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Abstract

Routing Problems are central to many real-world applications, yet remain challeng-
ing due to their (NP-)hard nature. Amongst existing approaches, heuristics often
offer the best trade-off between quality and scalability, making them suitable for
industrial use. While Reinforcement Learning (RL) offers a flexible framework for
designing heuristics, its adoption over handcrafted heuristics remains incomplete.
Existing learned methods still lack the ability to adapt to specific instances and
fully leverage the available computational budget. Current best methods either
rely on a collection of pre-trained policies, or on RL fine-tuning; hence failing
to fully utilize newly available information within the constraints of the budget.
In response, we present MEMENTO, an approach that leverages memory to im-
prove the search of neural solvers at inference. MEMENTO leverages online data
collected across repeated attempts to dynamically adjust the action distribution
based on the outcome of previous decisions. We validate its effectiveness on the
Traveling Salesman and Capacitated Vehicle Routing problems, demonstrating its
superiority over tree-search and policy-gradient fine-tuning; and showing that it
can be zero-shot combined with diversity-based solvers. We successfully train all
RL auto-regressive solvers on large instances, and verify MEMENTO’s scalability
and data-efficiency: pushing the state-of-the-art on 11 out of 12 evaluated tasks.
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Figure 1: MEMENTO outperforms Efficient Active Search on a wide range of instance sizes and
different evaluation budgets. Its time complexity makes it scalable to large instances and policies.
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1 Introduction

Combinatorial Optimization (CO) encompasses a vast range of applications, ranging from transporta-
tion (J-F Audy and Rousseau, 2011) and logistics (Dincbas et al., 1992) to energy management (Froger
et al., 2016). These problems involve finding optimal orderings or labels to optimize given objective
functions. Real-world CO problems are typically NP-hard with a solution space growing exponen-
tially with the problem size, making it intractable to find the optimal solution. Hence, industrial
solvers rely on sophisticated heuristic approaches to solve them in practice. Reinforcement Learning
(RL) provides a versatile framework for learning such heuristics and has demonstrated remarkable
success in tackling CO tasks (Mazyavkina et al., 2021).

Traditionally, RL methods train policies to incrementally construct solutions. However, achieving
optimality in a single attempt for NP-hard problems is impractical. Therefore, pre-trained policies
are often combined with search procedures. The literature introduces a range of these procedures,
from stochastic sampling (Kool et al., 2019; Kwon et al., 2020; Grinsztajn et al., 2023), beam
search (Steinbiss et al., 1994; Choo et al., 2022), Monte Carlo Tree Search (MCTS) (Browne et al.,
2012) to online fine-tuning (Bello et al., 2016; Hottung et al., 2022) and searching a space of diverse
pre-trained policies (Chalumeau et al., 2023b). One popular online fine-tuning strategy, Efficient
Active Search (EAS) (Hottung et al., 2022), uses transitions from generated solutions to derive
policy gradient updates. However, it suffers from the inherent drawbacks of back-propagation, in
particular having each data point only impacting the update as much as what is enabled by the
learning rate. The leading strategy, COMPASS (Chalumeau et al., 2023b), relies on a space of diverse
pre-trained policies for fast adaptation, but is limited to selecting the most appropriate one, and lacks
an update mechanism using the collected data. Meanwhile, the use of memory has grown in modern
deep learning, demonstrated by the success of retrieval augmented approaches in Natural Language
Processing (Lewis et al., 2020), and to a smaller extent, its use in RL (Humphreys et al., 2022). These
mechanisms create a closer link between collected experience and policy update, making them a
promising candidate to improve adaptation.

In this vein, we introduce MEMENTO, a method to update the action distribution of neural solvers
online, leveraging a memory of recently collected data. The approach is model agnostic and can be
applied to existing neural solvers. MEMENTO learns expressive update rules, which experimentally
prove to outperform standard policy-gradient updates. We evaluate our method on two popular
routing tasks, the Traveling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem
(CVRP). We evaluate all methods both in and out-of-distribution and tackle instances up to size 500
to better understand their scaling properties. We provide an analysis of the update rules learned by
MEMENTO, examining how it enables to adapt faster than policy gradient methods like EAS.

Our contributions come as follows: (i) We introduce MEMENTO, a memory and a processing module,
enabling efficient adaptation of policies at inference time. (ii) We provide experimental evidence that
MEMENTO can be combined with existing approaches to boost performance in and out-of-distribution,
even for large instances and unseen solvers, reaching state-of-the-art (SOTA) on 11 out of 12 tasks.
(iii) Whilst doing so, we train and evaluate leading construction methods on TSP and CVRP instances
of size 500 solely with RL, outperforming all existing RL methods. (iv) We open-source our
implementations in JAX (Bradbury et al., 2018), along with test sets and checkpoints.

2 Related work

Construction methods for CO These refer to methods that incrementally build a solution one
action after the other. Hopfield and Tank (1985) was the first to use a neural network to solve TSP,
followed by Bello et al. (2016) and Deudon et al. (2018) who respectively added an RL loss and
an attention-based encoder. These works were further extended by Kool et al. (2019) and Kwon
et al. (2020) to use a general transformer architecture (Vaswani et al., 2017), which has become the
standard model choice that we also leverage in this paper. These works have given rise to several
variants, improving the architecture (Xin et al., 2021; Luo et al., 2023) or the loss (Kim et al., 2021,
2022; Drakulic et al., 2023; Sun et al., 2024). These improvements are orthogonal to our work and
could a priori be combined with our method. Construction approaches are not restricted to routing
problems: numerous works have tackled various CO problems, especially on graphs, like Maximum
Cut (Dai et al., 2017; Barrett et al., 2020), or Job Shop Scheduling Problem (JSSP) (Zhang et al.,
2020; Park et al., 2021).
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Construction methods make use of a predetermined compute budget to generate one valid solution
for a problem instance, depending on the number of necessary action steps. In practice, it is common
to have a greater, fixed compute budget to solve the problem at hand such that several trials can
be attempted on the same instance. However, continuously rolling out the same learned policy is
inefficient as (i) the generated solutions lack diversity (Grinsztajn et al., 2023) and (ii) the information
gathered from previous rollouts is not utilized. How to efficiently leverage this extra budget has drawn
some attention recently. We present the two main types of approaches that augment RL construction
methods with no problem-specific knowledge (hence excluding solution improvement methods).

Diversity-based methods The first type of approach focuses on improving the diversity of the
generated solutions (Kwon et al., 2020; Grinsztajn et al., 2023; Chalumeau et al., 2023b; Hottung
et al., 2024). POMO (Kwon et al., 2020) uses different starting points to enable the same policy to
generate diverse candidates. POPPY (Grinsztajn et al., 2023) leverages a population of agents with a
loss targeted at specialization on sub-distribution of instances. It was extended in Chalumeau et al.
(2023b) and Hottung et al. (2024), respectively replacing the population with a continuous latent
space (COMPASS) or a discrete context vector (PolyNet).

Policy improvement at inference time The second category of methods, which includes ME-
MENTO, addresses the improvement aspect. These methods are theoretically orthogonal and can be
combined with those mentioned earlier. EAS (Hottung et al., 2022) and Meta-SAGE (Son et al., 2023)
employ a parameter-efficient fine-tuning approach on the test instances, whereas SGBS (Choo et al.,
2022) enhances this strategy by incorporating tree search. While demonstrating good performance,
they rely on rigid, handcrafted improvement and search procedures, which may not be optimal for
diverse problems and computational budgets.

In contrast, several methods aim to learn these improvement mechanisms. Macfarlane et al.
(2022) train a Graph Neural Network to perform a tree search akin to MCTS. MOCO, FER, and
MARCO (Dernedde et al., 2024; Jingwen et al., 2023; I. Garmendia et al., 2024) learn the policy
improvement update. MOCO (Dernedde et al., 2024) introduces a meta-optimizer that learns to
calculate flexible parameter updates based on the reinforce gradient, remaining budget, and best
solutions discovered so far. MARCO (I. Garmendia et al., 2024) aggregates graph edges’ features and
introduce problem-dependent similarity metrics to improve exploration of the solution space. Both
approaches enable to learn adaptation strategies but are tied to heatmap-based policies, preventing
their applicability to certain CO problems like CVRP. FER (Jingwen et al., 2023) learns a rule to
update the instance nodes’ embedding, whereas MEMENTO directly updates the action logits, hence
being architecture-agnostic.

3 Methods

3.1 Preliminaries

Formulation A CO problem can be represented as a Markov Decision Process (MDP) denoted by
M = (S,A,R, T,H). This formulation encompasses the state space S with states si ∈ S, the action
space A with actions ai ∈ A, the reward function R(r|s, a), the transition function T (si+1|si, ai),
and the horizon H indicating the episode duration. Here, the state of a problem instance is portrayed
as the sequence of actions taken within that instance, where the subsequent state st+1 is determined
by applying the chosen action at to the current state st. An agent is introduced in the MDP to engage
with the problem and seek solutions by learning a policy π(a|s). The standard objective considered
in RL works is the single shot optimisation, i.e. finding a policy that generates a trajectory τ which
maximises the collected reward: π∗ = argmaxπ Eτ∼π[R(τ)], where R(τ) =

∑H
t=0 R(st, at).

The specificity of most practical cases in RL for CO is that the policy is given a number of attempts
allowed per instance (budget B), to find the best possible solution, rather than a single attempt.
Consequently, the learning objective should rather be : π∗ = argmaxπ Eτ∼π[maxi=1,...,B R(τi)].

3.2 MEMENTO

Adaptation to unseen instances is crucial for neural solvers. Even when evaluated in the distribution
they were trained on, neural solvers are not expected to provide the optimal solution on the first shot,
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due to the NP-hardness of the problems tackled. Making clever use of the available compute budget
for efficient online adaptation is key to performance.
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Figure 2: MEMENTO uses a memory to adapt neural solvers at inference time. When taking a
decision, data from similar states is retrieved and prepared (1,2), then processed by a MLP to derive
correction logits for each action (3). Summing the original and new logits enables to update the action
distribution. The resulting policy is then rolled out (4), and transitions’ data is stored in a memory
(5,6), including node visited, action taken, log probability, and return obtained.

A compelling approach is to store all past attempts in a memory that can be leveraged for subsequent
trajectories. This ensures that no information is lost and that promising trajectories can be used more
than once. There are many ways of implementing such framework depending on how the information
is stored, retrieved, and used in the policy. We would like the memory-based update mechanism to
be (i) learnable (how to use past trajectories to craft better trajectories should be learnt instead of
harcoded) (ii) light-weight to not compromise inference time unduly (iii) agnostic to the underlying
model architecture (iv) able to leverage pre-trained memory-less policies.
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Figure 3: Building a new action distribution using
the memory. Relevant data is retrieved and processed
by a MLP to derive logits for each possible action.

Overview To this end, we introduce ME-
MENTO, a method that dynamically adapts
the action distribution of the neural solver
using online collected data. This approach,
illustrated on Fig. 2, achieves the four
desiderata: it stores light-weight data about
past attempts, and uses an auxiliary model
to update the action logits based on the
previous outcomes. It can be used on
top of any pre-trained policy (architecture-
agnostic). In principle, MEMENTO can be
combined with existing construction RL
algorithms: Attention-Model (Kool et al.,
2019), POMO (Kwon et al., 2020), POPPY
(Grinsztajn et al., 2023), COMPASS (Chalumeau et al., 2023b), which we confirm experimentally. It
learns an update rule during training, enabling data-efficient adaptation compared to policy gradient
methods. The data retrieved from the memory and used by the auxiliary model to compute the new
action logits contains more than the typical information used to derive a policy gradient update.
For instance, the budget remaining, enabling to calibrate the exploration/exploitation trade-off and
discover superior update rules. We show in Appendix F that MEMENTO has capacity to at least
rediscover REINFORCE, and we show empirically in Section 4.1 that we outperform the leading
policy-gradient updates adaptation method.

Storing data in memory In the memory, we store data about past attempts (Fig. 2, step 6). Akin
to a replay buffer, this data needs to reflect past decisions, their outcome, and must enable to take
better future decisions. For each transition experienced while constructing a solution, the memory
stores the following: (i) node visited (i.e., in the context of TSP or CVRP, this corresponds to the
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current city or customer location), (ii) action taken, corresponding to the node that the policy decided
to visit next (iii) log-probability given to that action by the model (iv) return of the entire trajectory
(negative cost of the solution built) (v) budget at the time that solution was built (vi) log-probability
that was suggested by the memory for that action (vii) log-probability associated with the entire
trajectory and (viii) the log-probability associated with the remaining part of the trajectory. We can
observe that elements (ii, iii and iv) are those needed to reproduce a REINFORCE update, and other
features are additional context that will help for credit assignment and distribution shift estimation.
The remaining budget is also added to the data when deriving the policy update.

Retrieving data from the memory Each time an action is taken in a given state, we retrieve data
from the memory as shown in step 1 of Fig. 2. We retrieve data that inform the policy on past decisions
that were taken in similar situations. To achieve a good balance between speed and relevance, we
retrieve data collected in the same node as we are currently in; showing to be significantly faster than
k-nearest neighbour retrieval, while extracting data of similar relevance. More details and motivation
for this design choice provided in Appendix I.

Processing data to update actions Once data has been retrieved, it is used to derive a policy
update. We separate the actions from their associated features (logp, return, etc...). We concatenate
the remaining budget to the features. Each feature is normalised, and the resulting feature vector
(Fig. 2, step 2) is processed by a Multilayer Perceptron (MLP) HθM which outputs a scalar weight.
We compute the logits from the MLP output (Fig. 2, step 3): each action is one-hot encoded, and
a weighted average of the actions vectors is computed based on the scalar weight obtained. This
aggregation outputs a new vector of action logits. We sum the new vector of logits with the vector of
logits output by the base model. The following paragraph introduces the mathematical formalism,
and Fig. 3 illustrates it schematically.

More formally, when visiting a node, with a given state s, we retrieve from the memory data
experienced in the past when visiting that same node. This data, Ms, is a sequence of tuples (ai, fai

),
where ai are the past actions tried and fai

are various features associated with the corresponding
trajectories, as discussed above. The update is computed by lM =

∑
i aiHθM (fai

), where ai is the
one-hot encoding of action ai. Let l be the logits from the base policy, the final logits used to sample
the next action are given by l + lM . We show in Appendix F that MEMENTO has enough capacity to
re-discover the REINFORCE update.

Training Existing construction methods are trained for one-shot optimization, with a few exceptions
trained for few-shots (Grinsztajn et al., 2023; Chalumeau et al., 2023b; Hottung et al., 2024). We
adapt the training process to fit the multi-shot setting in which methods are used in practice. We
rollout the policy (Fig. 2, step 4-5) as many times as the budget allows on the same instance before
taking an update. Our loss is inspired by ECO-DQN (Barrett et al., 2020) and ECORD (Barrett et al.,
2022): for a new given trajectory, the reward is the ReLU of the difference between the return and
the best return achieved so far. Hence, those summed rewards equal the best score found over the
budget. In practice, to account for the fact that it is harder to get an improvement as we get closer to
the end of the budget, we multiply this loss with a weight that increases logarithmically as the budget
is consumed. See Appendix B for explicit formula and pseudo-code.

Inference The memory processing module can be used with any neural solver. The parameters of the
base neural solver and those of the memory processing module are frozen (no more backpropagation),
and the action updates are derived by filling the memory with the collected attempts and by processing
the data retrieved from the memory, as described in the previous paragraphs, until the inference
budget is consumed. All hyperparameters can be found in Appendix C.

4 Experiments

We evaluate our method across widely recognized routing problems TSP and CVRP. These problems
serve as standard benchmarks for evaluating RL-based CO methods (Deudon et al., 2018; Kool
et al., 2019; Kwon et al., 2020; Grinsztajn et al., 2023; Hottung et al., 2022; Choo et al., 2022;
Chalumeau et al., 2023b). In Section 4.1, we validate our method by comparing it to leading approach
for single-policy adaptation using online collected data, EAS (Hottung et al., 2022). We present
their comparative performance in line with established standard benchmarking from literature, and
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elucidate the mechanisms employed to adapt the action distribution of the base policy during inference.
We then demonstrate how MEMENTO can be combined with SOTA neural solver COMPASS with no
additional retraining in Section 4.2. Finally, we scale those methods to larger instances in Section 4.3,
outperforming heatmap-based methods.

Table 1: MEMENTO against baselines on a standard benchmark comprising 8 datasets with
4 distinct instance sizes on (a) TSP and (b) CVRP. Methods are evaluated on instances from the
training distribution (100) and on larger instance sizes to test generalization. MEMENTO outperforms
policy-gradient method EAS and tree-search SGBS, with significant improvement over the base policy
POMO. SGBS * results are reported from Choo et al. (2022) (bias discussed in Appendix A.1).

(a) TSP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap

LKH3 7.765 0.000% 8.583 0.000% 9.346 0.000% 10.687 0.000%

POMO (greedy) 7.796 0.404% 8.635 0.607% 9.440 1.001% 10.933 2.300%
POMO (sampling) 7.779 0.185% 8.609 0.299% 9.401 0.585% 10.956 2.513%
SGBS * 7.769* 0.058% - - 9.367* 0.220% 10.753* 0.619%
EAS-Emb 7.778 0.161% 8.604 0.238% 9.380 0.363% 10.759 0.672%
MEMENTO 7.768 0.045% 8.592 0.109% 9.365 0.202% 10.758 0.664%

(b) CVRP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap

LKH3 15.65 0.000% 17.50 0.000% 19.22 0.000% 22.00 0.000%

POMO (greedy) 15.874 1.430% 17.818 1.818% 19.750 2.757% 23.318 5.992%
POMO (sampling) 15.713 0.399% 17.612 0.642% 19.488 1.393% 23.378 6.264%
SGBS * 15.659* 0.08% - - 19.426* 1.08% 22.567* 2.59%
EAS-Emb 15.663 0.081% 17.536 0.146% 19.321 0.528% 22.541 2.460%
MEMENTO 15.657 0.066% 17.521 0.095% 19.317 0.478% 22.492 2.205%

Code availability We provide access to the code2 utilized for training our method and executing
all baseline models. We release our checkpoints for all problem types and scales, accompanied
by the necessary datasets to replicate our findings. We implement our method and experiments in
JAX (Bradbury et al., 2018). The two problems are also JAX implementations from Jumanji (Bonnet
et al., 2023). We use TPU v3-8 for our experiments.

4.1 Benchmarking MEMENTO against policy gradient fine-tuning

The most direct way to leverage online data for policy update is RL/policy-gradients. By contrast,
MEMENTO learns an update based on the collected data. We therefore want to see how these two
approaches compare. Since EAS (Hottung et al., 2022) is SOTA method using policy gradient, we
benchmark MEMENTO against it on a standard set of instances used in the literature (Kool et al.,
2019; Kwon et al., 2020; Hottung et al., 2022). Specifically, for TSP and CVRP, these datasets
comprise 10 000 instances drawn from the training distribution. These instances feature the positions
of 100 cities/customers uniformly sampled within the unit square. The benchmark also includes three
datasets of distributions not encountered during training, each comprising 1000 problem instances
with larger sizes: 125, 150, and 200, generated from a uniform distribution across the unit square.
We employ the exact same datasets as those utilized in the literature.

Setup For routing problems such as TSP and CVRP, POMO (Kwon et al., 2020) is the base single-
agent, one-shot architecture that underpins most RL construction solvers. In this set of experiments,
MEMENTO and EAS both use POMO as a base policy, and adapt it to get the best possible performance
within a given budget. We train MEMENTO until it converges, on the same instance distribution as
that used for the initial checkpoint. When assessing active-search performance, each method operates
within a fixed budget of 1600 attempts, a methodology akin to Hottung et al. (2022). In this setup,
each attempt comprises of one trajectory per possible starting point. This standardized approach

2Code, checkpoints, and evaluation sets available at https://github.com/instadeepai/memento
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facilitates direct comparison to POMO and EAS, which also utilize rollouts from all starting points
at each step. We do not use augmentations with symmetries in our main results since they consume
87.5% of the budget to exploit network variance, which blurs the efficacy of the comparison and
creates impractical settings for larger instances. Nevertheless, we report them in Appendix A.1 for
continuity with previous literature.

Results The average performance of each method across all problem settings are presented in Ta-
ble 1. The observations we draw are three-fold. First, MEMENTO outperforms its base model (POMO)
on the entire benchmark by a significant margin: showing that its adaptive search is superior to
stochastic sampling. Second, MEMENTO outperforms EAS on all 8 tasks (spanning both in- and
out-of-distribution) for both environments, highlighting the efficacy of learned policy updates when
compared to vanilla policy gradients. Finally, we note that this improvement is significant; for
example, on TSP100, MEMENTO is doing 60% better than sampling, while EAS only 6%. We provide
all time costs and performance comparison based on a time budget in Appendix A.1.

Analysing the update rule To understand how MEMENTO uses its memory to derive a policy
update, we analyse the logit update of an action with respect to its associated data, inspired by Lu
et al. (2022); Jackson et al. (2024), and compare it to the REINFORCE policy gradient. On Fig. 4, we
plot the heatmap of the logit update with respect to the log probability (logp) and return associated
with an action. We observe that the main rules learned by MEMENTO are similar to REINFORCE: an
action with low logp and high return gets a positive update while an action with high logp and low
return gets discouraged. It is interesting to see discrepancies. In particular, MEMENTO’s rules are not
symmetric with respect to x = 0, it only encourages action that are strictly above the mean return.
A similar dissymetry would be expected with EAS since it combines REINFORCE with a term that
increases the likelihood to generate the best solution found. Appendix J extends this analysis by
visualising the evolution of the update rule for different remaining budget.

Additionally, MEMENTO uses more inputs than REINFORCE: current budget available, trajectory
logp, age of the data, and previous MEMENTO logit are also used to derive the new action logit.
Appendix G provides an ablation study of these additional inputs, validating their importance.
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Figure 4: Akin to REINFORCE (left), MEMENTO (right) encourages actions with high returns,
particularly when they have low probability. MEMENTO learns an asymmetric rule: requiring the
normalised return to be strictly positive to reinforce an action, but encouraging it even more.

4.2 Zero-shot combination with unseen solvers

In this section, we demonstrate zero-shot combination (no retraining) with COMPASS. COMPASS
adapts by searching amongst a collection of diverse pre-trained policies.

Although providing fast adaptation, it can hardly improve further once the appropriate pre-trained
policy has been found. In particular, online collected data cannot be used to update that policy’s
action distribution. We use MEMENTO’s memory module, trained with POMO as a base policy, apply it
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on COMPASS without additional retraining, and show empirically that we can switch on MEMENTO’s
adaptation mechanism during the search and reach a new SOTA on 11 out of 12 tasks.
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Figure 5: Combining MEMENTO and COMPASS
during search on CVRP200, no re-training needed.

Methodology We combine our check-
point of MEMENTO with a released model
of COMPASS (Chalumeau et al., 2023b).
For the first half of the budget, we do not
use MEMENTO, to let COMPASS find the
appropriate pre-trained policy. Once the
search starts narrowing down, we activate
MEMENTO to adapt the pre-trained policy,
with no need to turn off COMPASS’ search.
Fig. 5 shows the typical trends observed at
inference. We recognise the typical search
reported in Chalumeau et al. (2023b). At
50% of budget consumption, MEMENTO is
activated and one can observe a clear and
significant drop in averaged tour length of
the latest sampled solutions. The standard
deviation also illustrates how the search is
narrowed down.

Results We evaluate the zero-shot combination of MEMENTO and COMPASS on the standard
benchmark reported in Section 4.1. Results for CVRP are presented in Table 2, showing tour length
and optimality gap in-distribution (CVRP100) and out-of-distribution. Although requiring no re-
training, MEMENTO’s rules combine efficiently with COMPASS and achieves new SOTA. Results on
TSP are reported in Appendix A, and results on larger instances (TSP & CVRP) in Section 4.3.

Table 2: SOTA performance on CVRP via zero-shot combination of MEMENTO and COMPASS.
The rules learned by MEMENTO transfer to the population-based method COMPASS.

n = 100 n = 125 n = 150 n = 200
Method Obj. Gap Obj. Gap Obj. Gap Obj. Gap

COMPASS
MEMENTO (COMPASS)

15.644
15.634

-0.019%
-0.082%

17.511
17.497

0.064%
-0.041%

19.313
19.290

0.485%
0.336%

22.462
22.405

2.098%
1.808%

4.3 Scaling RL construction methods to larger instances

Scaling neural solvers to larger instances is a crucial challenge for the field. Auto-regressive
construction-based solvers are promising approaches, requiring limited expert knowledge whilst
providing strong performance. But are still hardly ever trained on larger scales with RL. As a result,
their performance reported in the literature is usually quite unfair, being evaluated on large scales
instances (>500) although having been trained on 100 nodes (Qiu et al., 2022). In this section, we
explain how we train construction solvers POMO and COMPASS on instances of size 500 with RL
(on TSP and CVRP, checkpoints released); and use them as new base models to train and validate
properties of MEMENTO at that scale.

RL training on larger instances Training POMO on instances of size 500 involves three main steps.
First, inspired by curriculum-based methods, we start from a checkpoint pre-trained on TSP100.
Second, we use Efficient Attention (Rabe and Staats, 2022) to reduce the memory cost of multi-head
attention, enabling to rollout problems in parallel despite the O(n2) memory requirement. Third, we
use gradient accumulation to keep good estimates despite the constrained smaller instance batch size.
These combined tricks enable to train POMO till convergence within 4 days, and consequently train
COMPASS and MEMENTO. We also build the zero-shot combined MEMENTO (COMPASS) checkpoint.

Inference-time constraints On larger instances, the cost of constructing a solution is significantly
increased (for POMO’s architecture: squared in computation and memory, and linear in sequential
operations). It is also harder to get numerous parallel shots, which most methods depend on. It hence
becomes crucial to develop data-efficient methods which stay robust to low budget regimes; and
important to know which method to use for each budget constraint.
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Figure 6: MEMENTO outperforms EAS on instances of size 500 across batch sizes and sequen-
tial attempts. Green areas indicate settings where MEMENTO adapts more efficiently. It consistently
outperforms EAS on TSP and in most CVRP settings, with strong gains under low budgets.

MEMENTO on larger instances We compare MEMENTO and EAS on a set of 128 unseen instances
(of size 500), for a range of budget expressed in number of sequential attempts and number of parallel
attempts attempts. Figure 6 reports the percentage of improvement (in absolute cost) brought by
MEMENTO over EAS. From this figure, we can observe three main tendencies. First, the data-efficiency
of MEMENTO is illustrated by its consistent superiority on low budget (lower left of plots), reaching
significant improvement compared to EAS. Then, we can see that, on CVRP, the gap increases with
the sequential budget for low parallelism. It demonstrates that MEMENTO’s update stays robust,
whereas the gradient estimates of EAS get deteriorated and cannot bring further improvement despite
additional sequential budget. To finish with, we can see that MEMENTO fully dominates the heatmap
on TSP, even for higher budget. However, when budget is increased for CVRP, EAS is able to
outperform MEMENTO, given large enough batches (> 80).

Table 3: MEMENTO achieves SOTA performance
on TSP500. It outperforms baselines in both budget
regimes, attaining single-agent and overall SOTA when
combined with POMO and COMPASS, respectively.

Method Obj. Gap Time

Concorde 16.55 0.000% 38M
LKH-3 16.55 0.003% 46M

DIMES 17.80 7.55% 2H
Difusco 17.23 4.08% 11M
DeepACO 18.74 13.23% -
MOCO 16.84 1.72% -
Pointerformer 17.14 3.56% 1M

Low Budget
POMO (sampling)
EAS
COMPASS
MEMENTO (POMO)
MEMENTO (COMPASS)

16.999
16.878
16.811
16.838
16.808

2.736%
2.006%
1.603%
1.766%
1.586%

4M
10M
9M
9M

10M

High Budget
POMO (sampling)
EAS
COMPASS
MEMENTO (POMO)
MEMENTO (COMPASS)

16.986
16.844
16.800
16.823
16.795

2.659%
1.804%
1.539%
1.673%
1.507%

9M
24M
22M
23M
29M

Results In Table 3 and Table 4, we re-
port performance of our checkpoints, us-
ing datasets introduced in Fu et al. (2021)
and commonly used in the literature. For
each environment, we report the results
on two different setting: (i) Low Budget,
where the methods are given 25 000 at-
tempts, (ii) High Budget, where 100 000 at-
tempts are available. We also report results
from concurrent RL methods (Qiu et al.,
2022; Dernedde et al., 2024; Sun and Yang,
2023; Ye et al., 2023), without method-
agnostic local search; and industrial solvers
LKH3 (Helsgaun, 2017) and Concorde (Ap-
plegate et al., 2006).

First, we observe that stochastically sam-
pling solutions with POMO for less than
10 minutes already provides competitive re-
sults, ranking second among the five leading
neural solvers. Adding EAS on top of POMO
enables to compete with leading method
MOCO on TSP500. This shows that auto-
regressive RL constructive methods are com-
petitive at this scale, contradicting previous literature (Qiu et al., 2022; Dernedde et al., 2024). It
is the first time that POMO is trained at this scale, making it the first RL-trained neural solver that
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can be used for large instances on both TSP and CVRP: most previous large scale RL methods are
graph-specific, and hence cannot be applied on CVRP.

These results confirm that MEMENTO scales to instance size, and can be zero-shot combined with
COMPASS. On this benchmark, MEMENTO achieved SOTA on 3 of the 4 tasks when zero-shot
combined with COMPASS, showing significant improvement compared to previous SOTA MOCO:
the gap to optimality is reduced by more than 10%. It is the best single agent method on all TSP
instances, and on the low budget CVRP task.

Table 4: MEMENTO outperforms baselines on
CVRP500. It achieves single-agent SOTA on low
budget regime with POMO and overall with COMPASS.

Method Obj. Gap Time

LKH-3 37.229 0.00% 6H

Low Budget
POMO (sampling)
EAS
COMPASS
MEMENTO (POMO)
MEMENTO (COMPASS)

37.501
37.425
37.336
37.367
37.309

0.731%
0.525%
0.287%
0.369%
0.215%

9M
16M
10M
16M
12M

High Budget
POMO (sampling)
EAS
COMPASS
MEMENTO (POMO)
MEMENTO (COMPASS)

37.456
37.185
37.279
37.306
37.251

0.608%
-0.120%
0.133%
0.206%
0.059%

20M
36M
25M
65M
36M

Time complexity Time performance at
scale is key to the adoption of neural solvers,
because the number of sequential batches of
attempts that can be achieved within a time
budget will mostly depend on it. Search
methods must be able to tackle large in-
stances in reasonable time, and must scale
well with the size of the base policy used,
since Luo et al. (2023) demonstrated the im-
portance of using large and multi-layered
decoders in neural CO.

Hence, we evaluate MEMENTO and EAS on
a set of increasing instance sizes and de-
coder sizes and report their time complexity
on Fig. 1 (right). These plots show that,
despite being slower for small settings, ME-
MENTO’s adaptation mechanism scales bet-
ter than EAS. For an instance size of 1000, MEMENTO becomes 20% faster. And even for small
instances (size 100), using 10 layers in the decoder’s architecture (1M parameters) makes EAS 40%
slower than MEMENTO. These scaling laws illustrate another benefit of using an approach that learns
the update rather than relying on back-propagation to adapt neural solvers at inference time.

5 Conclusion

We present MEMENTO, a method to improve adaptation of neural CO solvers to unseen instances
by conditioning a policy directly on data collected online during search and search budget. In
practice, it proves to outperform stochastic sampling, tree search and policy-gradient fine-tuning, and
shows zero-shot combination with an unseen solver. Additionally, MEMENTO respects several key
properties, like robustness to low-budget regimes, and favourable time performance scalability. We
demonstrate the efficacy of MEMENTO by achieving SOTA single-policy adaptation on a standard
benchmark on TSP and CVRP, both in and out-of-distribution. Moreover, we show that MEMENTO
finds interpretable update rules to the underlying policy; trading off exploration and exploitation over
the search budget and outperforming REINFORCE-style updates. We further demonstrate zero-shot
combination of MEMENTO and COMPASS, achieving overall SOTA on a benchmark of 12 tasks.

Limitations and future work MEMENTO incurs additional compute and memory-usage compared
to the memory-less base policies which it augments. Practically, we find that the performance gain
significantly outweighs these overheads. A potential mitigation could be to derive the mathematical
update learned by MEMENTO to avoid relying on the MLP computation. While we demonstrate
successful zero-shot combination of MEMENTO with COMPASS, training MEMENTO with a diversity-
based method or fine-tuning MEMENTO specifically on the COMPASS policy represents a promising
direction for future work.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: They are in the zip file containing the code, and will be made open source
upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Not relevant.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Extended results

In Section 4, we compare MEMENTO to popular methods from the literature in numerous settings.
In particular, Table 1 compares using stochastic sampling, MEMENTO and EAS to adapt POMO on
the standard benchmark; and Figure 6 compares the relative performances of MEMENTO and EAS on
larger instances of TSP and CVRP for several values of batch sizes and budget. In this section, we
report additional values and results of other methods for those experiments.

A.1 Standard benchmark

We evaluate our method, MEMENTO, against leading RL methods and industrial solvers. For RL
specific methods, we provide results for POMO with greedy action selection and stochastic sampling,
and EAS; an active search RL method built on top of POMO, that fine-tunes a policy on each problem
instance. We also report population-based method COMPASS and the zero-shot combination of
COMPASS with MEMENTO.

We compare to the heuristic solver LKH3 (Helsgaun, 2017); the current leading industrial solver
of both TSP and CVRP, as well as an exact solver Concorde (Applegate et al., 2006) which is a
TSP-specific industrial solver, and the CVRP-specific solver (Vidal et al., 2012).

We use datasets of 10,000 instances with 100 cities/customer nodes drawn from the training dis-
tribution, and three generalization datasets of 1,000 instances of sizes 125, 150, and 200, all from
benchmark sets frequently used in the literature (Kool et al., 2019; Kwon et al., 2020; Hottung et al.,
2022; Grinsztajn et al., 2023; Chalumeau et al., 2023b). Table 5 displays results for TSP and CVRP
on the standard benchmark. The columns provide the absolute tour length, the optimality gap, and
the total inference time that each method takes to solve one instance within the attempts budget.

Standard benchmark with augmentation trick Augmentation with symmetries is a problem-
specific trick that can only be used for a few CO problems. Most prior work assumes that this
additional x8 batching can be achieved seamlessly, which is unlikely in practice, when simulating
complex real-world scenarios. Using this trick means decreasing the room for search and adaptation,
since 87.5% of the budget is consumed to squeeze performance through uncontrolled network
variance, rather than letting methods use principled strategies. Nevertheless, we report the standard
benchmark with the "augmentation trick" in Table 6. It can be observed that MEMENTO outperforms
EAS in distribution (CVRP 100), and for the large instances task (CVRP 200). EAS leads on the two
other tasks. MEMENTO leads the augmented benchmark overall: it consistently leads in distribution,
and both methods are competing closely out-of-distribution. It is to be noted that we have not tuned
MEMENTO’s hyper-parameters for these runs.

Times reported When possible, we decide to report the time to solve one instance rather the entire
dataset following four main observations: (i) First, the literature use datasets of varying sizes, e.g.
10k for TSP100, 1k for TSP200, 128 for TSP500, hence time reported can be confusing, and do not
enable to clearly see how methods’ solving time scale with instance size. (ii) Second, the default
real-world application consist in solving one instance at a time, or solving several instances at the
same time but on separated hardware. (iii) Additionally, measuring on the entire dataset mixes several
aspects, i.e. the instance solving time is mixed with the batch scalability of the method. We do think
that this property is very interesting to know, but should be considered on the side, rather than mixed
with the instance solving time. (iv) Moreover, this property will express differently depending on
the hardware available. For instance, on a small hardware POMO sampling with n attempts will be n
times slower than POMO greedy; but given a large enough GPU, POMO sampling can be parallelised
n times and hence take exactly the same amount of time as POMO greedy.

We were able to do so on the standard benchmark since we have implementations of most methods we
were comparing in a single framework. Since we are reporting several external methods in Table 8,
we could only report time taken for the full dataset in that case.

Performance with runtime as budget Expressing budget as time taken to solve one instance
is subject to high biases but it is gives interesting perspectives on the time analysis and effects of
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parallelism. In Table 7, we provide results of using runtime in stead of attempts as budget given
to each methods to solve TSP and CVRP instances. We use EAS runtime as the reference time.
These results may only be considered moderately since they are subject to a number of limitations:
(i) different labs use different implementations and frameworks (ii) labs have access to different
hardwares (iii) time is sensitive to parallelism, whereas number of attempts is not. Hence, comparing
methods with time is subject to a higher number of biases, and would make it almost impossible to
compare papers without a common codebase and hardware. We observe that MEMENTO still leads
the benchmark, with 6 out of 8 top results; and both methods are very close on the two tasks where
EAS leads.

Additional comments about the results On Table 5, we can see that in the single-agent setting,
MEMENTO leads the entire benchmark, and in the population-based setting, MEMENTO (COMPASS) is
leading the whole benchmark. MEMENTO is able to give significant improvement to COMPASS on
CVRP, pushing significantly the state-of-the-art on this benchmark. On TSP, the improvement is not
significant enough to be visible on the rounded results. To finish with, we can observe that the time
cost associated with MEMENTO is reasonable and is worth the performance improvement (except
maybe for TSP results of MEMENTO (COMPASS)).

Notes concerning SGBS All neural methods reported in Table 5 are our own runs with standardised
checkpoints and rollout strategies, except for the results of SGBS, which were taken from Choo et al.
(2022). This introduces three biases: (i) the base POMO checkpoint used by SGBS is not exactly the
same as our re-trained POMO checkpoint (ii) SGBS uses the domain-specific augmentation trick that
we do not use (iii) SGBS pre-selects starting points in CVRP, which we do not do.

Overall, the results reported in SGBS show that SGBS alone is always outperformed by EAS; hence,
it should be expected that in all the settings where we outperform EAS, we would significantly
outperform SGBS if both methods were evaluated exactly in the same way. We hence expect the
gap between MEMENTO and SGBS to be larger than the one reported here. Additionally, SGBS has
yet never been validated on larger instances. Nevertheless, we think that SGBS is a very efficient
method from the NCO toolbox and appreciate that MEMENTO and SGBS are orthogonal, and could be
combined for further improvement. We leave this for future work.

A.2 Performance over different number of parallel and sequential attempts

In Section 4.3, we show performance improvement of MEMENTO over EAS on instances of size 500
on TSP and CVRP for increasing number of sequential attempts and size of attempt batch. We report
extended results with an additional competitor, POMO. We compare the online adaptation of the
methods over four different sizes of batched solutions across increasing sequential attempts for each
CO problem. Results from Table 8 show results of the three methods on TSP and CVRP. The columns
show the best tour length performance for various values of sequential attempts expressed as budget,
and solution batches of size N . Performance is averaged over a set of 128 instances.

A.3 Evaluation over larger instances

In Section 4.3, we evaluate MEMENTO and baselines on instances of size 500. For TSP, we use the
dataset from Fu et al. (2021). For CVRP, we use the dataset from Luo et al. (2023). We do not include
LEHD in our results since we focus on methods trained with Reinforcement Learning, and LEHD
can only be successfully trained with supervised learning at the time of writing. Nevertheless, the
good performance achieved by LEHD has motivated us to study the scaling law of MEMENTO as the
number of layers in the decoder increases, reported on Appendix A.4.

In order to run COMPASS and MEMENTO (COMPASS) with the same batch sizes as other methods
on those large instances, we reduced the number of starting points used by COMPASS to ensure
that this number multiplied by the number of latent vector sampled at the same time is equal to the
number of starting point used by other methods (POMO, EAS, MEMENTO). In practice, we used a
latent vector batch of size 10, and hence divided the number of starting points by 10. This is slightly
disadvantaging COMPASS and MEMENTO (COMPASS) but enables to respect the constraint of number
of parallel batches that can be achieved at once. Note that this slightly impacts the time performance
reported since JAX jitting process will not fuse the operations in the same way, additionally, when
combined with MEMENTO, this impact the size of the memory (we keep one per starting point to
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Table 5: Results of MEMENTO against the baseline algorithms for (a) TSP and (b) CVRP. The methods
are evaluated on instances from training distribution (n = 100) as well as on larger instance sizes
to test generalization. We use the same dataset as the rest of the literature, those contain 10 000
instances for n = 100 and 1000 instances for n = 125, 150, 200. Gaps are computed relative to
LKH3. We report time needed to solve one instance. SGBS * results are reported from Choo et al.
(2022), and do not use the same POMO checkpoint as other reported results. Additionally, they rely
on problem-specific tricks that were not used by other methods. Details in Appendix A.1.

(a) TSP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.765 0.000% 0.49S 8.583 0.000% 0.72S 9.346 0.000% 1S 10.687 0.000% 1.86S
LKH3 7.765 0.000% 2.9S 8.583 0.000% 4.4S 9.346 0.000% 6S 10.687 0.000% 11S

POMO (greedy) 7.796 0.404% 0.16S 8.635 0.607% 0.2S 9.440 1.001% 0.29S 10.933 2.300% 0.45S
POMO (sampling) 7.779 0.185% 16S 8.609 0.299% 20S 9.401 0.585% 29S 10.956 2.513% 45S
SGBS* 7.769* 0.058%* - - - - 9.367* 0.220%* - 10.753* 0.619%* -
EAS 7.778 0.161% 39S 8.604 0.238% 46S 9.380 0.363% 64S 10.759 0.672% 91S
MEMENTO (POMO) 7.768 0.045% 43S 8.592 0.109% 52S 9.365 0.202% 77S 10.758 0.664% 115S

COMPASS
MEMENTO (COMPASS)

7.765
7.765

0.008 %
0.008%

20S
32S

8.586
8.586

0.036 %
0.035%

24S
39S

9.354
9.354

0.078%
0.077%

33S
58S

10.724
10.724

0.349%
0.348%

49S
88S

(b) CVRP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

HGS 15.563 −0.536% 19S - - - 19.055 −0.884% 32S 21.766 −1.096% 61S
LKH3 15.646 0.000% 52S 17.50 0.000% - 19.222 0.000% 72S 22.003 0.000% 90S

POMO (greedy) 15.874 1.430% 24S 17.818 1.818% 34S 19.750 2.757% 52S 23.318 5.992% 87S
POMO (sampling) 15.713 0.399% 24S 17.612 0.642% 34S 19.488 1.393% 52S 23.378 6.264% 87S
SGBS* 15.659* 0.08%* - - - - 19.426* 1.08%* - 22.567* 2.59%* -
EAS 15.663 0.081% 66S 17.536 0.146% 82S 19.321 0.528% 123S 22.541 2.460% 179S
MEMENTO (POMO) 15.657 0.066% 118S 17.521 0.095% 150S 19.317 0.478% 169S 22.492 2.205% 392S

COMPASS
MEMENTO (COMPASS)

15.644
15.634

-0.019%
-0.082%

29S
82S

17.511
17.497

0.064%
-0.041%

39S
100S

19.313
19.290

0.485%
0.336%

56S
118S

22.462
22.405

2.098%
1.808%

85S
272S

Table 6: Results of MEMENTO and the baseline algorithms with instance augmentation for (a) TSP
and (b) CVRP.

(a) TSP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 7.765 0.000% 2.9S 8.583 0.000% 4.4S 9.346 0.000% 6S 10.687 0.000% 11S

SGBS 7.769 0.058% - - - - 9.367 0.220% - 10.753 0.619% -
POMO (sampling) 7.767 0.026% 16S 8.594 0.128% 20S 9.376 0.321% 29S 10.916 2.14% 45S
EAS 7.768 0.038% 39S 8.590 0.080% 46S 9.361 0.159% 64S 10.730 0.403% 91S
MEMENTO (POMO) 7.765 0.008% 43S 8.586 0.035% 52S 9.355 0.091% 77S 10.743 0.526% 115S

(b) CVRP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

HGS 15.563 −0.536% - - - - 19.055 −0.884% - 21.766 −1.096% -
LKH3 15.646 0.000% - 17.50 0.000% - 19.222 0.000% - 22.003 0.000% -

SGBS 15.659 0.08% - - - - 19.426 1.08% - 22.567 2.59% -
POMO (sampling) 15.67 0.18% 24S 17.56 0.33% 34S 19.43 1.08% 52S 23.24 5.64% 87S
EAS 15.623 -0.175% 66S 17.473 -0.153% 82S 19.261 0.213% 123S 22.556 2.49% 179S
MEMENTO (POMO) 15.616 -0.196% 118S 17.511 0.040% 150S 19.316 0.477% 169S 22.515 2.308% 392S

adapt to POMO, although this is completely agnostic to MEMENTO’s method in itself). Since those
factors impacts TSP and CVRP performance in different ways, this explains why their relative speed
differ, i.e. why MEMENTO (COMPASS) is slower on TSP but faster on CVRP.

A.4 Time and memory complexity analysis

Time complexity To get the time curves reported in Fig. 7, we used CVRP, since it is the envi-
ronment were MEMENTO was the slowest compared to EAS. We hence expect curves on TSP to be
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Table 7: Results of MEMENTO and the baseline algorithms with budget expressed as runtime for (a)
TSP and (b) CVRP.

(a) TSP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 7.765 0.000% - 8.583 0.000% - 9.346 0.000% - 10.687 0.000% -

POMO (sampling) 7.779 0.216% 39S 8.609 0.299% 46S 9.401 0.585% 64S 10.956 2.513% 91S
EAS 7.778 0.161% 39S 8.604 0.238% 46S 9.380 0.363% 64S 10.759 0.672% 91S
MEMENTO 7.768 0.046% 39S 8.592 0.110% 46S 9.365 0.203% 64S 10.760 0.681% 91S

(b) CVRP

Training distr. Generalization
n = 100 n = 125 n = 150 n = 200

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

LKH3 15.647 0.000% - 17.504 0.000% - 19.225 0.000% - 22.007 0.000% -

POMO (sampling) 15.713 0.399% 66S 17.612 0.642% 82S 19.488 1.393% 123S 23.378 6.264% 179S
EAS 15.663 0.081% 66S 17.536 0.146% 82S 19.321 0.528% 123S 22.541 2.460% 179S
MEMENTO 15.660 0.086% 66S 17.526 0.127% 82S 19.321 0.502% 123S 22.546 2.450% 179S

Table 8: Results of MEMENTO, POMO and EAS on instances of size 500 of (a) TSP and (b) CVRP for
increasing number of sequential attempts and sizes of attempt batch.

(a) TSP

N = 20 N = 40
Method 200 400 600 800 1000 200 400 600 800 1000

POMO (sampling) 16.9810 16.9707 16.9638 16.9619 16.9574 16.9717 16.96 16.9549 16.9523 16.9493
EAS 16.9223 16.8923 16.8754 16.864 16.8556 16.8777 16.8468 16.83 16.8208 16.8143
MEMENTO 16.8312 16.81 16.799 16.7939 16.7902 16.8187 16.8018 16.7926 16.7855 16.7815

N = 60 N = 80
Method 200 400 600 800 1000 200 400 600 800 1000

POMO (sampling)
EAS
MEMENTO

16.9678
16.8616
16.8129

16.9587
16.8353
16.7966

16.9539
16.8211
16.7867

16.952
16.8134
16.7816

16.9503
16.8084
16.7780

16.9634
16.8521
16.8087

16.9547
16.8234
16.7935

16.9513
16.8106
16.7854

16.9495
16.8014
16.7811

16.9474
16.7941
16.7770

(b) CVRP

N = 20 N = 40
Method 200 400 600 800 1000 200 400 600 800 1000

POMO (sampling) 37.5256 37.4917 37.4763 37.4639 37.4570 37.4858 37.4599 37.4475 37.4372 37.4307
EAS 37.6107 37.5988 37.5914 37.582 37.5769 37.5022 37.4546 37.422 37.4017 37.3849
MEMENTO 37.3398 37.2992 37.2731 37.2589 37.2527 37.3172 37.2776 37.2515 37.2357 37.2260

N = 60 N = 80
Method 200 400 600 800 1000 200 400 600 800 1000

POMO (sampling)
EAS
MEMENTO

37.4598
37.4569
37.292

37.436
37.3679
37.2607

37.4228
37.3248
37.2305

37.4191
37.2892
37.2171

37.4135
37.2624
37.2092

37.4588
37.3588
37.2887

37.4335
37.2804
37.2556

37.4198
37.2346
37.2382

37.4113
37.2021
37.2268

37.4050
37.1747
37.2142

even better for MEMENTO. For the instance size scaling, we use 50 starting points and 100 sequential
attempts, and 1 layer in the decoder, and evaluate several instance sizes going from 100 to 1000. For
the decoder layer depth scaling, we use CVRP100, 100 starting points and 160 sequential attempts.
We then evaluate methods for a depth going from 1 to 10.

Computational and memory complexity analysis The use of a memory to compute corrected
action logits (i.e., MEMENTO’s policy update rule) introduces a computational overhead, whose
scaling properties depend on specific design choices and problem parameters.

Consider the TSP100 example with the memory design presented in the paper. The memory contains
100 slots (one per node), each storing 40 entries with 5 float32 values, repeated for each starting point
(100). This results in roughly 8 MB of memory data. The memory footprint therefore scales linearly
with the instance size (since there is one slot per node), but remains independent of the base policy
size. In addition, the MLP module used to process memory entries is small, consisting of two layers
with eight hidden units.
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Regarding computational cost, the main overhead comes from processing the retrieved entries through
the MLP. At each step, 40 entries are retrieved and processed in parallel, so the effective cost is that
of 40 independent MLP forward passes. This operation does not depend on the instance size or the
policy’s parameter count, but only on the number of retrieved entries. An additional cost arises from
indexing the appropriate slice of the memory, which can grow slightly with the number of nodes.

In practice, these overheads make MEMENTO slower than EAS for small instance sizes or small neural
networks. However, since its operations scale more favorably with instance size and parameter count
(compared to backpropagation), MEMENTO becomes faster for larger problems.

Overall, the computational and memory overhead of MEMENTO is negligible when solving a few
instances at a time, typical in practical settings where one receives a new problem instance and a
limited compute budget, but it can become a bottleneck when solving large batches of problems in
parallel, as often done in research benchmarks.

To provide a more concrete view of the memory-processing cost across instance sizes, we also
report the runtime of POMO in Table 9. The difference between the two indicates the additional cost
introduced by MEMENTO. Note that these values may depend on the backend: for example, JAX’s
jit compilation can impact relative timings, and alternative implementations (e.g., PyTorch) could
yield different ratios.

Table 9: Average inference time (in seconds) for each algorithm across instance sizes.
Instance Size 100 250 500 750 875 950

POMO 57 114 225 360 443 504
EAS 84 194 446 774 973 1122
MEMENTO 148 212 425 684 833 940
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Figure 7: Time complexity of MEMENTO and EAS for increasing values of decoder size, and instance
size. MEMENTO is shown to scale better in time than EAS.

B Training procedure

This section give a detailed description of how an existing pre-trained model can be augmented with
MEMENTO, and how we train MEMENTO to acquire adaptation capacities.

Firstly, we take an existing single-agent model that was trained using the REINFORCE algorithm
and reuse it as a base model. In our case, the base model is POMO. We augment POMO with a
memory module and begin the training procedure which aims to create a policy that is able to use past
experiences to make decisions in a multi-shot setting. We initialize the memory module weights with
small values such that they barely affect the initial output. Hence, the initial MEMENTO checkpoint
maintains the same performance as the pre-trained POMO checkpoint.

In the training procedure, the policy is trained to use data stored in the memory to take decisions and
solve a problem instance. This is achieved by training the policy in a budgeted multi-shot setting
on a problem instance where past experiences are collected and stored in a memory. The memory
is organised by nodes such that only information about a specific node is found in a data row that
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corresponds to that node. The policy retrieves data from the memory at each budget attempt and
learns how to uses the data to decide on its next action.

The details of the MEMENTO training procedure are presented in Algorithm 1 and can be understood
as follows. At each iteration, we sample a batch B of instances from a problem distribution D.
Then, for each instance ρi where i ∈ 1, . . . , B, for K budget attempts, we retrieve data from the
memory. This is done as follows; given that the current selected node is aj , we only retrieve data
M(aj) associated with node aj and its starting point. However, the method is agnostic to starting
point sampling and would work without it. The features associated with the retrieved action are then
normalised. We add remaining budget as an additional feature and process the data by a Multilayer
Perceptron (MLP) which outputs a scalar weight for each action. We compute correction logits by
averaging the actions based on their respective weights. The correction logits are added to the logits
of the base policy. We then rollout the resulting policy πθ̃ on the problem instance (i.e., generate a
trajectory which represents a solution to the instance). After every policy rollout attempt, the memory
is updated with transitions data such as the action taken, the obtained return, the log-probability of
the action and the log-probability of the trajectory. These data are stored in the row that corresponds
to the current selected node.

Details about the loss For each problem instance, we want to optimise for the best return. At each
attempt, we apply the rectified linear unit (ReLU) function to the difference between the last return
and the best return ever obtained. We use the rectified difference to compute the REINFORCE loss at
each attempt to avoid having a reward that is too sparse and perform back-propagation through the
network parameters of our model (including the encoder, the decoder and the memory networks).
The sum of the rectified differences is equal to the best return ever obtained over the budget. As the
budget is used, it becomes harder to improve over the previous best, the loss terms hence getting
smaller. We found that adding a weight to the terms, with logarithmic increase, helped ensuring
that the last terms would not vanish, and thus improved performance. We provide the mathematical
formulation below.

Given a problem instance, we unroll B trajectories that we store iteratively in the memory. Each trajec-
tory τi generates a return R(τi). The advantage for each trajectory is defined as R̃(τi) = max(R(τi)−
Rbest, 0), where Rbest is the highest return found so far. The total loss for updating the policy is cal-
culated using the REINFORCE algorithm: L = −

∑B
i=1 log(1 + ϵ+ i)R̃(τi)

∑
t log πM (at|st,Mt),

where πM is the policy enriched with the memory Mt, using the logits lM defined in eq.1 in the
paper. ϵ is a small number ensuring that the first term is not zero.

To keep the computations tractable, we still compute a loss at each step, estimate the gradient, and
average them sequentially until the budget is reached, at which point we take a gradient update step
and consider a new batch of instances.

In practice, we also observe that we can improve performance further by adding an optional refining
phase where the base model is frozen, and only the memory module is trained, with a reduced learning
rate (multiplied by 0.1), for a few hours.

C Hyper-parameters

We report all the hyper-parameters used during train and inference time. For our method MEMENTO,
there is no training hyper-parameters to report for instance sizes 125, 150, and 200 as the model
used was trained on instances of size 100. The hyper-parameters used for MEMENTO are reported
in Table 10. Since we also trained POMO and COMPASS on larger instances, we report hyper-
parameters used for POMO and COMPASS in Table 11 and Table 12, respectively.

D Model checkpoints

Our experiments focus on two CO routing problems, TSP and CVRP, with methods being trained on
two distinct instance sizes: 100 and 500. Whenever possible, we re-use existing checkpoints from
the literature; in the remaining cases, we release all our newly trained checkpoints in the repository
anonymised for the review process.
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Algorithm 1 MEMENTO Training

1: Input: problem distribution D, problem size N , memory M , batch size B, budget K, number of
training steps T , policy πθ with pre-trained parameters θ.

2: initialize memory network parameters ϕ
3: combine pre-trained policy parameters and memory network parameters θ̃ = (θ, ϕ)
4: for step 1 to T do
5: ρi ← Sample(D) ∀i ∈ 1, . . . , B
6: for attempt 1 to K do
7: for node 1 to N do
8: mj ← Retrieve (M) ∀j ∈ 1, . . . , B {Retrieve data from the memory}
9: τ ji ← Rollout (ρi, πθ̃(·|mj)) ∀i, j ∈ 1, . . . , B

10: mj ← f(mj , τ
j
i ) {Update the memory with transition data}

11: R∗
i ← max(R∗

i ,R(τ
j
i )) ∀i ∈ 1, . . . B {Update best solution found so far}

12: ∇L(θ̃)← 1
B

∑
i≤B REINFORCE(ReLU(τ ji −R∗

i )) {Estimate gradient}

13: ∇L(θ̃)← 1
K

∑K
i=1∇L(θ̃) {Accumulate gradients}

14: θ̃ ← θ̃ − α∇L(θ̃) {Update parameters}

Table 10: The hyper-parameters used in MEMENTO

(a) TSP

Phase Hyper-parameters TSP100 TSP(125, 150) TSP200 TSP500

Train time budget 200 - - 200
instances batch size 64 - - 32

starting points 100 - - 30
gradient accumulation steps 200 - - 400

memory size 40 - - 80
number of layers 2 - - 2

hidden layers 8 - - 8
activation GELU - - GELU

learning rate (memory) 0.004 - - 0.004
learning rate (encoder) 0.0001 - - 0.0001
learning rate (decoder) 0.0001 - - 0.0001

Inference time policy noise
memory size

1
40

0.2
40

0.1
40

0.8
40

(b) CVRP

Phase Hyper-parameters CVRP100 CVRP(125, 150) CVRP200 CVRP500

Train time budget 200 - - 200
instances batch size 64 - - 8

starting points 100 - - 100
gradient accumulation steps 200 - - 800

memory size 40 - - 40
number of layers 2 - - 2

hidden units 8 - - 8
activation GELU - - GELU

learning rate (memory) 0.004 - - 0.004
learning rate (encoder) 0.0001 - - 0.0001
learning rate (decoder) 0.0001 - - 0.0001

Inference time policy noise
memory size

0.1
40

0.1
40

0.1
40

0.3
40

We evaluate MEMENTO on two CO problems, TSP and CVRP, and compare the performance
to that of two main baselines: POMO (Kwon et al., 2020) and EAS (Hottung et al., 2022). The
checkpoints used to evaluate POMO on TSP and CVRP are the same as the one used in Grinsztajn
et al. (2023) and Chalumeau et al. (2023b), and the EAS baseline is executed using the same POMO
checkpoint. These checkpoints were taken in the publicly available repository https://github.
com/instadeepai/poppy. The POMO checkpoint is used in the initialisation step of MEMENTO
(as described in Appendix B). To combine MEMENTO and COMPASS on TSP100, we re-use the
COMPASS checkpoint available at https://github.com/instadeepai/compass and add the
memory processing layers from the MEMENTO checkpoint trained on TSP100. This checkpoint is
also released at anonymised for the review process.
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Table 11: The hyper-parameters used in POMO
Phase Hyper-parameters TSP500 CVRP500

Train time starting points 200 200
instances batch size 64 32

gradient accumulation steps 1 2

Inference time policy noise
sampling batch size

1
8

1
8

Table 12: The hyper-parameters used in COMPASS
Phase Hyper-parameters TSP500 CVRP500

Train time latent space dimension 16 16
training sample size 64 32
instances batch size 8 8

gradient accumulation steps 8 16

Inference time

policy noise
num. CMA-ES components

CMA-ES init. sigma
sampling batch size

0.5
1

100
8

0.3
1

100
8

For larger instances, we compare our MEMENTO method to three baselines: POMO, EAS and COMPASS.
Since no checkpoint of POMO and COMPASS existed, we trained them with the tricks explained
in Section 4. The process to generate the MEMENTO checkpoint and the MEMENTO (COMPASS)
checkpoint is then exactly the same. All those checkpoints are available, for both TSP and CVRP.

E Implementation details

The code-base in written in JAX (Bradbury et al., 2018), and is mostly compatible with recent
repositories of neural solvers written in JAX, i.e. Poppy and COMPASS. The problems’ implementation
are also written in JAX and fully jittable. Those come from the package Jumanji (Bonnet et al.,
2023). CMA-ES implementation to mix MEMENTO and COMPASS is taken from the research package
QDax (Chalumeau et al., 2023a). Neural networks, optimizers, and many utilities are implemented
using the DeepMind JAX ecosystem (Babuschkin et al., 2020).

F Can MEMENTO discover the REINFORCE update?

In Section 3.2, we presented the architecture used by the auxiliary model that processes the memory
data to derive the new action logits. The intuition behind this architecture choice is that it should
be able to learn the REINFORCE update rule. Indeed the REINFORCE loss associated with a
new transition is R log(πθ(a)), such that ∂R log(πθ(a))

∂la
= R(1− πθ(a)). Therefore, simply having

HθM (fa) match R(1− πθ(a)) would recover a REINFORCE-like update. This is feasible, as R and
log(πθ(a)) are included in the features fa.

We compare the rule learned by MEMENTO to REINFORCE in Fig. 4 and provide an analysis of
how the rule learned by MEMENTO evolve over different budgets in Appendix J. In Appendix G, we
present an ablation study of the features used in the update rule of MEMENTO, showing how much
performance can be gained from the use of more information to derive the update rule.

G Ablation Study: MEMENTO input features

In Section 3.2, we present MEMENTO, in particular, we present all the inputs that are used by the
neural module to derive the new action logits from the memory data. These inputs, or features,
are information associated to each past action taken, and that help decide whether those actions
should be taken again or not. In Section 4.1, we compare the rule learned by MEMENTO compared
to the policy-gradient update REINFORCE. This comparison is made on the features that both
REINFORCE and MEMENTO use: i.e. the action log probability, and the return (or advantage if a
baseline is used). Although REINFORCE only uses those two features, MEMENTO uses more, which
enables to refine even more the update, and also to adapt it to the budget remaining in the search
process. As a recall, in addition to the log probability and return, MEMENTO uses: the log probability
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of the full trajectory, the log probability of the rest of the trajectory after the action was taken, the
budget at the time the action was taken, the action logit suggested by MEMENTO when the action was
taken, and the budget currently remaining.

To validate the impact of all the features used in the memory, we provide an ablation study of those
features. To highlight the interest of using all the additional features, we report the performance of
MEMENTO using only the return and the log probability, against the performance of MEMENTO with
all features, on Fig. 8. We also report on Fig. 9 a bigger ablation where components are added one
after the others.

We can extract two main observations: (i) first, adding the remaining budget completely changes the
strategy. We can see on the right panel of Fig. 8 that having access to this additional feature enables
MEMENTO to explore much more, and then to focus on high-performing solutions when it gets closer
to the end of the budget; (ii) then, Fig. 9 confirms empirically that all features contribute to improving
the overall performance.
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Figure 8: Ablation study of MEMENTO: comparing the impact of memory features that are not
available in usual policy gradient estimations methods. The left plot reports the best solution found
so far. The right plot shows the performance of the latest solution sampled. The plot illustrates how
the additional features enable to achieve a complex exploration strategy, reaching a significantly more
efficient adaptation mechanism.
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Figure 9: Full ablation study of MEMENTO: comparing the impact of memory features that are not
available in usual policy gradient estimations methods. The left plot reports the best solution found
so far. The right plot shows the performance of the latest solution sampled. A: return + logp; B: A +
remaining budget; C: B + budget when action was taken; D: C + memory logp + trajectory logp +
end trajectory logp.
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H Evaluation metrics during training phase

In this section, we provide two plots of MEMENTO’s training phase. They show the evolution of
performance over time during MEMENTO’s training on CVRP100. The left plot reports the evolution
of the best tour length obtained during validation over time. The right plot reports the evolution of the
improvement delta over time, i.e. the difference between the quality of the best solution generated
minus the quality of the first solution generated. This metric shows well how the training phase
results in MEMENTO learning an update rule that is able to significantly improve the base policy.
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Figure 10: Evaluation metrics during the training phase of MEMENTO.

I Memory retrieval mechanism

In this section, we provide additional motivation for the choice of the node retrieval mechanism used
in MEMENTO.

Ideally, the retrieval mechanism should retrieve data based on similarity to the current partial solution.
But this comes with a computation cost since it requires getting a similarity measure and extracting
the k most similar points in the entire memory. We observe that retrieving from the same node is an
excellent proxy for similarity, and that the most similar points are very likely to come from the same
node. This retrieval strategy hence provides a better trade-off between quality and computation cost,
which is why it was selected as the final strategy for MEMENTO.

Nevertheless, MEMENTO comes as a framework, and each practitioner is free to change part of
the method to fit each specific problem. One can hence update the retrieval mechanism if desired.
Below is an example of an alternative strategy for retrieval that does consider the partial solution
constructed. Since the output of the multi-head attention of POMO ’s decoder builds a low-dimensional
representation of the partial solution, one can store this vector in the memory, and when building a
new solution, retrieve only the k-nearest neighbors of the current partial solution’s representation. One
could even apply further dimensionality reduction to reduce the cost of the nearest neighbor search.
This approach brings a significant cost increase, even when using state-of-the-art approximated
nearest neighbor JAX implementation. This effect gets worse when batching the attempts, or the
problem instances. In the problems and settings considered in this paper, our simplified retrieval
approach maintains similar results, while significantly improving scaling.

J Evolution of MEMENTO learned update over budget

We further analyse how the update rule learned by the MLP evolves over the course of the budget.
Specifically, we compute the MLP’s logit correction values across a grid of inputs by varying the
normalised return and the log probability of the action, while fixing all the other inputs. These
allows us to isolate the learned update pattern across the return and log probability space. As
shown in Fig. 11, MEMENTO strongly upweights low-probability, high-return actions, consistent
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with advantage-weighted updates, but exhibits a sharper concentration around high-value transitions.
Importantly, we observe a temporal shift: early in the budget, the MLP assigns nonzero corrections
even to uncertain or suboptimal transitions promoting broad exploration. As the remaining budget
decreases, the corrections become increasingly selective, focusing on high-return, high-confidence
actions.
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Figure 11: The update rule discovered by MEMENTO across different budget stages (low, mid, high).
The learned update rule shifts from broad exploration to sharper exploitation as the budget decreases.

K Impact of train-time budget

The main experiments report results for MEMENTO trained with a budget of 200 sequential attempts.
In this analysis, we evaluate variants of MEMENTO trained under alternative training budgets, and
evaluate their performance for increasing inference budgets. We report the results in Table 13.

Despite being trained with different budgets, all variants of MEMENTO exhibit stable performance
across a wide range of inference budgets. This confirms that conditioning on the remaining budget
enables flexible behaviour even when the actual inference budget differs from that used in training.
Overall, we observe that MEMENTO performs robustly across budget mismatches and that all variants
generalise reasonably well beyond their training budget. Notably, the model trained with 200 attempts
consistently performs the best which we attribute to a tuning bias: the hyperparameters were selected
based on validation performance at budget 200, and were not re-tuned for other settings.

Table 13: Performance of MEMENTO on TSP100 across different inference budgets, trained with
three budget settings.

Inference Budgets
B = 50 B = 100 B = 200 B = 300 B = 400 B = 500 B = 600 B = 1200 B = 1600

Budget Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

100 7.769 0.0077% 7.767 0.0063% 7.767 0.0058% 7.767 0.0058% 7.767 0.0054% 7.767 0.0056% 7.767 0.0055% 7.767 0.005% 7.766 0.005%
200 7.768 0.0074% 7.767 0.0058% 7.766 0.005% 7.766 0.0042% 7.766 0.0043% 7.766 0.0042% 7.766 0.004% 7.765 0.0035% 7.765 0.0035%
300 7.768 0.0075% 7.768 0.0066% 7.767 0.0056% 7.767 0.0057% 7.767 0.0057% 7.767 0.005% 7.766 0.0043% 7.766 0.0045% 7.766 0.0045%
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