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ABSTRACT

In this paper, we investigate the effect of lookahead branching strategy in neural
network verification. We present a general recipe for integrating lookahead into
any branch-and-bound search framework, and also describe how in addition to
guiding branching, lookahead can generate additional lemmas that accelerate veri-
fication. We instantiate the method in two representative branch-and-bound-based
verifiers (Marabou and α-β-CROWN), and demonstrate consistent reductions in
overall verification time across both systems.

1 INTRODUCTION

Deep neural networks (DNNs) have become state-of-the-art solutions in various domains (Sallab
et al., 2017; Mnih et al., 2013; He et al., 2015). To ensure the deployment of DNN-based systems
in safety critical domains, there has been significant effort from the formal methods and machine
learning communities on developing scalable formal verification techniques that can rigorously rea-
son about the behaviors of a neural network (Katz et al., 2017; Singh et al., 2019; Zhang et al.,
2018; Wang et al., 2021). State-of-the-art complete neural network verifiers are based on branch-
and-bound (BaB), which involves performing case splitting on non-linear activation functions (e.g.,
ReLU) and analyzing the cases using an incomplete verifier; if the analysis by the incomplete verifier
is inconclusive, further case splits are recursively performed.

The branching heuristic, the strategy to choose which case to split on, has significant impact on ver-
ification efficiency. Ideally, the branching heuristic should lead to easier subproblems. Failing to do
so, especially at the top of the search tree, can result in duplicated verification efforts and increased
verification time. In the past decades, a number of branching heuristics have been developed for
neural network verification (Katz et al., 2017; Wu et al., 2020; Bunel et al., 2020; De Palma et al.,
2021). By and large, existing branching heuristics aim to make a decision quickly by leveraging
local information (e.g., variable bounds) gathered during the solving process to estimate the effect
of branching on certain neurons. While the branching decision is made rapidly, this approach in-
creases the risk of ineffective branching. This is because the decision is made without evaluating
the long-term impact of splitting on a neuron. Recent studies have shown it is beneficial to spend
more effort on deciding the next branching neuron, by actually performing branching on a number
of candidate neurons and evaluating its effect (De Palma et al., 2021; Botoeva et al., 2020).

In this paper, we systematically study this alternative branching strategy that spends significant ef-
fort on selecting the next neuron to split. We adopt the terminology in formal methods and call this
approach lookahead (Heule & van Maaren, 2009). We present a general recipe for constructing a
lookahead-based branching strategy for a BaB neural network verification procedure. Lookahead
involves simulating potential branching decisions by performing multiple splits to measure down-
stream effects. By analyzing the impact of each simulated branch, lookahead uses more information
to make the branching decision. We present lookahead as a template algorithm with several tunable
parameters such as the preselect strategy, lookahead depth, and evaluation metric. These parameters
can be instantiated in a solver-specific manner. In addition to informing the branching decision,
lookahead might also discover new information, such as tightened variable bounds. We show this
information can be used to derive valid lemmas at the current search level, and potentially prune
the search space. We instantiate lookahead in two distinct BaB-based complete verification tools,
Marabou (Katz et al., 2019; Wu et al., 2024) and α-β-CROWN (Wang et al., 2021; Xu et al., 2020;
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Figure 1: Visual overview of the lookahead procedure

Zhang et al., 2022a; Zhou et al., 2024), and demonstrate that lookahead can consistently boost the
performance of both tools.

An overview of the lookahead workflow is presented in Figure 1. At a given search state when
branching is required, a set of split candidates is pre-selected and lookahead simulates branching
on each candidate up to a certain depth. The outcome of each simulation is a score along with a
number of tightened bounds, which might entail that certain currently unstable neurons are fixed to
particular activation phases. In the end, lookahead outputs the next neuron to split on and a set of
lemmas discovered during the lookahead simulations.

The rest of the paper is organized as follows: Section 2 provides relevant background on neural
network verification. Section 3 presents the general lookahead approach and concrete instantiation
in Marabou and α-β-CROWN. Section 4 provides an evaluation of lookahead branching, comparing
it to existing heuristics in Marabou and α-β-CROWN. We review related work in Section 5. Finally,
we conclude and discuss future directions in Section 6.

2 BACKGROUND

2.1 NEURAL NETWORK VERIFICATION

For a trained deep neural network N : Rn → Rm with an input x ∈ Rn and output y = N(x) ∈ Rm,
the DNN verification problem is whether or not there exists an input x that produces an output y that
satisfies a property ϕ(y). If there exists an input x that leads to an output y that satisfies the property
ϕ(y), then the problem is satisfiable, denoted SAT. If there exists no input x that can produce an
output y that satisfies ϕ(y), then the problem is unsatisfiable, denoted UNSAT.

2.2 BOUND PROPAGATION

To refine the search space of a neural network verification problem, bound propagation (Singh et al.,
2019) estimates activation ranges at each layer, defining upper and lower bounds for each neuron.
The Rectified Linear Unit (ReLU) activation function is defined as ReLU(x) = max(0, x). A ReLU
neuron is considered active if its lower bound is strictly greater than zero (z(l) > 0), meaning its
output will always be its input. Conversely, a ReLU neuron is inactive if its upper bound is less
than or equal to zero (z(l) ≤ 0), meaning its output will always be zero. Otherwise, the activation
status is not yet known and the ReLU in unstable. If a ReLU’s bounds can guarantee the neuron
is always active or inactive, unnecessary computations can be eliminated. Bound propagation is
run repeatedly in the BaB procedure to refine the search space. Through this iterative process, the
bounds on neuron activations are progressively tightened, leading the solver closer to a solution.

2.3 BRANCH-AND-BOUND
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Figure 2: Each node encodes a sub-
problem from BaB by splitting unstable
ReLUs. Green nodes are pruned; blue
nodes require further branching. (Zhou
et al., 2024) .

The branch-and-bound (BaB) framework, illustrated by
Figure 2, is an efficient approach to neural network verifi-
cation. BaB systematically tightens the bounds of a neu-
ral network by splitting on unstable ReLU neurons. When
an unstable ReLU is split, the problem is turned into two
problems, one where the ReLU is active and one where
the ReLU is inactive. After bound propagation, this turns
a big problem into two more manageable problems. To
verify with BaB, ReLU splits are repeatedly applied until
each resulting subproblem can be definitively classified
as either satisfying the property (SAT) or not satisfying it
(UNSAT).

The choice of ReLU to split on is imperative for the ef-
ficiency of BaB, as it determines how fast a solver con-
verges to a solution; well-selected splits make signifi-
cantly more progress to a solution than poorly-chosen
splits. Thus, heuristics to select ReLUs to split on are
essential to efficient neural network verification. By and
large, branching heuristics make decisions on local infor-
mation like neuron bounds and pre-activation values without considering their long-term impact,
often leading to inefficient search paths. We introduce lookahead branching, a novel heuristic in-
spired by SAT-solving techniques that strategically evaluates potential branching decisions before
choosing a constraint to branch on.

3 METHODOLOGY

In this section, we first present lookahead as a template algorithm and discuss its properties. We
then discuss concrete strategies for instantiating the lookahead procedure.

3.1 LOOKAHEAD FOR BAB

Algorithm 1 formalizes the lookahead branching procedure. We assume that the procedure is in-
voked in a branch-and-bound search shell when a branching decision is needed. At a high level, the
algorithm takes as input the set of unstable neurons at the current search node and returns the neuron
to branch on, along with variable bounds discovered during lookahead. The procedure depends on a
number of parameters: 1) d is the depth of lookahead; 2) PRESELECT takes as input a collection of
neurons R, and choose a subset of R as candidates to examine closer; 3) BASESELECT is the heuris-
tic that selects the next neuron to branch on during the lookahead simulation; 4) EVALUATESTATE
evalutes the current search state and returns a real-valued score S, as well as sound lower- and upper-
bounds of variables at the current state; and 5) AGGREGATESCORE aggregates the evaluation scores
collected during lookahead simulation.

The algorithm begins by identifying a set of unstable neurons to simulate splits on. Given that
performing a full lookahead simulation on every unstable ReLU is computationally expensive, a
preselect strategy is employed to shrink the candidate set. The preselect strategy differs based on
implementation as detailed in Section 3.2.

For each preselected candidate, the algorithm simulates the effect of branching on it with the
SIMULATESPLIT sub-routine. The SIMULATESPLIT function simulates a case split on the neu-
ron, creating one branch for each of the activation phases. For the ReLU activation function, there
would be two phases (active and inactive). The algorithm then recursively explores the next level
of the search tree by selecting another neuron to split on, using the BASESELECT heuristic. This
process continues until a specified lookahead depth (d) is reached. The goal of performing ad-
ditional splits is to explore the potential cascading effects of each candidate split, as the effect of
splitting on one neuron might not be fully realized in the immediate subproblem. After each split
is simulated, the solver performs bound propagation. This is important, as it tightens the bounds of
other neurons in the network based on the simulated split. When the lookahead depth is reached,
the EVALUATESTATE function is called to evaluate the current state of the solver and collect the
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Algorithm 1 Lookahead Branching

1: Input: Set of unstable neurons R at the current search level
2: Output: ⟨r′, l , u⟩ where r′ is the neuron to split, l and u are sound lower- and upper-bounds of

variables at the current search level
3: Parameters: lookahead depth d, preselect strategy PRESELECT, explore strat-

egy BASESELECT, evaluation strategy EVALUATESTATE, and aggregate strategy
AGGREGATESCORE

4: function LOOKAHEAD(R, d)
5: R′ ← PRESELECT(R) ▷ Pre-select candidate neurons
6: A← {}
7: L,U ← [ ], [ ]
8: for each r ∈ R′ do
9: S′, l , u ← SIMULATESPLIT(r,d, R/{r}) ▷ Simulate branching and evaluate

10: A[r]← AGGREGATESCORE(S′) ▷ Aggregate the scores from subproblems
11: L.append(l), U .append(u)
12: return argmax(A), elementwise-max(L), elementwise-min(U)
13: function SIMULATESPLIT(r, d,R)
14: if d == 0 then
15: s, l , u ← EVALUATESTATE()
16: return [s], l , u
17: else
18: storeSolverState()
19: S,L,U ← [ ], [ ], [ ]
20: for each p ∈ phases(r) do
21: applySplit(p)
22: propagateBounds()
23: if d == 1 then r′ ← BASESELECT(R)
24: else r′ ← nil
25: S′, l , u ← SIMULATESPLIT(r′, d− 1, R/{r′})
26: S ← S :: S′

27: L.append(l), U .append(u)
28: restoreSolverState()
29: return S, elementwise-min(L), elementwise-max(U)

current variable bounds. Importantly, the solver state is saved and restored after each simulated split
to ensure that the lookahead simulation does not interfere with the actual search process. This al-
lows for independent evaluation of each candidate neuron without side effects from other simulated
branches. In the end, the SIMULATESPLIT function returns the score of each simulated leaf, as well
as the loosest lower and upper bounds of the variables discovered during the simulation. Importantly,
these bounds are sound lower and upper bounds of the variables at the current search level.

The scores from all simulated branches are aggregated using the specified aggregation strategy to
produce a single score for each candidate neuron. The neuron with the best aggregated score is se-
lected as the next split. Moreover, the tightest lower and upper bounds discovered during lookahead
are returned, which can be used to further prune the search space.

In general, lookahead can be computationally expensive, as it requires repeated simulation of the
solving process. In practice, it is beneficial to invoke Algorithm 1 at the top of the search tree, and
fall back to more efficient branching heuristics later on. In the next section, we discuss the different
strategies for preselecting neurons, evaluating simulated branches, and aggregating scores.

3.2 PRESELECT STRATEGIES

If lookahead were to be performed on every neuron in a large neural network, the computational
overhead would outweigh the improvement in branch quality. Thus, it is essential to preselect a
subset of neurons on which to run lookahead. Several preselect strategies are possible.
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One approach is to use a polarity-based strategy, that uses a heuristic that scores neurons based on
the sensitivity of their activation status to changes in their bounds. For example, a score such as
max

(
ub
lb ,

lb
ub

)
, where ub and lb are the upper and lower bounds of a neuron, can be used to identify

neurons whose activation status is most undecided. Neurons with the highest scores are then selected
for lookahead. We used this polarity-based preselect strategy in Marabou.

Another approach is to use existing branching scores, such as BaBSR scores, to rank neurons. In
this case, a fixed number of neurons with the highest scores are chosen for lookahead.

Regardless of the specific strategy, it is important that the preselect method identifies promising
candidates using lightweight metrics, ensuring that only the most relevant neurons are considered
for the more expensive lookahead procedure.

3.3 SCORING FUNCTIONS

The scoring function is a central component of lookahead branching, as it quantifies the effectiveness
of each simulated split and guides the branching decision. Two general classes of scoring metrics
are commonly used: neuron-fixing-based metrics and bound-reduction-based metrics.

Neuron-fixing-based metric. This approach evaluates a split by counting how many previously
unstable neurons become phase-fixed (i.e., their activation status is determined) after bound prop-
agation in each branch. To encourage both high total progress and balanced outcomes, a balance
score is computed for each split. For example, if a split results in a neurons fixed in one branch
and b in the other, the score can be defined as a×b

a+b+1 . This formula favors splits that not only fix
many neurons overall but also distribute the fixes more evenly between branches. Consider a split
that fixes 9 neurons in one branch and 1 in the other. Its score would be 9×1

9+1+1 ≈ 0.8. In contrast,
a split that fixes 5 neurons in each branch would yield a score of 5×5

5+5+1 ≈ 2.3. Our metric would
then favor the more balanced outcome in case the same number of neurons are fixed. When looka-
head is performed to greater depths, the scores are computed recursively: at the leaves, the score is
based on the number of phase fixes, and at each internal node, the balance formula is applied to the
scores of its child branches, propagating upward to yield a final score for each candidate split. This
polarity-based metric was used in Marabou.

Bound-reduction-based metric. This metric is based on the reduction in variable bounds or other
continuous measures of progress, such as the width of neuron bounds or their proximity to a decision
threshold. For example, a scoring function may combine the width of a neuron’s bounds, its distance
from zero, and an estimate of its influence on the objective (e.g., via gradient approximation). In
a lookahead setting, after simulating a split, the scoring function can aggregate the scores from
subsequent branches using a balance formula similar to the neuron-fixing metric. For instance, if
S+ and S− are the scores from the two branches after a split, the lookahead score can be defined as
S0+λ · S+×S−

S++S−+1 , where S0 is the immediate score for the split and λ is a discount factor to control
the influence of deeper lookahead. For deeper lookahead, this aggregation is applied recursively
as scores are propagated up the lookahead tree. This bound-reduction-based metric was used in
α-β-CROWN.

Regardless of the specific metric, an effective scoring function should capture both the potential
for maximal progress toward a solution and the balance of outcomes across different branches.
This ensures that the branching decision not only accelerates convergence but also avoids highly
imbalanced splits that may lead to inefficient search.

3.4 PHASE FIXING VIA LOOKAHEAD SPLITS

One significant outcome of the lookahead branching procedure is its ability to refine variable bounds,
which can lead to phase fixing of previously unstable neurons. Specifically, during the lookahead
process, bound propagation is applied after simulating splits, and the resulting bounds can some-
times determine that a neuron is stable (i.e., its activation phase is fixed).

The following theorem formalizes this effect:
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Theorem 1 (Phase Fixing via Lookahead). Let z = ReLU(y) be an unstable ReLU, i.e., ℓy <
0 < uy . Suppose we simulate a split on another unstable ReLU zr = ReLU(yr), generating two
subproblems corresponding to the inactive (yr ≤ 0) and active (yr ≥ 0) cases.

Let ℓinacty and ℓacty be the lower bounds on y obtained after bound propagation in each subproblem.
Then the refined lower bound ℓnewy := min

(
ℓinacty , ℓacty

)
satisfies ℓnewy ≥ ℓy , i.e., it is at least as

tight as the original.

Similarly, the refined upper bound unew
y := max

(
uinact
y , uact

y

)
satisfies unew

y ≤ uy .

As a consequence: If ℓnewy ≥ 0, the phase of z is fixed to active; and if unew
y ≤ 0, the phase of z is

fixed to inactive.

Proof Sketch. Simulating a split on zr refines the input domain into two disjoint subdomains. Bound
propagation on each subproblem yields tighter constraints on all dependent variables, including y.
Because the union of the subdomains recovers the full feasible region, the maximum lower bound
and minimum upper bound across the subproblems provide valid bounds.

This phase-fixing capability of lookahead branching not only improves the quality of branching
decisions but also reduces the overall search space by pruning redundant subproblems. This makes
the branch-and-bound process more efficient and scalable.

4 EXPERIMENTAL EVALUATION

To evaluate the effectiveness of lookahead branching, we implemented Algorithm 1 in two state-
of-the-art BaB-based verification tools Marabou and α-β-CROWN. These two solvers use different
approaches to solve subproblems: Marabou is a CPU-based verifier that employs an SMT-based
incomplete decision procedure (Katz et al., 2017; Wu et al., 2022), while α-β-CROWN runs GPU-
accelerated bound-propagation (Zhang et al., 2018; Xu et al., 2020). We evaluate lookahead branch-
ing against the present state-of-the-art heuristics in each verifier on various benchmarks for each.
Our investigation aims to determine if incorporating lookahead branching can improve the perfor-
mance of branch-and-bound across distinct solver paradigms.

4.1 CASE STUDY ON MARABOU

4.1.1 EXPERIMENTAL SETUP

For experimentation on Marabou, we compared lookahead branching to BaBSR and pseudo-impact,
two of Marabou’s existing heuristics. BaBSR is a widely-used deterministic heuristic (Bunel et al.,
2020), while pseudo-impact is a dynamic heuristic specific to Marabou (Wu et al., 2022). We con-
ducted experiments on three different benchmark sets, NAP, NN4Sys, and MNIST. NAP is a bench-
mark designed to evaluate neural network verifiers on specifications defined by neural activation
patterns, which characterize broad, numerically challenging regions of the input space. NN4Sys is
a benchmark suite constructed from neural networks used in computer systems, testing real-world
verification challenges that have been proven difficult in recent iterations of the VNN Competition.
The MNIST dataset includes various feed forward neural networks for handwritten digit recognition.
The MNIST network architectures we tested include, in layers by neurons, 20x20, 2x256, 4x256,
and 6x256. We implemented lookahead on top of the most recent version of Marabou presented in
Wu et al. (2024).

We use the polarity-based pre-selecting strategy as described in Section 3.2 to select 10 candidate
neurons. We use a lookahead depth of 2 (parameter d in Algorithm 1. We instantiate BASESELECT
with two different simpler heuristics, BaBSR and pseudo-impact. In the experiments, we perform
lookahead splits on the top five branching levels, and fall back to the simpler heuristics for the rest
of it. We used the neuron-fixed-based metric for evaluating a search state and combining the scores
across subproblems 3.3. The experiments were run on a server with 2.6-GHz AMD CPUs, with 4
CPU cores allocated per benchmark. Each benchmark was given a 30 minute time limit and a 32
GB memory limit.
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4.1.2 RESULTS

Table 1 presents a comparison of the performance of Marabou with and without lookahead branching
across the various benchmarks. The tables report the number of instances solved within the time
limit (1800 seconds), along with average run time on solved instances. Overall, lookahead branching
results in a substantial increase in the number of solved instances for both BaBSR and pseudo-impact
branching heuristics.

Table 1: Marabou results on all instances

Benchmark Set # Benchmarks babsr babsr+lookahead pseudo-impact pseudo-impact+lookahead
Solved Avg Time (s) Solved Avg Time (s) Solved Avg Time (s) Solved Avg Time (s)

NAP 235 30 29.04 47 3.67 19 0.54 24 3.01
NN4SYS 120 80 127.12 80 114.94 82 149.90 94 238.13
MNIST 20x20 500 183 100.45 192 130.62 130 14.90 141 9.28
MNIST 2x256 500 370 28.34 369 30.28 405 77.92 407 83.14
MNIST 4x256 500 281 30.09 286 30.46 298 72.54 295 52.19
MNIST 6x256 500 248 86.06 254 94.01 240 42.48 240 40.88

Figure 3 provides cactus plots comparing lookahead and the baseline heuristics on the three bench-
mark sets. Overall, lookahead leads to more solved instances compared to the baseline heuristics,
especially when the time limit is high. On the NAP benchmark, the lookahead’s overhead makes it
slower when the time limit is low, but the improvement in branching quality leads to significantly
more solved instances in total. On the NN4Sys benchmarks, lookahead leads to significantly more
solved instances in less time with pseudo-impact, but only yields solve time improvements with
BaBSR. For the MNIST benchmarks, lookahead leads to an improvement in solved instances when
the time limit is higher.

(a) NAP (b) NN4Sys (c) MNIST

Figure 3: Cactus plots comparing existing heuristics and lookahead on Marabou

4.2 CASE STUDY ON α-β-CROWN

4.2.1 EXPERIMENTAL SETUP

For experimentation on α-β-CROWN, we compared lookahead branching to its current state-of-the-
art heuristic, FSB(De Palma et al., 2021), on seven different convolutional neural networks ranging
with various robustness properties for each. The networks came from the CIFAR, MNIST, and
TinyImageNet datasets, three computer vision datasets for image and text recognition. The net-
works from the CIFAR and TinyImageNet datasets range between 14.4 million and 31.6 million
parameters, making them challenging verification queries. The MNIST benchmarks were adversar-
ially trained, introducing complexity that makes formal verification particularly challenging. We

7
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implemented lookahead on top of the most recent version of α-β-CROWN presented in Shi et al.
(2025b).

With α-β-CROWN, the solver first attempted to solve the problem with an adversarial attack al-
gorithm(Zhang et al., 2022b), then with incomplete verification using auto-LiRPA(Xu et al., 2021)
before beginning complete verification with BaB. When BaB is run, the first five BaB rounds are
done using lookahead branching with a lookahead depth of 2, and then FSB branching is used. We
use BaBSR scores as the preselect strategy and select 15 candidate neurons. We used the bound-
reduction-based metric for the scoring function (Section 3.3) with a discount factor λ of 0.5. We
did not implement the phase fixing techniques in α-β-CROWN, as α-β-CROWN by default only
tightens the bounds of neurons in the final layer. The experiments were run on a server with 2.6-
GHz AMD CPUs and A100 GPUs. One A100 GPU and 96 CPU cores were allocated for each
experiment, and a 128 GB memory limit was given for each experiment.

4.2.2 RESULTS

Table 2 presents a comprehensive overview of the verification performance on the seven neural
network models using both FSB branching and lookahead branching within α-β-CROWN. The table
compares the total number of solved instances (including both SAT and UNSAT) and the average
runtime on solved instances.

Table 2: α-β-CROWN results on all instances

Dataset Model # Benchmarks Timeout (s) Solved Instances Avg Solve Time (s)
FSB Lookahead FSB Lookahead

CIFAR CIFAR100 200 360 112 112 19.49 16.47
CIFAR10-ResNet 72 360 59 60 22.83 21.87
CNN-A-Mix 200 200 83 83 7.58 6.03
CNN-B-Adv 200 450 93 93 10.23 8.60

MNIST CNN-A-Adv 200 200 141 141 11.34 8.90
TinyImageNet tinyimagenet 200 360 129 130 23.84 20.83

To isolate the impact of lookahead branching on the branch-and-bound core of α-β-CROWN, Table
3 presents results filtered to include only instances that required the full BaB procedure. SAT in-
stances are excluded as they were all solved through adversarial attacks, and easier UNSAT solved
with incomplete verification methods are also excluded, since lookahead branching has no effect on
these cases. We see that lookahead leads to a consistent speedup in solve time, and contributes two
unique solutions. Ablation studies on α-β-CROWN are provided in Appendix A. Overall, we found
that performance gain can be consistently achieved for various choices of the parameters.

Table 3: α-β-CROWN results on UNSAT instances solved with BaB

Dataset Model Solved Instances Avg Solve Time (s) Avg Speedup (%)
FSB Lookahead FSB Lookahead

CIFAR CIFAR100 90 90 23.34 19.58 16.1%
CIFAR10-ResNet 19 20 69.51 64.27 24.3%
CNN-A-Mix 32 32 19.10 15.08 15.4%
CNN-B-Adv 47 47 19.77 16.54 21.9%

MNIST CNN-A-Adv 107 107 14.77 11.53 16.3%
TinyImageNet tinyimagenet 116 117 26.11 22.74 21.0%

Figure 4 shows the cactus plots comparing FSB and lookahead for each network. We see that
lookahead generally yields faster solve times, especially when the time limit is low. As the time
limit increases, FSB tends to catch up.

Overall, we found that lookahead can boost the performance of BaB in two fundamentally different
neural network verifiers. This suggests that lookahead branching can be a generally applicable
strategy for enhancing the performance of complete neural network verification.

8
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Figure 4: Cactus plots comparing FSB and lookahead on α-β-CROWN

5 RELATED WORK

Early efforts for complete verification of neural networks employed SMT and MILP solvers that
enumerate activation patterns (Katz et al., 2017). A unified BaB view of verification was pre-
sented by Bunel et al. (2020). State-of-the-art complete verification tools including the SMT-
based solvers (Katz et al., 2019; Wu et al., 2024) and GPU-accelerated bound-propagation-based
tools (Wang et al., 2021; Xu et al., 2020; Zhang et al., 2022a; Zhou et al., 2024; Shi et al., 2025a)
can be viewed as instantiation of BaB. Branching heuristics have a significant impact on the run-
time of complete verification tools. BABSR introduced a “strong-branching” style score that solves
a cheap surrogate relaxation for each candidate and became the default in many verifiers (Bunel
et al., 2020). FILTERED SMART BRANCHING (FSB) refines this idea by first filtering candidates
with BaBSR and then re-running a tighter bound computation on the shortlist (De Palma et al.,
2021). There has also been work on using Graph Neural Networks to train a policy for selecting
splitting neurons (Lu & Kumar, 2019). Our work is inspired by lookahead search in SAT and SMT
solvers (Heule & van Maaren, 2009) as well as MILP solvers (Glankwamdee & Linderoth, 2006),
and we extend similar ideas to neural network verification.

6 CONCLUSION

In this paper, we introduced a lookahead based branching strategy for neural network verification.
The key idea is to simulate candidate splits prior to committing to a split in order to make more
informed branching decisions. We discussed design choices of lookahead and instantiated lookahead
branching for two distinct complete verifiers, Marabou and α-β-CROWN. Our results show that
incorporating lookahead branching results in substantial performance gains in both solvers across a
wide range of benchmarks. This suggests that lookahead is a generally applicable strategy for neural
network verification.

Limitations As we presented lookahead as a template algorithm, its design space is massive. While
we considered two instantiations of lookahead in Marabou and one in α-β-CROWN, it would be
interesting to evaluate more variants of lookahead. In particular, we plan to investigate the effect of
performing simulations to deeper levels or periodically invoking lookahead later in the search. In
addition, while we explored leveraging lookahead to fix unstable neurons, it might be interesting to
leverage other information, such as dependencies between neurons, which might result in additional
pruning of the search space.
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7 ETHICS STATEMENT

LLMs were used in the process of paper writing to assist with phrasing and grammar. Specifi-
cally, LLMs were used to improve clarity, refine phrasing, and ensure consistency in language. All
methodology, experimental results, and analyses were written by the authors, and no text was gen-
erated without author oversight. We acknowledge this usage in accordance with ICLR’s ethical
guidelines and take full responsibility for the integrity and accuracy of the submission.

8 REPRODUCIBILITY STATEMENT

The full source code for both Marabou and α-β-CROWN is included in the supplementary materials,
along with instructions for replication. Hardware specifications, experiment configurations, and
hyperparameters are documented in Section 4. All benchmark datasets are publicly available and
used without modification.
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A ABLATION STUDIES ON α-β-CROWN

Table 4: α-β-CROWN results with varying number of lookahead branches

Dataset Model 1 Lookahead Branch 5 Lookahead Branches 10 Lookahead Branches
Solved Avg Time (s) Solved Avg Time (s) Solved Avg Time (s)

CIFAR CIFAR100 90 64.21 90 64.27 90 57.25
CIFAR10-ResNet 20 20.40 20 19.58 20 21.49
CNN-A-Mix 32 16.15 32 15.08 32 14.99
CNN-B-Adv 47 17.24 47 16.54 47 16.86

MNIST CNN-A-Adv 107 11.89 107 11.53 107 13.65
TinyImageNet tinyimagenet 117 24.66 117 22.74 117 24.93

Table 4 presents the performance of α-β-CROWN while varying the number of lookahead branches
performed before switching to a simpler heuristic. Across all lookahead depths tested, lookahead
either solves more instances or has faster solve times than FSB. Changing the lookahead depth does
not change the number of solved instances, but has a non-trivial impact on the average solve time.
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