
.

(5)

Here Φ ∈ S2
+ is a local dummy variable whose sole purpose is to define G and G.

Contributions We study an important special case of a DEKer where we answer equation 3
and equation 4 positively, one in which the features are iteratively updated using SGD applied to
a latent variable model. The model is over-parameterised (the number of parameters grows much faster
than the amount of data), but shallow (the motivation for the model more closely resembles exponential
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family PCA than a deep neural network). The objective to which we apply SGD is an under-regularised
variant of an expected negative log posterior for point estimates of latent variables. Our main result
(stated precisely in § 3) is a constructive proof of the existence of a closed form update rule in kernel
space G.

Surprisingly, despite the feature space of the DEKer having seemingly no direct relation with deep
learning predictors, deep learning structures emerge as part of our analysis. Our DEKer is a kernel
which satisfies a fixed point equation, constructed via a latent variable model optimisation problem
solved using SGD. Our DEKer may be understood (but is not constructed) as an infinitely wide DEQ
whose iterates are computed with stochastic mapping that is resampled at every iterate rather than as
a deterministic fixed point iteration. Further, the kernel iterates of our DEKer resemble previously
introduced NNKs and NTKs and may be computed with deterministic fixed point solvers.

Informally, our main result (Theorem 4) states that when the features ψ(t)
X1

and ψ(t)
X2

are point estimates
obtained by SGD, we can construct a deterministic update rule, G, for the DEKer, Ψ(t+1). Further,
Corollary 5 says that repeated applications of G converge to a fixed point, the ℓDEKer. We further
quantify the degree to which the ℓDEKer is an invariant of SGD (i.e. does not change as iterates of
SGD increase) when treated as an ffDEKer (Theorem 7).

2 Background

Our analysis requires combining fixed point theory (optimisation), the exponential family (statistics),
and neural network kernels (machine learning). We briefly describe elements of these topics here.

2.1 Notation

Numerical subscripts are used to extract (groups of) indices of a vector or matrix. Parenthesised
superscripts indicate a layer or iteration of a naive fixed point solver, both of which turn out to be the
same in our constructions, as is consistent with other DEQ works. We index objects by iteration by
superscript (t), so that ψ(t) represents a feature in the tth iteration. Sans serif fonts are used to denote
matrices, and serif fonts are used to denote vectors (so W is a matrix and W is a vector). We use ϕ
and Φ for arbitrary vectors and inner products that are not necessarily obtained by iterations of SGD.
We will use ψ and Ψ for feature mappings and inner products of feature mappings that are obtained
by iterations of SGD.

We assume that we are given access to a dataset X ∈ RN×l of N examples of datapoints Xi ∈ X ⊆ Rl.
We denote by X1 and X2 any two elements of this dataset.

There are two types of function signatures we associate with PSD kernels. The first is for a usual
PSD kernel k : X × X → R, so that an evaluation is written k(X,X ′) for any two X,X ′ ∈ X. We
call this form a k-form kernel. The second is for a PSD kernel whose evaluation depends on ϕ1, ϕ2 ∈
ψψ only through evaluations Φ11 = ⟨ϕ1, ϕ1⟩,Φ12 = ⟨ϕ1, ϕ2⟩,Φ22 = ⟨ϕ2, ϕ2⟩ of some suitably defined
inner product ⟨·, ·⟩ : ψψ × ψψ → ΨΨ. We represent such a kernel through κ : ΨΨ3 → R with evaluations
κ
(
⟨ϕ1, ϕ1⟩, ⟨ϕ2, ϕ2⟩, ⟨ϕ1, ϕ2⟩

)
. An example of this second form is the NNK (equation 11). We call this

form a κ-form kernel.

Our notation is summarised in Table 3 in Appendix A.

2.2 Fixed points and infinite compositions

Let f : F → F for some set F equipped with a norm ∥ · ∥ and norm-induced metric. A fixed point of
f is any Z∗ ∈ F satisfying Z∗ = f(Z∗). Banach’s fixed point theorem (BFPT) (Goebel & Kirk, 1990,
Theorem 2.1) gives sufficient conditions for the existence and uniqueness of such a fixed point.
Theorem 1 (BFPT). Let (F, ∥ · ∥) be a non-empty complete normed space. A mapping f : F → F is
called a contraction mapping if there exists some q ∈ [0, 1) such that ∥f(Z) − f(Z ′)∥ ≤ q∥Z − Z ′∥ for

4



Published in Transactions on Machine Learning Research (07/2023)

every Z,Z ′ ∈ F . Every contraction mapping f admits a unique fixed point Z∗ ∈ F . Furthermore, for
any initial element Z(1) ∈ F, the sequence Z(t+1) = f(Z(t)) for t ≥ 1 converges to Z∗ as t → ∞.

It is worth noting that BFPT not only provides a mathematical condition for well-posedness, but also
describes an algorithm for approximating fixed points of contraction mappings. We call this algorithm
the naive fixed point solver, which simply involves applying a τ -fold composition of f to some starting
value Z(1), with a linear rate of convergence immediate from the definition of contraction mapping, i.e.
∥Z∗ − Z(t+1)∥ ≤ qt

1−q ∥Z(2) − Z(1)∥. Other solvers for fixed point problems are available, many of which
are approximate Newton methods for root finding (Kelley, 1995).

Deep equilibrium models (DEQs) (Bai et al., 2019) are neural network predictors constructed of pa-
rameterised layers that output the solution to fixed point equations Z∗ = fU(Z∗), where U is a general
parameter object. These layers draw upon earlier works on recurrent backpropagation (Pineda, 1987;
Almeida, 1990), leveraging the modern machinery of deep learning architectures, optimisers and heuris-
tics. The unsupervised learning problem for a DEQ, an example of which is considered by (Tsuchida &
Ong, 2023), is

min
U

N∑
i=1

L
(
Xi, Z

∗
i ,U

)
︸ ︷︷ ︸

Empirical risk minimisation for parameters U

subject to Z∗
i = fU(Z∗

i , Xi),︸ ︷︷ ︸
Fixed point solution for DEQ predictions Z∗

i

where L is some loss function, U is a parameter object, and {Xi}N
i=1 is a collection of input examples

(a supervised setting might also involve a set of output examples). Derivatives ∂Z∗
i

∂U of outputs of these
layers with respect to their parameters U can be computed without backpropagating through the iterates
of the fixed point solver using the implicit function theorem (Bai et al., 2019). This allows first-order
stochastic gradient methods that are popular with explicit deep learning architectures to be applied to
DEQs.

In general, it is not guaranteed that a function necessarily admits a unique fixed point; various works
discuss dealing with multiple fixed points or ensuring or encouraging that exactly or at least one fixed
point exists (Winston & Kolter, 2020; Revay et al., 2020; El Ghaoui et al., 2021). Interestingly, if a single
DEQ layer involves finding the fixed point of a contraction mapping, by Theorem 1 the output computed
by a DEQ has the interpretation of an infinitely deep neural network with shared parameters in each
layer. More generally, mappings computed by the naive fixed point solver have interpretations as very
deep neural networks with shared parameters in each layer. Since zeros of the gradient of sufficiently
well behaved objectives are stationary points of the objectives, DEQ layers share a connection with
optimisation-based implicit layers (Gould et al., 2021), as explored in various works (Revay et al.,
2020; Xie et al., 2021; Tsuchida et al., 2022; Riccio et al., 2022; Tsuchida & Ong, 2023). Our current
investigation concerns a connection more specific than optimisation, since it considers the special case
of applying SGD.

2.3 Exponential families

Exponential families The feature mappings that we use to build our kernel are estimates obtained
using SGD applied to certain variants of exponential family likelihoods and Gaussian priors. We now
define minimal and regular exponential families in canonical form. Let h be a probability density (mass)
function supported on data space Y ⊆ R. Let T : Y → R be a function called the sufficient statistic.
Given some canonical parameter η belonging to an open set H ⊆ R, we may construct a probability
density (mass) function by normalising the nonnegative function h(·) exp

(
T (·)η

)
. The normalising

constant is called the partition function, and its strictly convex and infinitely differentiable logarithm
A is called the log partition function (Wainwright et al., 2008, Proposition 3.1). We write

p(y | η) = h(y) exp
(
T (y)η −A(η)

)
, A(η) = log

∫
Y
h(y) exp

(
T (y)η

)
dy
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for the evaluation of a probability density (mass) function of an exponential family. The log partition
function A acts as a cumulant generating function for the conditional distribution of the sufficient
statistic T . In particular the expected value of the sufficient statistic (often called the expectation
parameter (Nielsen & Garcia, 2009)) is the gradient of the log partition function A. That is,

E
[
T (y) | η

]
= A′(η). (6)

We consider factorised exponential families in the following sense. Let y1, . . . yd be distributed according
to the same exponential family and define data vector Y = (y1, . . . , yd)⊤ and canonical parameter vector
H = (η1, . . . , ηd). Then the joint distribution of data Y conditioned on canonical parameters H is the
product of the individual elements

p(Y | H) =
d∏

i=1
p(yi | ηi) =

( d∏
r=1

h(yr)
)

exp
(
T (Y )⊤H −A(H)⊤1

)
, (7)

where we write T (Y ) =
(
T (y1), . . . , T (yd)

)⊤, A(H) =
(
A(η1), . . . , A(ηd)

)⊤ and 1 = (1, . . . , 1)⊤.

Link functions and canonical link functions Exponential families are used in generalised linear
models (GLMs) (McCullagh & Nelder, 1989). In GLMs, the conditional expectation equation 6 of an
exponential family is set to be the result of applying an (invertible) inverse link function s−1 to the
result of a linear transformation of features ϕ ∈ Rm (classically called parameters). That is, for some
linear basis V ∈ Rd×m (classically called covariates),

A′(H) = E
[
T (Y ) | H

]
= s−1(Vϕ). (8)

The conditional expectation is then mapped to the canonical parameter H through
H = (A′)−1 ◦ s−1(Vϕ), noting that A′ is invertible because A is strictly convex. In the case
where s−1 is chosen to be A′, s ≡ (A′)−1 is called the canonical link function, and we observe
from equation 8 that the canonical parameter and conditional expectation satisfy

H = Vϕ, E[T (Y ) | Vϕ] = A′(Vϕ) = s−1(Vϕ). (9)

There are two main and sometimes conflicting reasons why one might be interested in using a non-
canonical link function. The first is computational; if the link function were canonical, for some dis-
tributions such as Gamma or exponential one would need a constrained optimisation method over the
open set H instead of R. If s−1 were allowed to be non-canonical — that is, we are free to choose
s−1 different from A′ — we could map the conditional expectation to the appropriate constraint set
and unconstrained optimisation procedures could be applied. In a Bayesian context, sampling from the
posterior over ϕ can be made easier by convenient choices of s. For example, the probit model admits
an efficient Gibb’s sampler for the posterior (Albert & Chib, 1993). The second, and arguably more
important consideration is modelling; we might have reason to suspect that the conditional expectation
is constrained. For example, if the observations should have a positive expectation, the power family
of link functions might be used (McCullagh & Nelder, 1989, equation 2.9a). Alternative link functions
can lead to exploiting particular properties of interest; for example, Wiemann et al. (2021) use the
softplus function for positive conditional expectations to exploit its identity-like behaviour at large pos-
itive values. In weighing up the possibly conflicting aims of computational convenience and modelling
suitability, we highlight the view of Efron & Hastie (2021, page 68); while classical exponential families
and link functions may lead to closed-form expressions, modern computer technology allows us more
flexible models.

Point estimation When using a canonical inverse link function s ≡ A′, the negative logarithm of the
likelihood (equation 7) is strictly convex in H, since A is strictly convex and linear functions are convex.
If H is chosen to be H = Vϕ, this translates to convexity in ϕ, and maximum likelihood estimates can
be computed using first or (more typically, in a classical setting) second order optimisation methods.
When s−1 is not a canonical inverse link function, convexity does not necessarily hold. Nevertheless,
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local estimates are practically useful, so pre-implemented link functions and the option to implement
custom link functions is available in a number of software frameworks including R (R Core Team, 2021,
family) and Stata (Hardin & Hilbe, 2018, glm).

2.4 Kernels arising from neural networks

Our main result describes the DEKer update rule as a composite function involving evaluations of
kernels of a particular form. These are kernels that are constructed from neural network models. In
this section, we describe such kernels.

The neural network kernel was first investigated as the covariance function of a certain neural network
with random parameters and a single hidden fully connected layer (Neal, 1995). Under mild conditions,
as the width of the hidden layer goes to infinity the neural network converges to a Gaussian process.
This analysis has since been extended to handle multiple layers (Matthews et al., 2018; Lee et al.,
2018), other layer types including convolutional layers (Mairal et al., 2014; Garriga-Alonso et al., 2018;
Novak et al., 2019; Yang, 2019a;b), and training under gradient flow via the neural tangent kernel
(NTK) (Jacot et al., 2018) . Since our motivation is better described in terms of inner products of
the features, we favour the view of the neural network kernel as an inner product in an infinitely wide
hidden layer rather than a covariance function of a Gaussian process. We note that connections between
Bayesian Gaussian processes and kernel methods exist (Kanagawa et al., 2018) and apply to some but
not all infinitely wide neural networks.

Neural network kernel, single hidden layer Let W(1) ∈ Rd×n be the weights of a fully connected
hidden layer with activation function ζ defined over the reals. Suppose each entry of W(1) is i.i.d. with
distribution N (0, 1)2. Given an input feature ϕ1 ∈ Rn×1 (we take the convention that vectors are
column vectors), the signal in the hidden layer is h(1) ≜ ζ(W(1)ϕ1)3. Here and throughout the paper
the symbol ≜ means that the object on the left hand side is defined to be the expression on the right
hand side. By a strong law of large numbers, a suitably normalised inner product in the hidden layer
converges almost surely as d → ∞ to an expectation,

1
d
h

(1)
1

⊤
h

(1)
2 = 1

d
ζ(W(1)ϕ1)⊤ζ(W(1)ϕ2) a.s.→ EW

[
ζ(W⊤ϕ1)ζ(W⊤ϕ2)

]
,

assuming the right hand side is finite, since the inner product is a sum of i.i.d. random variables. Here
W⊤ ∈ R1×m is a vector with i.i.d. entries drawn from N (0, 1). We define

kζ(ϕ1, ϕ2) ≜ EW

[
ζ(W⊤ϕ1)ζ(W⊤ϕ2)

]
, (10)

and call kζ a single hidden layer neural network kernel (NNK) with activation function ζ. The PSD
kernel kζ uniquely defines an RKHS by the Moore–Aronszajn theorem. Closed-form expressions of kζ

for different ζ are available (Williams, 1997; Le Roux & Bengio, 2007; Cho & Saul, 2009; Tsuchida et al.,
2018; Pearce et al., 2019; Tsuchida, 2020; Meronen et al., 2020; Tsuchida et al., 2021; Han et al., 2022).

Define (χ1, χ2)⊤ ≜
(
W⊤ϕ1,W

⊤ϕ2
)⊤, which is a zero mean bivariate Gaussian with a covariance matrix

Σ(1). Note that kζ(ϕ1, ϕ2) depends on the input features ϕ1 and ϕ2 only through the covariance
matrix Σ(1). It is helpful to explicate this dependence structure through a special notation. We have
that equation 10 is equal to

κζ

(
Σ(1)

11 ,Σ
(1)
22 ,Σ

(1)
12
)
≜ kζ(ϕ1, ϕ2) = E(χ1,χ2)⊤∼N (0,Σ(1))

[
ζ
(
χ1
)
ζ
(
χ2
)]
, Σ(1) ≜

(
ϕ⊤

1 ϕ1 ϕ⊤
1 ϕ2

ϕ⊤
2 ϕ1 ϕ⊤

2 ϕ2

)
. (11)

With an abuse of terminology, we refer to both kζ and κζ as PSD single hidden layer NNKs. For a
more detailed description of the NNK, see Appendix C.

2The effect of non-unit weight variance may be obtained by scaling all inputs ϕ1 by a hyperparameter. Similarly,
arbitrary covariance structures inside rows of W(1) can be reflected as linear transformations of all inputs ϕ1.

3The effect of zero mean Gaussian biases may be obtained by augmenting inputs with an additional coordinate. The
magnitude of this coordinate is equivalent to the quotient of the standard deviation of the weights to the biases.
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Neural network kernel, τ hidden layers One may compose equation 11 multiple times by applying
a sequence of kernels to a 3-dimensional state represented by a 2 × 2 PSD matrix Σ(t), in place of the
infinitely wide signals. This 3-dimensional state represents the two squared norms and inner product
in each hidden layer. For t = 1, . . . , τ and ij ∈ {11, 22, 12},

Σ(t+1)
ij ≜ E(χi,χj)⊤∼N (0,Σ(t))

[
ζ
(
χi

)
ζ
(
χj

)]
= κζ

(
Σ(t)

ii ,Σ
(t)
jj ,Σ

(t)
ij

)
, (12)

where Σ(t)
ij denotes the ijth element of Σ(t). This iteration appears in deep infinitely wide

NNKs (Matthews et al., 2018; Lee et al., 2018). We will refer to this kernel as the τ layer NNK. Eval-
uations Σ(τ+1)

12 of the PSD kernel are determined entirely by the activation function ζ, and uniquely
define an RKHS.

Neural tangent kernel, τ hidden layers This kernel describes the limiting behaviour of randomly
initialised neural networks that are trained under gradient flow (Jacot et al., 2018). The kernel iterations
are similar to equation 12, but also contain components involving the derivative ζ̇ of ζ. Let ⊙ denote
elementwise product. In addition to the iteration equation 12, let Θ(1) = Σ(1) and define

Θ(t+1) ≜ Θ(t) ⊙ Σ̇(t+1) + Σ(t+1), where (13)

Σ̇(t+1)
ij ≜ E(χi,χj)⊤∼N (0,Σ(t))

[
ζ̇
(
χi

)
ζ̇
(
χj

)]
= κζ̇

(
Σ(t)

ii ,Σ
(t)
jj ,Σ

(t)
ij

)
to obtain the evaluation of the PSD NTK in the last iteration Θ(τ+1)

12 . Once again, the kernel is
determined entirely by the ζ, and uniquely defines an RKHS. The notion of an NTK for DEQ models
has been explored (Feng & Kolter, 2021), which results in a kernel that is in some sense a composition
of many layers of kernels. In contrast, our current investigation is about building a compositional kernel
from a latent variable model, rather than a neural network model.

While the DEKer we will derive shares only superficial similarities with the NTK, special cases of the
DEKer can recover NNKs. We further discuss this at the end of § 3.

3 Main results

Our results are most clearly described in terms of an alternative parameterisation of exponential fam-
ilies and link functions, which are perhaps of independent interest. We first describe this alternative
parameterisation in § 3.1, before moving onto the setup for our main analysis in § 3.2. We then in § 3.3
provide a special case (Corollary 3) of our main and most general result (Theorem 4) in § 3.4. Finally,
quantification of error between the DEKer and ffDEKer is described in § 3.5. We give examples of
our resulting updates in Appendix G.2.

3.1 An alternative view of link functions in exponential families

Instead of computing via the conditional expectation resulting from the application of an inverse link
function equation 8, we follow Tsuchida & Ong (2023) and learn the canonical parameter via a non-
linearity H = R(Vϕ), for some once-differentiable R : R → H called the canonical nonlinearity. This
means that the conditional likelihood equation 7 is now

p(Y | V, ϕ) =
d∏

i=1
p(yi | ηi) =

( d∏
r=1

h(yr)
)

exp
(
T (Y )⊤R(Vϕ) −A

(
R(Vϕ)

)⊤1
)
. (14)

Such a parameterisation is rich enough to recover the (non-canonical) inverse link function view of
the statistician (see Proposition 2). It can therefore be considered to be a change of notation, placing
emphasis on the canonical nonlinearity R instead of the inverse link function s−1. In our setting, one
advantage of such a notation is that it avoids more complicated function compositions involving inverses
and derivatives. For example, instead of writing A ◦ (A′)−1 ◦ s−1(Vϕ) we may write A ◦ R(Vϕ). The
value of these simple compositions become more evident in Proposition 2.
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Exponential family A(η) s−1(a) R(a) ρ(a) σ(a)
Gaussian η2/2 s−1(a) s−1(a) (s−1)′(a) s−1(a) (s−1)′(a)
Gaussian η2/2 a a 1 a

Gaussian η2/2 erf(a/
√

2) erf(a/
√

2) 2p(a) erf(a/
√

2)2p(a)
Gaussian η2/2 ReLU(a) ReLU(a) u(a) ReLU(a)
Poisson exp(η) s−1(a) log s−1(a) (s−1)′(a)

s−1(a) (s−1)′(a)
Poisson exp(η) exp(a) a 1 exp(a)
Poisson exp(η) log(1 + exp a) log log(1 + exp a) exp(a)

(1+exp a) log(1+exp a) exp(a)/
(
1 + exp(a)

)
Bernoulli log(1 + exp(η)) s−1(a) (s−1)′(a)

s−1(a)
(

1−s−1(a)
) (s−1)′(a)

1−s−1(a)

Bernoulli log(1 + exp(η)) exp(a)/
(
1 + exp(a)

)
a 1 exp(a)/

(
1 + exp(a)

)
Bernoulli log(1 + exp(η)) P (a) log

(
P (a)

1−P (a)

)
p(a)

P (a)P (−a)
p(a)

P (−a)

Table 1: These examples are obtained by plugging the desired log partition function A and inverse
link function s−1 into expressions equation 24, equation 25 and equation 26. Canonical link functions
are shown in blue. General inverse link function settings are shown in red. Here P and p respectively
denote the cdf and pdf of the univariate standard Gaussian and erf denotes the error function.

Nonlinearities and activation functions The derivatives of the log likelihood equation 14 (a score
function) play a central role in numerical procedures associated with estimation. In our setting, such
derivatives involve terms derived from A and R. These terms are expressed in terms of functions we call
factor activations ρ(a) ≜ R′(a) and chain activations σ(a) ≜ (A ◦R)′(a). The following identities show
how one may map between choices of (A, s) and choices of (A,R), and additionally how these induce
activation functions σ and ρ which appear in gradient-based optimisers and our later derivations. Note
that we may choose the inverse link function s−1 to be non-canonical (not A′).
Proposition 2. Consider a regular and minimal exponential family with log partition function A :
H → R. Suppose the conditional expectation belongs to a set A′, that is, A′(η) ∈ A′ for all canonical
parameters η ∈ H. Let s−1 : B → A′ be an inverse link function, for some B ⊆ R. That is, for every
η ∈ H there exists some a ∈ B such that A′(η) = s−1(a). Then equivalently, η = R(a), where R : B → H
is defined by R(a) ≜

(
(A′)−1 ◦ s−1)(a). Furthermore,

ρ(a) ≜ R′(a) = (s−1)′(a)
A′′ ◦ (A′)−1 ◦ s−1(a) and σ(a) ≜ (A ◦R)′(a) = s−1(a) (s−1)′(a)

A′′ ◦ (A′)−1 ◦ s−1(a) .

The proof is given in Appendix B. In practice we will take B = R. We observe that R is the identity
if and only if s is a canonical link function (which is to say that s−1(a) = A′(a)). For the special case
of a Gaussian with known variance, A′ is the identity and R is the inverse link function s−1. Further
cases are listed in Table 1.

Nonlinear parameterisation framed in terms of R instead of s−1 are often used (McCullagh & Nelder,
1989, Chapter 11.4 and references therein), but their general relationship to s−1 does not appear to be
discussed. As our setting is equivalent to using an arbitrary link function, we inherit the motivation
of using a non-identity R from the motivation for using a non-canonical link function. We also inherit
the usual difficulties in estimation and sample complexity due to using not necessarily canonical link
functions.

Recall that the choice of (A, s) should be informed by both modelling and numerical convenience
(sampling, optimisation) considerations. Motivated by neural network kernels, we find a different set of
(A, s) pairs convenient to work with compared with the generalised linear model setting. Convenience
here translates to being able to compute certain Gaussian integrals of the form equation 11 in closed
form. For example, we find it easy to work with a Gaussian with non-negative conditional expectation,
parameterised by A(η) = η2/2 and s−1(a) = ReLU(a), where ReLU is the popular rectified linear
unit (Efron & Hastie, 2021, page 362). Another convenient setting is a Gaussian likelihood and probit
inverse link function (in contrast with the often seen Bernoulli and probit inverse link function). Our
theory holds for general (A, s) pairs, but its practical efficiency is contingent upon the existence of
efficient numerical routines for computing the integral equation 11. Such numerical routines in the
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absence of closed-forms are available in other works (Zandieh et al., 2021; Han et al., 2022), but we do
not study their application here.

3.2 Setup

Stochastic gradient descent We apply SGD (Robbins & Monro, 1951; Wright & Recht, 2022,
Chapter 5) to a minimisation objective L(ϕ;X) = EVL

(
ϕ;X,V

)
with decision variable ϕ, input X

and random linear transformation V. The exact minimisation objective relates to a continuous latent
variable model, and is described shortly. Given two inputs X1 and X2, the t+ 1th iterates are

ψ
(t+1)
X1

= ψ
(t)
X1

− α(t) ∂

∂ψ
(t)
X1

L
(
ψ

(t)
X1

;X1,V(t)) and ψ
(t+1)
X2

= ψ
(t)
X2

− α(t) ∂

∂ψ
(t)
X2

L
(
ψ

(t)
X2

;X2,V(t)) (15)

with initial features ψ(0)
X1

and ψ
(0)
X2

, a sequence {α(t)}t of step sizes, and a sequence of {V(t)}t of iid
samples of V. We use the features ψ(t)

X1
and ψ

(t)
X2

in equation 15 to define the ffDEKer, DEKer and
ℓDEKer via equation 2. We stress that we are updating features, not weight parameters.

Continuous latent variable model We work with a data generating process which is a slight
nonlinear generalisation (Tsuchida & Ong, 2023) of exponential family PCA (Collins et al., 2001),
allowing for nonlinear R (or equivalently, non-canonical link functions as in Proposition 2). This model
describes data Y as being drawn from an exponential family distribution with a canonical parameter
that is a function of a latent ϕ. The number of conditionally independent observations of exponential
family distributed random variables is d, and the dimensionality of the latent is m.

More concretely, let X ∈ X ⊆ Rl be an input and suppose that data Y = Γ(X) follows a factorised
exponential family equation 7 for some realisation of a random mapping Γ : X → Yd. Let R : R → H
be a once-differentiable function. Choose the canonical parameter H = R(Vϕ) to be the composition
of R and a linear transformation V of a latent input variable ϕ ∈ ΨΨ = Rm. The linear transformation
V form the model parameters. Place an i.i.d. N (0, 1) prior over each entry of V ∈ Rd×m, independent
of Γ. Place an i.i.d. N (0, λ−1/m) prior over ϕ. This results in a pre-nonlinearity parameter Vϕ having
components with variance which stays constant in d and m. For some constant C not depending on ϕ,
we have

− log p
(
ϕ | Γ(X),V

)
= −

(
log p

(
Γ(X) | R(Vϕ)

)︸ ︷︷ ︸
Log likelihood

−m
λ

2 ∥ϕ∥2︸ ︷︷ ︸
-Log prior

)
+ C.

As discussed in Proposition 2, the derivative of the negative log-posterior with log-partition function
A, which appears in our later optimisation procedure, induces two functions ρ(a) ≜ R′(a) and σ(a) ≜
(A ◦R)′(a) which we call factor activations and chain activations respectively.

Objective function The expected negative log posterior

L(ϕ;X) ≜ EVL
(
ϕ;X,V

)
, where L

(
ϕ;X,V

)
≜

1
d

(
− log p

(
Γ(X) | R(Vϕ)

)
+m

λ

2 ∥ϕ∥2
)
, (16)

is a commonly used minimisation objective to find point estimates of ϕ. See Appendix H.1 for a
discussion on this objective. The division by d is introduced to account for the natural numerical
scaling of the likelihood term, which is a sum of d parts. Following recent deep learning trends, we
consider an over-parameterised and under-regularised variant

L(ϕ;X) ≜ EVL
(
ϕ;X,V

)
, where L

(
ϕ;X,V

)
≜

1
d

(
− log p

(
Γ(X) | R(Vϕ)

)
+

√
md

λ

2 ∥ϕ∥2
)
, (17)

where d < m. We call the setting over-parameterised because there are more parameters than datapoints
(m > d) and under-regularised because the regularisation strength

√
mdλ

2 is less than what it would be
under a typical Gaussian prior, mλ

2 . This expected negative log posterior may be obtained by choosing
an overly broad i.i.d. prior N

(
0, λ−1/

√
md
)

over ϕ. We will take d to be a well-behaved function of m
such that d → ∞ as m → ∞ (see Assumption 1).

10
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Assumptions We now describe two assumptions common to both settings. Our first assumption says
that the dimensionality m of the feature space should become larger much faster than the dimensionality
d of the number of conditionally independent observations in the exponential family.
Assumption 1. Consider any limit path (m, d) → (∞,∞) such that lim

m→∞
d
m = 0.

Our second assumption describes how the step size α should depend on m, d, and the SGD iteration t.
Recall the nomenclature “fixed” and “decreasing” as qualifiers for step-size, which describe a dependency
on t (but not d). Recall that λ is the regularisation parameter.
Assumption 2 (a). lim

m→∞
α(t)λ

√
m
d = 1.

Assumption 2 (a) allows for fixed or decreasing step sizes, such as 1
λ

√
d√

m+r(t) for increasing but finite
r. Assumption 2 (a) suffices for our limiting result to hold. If we want to additionally quantify the
distance between the limit and finite-dimensional kernels, we use the stronger Assumption 2 (b), which
in particular requires a fixed step-size. Both variants 2 (a) and 2 (b) result in a limiting step size of 0,
under Assumption 1.

Assumption 2 (b). We have a fixed step-size α(t) = 1
λ

√
d
m .

We will find that in our setup, the DEKer is a composite function involving NNK building blocks.

3.3 Error function inverse link and Gaussian likelihood to match a random mapping

We will find that the update rule G of the DEKer is a composite function involving NNK building
blocks. In order to clearly highlight the role of these NNK building blocks, we first present a special
case before presenting our more general Theorem 4. This provides a clear link between the statistical
likelihood model and closed form expressions for the DEKer update rule.

We choose an exponential family, canonical nonlinearity and random mapping Γ. This particular setup
leads to closed-form expressions for the NNKs involved in the update rule. As an activation function,
we choose the error function erf(z) = 2/

√
π
∫ z

0 e
−v2

dv (closely related to the Probit function), and rely
on a closed-form NNK derived in Williams (1997),

κerf(·/
√

2)(Σ11,Σ22,Σ12) = 2
π

sin−1 Σ12√
(1 + Σ11)(1 + Σ22)

. (18)

We show here the statistical modelling choices and their corresponding effect on the DEKer update rule.
In this special case, our main result (Theorem 4) implies Corollary 3, as proven in Appendix G.1. Recall
from § 2.3, that the designer needs to choose a log partition function A, and a canonical nonlinearity
R. We map input X ∈ Rl to data Y ∈ Rd through a random mapping Y = erf(WX/

√
2) + Q,

where W ∈ Rd×l and Q ∈ Rd contain i.i.d. standard Gaussian elements. The distribution of Y
given erf(WX/

√
2) is conditionally Gaussian, with conditional expectation erf(WX/

√
2) having elements

between −1 and 1. We therefore choose a matching inverse link function, to represent the conditional
expectation as a function of features ψX . The inverse link function is s−1(a) = erf(a/

√
2). The log

partition function is A(η) = η2/2 and the sufficient statistic is T (y) = y. Since the likelihood is
Gaussian, the canonical nonlinearity R and inverse link function s−1 are the same, as shown in the first
row of Table 1. In this particular case, the activations ρ and σ are shown in the third row of Table 1.
Corollary 3. Suppose input X is mapped to data Y by Y = erf(WX/

√
2) + Q, where erf is the

error function and W ∈ Rd×l and Q ∈ Rd contain i.i.d. standard Gaussian elements. Choose the log
partition function A(η) = η2/2. Choose the canonical nonlinearity R(a) = erf(a/

√
2), or equivalently,

choose the inverse link function to be s−1(a) = erf(a/
√

2). This implies that ρ(a) = 2p(a) and σ(a) =
2p(a) erf(a/

√
2), where p is the pdf of the standard Gaussian. Then κρ and κσ are given by

κρ(Φ11,Φ22,Φ12) = 2
π
√

(1 + Φ11)(1 + Φ22) − Φ2
12
,

κσ(Φ11,Φ22,Φ12) = κρ(Φ11,Φ22,Φ12)κerf(·/
√

2)(F11, F22, F12), where F =
(
Φ−1 + I

)−1
.

11
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Let Cij = κerf(·/
√

2)(X⊤
i Xi, X

⊤
j Xj , X

⊤
i Xj). Suppose Assumptions 1 and 2 (a) hold. Then applying SGD

to objective equation 17, the update rule G equation 3 exists and can be decomposed into G equation 5
satisfying

G(Φii,Φjj ,Φij ;Xi, Xj) = 1
λ2

(
Cijκρ

(
Φii,Φjj ,Φij

)
+ κσ

(
Φii,Φjj ,Φij

))
.

Note that in this case the component G of the update rule G can be computed entirely in closed
form. The 2 × 2 matrix F = (Φ−1 + I)−1 has a simple closed-form in terms of Φ (see Appendix G.1)4.
Recall that the decomposition of G into G says that, by plugging equation 5 into equation 3, for each
ij ∈ {11, 22, 12},

Ψ(τ+1)
ij = G

(
Ψ(τ)

ii ,Ψ
(τ)
jj ,Ψ

(τ)
ij ;Xi, Xj

)
. That is, Ψ(τ+1) = G(Ψ(τ);X1, X2).

3.4 General case

We now consider the general setting, allowing for arbitrary (A, s) pairs and random mappings Γ. In
order to analyse this generalised setting, we require one additional definition equation 19 and two
additional assumptions 3 and 4.

In the most general setting, the DEKer includes some non-symmetric (hence not PSD and not a kernel)
cross terms. Given two activations ζ1 and ζ2,

κζ1,ζ2

(
Σ11,Σ22,Σ12

)
≜ E(χ1,χ2)⊤∼N (0,Σ)

[
ζ1
(
χ1
)
ζ2
(
χ2
)]
. (19)

The third assumption says that if the inner products were empirical estimates of an expectation, the
resulting expectation is real valued and finite. Recall that T is the sufficient statistic of the exponential
family, Γ is the random mapping from input space to data space, and σ(a) = (A ◦R)′(a)

Assumption 3. The expectation K(a) = EZ

[(
T
(
Γ(X)

)
⊙ ρ
(
aZ
)

− σ(aZ
)2]

is finite for all X ∈ X
and a ∈ R, where Z is a standard Gaussian random variable.

The fourth assumption describes the properties of the random mapping Γ : X → Yd as d → ∞. In
order to understand what happens to the solutions found by SGD as d becomes large, we need the
inputs which are passed through Γ to be well-behaved. It suffices that a kernel and average defined
by Γ converges. We call the limiting kernel c the explicit kernel, which contrasts with our implicitly
defined DEKer. We give examples in Appendix F.
Assumption 4. The PSD kernel c defined by c(X1, X2) ≜ lim

m→∞
1
dT
(
Γ(X1)

)⊤
T
(
Γ(X2)

)
=

ET
(
Γ(X1)

)⊤
T
(
Γ(X2)

)
is finite. Similarly, the mean function defined by µ(X1) ≜ lim

m→∞
1
dT
(
Γ(X1)

)⊤1 =

ET
(
Γ(X1)

)⊤1 is finite.

We are now ready to state our main result.
Theorem 4. Suppose Assumptions 1, 2 (a), 3, and 4 hold. Let Cij = c(Xi, Xj) and µi = µ(Xi) be
as defined in Assumption 4. Then applying SGD to objective equation 17, the update rule G equation 3
exists and can be decomposed into G equation 5 satisfying

G(Φii,Φjj ,Φij ;Xi, Xj)

= 1
λ2

(
Cijκρ

(
Φii,Φjj ,Φij

)
− κσ,ρ

(
Φii,Φjj ,Φij

)
µi − κρ,σ

(
Φii,Φjj ,Φij

)
µj + κσ

(
Φii,Φjj ,Φij

))
.

Here κσ, κρ, κσ,ρ and κρ,σ are as defined by equation 11, equation 19 and Proposition 2.
4The matrix F arises because the activation functions ρ and σ involve the pdf of a standard normal distribution p with

covariance matrix I. When p is multiplied with the pdf of the bivariate normal distribution with covariance Φ, this has
an effect of computing harmonic means of covariances Φ and I, resulting in F.
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Proof sketch Our main result is a constructive proof for the existence of an update rule G, as posed
in equation 3. In order to prove our main result, we will need to prove a series of lemmas, as detailed
in Appendix E. The intuition behind these lemmas is as follows. The stochastic gradient ∂

∂ϕL
(
ϕ;X,V

)
evaluated at an arbitrary point ϕ ∈ψψ for input X and random V is the sum of the gradient of the
negative log prior and the stochastic gradient of the negative log likelihood,

∂

∂ϕ
L
(
ϕ;X,V

)
=

√
m

d
λϕ︸ ︷︷ ︸

Gradient of negative log prior

− 1
d

V⊤(T (Γ(X)
)

⊙ ρ(Vϕ) − σ(Vϕ)
)

︸ ︷︷ ︸
Stochastic gradient of log likelihood

. (20)

Assumption 2 (a) means that if the limit were allowed to be applied, the gradient of the negative log
prior term in equation 20 multiplied by the step size would look like ϕ. This means that the update of
SGD would reduce to the stochastic gradient of the log likelihood. To derive the kernel update rule,
we then examine the inner product of the stochastic gradient of the log likelihood. We first convert
the inner product of the stochastic gradient of the log likelihood to an approximate form that is easier
to deal with (Lemma 15). We then confirm that the kernel update only involves the inner product of
the stochastic gradients of the log likelihood (Lemma 16). Finally, we show that the inner products of
the approximate form converges to a closed form update rule G (Lemma 17). Assembling these lemmas
together yields Theorem 4. The detailed proof is given in Appendix E.

Recall again that the decomposition of G into G says that, by plugging equation 5 into equation 3, for
each ij ∈ {11, 22, 12},

Ψ(τ+1)
ij = G

(
Ψ(τ)

ii ,Ψ
(τ)
jj ,Ψ

(τ)
ij ;Xi, Xj

)
. That is, Ψ(τ+1) = G(Ψ(τ);X1, X2).

Note the cross terms involving κσ,ρ and µ in Theorem 4, which were not present in the special case of
Corollary 3. These cross-terms arise from random mappings Γ with an average element that is non-zero.
In the case of Corollary 3, these cross-terms cancel out.

Theorem 4 implies a fixed point condition by Theorem 1, providing a positive answer for equation 4.
Corollary 5. Suppose the same setting as Theorem 4. If G is a contraction mapping, then the DEKer
converges to a unique fixed point as t → ∞. That is, for each ij ∈ {11, 22, 12},

Ψij = 1
λ2

(
Cijκρ

(
Ψii,Ψjj ,Ψij

)
− κσ,ρ

(
Ψii,Ψjj ,Ψij

)
µi − κρ,σ

(
Ψii,Ψjj ,Ψij

)
µj + κσ

(
Ψii,Ψjj ,Ψij

))
.

(21)

Whether G is a contraction can be determined by a derivative test and an identity given in Theorem 19,
as we demonstrate in § G.2. Note that even if a unique fixed point does not exist (which may be the
case if G is not a contraction), one may still compute with finite-t iterates of SGD via Theorem 4.

We may compute iterates of SGD in the limit via the update rule for any τ to obtain Ψ(τ)
ij , which is

the naive fixed point algorithm applied to equation 21. Alternatively, we may compute the ℓDEKer
by solving equation 21 for each ij ∈ {11, 22, 12} using any other fixed point solver.

Notable special cases and relation to NNK and NTK Some further examples arising from
special choices of A, R and Γ (inducing corresponding ρ, σ, c and µ) are discussed in Appendix G.2.
We find that the linear Gaussian (A(η) = η2/2, R(a) = a) results in a DEKer that is a scale multiple of
c (Appendix G.2.1). We can recover an NNK with activation σ when A and R are allowed to be general
and C and µ are set to zero (Appendix G.2.2). This means that any NNK with activaiton σ may be
expressed as a special case of a DEKer. The setting we found useful for our experiments (§ 4) is a
nonlinearly parameterised Gaussian (A(η) = η2/2 and R(a) = ReLU(a)) with a first-order arc-cosine
kernel for c and a corresponding mean function µ. This setting admits a closed-form update rule for
G. While this setting is distinct from the NTK with ReLU activations, it shares superficial similarities
in that both updates involve repeated iterations of kernels κρ and κσ. See Appendices G.2.4 and G.2.5
for details.
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3.5 Sensitivity

In order to quantify the rate at which the infinite-dimensional, infinite-iteration DEKer converges
with respect to the dimension, we need the feature mapping to be well-behaved. Lipschitzness and
boundedness allows concentration inequalities to be applied.
Assumption 5. Suppose ρ is bounded or Lipschitz. Suppose σ is bounded or Lipschitz.

We may quantify the degree to which the infinite-dimensional, infinite-iteration DEKer is an invariant
of SGD. We define specific values of finite dimensional ϕ and ϕ′ using the infinite dimensional kernel
fixed point Ψ11, Ψ22 and Ψ12. This definition will serve as a good approximation of an invariant.
Definition 6. Define

r1 =
√

Ψ11
(
1, 0, . . . 0

)⊤ ∈ Rm, r2 =
√

Ψ22
(

cosω, sinω, 0, . . . 0
)⊤ ∈ Rm,

where cosω = Ψ12√
Ψ11Ψ22

. Then r⊤
1 r2 = Ψ12, r⊤

1 r1 = Ψ11, and r⊤
2 r2 = Ψ22.

We bound the residual of the finite dimensional kernel evaluated at an initial guess that is the solution
of the infinite (m, d) system. When this bound is small, intuitively speaking, the limiting solution Ψ is
“almost” an invariant of the finite-dimensional system. By invariant of SGD, we mean that Ψ does not
change as iterates of SGD increase. In other words, if we intitialise SGD close to the solution Ψ, future
iterates of kernels will stay close to the initialisation with high probability.

Theorem 7. Suppose Assumptions 1, 2 (b), 3, 4 and 5 hold. Let initial guesses be ψ
(0)
X1

= r1 and
ψ

(0)
X2

= r2 as in Definition 6. Then there exist constants Q2, Q3, c2, c3 > 0 such that for all δ > 0, ϵ2 > 0
and ε2,

P
(∣∣Ψ(1)

12 − Ψ12
∣∣ ≤ ε1 + ε2

)
≥ 1 − δ1 − δ2,

where

ε1 = K + ϵ2
λ2 (2ϵ1 + ϵ21), δ1 = 2 exp

(
− c2dM2

)
+ exp

(
−mδ2/2

)
and δ2 = 2 exp

(
− dc3M3

)
and ϵ1 =

√
d
m + δ, M2 = min

{
ϵ2

2
Q2

2
, ϵ2

Q2

}
and M3 = min

{
ε2

2
Q2

3
, ε2

Q3

}
and c3 > 0 is some absolute constant.

The proof is given in Appendix E. The probability decays to 1 exponentially in the minimum of m and
d, where we recall that d is the number of conditionally independent observations in the exponential
family and m is the dimensionality of the latent variable. The closeness ε1 + ε2 may be configured to
be close to zero by choosing ε2, δ and ϵ2 to be small, thereby trading off against constants resulting in
a slower exponential decay of probabilities.

4 Experiments

Recall that the ffDEKer is defined for finite SGD iteration τ as an inner product of finite m-dimensional
features. The DEKer is defined for finite SGD iteration τ as a limit as m → ∞ of an inner product of
m-dimensional features. The ℓDEKer is defined as a limit as SGD iteration τ → ∞ of the DEKer.
Although the DEKer and ℓDEKer are defined in terms of infinite dimensional features, evaluations
of the DEKer and ℓDEKer are scalar values and can be used to form matrices with a finite number
of rows and columns. These matrices can be used in kernel methods to build predictive algorithms.

In our analysis in the previous section, we considered 2 × 2 kernel matrices. Such analysis extends to
N×N kernel matrices, where each element of the N×N kernel matrices may be related to an element of
a 2 × 2 kernel matrix. All our implementations are vectorised, so that they operate on N ×N matrices.
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4.1 Measuring finite-width effects

We empirically measure the similarity of (finite-τ , finite-d) ffDEKer matrices and (infinite-τ , infinite-
d) ℓDEKer matrices using the centered variant (Cortes et al., 2012) of kernel alignment (Cristianini
et al., 2001), abbreviated CKA, as d increases. We vary d between 5 and 500 in steps of 5 and choose
m = d3/2. For control, we also measure the CKA between the (finite-τ , finite-d) ffDEKer and the
squared exponential kernel (SEK). See Figure 2, and Appendix J.1 for full details on the experimental
setup. As expected (Theorem 4), the CKA between the DEKer matrices becomes larger as d and m
increase, but not between the SEK and finite DEKer.

Gaussian Bernoulli Gaussian (rectified parameter)

Figure 2: CKA between kernel matrices consisting of entries Ψij and k
(t)
d (Xi, Xj) (Blue) and squared

exponential kernel for control and k
(t)
d (Xi, Xj) (Orange) for three choices of A and R. (Left) Gaussian

exponential family, A(η) = η2/2 and R(η) = η. (Middle) Bernoulli exponential family, A(η) = log(1 +
exp η) and R(η) = η. (Right) Gaussian exponential family with rectified parameter, A(η) = η2 and
R(η) = ReLU(η). The dashed red horizontal line at 1 represents the maximum value of CKA.

4.2 Inference using the DEKer

We use the DEKer for kernel ridge regression (Saunders, 1998) (KRR) (cf Gaussian process regres-
sion (Rasmussen & Williams, 2006)) on a suite of benchmarks. For each dataset, we first partition
the data into an 80 − 20 train-test split. Using the training set, we perform 5-fold cross-validation
for hyperparameter selection using the default settings of sci-kit learn’s GridSearchCV, which performs
model selection based on the coefficient of determination. The hyperparameter grid we search over is
described in Table 4, Appendix J.2. We then compute the RMSE on the held out test set using all
training data. We repeat this procedure for 100 different random shuffles of dataset, and find the sample
average and standard deviation RMSE over the random shuffles. The results are reported in Table 2.
The input X is preprocessed by subtracting the sample average and dividing by the sample standard
deviation of each feature. Additionally, the target data y is mean-centered and scaled by the sample
standard deviation. The reported RMSE is after conversion of y back to original units.

Since the DEKer is a strict generalisation of the NNK, we expect the DEKer to strictly out-perform the
NNK. Any empirical performance result that may be obtained by previous investigations into the NNK
with activations σ (Lee et al., 2020) can be reproduced by a DEKer with the correct hyperparameter
choice. We do not empirically explore uncertainty properties of corresponding Gaussian process models
as others do (Adlam et al., 2020), but note that the same principle applies. We find that GridSearchCV
sometimes picks out settings that correspond with an NNK, but often does not. The number of times
GridSearchCV collapses the DEKer to the NNK is indicated in the last column of Table 2. Our
results are consistent with the previously established observation that “NNKs frequently outperform
NTKs” (Lee et al., 2020). More interestingly, we find that for each dataset, the DEKer performs as
well or better than every other kernel, including the NNK.
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Data DEKer or ℓDEKer NNK NTK SEK
yacht 0.65 ± 0.21 2.13 ± 0.57 2.75 ± 0.58 3.62 ± 0.67 0

diabetes 54.51 ± 3.29 54.58 ± 3.30 55.05 ± 3.38 54.75 ± 3.32 70
energy1 1.00 ± 0.11 1.01 ± 0.11 1.67 ± 0.14 1.08 ± 0.13 78
energy2 1.58 ± 0.15 1.58 ± 0.15 2.10 ± 0.18 1.58 ± 0.16 68
concrete 4.94 ± 0.47 4.97 ± 0.47 5.05 ± 0.48 5.65 ± 0.39 60

wine 0.57 ± 0.02 0.61 ± 0.02 0.54 ± 0.02 0.62 ± 0.02 1

Table 2: RMSE of KRR models (± one standard deviation over 100 random seeds). We use the DEKer
described in § G.2.5, which outperforms other kernels according to the sample average of the RMSE.
Often the difference in performance is small compared with the standard deviation. The final column
is the number of times the best DEKer found using GridSearchCV was an NNK. The datasets are
UCI benchmarks — yacht (Gerritsma et al., 2013), diabetes (Kahn), energy (first and second value
independently) (Tsanas & Xifara, 2012), concrete (Yeh, 2007) and wine (Cortez et al., 2009).

5 Conclusion

We introduced the DEKer, a kernel analogue of implicit neural network models. The DEKer is
defined as the limiting inner product between two features computed using a feature update procedure
as the dimensionality of the features goes to infinity.

We considered the problem of whether a deterministic update procedure for the DEKer exists (equa-
tion 3), and whether this update rule converges (equation 4). We focused on the special case where the
features are latent variables in an exponential family PCA model (with not necessarily canonical link
function) learnt using SGD. Leveraging the connection between infinitely wide explicit neural networks
and kernel methods, we showed how in such a setting an explicit update rule can be computed. The
update rule is a composition of functions involving NNK building blocks. While this type of update
rule is not the one that is typically encountered in deep learning, which usually updates weights using
SGD, it results in an interesting limiting model that shares connections to the NNK.

The DEKer has a number of interesting properties. The DEKer is able to recover instances of the
NNK, and also resembles the NTK. Importantly, unlike the NNK and NTK, the deep layer structure
of the DEKer is motivated entirely from an optimisation perspective. The activation functions (and
thus kernels) involved in the computation of the DEKer can be related back to statistical modelling
assumptions on the data through the exponential family. In particular, the activation functions share a
connection to the log partition function and inverse link function of the exponential family. On a series
of benchmarks, the DEKer performs as well as or outperforms the NNK, NTK and SEK.

Our work admits several natural extensions. The matrix V which represents a linear transformation or
fully connected layer may be constrained to resemble a convolutional layer, and we expect a convolutional
variant of the DEKer to be tractable (Novak et al., 2019). Since our construction is probabilistic, the
Laplace approximation may yield a tractable means of obtaining principled uncertainty estimates for
kernel methods beyond the regular Gaussian process framework. Since the DEKer satisfies a fixed
point equation, implicit differentiation may be used to compute derivatives of the DEKer with respect
to its hyperparameters, mirroring the neural network counterpart (Bai et al., 2019).

We considered the special case where the DEKer equation 2 is defined using features that are solu-
tions to (latent variable model) optimisation problems using SGD. The resulting DEKer satisfies a
fixed point equation. In future, other work might consider other types of problems and algorithms,
resulting in DEKers which satisfy other types of conditions. Concurrent work (Cirone et al., 2023)
considers solving neural controlled differential equations using Euler discretisations. Their resulting
kernel satisfies a certain type of partial differential equation. We believe these two results, along with
classical descriptions of Gaussian processes as solutions to stochastic differential equations (Rasmussen
& Williams, 2006, Appendix B), might represent special instances of a more general framework.
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We hope that our optimisation view and deterministic kernel update rule stimulates new research in
both deep learning and kernel methods.
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