
Published in Transactions on Machine Learning Research (06/2025)

Efficient Hardware Scaling and Diminishing Returns in
Large-Scale Training of Language Models

Jared Fernandez jaredfern@cmu.edu
Carnegie Mellon University

Luca Wehrstedt lcw@meta.com
Meta FAIR

Leonid Shamis lshamis@meta.com
Meta FAIR

Mostafa Elhoushi melhoushi@meta.com
Meta FAIR

Kalyan Saladi skalyan@meta.com
Meta FAIR

Yonatan Bisk ybisk@cs.cmu.edu
Carnegie Mellon University

Emma Strubell strubell@cmu.edu
Carnegie Mellon University

Jacob Kahn jacobkahn@meta.com
Meta FAIR

Reviewed on OpenReview: https://openreview.net/forum?id=p7jQEf3wlh

Abstract

To train the exceedingly large neural networks required in modern applications, such as large language
models (LLMs), model training is distributed across tens of thousands of hardware accelerators (e.g.
GPUs), requiring orchestration of computation and communication across large computing clusters.
In this work, we demonstrate that careful consideration of hardware configuration and parallelization
strategy is critical for effective (i.e. compute- and cost-efficient) scaling of model training. We
conduct an extensive empirical study of the performance of large-scale LLM training workloads
across model size, hardware configurations, and distributed parallelization strategies with current
best practices. In experiments with model sizes up to 70B parameters and utilizing up to 2048 H100
GPUs, we demonstrate that: (1) Naive scale out with Fully Sharded Data Parallelism (FSDP) incurs
communication overhead which leads parallelization strategies previously thought to be sub-optimal
to in fact become preferable; and (2) scaling the total number of accelerators for training quickly
yields diminishing returns even when hardware and parallelization strategies are properly optimized,
implying poor marginal performance per additional unit of power or GPU-hour.

1 Introduction

The increasing size of state-of-the-art neural language models, which now contain in excess of hundreds of billions
of parameters, yields larger computational workloads and memory requirements during training. In this regime, the
memory requirements from increasing numbers of model parameters and large batch sizes are such that the model
parameters, activations, and optimizer states required for model training no longer fit within the memory of a single

1

https://openreview.net/forum?id=p7jQEf3wlh


Published in Transactions on Machine Learning Research (06/2025)

GPU accelerator. To address the memory limitations of a single device and to leverage the increased processing power
of additional accelerators, the largest workloads necessitate distribution across thousands of hardware accelerators (i.e.
GPUs and TPUs).

22 25 28

Number of Nodes
101

102

103

Ti
m

e 
(m

s)

Exposed Communication

22 25 28

Number of Nodes

101

1.1 × 101

1.2 × 101

1.3 × 101

1.4 × 101

To
ke

ns
 p

er
 W

at
t

Tokens per Watt

Figure 1: Despite minimal communication overhead
on less than 32 nodes, increasing communication
overhead leads FSDP to observe diminishing returns
on power efficiency with over 30% reduction at scale.

The need for training algorithms for distributing workloads across
large numbers of accelerators has motivated the development of var-
ious data and model parallelism strategies – discussed in more detail
in §2 (Rasley et al., 2020; Shoeybi et al., 2019; Zhao et al., 2023;
Li et al., 2020; Ryabinin et al., 2023). Combining data, tensor and
pipeline parallelism (3D parallelism) and sharded data parallelism
(FSDP and DeepSpeed ZeRO) have been developed as primary meth-
ods to address memory limitations during training (Shoeybi et al.,
2019; Shazeer et al., 2017; Lepikhin et al., 2020). In particular,
sharded data parallelism without model parallelism has emerged as
one of the most common methods for langauge model training and
been used in the training of open models such as: OLMo (Groeneveld
et al., 2024), IBM Granite (Granite Team, 2024), Apple OpenELM
(Mehta et al., 2024), and Mosaic MPT (Team, 2023).

Although many theoretical cost models have been developed to estimate the communication and computation per-
formance of various parallelization methods (Qi et al., 2017; Cai et al., 2021; Pal et al., 2019; Gholami et al., 2018;
Jia et al., 2019), existing approaches do not account for the full variety of components in modern training systems,
including: model architecture, network topology, parallelisms, hardware speeds and architectures. Previous work
has empirically studied the performance and scaling properties of 3D parallelism (Narayanan et al., 2021; Hagemann
et al., 2023), the scaling and efficiency properties of sharded parallelism strategies and their interactions with model
parallelism techniques are less well studied; despite its prevalence in practice (e.g. OLMo, Granite, OpenELM, MPT).

While there are stable distributed training recipes that perform well at large scale, the procedure for deciding on such
configurations and their scaling properties are not well understood or documented; and the regimes in which selected
parallelism strategies are communication and computation efficient is often unspecified. Previous work (Narayanan
et al., 2021; Hagemann et al., 2023) has studied the effects of various forms of model parallelism on training efficiency;
we expand on this direction with studies across larger ranges of hardware and investigations of parallelism configurations
not covered in previous studies. In particular, we consider the effects of Fully Sharded Data Parallelism (FSDP) on
training efficiency and observe that its integration substantially impacts the choice of optimal training configurations.
We show that prior work and existing best practices determined with model parallelism in the absence of FSDP, yield
suboptimal performance and efficiency when combined with sharded data parallelism strategies. In addition, we conduct
measurements of GPU power utilization and demonstrate that these existing approaches yield dramatically worse power
efficiency, potentially worsening the energy and environmental cost of machine learning research and development
(Strubell et al., 2019; Luccioni et al., 2024; Schwartz et al., 2020)

In this work, we conduct an extensive empirical study across both parallelization strategies and hardware scales; and we
contribute the following:

• A large-scale empirical study of distributed training across hardware setups, model sizes, and parallelism strategies,
characterizing the scaling properties of sharded training; training on up to 2048 H100 GPUs in Section 4.1 and 4.3
and studying models up to 70B parameters in Section 4.5

• Parallelization strategy recommendations which highlight that model parallelism yields improved global through-
put despite prior work (Hagemann et al., 2023; Narayanan et al., 2021) and conventional knowledge suggesting
that model parallelism lowers hardware utilization in Section 4.3.

• Analysis of real-world cost metrics showing that total GPU power draw and available FLOPS scale linearly with
the number of devices, despite diminishing returns in throughput; resulting in reduced power efficiency and lower
hardware utilization with greater parallelization (see Figure 1).

• Comparisons across GPU hardware generations suggesting that future improvements in computational through-
put will only marginally improve overall throughput and power efficiency absent network fabric advancements and
increased accelerator memory capacity in Section 4.4.

2



Published in Transactions on Machine Learning Research (06/2025)

(a) Bandwidth of NCCL AllReduce using a tree algorithm and scales
well with number of nodes (i.e. higher bandwidth).

(b) Bandwidth of NCCL AllGather using ring algorithms; scales
poorly with the number of nodes (i.e. lower bandwidth).

Figure 2: Bandwidth measurements in GB per second of NCCL primitives on DGX H100 servers with eight GPUs per
node, connected with InfiniBand, across world sizes from 4 to 512 nodes.

2 Preliminaries

In this section, we review commonly used parallelism techniques used in distributed training of large neural networks.
The primary goals of distributed training are to: (1) enable model training with batch sizes and parameters that exceed
the memory of individual GPUs; and (2) leverage the parallel processing power of additional hardware accelerators.

2.1 Parallelization Strategies

Below, we provide a brief taxonomy of commonly used distributed training algorithms and memory optimizations. In
practice, these algorithms are not mutually exclusive and are often combined.

Data parallelism (Dean et al., 2012) replicates model parameters and optimizer states across GPUs with each device
operating over a subset of examples in the global minibatch. After performing local forward and backward passes on
their allocated minibatches, GPUs exchange and accumulate their partial gradients via an AllReduce collective such
that each device obtains an identical global gradient and ensuring consistent model update. Data parallelism exhibits
favorable communication properties as the AllReduce operation is non-blocking.

Sharded Data Parallelism alleviates the memory requirements of vanilla data parallelism by sharding model
parameters, optimizer states, and gradients across a set of devices (referred to as a data parallel group); until weights are
needed for computation or update. During computation for each layer, all parameters and optimizer states are obtained
via AllGather on-the-fly such that at any time a GPU will maintain: the parameters and optimizer states for the current
layer and its corresponding shard for all layers; ReduceScatter operations are subsequently used to update the weights
and optimizer states during the backward pass. Each device performs all of the computation for each layer.

Fully-Sharded Data Parallelism Zhao et al. (2023) and DeepSpeed ZeRO Rasley et al. (2020); Rajbhandari et al. (2020)
are commonly used sharded data parallelism strategies which enable training of large models without model parallelism.
In contrast to standard distributed data parallel, sharded data parallelism introduces blocking communication operations
to perform AllGather of model parameters; some of which can be overlapped by prefetch of subsequent layers during
the previous layer computations.

Model parallelism shards model parameters across GPUs; each shard operates on the same minibatch simultaneously.
In this setting, activations and their respective gradients are sent across GPUs.

• Tensor Parallelism (Shoeybi et al., 2019; Shazeer et al., 2018; Zheng et al., 2022) shards model parameters along
hidden dimensions across a set of devices (referred to as a tensor parallel group) such that each GPU computes
a partial sum of the intermediate activations, which are then aggregated across the tensor parallel group via an
AllReduce. As the full set of activations are required for the subsequent layer, Tensor Parallelism introduces
blocking communication for synchronization of intermediate activations across model parallel groups.

• Pipeline Parallelism (Huang et al., 2018; Harlap et al., 2018; Li & Hoefler, 2021; Li et al., 2021) shards model
depthwise along with groups of layers being partitioned and allocated across devices; activations are then forwarded
between devices via point-to-point communications. For all devices to be active at once, an input minibatch is

3



Published in Transactions on Machine Learning Research (06/2025)

Computation

Scales with model size

Limit defined by 
GPU memory

Communication

Scales with world size

Soft practical limit 
defined by network fabric

Computation hides communication

Computation

Communication

Exposed 
communication

Computation stream

Communication stream

(A) Model size is large 
relative to world size

(B) Model size is small 
relative to world size

Diminishing scaling returns

Positive scaling returns

Execution Timeline for Tensor, Layer, or Batch (Forward or Backward)

Figure 3: Two distinct training setups and their corresponding concurrent computation and communication streams, executing in
parallel. In (A), model computation size is large relative to world size; computation per-device hides communication cost and scaling
the number of devices incurs minimal cost. In (B), model computation size is small relative to world size. Communication is not
hidden by computation and is exposed; scaling of world size incurs overhead and gives poor marginal gains in training throughput
and efficient parallelization can be used to reduce communication overhead.

split into microbatches which are staggered and pipelined according to various schedules (Narayanan et al., 2019;
Lamy-Poirier, 2023). “Pipeline bubble” (Hennessy & Patterson, 2017), in which devices remain idle while awaiting
data or instructions from other stages, reduces the efficiency of pipelining.

In contrast to sharded data parallelism, which reduces memory overhead by limiting the instantaneous parameters and
weights on each device, model parallelism reduces memory overhead by limiting each device to perform computation on
only a portion of the model. Sequence (Li et al., 2023; Korthikanti et al., 2023; Jacobs et al., 2023) and context parallelism
(Liu et al., 2024; Yang et al., 2024) are techniques for reducing memory requirements for intermediate activations by
partitioning and sharding along the sequence dimension. The joint combination of data, tensor, and pipeline parallelism
techniques is frequently utilized in what is known as 3D parallelism to achieve higher communication efficiency
(Shoeybi et al., 2019); or 4D parallelism when utilizing these methods along with context parallelism when training
with longer sequence lengths (Dubey et al., 2024) .

Communication-Computation Overlap Moving data over networks between accelerators utilizes distinct GPU
resources unrelated to computation (e.g., dedicated copy engines, NVLink/NVSwitch) and can execute in parallel with
computation. Overlapping communication and computation maximizes distributed training efficiency – it facilitates
hiding communication latency, leading to near-perfect scaling. Exposed communication, that is communication which
is executed without simultaneous computation leaves GPU’s compute resources under-utilized.

2.2 Communication Primitives and Libraries

Modern deep learning frameworks (Paszke et al., 2019; Abadi et al., 2015; Bradbury et al., 2018) leverage specialized
collective communications libraries, such as NCCL, RCCL, or XLA. In particular, we focus on NCCL which is used
as the communication library for distributed operations across Nvidia GPUs as a representative hardware accelerator
of data center training settings. In Figure 2, we empirically benchmark the AllReduce and AllGather operations
performance with the NCCL library. The AllReduce collective is used in vanilla distributed data parallelism and tensor
parallelism to aggregate parameter gradients and intermediate activations, respectively. AllReduce is supported by both
Tree and Ring based algorithms in NCCL and observes favorable scaling properties as nodes increases. In contrast,
AllGather and ReduceScatter are used for parameter rematerialization and gradient updates by FSDP and ZeRO
and is supported by Ring algorithms in NCCL as of time of experimentation. AllGather and ReduceScatter and
quickly becomes latency-bound as the number of devices increases. In general, the cost of communication collectives
is expected to increase with the number of devices conducting operations. However, we note that differences in
scaling patterns may exist when conducting communication on other network topologies (e.g. TPU pods) or with other
communication libraries.

4



Published in Transactions on Machine Learning Research (06/2025)

3 Experimental Methodology

In the following sections, we investigate the effects of scaling training workloads on end-to-end system performance
and communication and computation volume. In particular, we conduct experiments across: distributed parallelization
strategies, numbers of accelerators, hardware generation, model sizes, and input shapes (i.e. context length). Additional
details on hardware and framework configurations are provided in Appendix B.

Model Architectures We conduct our experiments with the Llama-2 decoder-only transformer (Dubey et al., 2024;
Touvron et al., 2023) as a representative large language model. We utilize the AdamW optimizer (Loshchilov & Hutter,
2019; Kingma & Ba, 2015) and train on examples with a context length of 4096 and tokenized with a vocabulary
of 32K; with data sampled from Wikipedia and StackExchange. Computation and most AllGather communication
is performed in bfloat16 precision; with reductions (AllReduce and ReduceScatter) performed in float32 for
numerical stability Liang et al. (2024); Rasley et al. (2020).

Hardware Configuration We evaluate distributed training on datacenter clusters containing 8-GPU NVIDIA DGX
nodes from the Ampere (80GB A100) and Hopper (80GB H100) architectures, with additional experiments on Volta
GPUs (32 GB V100) in Appendix 15. We conduct our primary experiments on hardware scales between 1 and 32
eight-GPU nodes, with additional experiments up to 256 nodes, or 2,048 GPUs – to simulate pretraining scales.

Parallelization Strategies We examine data, tensor, and pipeline parallelization strategies (colloquially known as 3D
parallelism as described by Shoeybi et al. (2019); Rasley et al. (2020) and used in Dubey et al. (2024); BigScience
Workshop (2022). Models are trained with Fully-Sharded Data Parallelism with explicit prefetching and without
parameter resharding during the forward pass (i.e. FSDP, Zhao et al. (2023)) as in Llama-3.1 training equivalent to
DeepSpeed ZeRO Stage 2.

We examine a range of group sizes for tensor and pipeline parallel strategies for, as described in Section 2, ranging from
group sizes of 1 (i.e. single GPU training with no parallelization) up to group sizes of 16 (i.e. requiring parallelism
groups across multiple nodes). Specifically, we analyze a range the parallel configurations resulting from the Cartesian
product of tensor and pipeline parallelism sizes of {1, 2, 4, 8, 16} – parallelism configurations for all experiments are
provided in Appendix C.

Performance Metrics To understand the effects of both hardware and model scaling on end-to-end global and local
per-device performance hardware utilization, we examine the following performance and efficiency indicators:

• Throughput is the rate at which examples are processed. We compute the estimated per-device words per second
(WPS) and the global words per second across all devices.

• Computational and communication load is measured as the total execution time for CUDA and NCCL kernels,
respectively. We calculate the total computation and communication load by aggregating CUDA and NCCL kernels
from PyTorch execution traces.

• Communication efficiency is measured as the time in which communication kernels are exposed or overlapped
with concurrent computation.

• Hardware utilization is measured as the number of floating point operations per second (FLOPS); alternatively, as
Model FLOPS Utilization (MFU, Chowdhery et al. (2023)) which is the observed FLOPS as a percentage of the
hardware’s reported theoretical maximum.

• Power utilization is reported as the per-GPU power draw measured as the the average power draw with NVML

Metrics are aggregated from 60 training iterations, discarding the first 10 iterations to allow for stabilization of
performance during the initial training iterations. Reported metrics are aggregated for the last 50 iterations.

4 Performance Analysis

4.1 Weak Scaling: Variable Global Batch Size

We first consider a weak scaling setting in which the per-device workload is kept constant as the number of
GPU accelerators is increased. Each device carries a data parallel replica of a Llama 7B model with a lo-
cal batch size of 2 examples, and is trained with FSDP without any model parallelism. This is representa-
tive of training settings in which there are insufficient devices to train a model without gradient accumula-
tion; and increasing the number of devices can be used to reduce the number of gradient accumulation steps.

5



Published in Transactions on Machine Learning Research (06/2025)

20 21 22 23 24 25 26 27 28

Number of Nodes

10

11

12

13

14

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

20 21 22 23 24 25 26 27 28

Number of Nodes
0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

M
FU

Hardware Utilization

20 21 22 23 24 25 26 27 28

Number of Nodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

W
or

ds
 p

er
 S

ec
on

d

1e7 Global Throughput
Ideal Hardware Scaling
Scaling with Data Parallelism

20 21 22 23 24 25 26 27 28

Number of Nodes

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e(
m

s)

Compute Time
Exposed Comms
NCCL Kernels
CUDA Kernels

Figure 4: In FSDP training of Llama-7B, scaling the number of nodes and data parallel replicas reduces hardware utilization and
power efficiency due to increasing exposed communication derived from increases in the size of communication kernels relative
to fixed size computation kernels. Global throughput observes sub-linear scaling despite approximately linear increases in the
total power utilization with number of nodes. “Ideal Hardware Scaling” corresponds to expected throughput assuming additional
accelerators yield linear increases in throughput.

20 21 22 23 24 25 26 27

Number of Nodes

20

21

22

23

No
rm

al
ize

d 
La

te
nc

y

Kernel Execution Time by Operator Type
GEMM
Attention
AllGather
ReduceScatter

Figure 5: The relative execution time of
both AllGather and ReduceScatter collec-
tives scale with hardware world size.

In Figure 4, we examine the effects of weak scaling of data parallel training
instances across increasing numbers of accelerators from 8 GPUs up to
2048 GPUs. As expected, increasing the number of devices yields increases
in global throughput as global batch size increases (i.e. Gustafson’s Law
for weak scaling; Gustafson (1988)). At small scales (i.e. when training
using a limited number of devices), the cost of collective communication
kernels is low relative to the cost of computation – and the communication
overhead of weak scaling is minimal as non-blocking communication from
FSDP can be hidden by executing data transfer and computation operations
concurrently.

However, as discussed in Section 2, increasing the degree of sharded data
parallelism incurs larger collective communication costs for materialization
of parameters via AllGather during the forward pass and gradient updates
during the backward pass via ReduceScatter; with the latency of both
operations scaling with number of nodes as observed in Figure 5. As a result, the total execution time for NCCL
communication kernels and volume of exposed communication scales with the number of compute nodes limiting the
extent to which weak scaling can be applied to sharded data parallel training – matching the expected behavior observed
for the communication collectives in Figure 2b.

While the communication volume scales with node count, the per-device CUDA computation kernel execution time
remains constant and becomes dominated by communication. As a result, exposed communication is unavoidable at
scales larger than 128 GPUs and the hardware utilization decreases as there is insufficient computation to saturate the
GPUs while waiting for the execution of larger communication kernels – this results in reductions the marginal speedup
of global throughput and decreased local throughput as the number of devices increases.

While the per-device throughput scales sublinearly with the number of devices, the total power utilization scales
approximately linearly which results in substantially worse real-world efficiency in GPU-hours and energy impact (i.e.
fewer tokens processed per watt). When scaling from 128 to 2048 GPUs, the observed TFLOPS and words-per-second
throughput decrease by 37.22% due to increasing exposed communication. Although the accelerator is largely idle on
large scales and operates at lower arithmetic intensity, the power draw per GPU is roughly constant, only decreasing by
5.87% from 658W to 620W. As a result, the overall power efficiency of the system likewise decreases with hardware
scale as seen in Figure 4.

4.2 Strong Scaling: Fixed Global Batch Size

We now examine the effects of strong scaling the number of accelerators to train workloads with a fixed global batch
size, which results in decreasing effective local per-device batch sizes as the number of devices increases. This is
representative of industry settings where excess compute resources can be allocated for a single training run; and there
is a desire to minimize the time to complete a training run as opposed to maximizing the hardware utilization.

In Figure 6, we show that when training with a fixed global batch size of 32 examples across 2 to 32 nodes – allocation
of additional devices yields diminishing returns in global throughput and reduced local hardware utilization and

6



Published in Transactions on Machine Learning Research (06/2025)

21 22 23 24 25

Number of Nodes

8

9

10

11

12

13

14

To
ke

ns
 p

er
 W

at
t

Power Efficiency

21 22 23 24 25

Number of Nodes

0.15

0.20

0.25

0.30

0.35

0.40

M
FU

Hardware Utilization

21 22 23 24 25

Number of Nodes

0.5

1.0

1.5

2.0

2.5

Gl
ob

al
 W

PS

1e6 Global Throughput
Ideal Hardware Scaling
Scaling with Model Parallel

21 22 23 24 25

Number of Nodes
0

100

200

300

400

500

600

700

800

Ti
m

e 
(m

s)

Execution Time
Exposed Comms
NCCL Kernels
CUDA Kernels

Figure 6: Training with Fixed Global Batch Size Over Increasing Number of Nodes. We utilize increasing degrees of model
parallelism to distribute a fixed workload with global batch size of 32 across increasing numbers of GPUs. We select optimal model
parallelism strategies according to the experimental results displayed in Figure 7. Even with optimal parallelization strategies, local
throughput and hardware utilization declines with world size.

20 21 22 23 24

Total Parallelism
7

8

9

10

11

12

13

14

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

Effective Model Parallelism
Data Parallel Baseline

20 21 22 23 24

Total Parallelism

0.15

0.20

0.25

0.30

0.35

0.40

M
FU

Hardware Utilization

20 21 22 23 24

Total Parallelism

500

1000

1500

2000

2500

Ex
po

se
d 

Co
m

m
s (

m
s)

Exposed Communication

27 28 29 210 211

Exposed Comms (ms)

4000

5000

6000

7000

8000

9000

W
or

ds
 p

er
 S

ec
on

d

Exposed Comm vs. Throughput

Figure 7: Model parallelism increases FSDP throughput. In model parallel training of Llama-7B with a fixed global batch size
(512) and fixed number of accelerators (256 GPUs), there exist model parallel strategies that increase training throughput, hardware
utilization, and power efficiency by reducing the total exposed communication (e.g. tensor parallelism of degree 4).

power efficiency. To distribute a fixed workload across more devices, it is necessary to introduce excess degrees of
model parallelism which results in insufficient amounts of computation being allocated to each accelerator; which we
observe as reduced execution time for CUDA kernels. At sufficiently large scales, excess parallelism causes previously
compute-bound workloads to become communication bound and yields reductions in hardware utilization, which we
observe in decreases in MFU from 40% when training with 2 nodes to less than 15% with 32 nodes. Practically, the
overheads of strong scaling are especially apparent when using more than 4 nodes or 32 GPUs, as per-device workload
sizes decrease and model parallelism becomes necessary.

In Appendix E, we conduct additional strong scaling experiments at full pretraining scale training both Llama-7B
and 70B models on between 512 to 2048 GPUs, with limited marginal returns for increasing the number of hardware
accelerators and observe decreases in MFU local hardware utilization by more than 30%.

4.3 Scaling Model Parallelism

As observed with both strong and weak scaling, fully sharded data parallel training of large neural networks suffers
from communication bottlenecks when conducted over sufficiently parallel hardware platforms due to increasing costs
of AllGather and ReduceScatter at scale.

Model parallelism is commonly used to complement data parallel training and reduce the memory requirements of a
training workload to fit within the memory of each individual device. Additionally, model parallelism enjoys another
beneficial property in which it can reduce the sizes of collective communication operations; as separate data parallel
replicas are maintained for each model parallel group (i.e. data parallel collectives are executed over world sizes of

Number of Devices
Total Degree of Model Parallelism , rather than over the Total Number of Devices) – where Total Degree of Model Parallelism is
the product of Tensor and Pipeline parallelism group sizes.

In Figure 7, we search viable parallelism strategies for Llama 7B on 32 nodes with an effective local batch size of two
and observe that small degrees of total model parallelism (i.e. tensor or pipeline parallel degrees of 2 or 4) reduce the
amount of exposed communication and increase throughput. Although both tensor and pipeline parallelism introduce

7



Published in Transactions on Machine Learning Research (06/2025)

additional communication operations, both techniques reduce the data parallel group sizes of the FSDP AllGather and
ReduceScatter collectives; yielding higher throughput, hardware utilization, and power efficiency.

Furthermore, in Figure 8, we find that both tensor and pipeline parallelism are effective in reducing exposed commu-
nication; yielding higher words-per-second relative to the data parallel baseline. When scaling to more devices, we
observe that the size of collective communications grows which necessitates increasing degrees of model parallelism to
reduce the size of FSDP collective communications in Figure 11.

Notably, there is a limit to the extent to which model parallelism reduces exposed communication and improves
throughput – as the AllReduce kernels required for Tensor Parallelism and bubbles introduced by pipeline parallelism
grow with the degree of model parallelism. These communication costs become especially large when the parallelism
occurs over multiple nodes as it relies on slower internode fabric (e.g. InfiniBand) – as noted in Figure 8, where there
is substantial increases in exposed communication for tensor and pipeline parallelism strategies which are sharded at
larger than 8 devices (i.e. across multiple nodes).

4.4 Scaling Hardware Speeds

1 2 4 8 16
Pipeline Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Local Throughtput

1 2 4 8 16
Pipeline Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Exposed Communications

0

500

1000

1500

2000

2500

3000

3500

W
PS

0

500

1000

1500

2000

2500

Ti
m

e 
(m

s)

(a) 32 Nodes A100

1 2 4 8 16
Pipeline Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Local Throughput

1 2 4 8 16
Pipeline Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Exposed Communications

0

2000

4000

6000

8000

W
PS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
(s

)

(b) 32 Nodes H100

Figure 8: Model Parallelism Improves Throughput. In-
creasing degree of either tensor and pipeline parallelism
yields improved throughput and less exposed communica-
tions compared to data parallel baselines.

In Figure 8, we examine the effects of scaling the hardware
speed with comparisons between DGX-A100 and H100 clus-
ters. In both cases, there exist model parallelism configura-
tions which both increase the overall throughput and reduce
the amount of exposed communication relative to data parallel
baselines (i.e. total model parallelism of one).

When comparing the training performance of previous genera-
tion A100 to faster H100 hardware, with the optimal paralleliza-
tion strategy for each platform, the MFU hardware utilization
decreases from 59.67% to 40.77%

The reduction in hardware utilization can be attributed to in-
creases in exposed communication (+12.83%) that emerge due
to asymmetric improvements in communication and computa-
tion speeds (i.e. bf16 FLOPS more than triples whereas NVLink
and HBM bandwidth increase by 50%; See Table 1).

Between the A100 and H100 architectures, the extent to which
training is communication bound increases further with hard-
ware generation. Improvements to computation speed that
outpace increases in data transfer speeds, result in computa-
tional kernels executing more quickly which make overlap with
communication difficult (See Table 1). In Appendix H, we
conduct additional experiments with V100 GPUs in which we
confirm that the highest throughput is achieved with model
parallelism.

4.5 Scaling Size of Model Architecture

231 232 233 234 235 236

Num Parameters
0

500

1000

1500

2000

2500

3000

3500

Ti
m

e 
(m

s)

Execution Time and Model Size
NCCL Communication Kernels
CUDA Computation Kernels
Exposed Comm: Minimal MP
Exposed Comm: Optimal MP

Figure 9: Communication & Computation Both Scale with
Model Size. As computation load increases with model size,
so does total and exposed communication. At all model
scales, model parallelism reduces exposed communication.

We examine the effects of scaling the size of the neural network
architectures across 1B, 7B, 13B, and 70B parameters. One
might assume that increases in model parameterization solely
increases the size of computation while leaving communication
unaffected. However, as the number of parameters in a model
scale, the volume of communication required for parameter
materialization and gradient scattering increases jointly with
the size of the computational operations (i.e. matrix operations
with larger hidden dimensions). In Figure 9, we consider the
optimal model parallelism strategy for each model architecture

8



Published in Transactions on Machine Learning Research (06/2025)

by sweeping viable tensor and pipeline parallel configurations and observe that the volume of exposed communication
likewise increases with model size, resulting in lower hardware utilization as models scale.

Additionally, we find that across architecture scales, there exist model parallelism strategies beyond the data parallel
baseline or the minimal degree of model parallelism (for the 70B parameter model) that reduce the volume of exposed
communication for all model sizes; and yield higher hardware utilization and throughput.

4.6 Scaling Context Length

210 211 212 213

Sequence Length

7

8

9

10

11

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

210 211 212 213

Sequence Length

0.10

0.15

0.20

0.25

0.30

0.35

M
FU

Hardware Utilization

210 211 212 213

Sequence Length
2000

3000

4000

5000

6000

7000

8000

W
or

ds
 p

er
 S

ec
on

d

Local Throughput

210 211 212 213

Sequence Length
100

200

300

400

500

600

700

800

Ti
m

e 
(m

s)

Execution Time
NCCL Kernels
CUDA Kernels
Exposed Comms

Figure 10: Increased sequence lengths yields larger compute kernels which better overlap with NCCL communication kernels,
resulting in lower exposed communication, higher hardware utilization and power efficiency.

Finally, we examine the effects of varying the context length in Figure 10. When GPU memory is available, increasing
the sequence length increases the computational workload allocated to each device without increasing the communication
load, yielding improved the throughput, hardware utilization and power efficiency. However, reparameterization of the
training process in this manner is often infeasible, as alterations to per-batch sequence length affects training dynamics
predicted by computation-architecture scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022).

5 Recommendations and Implications

We summarize our findings with directions for future work and best practices for researchers and practitioners.

Model parallelism alleviates growing communication costs of FSDP. Prior work (Hagemann et al., 2023; Shoeybi
et al., 2019) studying 3D parallelism for large-scale training is conducted without the use of FSDP or ZeRO, and
concludes that data parallel training is generally preferred to model parallelism when models fit within device memory.
However, the collective communication primitives required by FSDP and ZeRO exhibit worse scaling properties
than those used by standard distributed data parallel, as seen in Figures 2, 4, 6. We demonstrate that the increasing
communication overhead of FSDP at scale can be mitigated by both tensor and pipeline parallelism.

In particular, we observe that standard FSDP training of 7B LLMs becomes unavoidably communication bound when
training on more than 128 H100 GPUs. Beyond this scale, tensor parallelism at degrees of 2 or 4 achieves better or
comparable throughput to the FSDP baseline. In our largest experiments at 2048 GPUs, introducing tensor parallelism
yields a +52.60% increase in WPS throughput while only drawing 30W more in average GPU power per-device.

Power efficiency and hardware utilization exhibit diminishing returns at scale. As number of devices scales,
energy efficiency decreases because the per-device computational throughput (FLOPS) decreases, despite power
utilization remaining roughly constant (See Figure 4 and 6). Inefficient scaling and parallelization methods will worsen
the energy efficiency and environmental cost of model training, as architectures and hardware platforms grow in scale
(Strubell et al., 2019; Luccioni & Hernandez-Garcia, 2023; Luccioni et al., 2024; Schwartz et al., 2020). Rather than
relying on synchronous training with a single large model, research in alternative training formulations that reduce
communication overhead are required to improve model efficiency as models scale; such as via federated averaging,
asynchronous training, ensembles and modular model architectures.

Asymmetric improvements in hardware increase communication boundedness. Hardware improvements have
resulted in disproportionate growths in compute speeds that have outpaced improvements to memory and network
speeds. As a result, model training is increasingly communication bound with the identical training workload observing
a nearly 20% decrease in hardware utilization when using H100, as compared to A100 hardware (Section 4.4).

9



Published in Transactions on Machine Learning Research (06/2025)

When training at large scales, faster interconnects are needed in addition to improvements in accelerator speed. Likewise
increasing node size, such as with NVIDIA’s GB-200 1, connects more devices with high bandwidth memory and will
allow for greater use of parallelism and alleviate communication boundedness.

Performance measures and scaling laws must be compute and communication optimal Total number of Floating
Point Operations (FLOPs) is commonly used to guide the development of efficient model architectures and compute-
optimal scaling laws (Hoffmann et al., 2022; Tay et al., 2023; Dehghani et al., 2022). Without properly accounting for
communication dynamics, performance measures and scaling laws cannot be extrapolated from small to large-scale.
Integrating holistic information about hardware into scaling practice is essential given that collective communication
dominates execution time at scale; scaling laws should be both compute and communication optimal.

6 Related Work

Methods for Training at Scale While data, tensor and pipeline parallelization and FSDP are among the most
common methods for distributed training of large neural networks, other approaches have been developed to the memory
limitations and communication overhead of distributed training.

To address GPU memory limitations, numerous solutions have been proposed which: reduce the storage requirements
of training workloads; or utilize offloading to lower bandwidth CPU memory. Activation checkpointing (Griewank
& Walther, 2000; Chen et al., 2016) reduces peak memory utilization by discarding intermediate activations during
the forward pass and recomputing activations for gradient calculation during the backward pass as needed. Strategies
that determine optimal schedules for activation recomputation have been developed to manage the trade-off between
activation memory and computational costs using hand-designed schedules or constraint solvers (Jain et al., 2020;
Korthikanti et al., 2023; Yuan et al., 2024).

Alternatively, activation compression and reconstruction is an alternative approach to alleviate memory pressure to
checkpointing (Evans & Aamodt, 2021; Georgiadis, 2019; Liu et al., 2021; 2022). Both approaches trade off additional
computational overhead for reduced memory utilization. Heterogeneous CPU-GPU methods extend the memory
sharding approaches introduced by FSDP and ZeRO to offload parameters, gradients, and optimizer states to larger
RAM and NVMe memory (Rajbhandari et al., 2021; Ren et al., 2021). However, these methods incur substantial data
transfer costs relying on CPU and PCI-E memory bandwidth orders of magnitude slower than GPU memory.

Communication overhead increases as the number of devices increases, which requires methods to reduce communica-
tion load. Hierarchical parallelization strategies such as Hybrid-Sharded Data Parallelism (HSDP, Ott et al.) Algorithmic
variations of standard minibatch SGD reduce communication volume by performing less frequent parameter updates via
federated averaging and asynchronous updating, such as Diloco, Local SGD, Model Soups, and Branch-Train-Merge
(Douillard et al., 2023; Stich, 2018; Li et al., 2022; Wortsman et al., 2022). However, such methods exhibit distinct train-
ing dynamics from standard synchronous gradient-based methods (Charles et al., 2025). In contrast to the algorithmic
and sample efficiency of training algorithms, we focus on efficiency via increased hardware and energy utilization.

Evaluations of Parallelization Strategies. Previous studies empirically evaluating the scaling properties of distributed
training strategies for neural networks has largely focused on the interaction of model parallelism with standard data
parallelism techniques in the absence of FSDP or ZeRO-3 parallelism (Hagemann et al., 2023; Narayanan et al., 2021).
Such studies recommend that total model parallelism be minimized due to the additional communication operations and
overhead introduced by model parallelism, which we show does not apply when training with FSDP of Zero-3, alone.

Complementing empirical studies, automatic parallelization strategies and cost models for distributed training have been
developed; such as Alpa, Galvatron, and FlexFlow (Zheng et al., 2022; Miao et al., 2022; Lu et al., 2017). However,
these works limit their validation with smaller models and fewer accelerators (up to 64 GPUs) far less than the world
sizes we evaluate in our experiments.

Scaling Properties of Deep Learning. Previous work investigating the scaling properties of neural network training
has largely studied the effects of varying the data volume, training compute budget, and model architecture (Hoffmann
et al., 2022; Kaplan et al., 2020; Tay et al., 2023; Porian et al., 2024). These works primarily examine the impact of

1NVIDIA GB-200 Datasheet

10



Published in Transactions on Machine Learning Research (06/2025)

these factors on the pretraining loss and downstream finetuning performance of the model with respect to the theoretical
amount of computational resources allocated (i.e. number of FLOPs).

However, these analyses assume that workload performance scales directly with the amount of computation regardless
of the underlying hardware platform and frameworks. In practice, theoretical measures (i.e. FLOPs) are known to be
imprecise representations of end-to-end real-world performance (e.g. latency, throughput) due to performance bounds
that emerge from management of the computational graph, data transfer, and communication bottlenecks (Dehghani
et al., 2022; Fernandez et al., 2023) – or as we highlight due to communication boundedness.

7 Conclusion

In this work, we examine the effects of hardware scaling during the large-scale distributed training of large language
models. Specifically, we conduct a comprehensive study of the impact of parallelization strategies, model architectures,
and hardware platforms on throughput and energy efficiency during scaling with sharded data parallelism. We highlight
that while sharded data parallelism is effective at reducing memory utilization when training in smaller regimes,
communication boundedness dominates large-scale distributed training and results in reduced hardware utilization.

We show that communication boundedness worsens at scale and with newer hardware generations, and are persistent
across model sizes. Additionally, we show that these trends lead to the emergence of viable model parallelism
alternatives for distributing deep learning training workloads in contrast to existing recommendations and best practices
in regards to training parallelization. Finally, we show that these trends culminate in significant diminishing returns on
training performance with respect to real-world resources of power and throughput.

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow, Large-scale machine learning on heterogeneous systems,
November 2015.

BigScience Workshop. BLOOM (revision 4ab0472), 2022. URL https://huggingface.co/bigscience/bloom.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula,
Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

Zhenkun Cai, Xiao Yan, Kaihao Ma, Yidi Wu, Yuzhen Huang, James Cheng, Teng Su, and Fan Yu. Tensoropt: Exploring
the tradeoffs in distributed dnn training with auto-parallelism. IEEE Transactions on Parallel and Distributed Systems,
33(8):1967–1981, 2021.

Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur Szlam, and Arthur
Douillard. Communication-efficient language model training scales reliably and robustly: Scaling laws for diloco.
CoRR, abs/2503.09799, March 2025. URL https://doi.org/10.48550/arXiv.2503.09799.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost. arXiv
preprint arXiv:1604.06174, 2016.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways.
Journal of Machine Learning Research, 24(240):1–113, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The Twelfth International
Conference on Learning Representations, 2024.

11

https://huggingface.co/bigscience/bloom
http://github.com/jax-ml/jax
https://doi.org/10.48550/arXiv.2503.09799


Published in Transactions on Machine Learning Research (06/2025)

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, Andrew
Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks. Advances in neural information processing
systems, 25, 2012.

Mostafa Dehghani, Yi Tay, Anurag Arnab, Lucas Beyer, and Ashish Vaswani. The efficiency misnomer. In International
Conference on Learning Representations, 2022.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna Kuncoro, Marc’Aurelio
Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-communication training of language models. arXiv
preprint arXiv:2311.08105, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

R David Evans and Tor Aamodt. Ac-gc: Lossy activation compression with guaranteed convergence. Advances in
Neural Information Processing Systems, 34:27434–27448, 2021.

Jared Fernandez, Jacob Kahn, Clara Na, Yonatan Bisk, and Emma Strubell. The framework tax: Disparities between
inference efficiency in nlp research and deployment. In The 2023 Conference on Empirical Methods in Natural
Language Processing, 2023.

Georgios Georgiadis. Accelerating convolutional neural networks via activation map compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7085–7095, 2019.

Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, and Aydin Buluc. Integrated model, batch, and domain parallelism
in training neural networks. In Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures,
SPAA ’18, pp. 77–86, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450357999.
doi: 10.1145/3210377.3210394. URL https://doi.org/10.1145/3210377.3210394.

IBM Granite Team. Granite 3.0 language models, 2024.

Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of checkpointing for the reverse or
adjoint mode of computational differentiation. ACM Transactions on Mathematical Software (TOMS), 26(1):19–45,
2000.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh Jha, Hamish
Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the science of language models. arXiv preprint
arXiv:2402.00838, 2024.

John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 31(5):532–533, 1988.

Johannes Hagemann, Samuel Weinbach, Konstantin Dobler, Maximilian Schall, and Gerard de Melo. Efficient
parallelization layouts for large-scale distributed model training. arXiv preprint arXiv:2311.05610, 2023.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg Ganger, and Phil Gibbons.
Pipedream: Fast and efficient pipeline parallel dnn training, 2018. URL https://arxiv.org/abs/1806.03377.

John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Morgan kaufmann, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An empirical analysis of compute-optimal
large language model training. Advances in Neural Information Processing Systems, 35:30016–30030, 2022.

Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, and Z. Chen. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. In Neural Information Processing Systems,
2018. URL https://api.semanticscholar.org/CorpusID:53670168.

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuaiwen Leon Song, Samyam Rajbhandari, and
Yuxiong He. Deepspeed ulysses: System optimizations for enabling training of extreme long sequence transformer
models. CoRR, 2023.

12

https://doi.org/10.1145/3210377.3210394
https://arxiv.org/abs/1806.03377
https://api.semanticscholar.org/CorpusID:53670168


Published in Transactions on Machine Learning Research (06/2025)

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez, Kurt Keutzer, and Ion
Stoica. Checkmate: Breaking the memory wall with optimal tensor rematerialization. Proceedings of Machine
Learning and Systems, 2:497–511, 2020.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural networks. Proceedings
of Machine Learning and Systems, 1:1–13, 2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361,
2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), San Diega, CA, USA, 2015.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad Shoeybi,
and Bryan Catanzaro. Reducing activation recomputation in large transformer models. Proceedings of Machine
Learning and Systems, 5:341–353, 2023.

Joel Lamy-Poirier. Breadth-first pipeline parallelism. Proceedings of Machine Learning and Systems, 5:48–67, 2023.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean Naren, Min Xu,
Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca Wehrstedt, Jeremy Reizenstein,
and Grigory Sizov. xformers: A modular and hackable transformer modelling library. https://github.com/
facebookresearch/xformers, 2022.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam
Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic sharding. In
International Conference on Learning Representations, 2020.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke Zettlemoyer.
Branch-train-merge: Embarrassingly parallel training of expert language models. In First Workshop on Interpolation
Regularizers and Beyond at NeurIPS 2022, 2022.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian
Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed. Proceedings of the VLDB Endowment, 13:
3005 – 3018, 2020. URL https://api.semanticscholar.org/CorpusID:220250008.

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism: Long sequence
training from system perspective. In The 61st Annual Meeting Of The Association For Computational Linguistics,
2023.

Shigang Li and Torsten Hoefler. Chimera: efficiently training large-scale neural networks with bidirectional pipelines.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–14, 2021.

Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn Song, and Ion Stoica. Terapipe:
Token-level pipeline parallelism for training large-scale language models. In International Conference on Machine
Learning, pp. 6543–6552. PMLR, 2021.

Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris Zhang, Wei Feng,
Howard Huang, Junjie Wang, et al. Torchtitan: One-stop pytorch native solution for production ready llm pre-training.
arXiv preprint arXiv:2410.06511, 2024.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ringattention with blockwise transformers for near-infinite context. In The
Twelfth International Conference on Learning Representations, 2024.

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan Liu, Jie Tang,
Joey Gonzalez, et al. Gact: Activation compressed training for generic network architectures. In International
Conference on Machine Learning, pp. 14139–14152. PMLR, 2022.

13

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://api.semanticscholar.org/CorpusID:220250008


Published in Transactions on Machine Learning Research (06/2025)

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural networks training via
extreme activation compression. In International Conference on Learning Representations, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li. Flexflow: A flexible dataflow accelerator
architecture for convolutional neural networks. In 2017 IEEE international symposium on high performance computer
architecture (HPCA), pp. 553–564. IEEE, 2017.

Alexandra Sasha Luccioni and Alex Hernandez-Garcia. Counting carbon: A survey of factors influencing the emissions
of machine learning, 2023. URL https://arxiv.org/abs/2302.08476.

Sasha Luccioni, Yacine Jernite, and Emma Strubell. Power hungry processing: Watts driving the cost of ai deployment?
In The 2024 ACM Conference on Fairness, Accountability, and Transparency, pp. 85–99, 2024.

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan Sun, Seyed Iman
Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, et al. Openelm: An efficient language model family with
open training and inference framework. In Workshop on Efficient Systems for Foundation Models II@ ICML2024,
2024.

Xupeng Miao, Yujie Wang, Youhe Jiang, Chunan Shi, Xiaonan Nie, Hailin Zhang, and Bin Cui. Galvatron: Efficient
transformer training over multiple gpus using automatic parallelism. Proceedings of the VLDB Endowment, 16(3):
470–479, 2022.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger, Phillip B.
Gibbons, and Matei A. Zaharia. Pipedream: generalized pipeline parallelism for dnn training. Proceedings of the 27th
ACM Symposium on Operating Systems Principles, 2019. URL https://api.semanticscholar.org/CorpusID:
202488191.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri
Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Efficient large-scale language model training
on gpu clusters using megatron-lm. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–15, 2021.

Myle Ott, Sam Shleifer, Min Xu, Priya Goyal, Quentin Duval, and Vittorio Caggiano. Fully sharded data parallel: faster
ai training with fewer gpus — engineering.fb.com. https://engineering.fb.com/2021/07/15/open-source/
fsdp/, 2024. [Accessed 30-09-2024].

Saptadeep Pal, Eiman Ebrahimi, Arslan Zulfiqar, Yaosheng Fu, Victor Zhang, Szymon Migacz, David Nellans, and
Puneet Gupta. Optimizing multi-gpu parallelization strategies for deep learning training. Ieee Micro, 39(5):91–101,
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32, 2019.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving discrepancies in
compute-optimal scaling of language models. arXiv preprint arXiv:2406.19146, 2024.

Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A performance model for deep neural networks. In International
Conference on Learning Representations, 2017.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward training
trillion parameter models. In SC20: International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–16. IEEE, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity: Breaking the gpu
memory wall for extreme scale deep learning. In Proceedings of the international conference for high performance
computing, networking, storage and analysis, pp. 1–14, 2021.

14

https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2302.08476
https://api.semanticscholar.org/CorpusID:202488191
https://api.semanticscholar.org/CorpusID:202488191
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://engineering.fb.com/2021/07/15/open-source/fsdp/


Published in Transactions on Machine Learning Research (06/2025)

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable training
deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 3505–3506, 2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li,
and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model training. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pp. 551–564, 2021.

Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. Swarm parallelism: Training large models
can be surprisingly communication-efficient. In International Conference on Machine Learning, pp. 29416–29440.
PMLR, 2023.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the ACM, 63(12):54–63,
2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean.
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538,
2017.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool, Peter Hawkins,
HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake Hechtman. Mesh-tensorflow: Deep
learning for supercomputers, 2018. URL https://arxiv.org/abs/1811.02084.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm:
Training multi-billion parameter language models using model parallelism. ArXiv, abs/1909.08053, 2019. URL
https://api.semanticscholar.org/CorpusID:202660670.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767, 2018.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep learning in NLP. In
Anna Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 3645–3650, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1355. URL https://aclanthology.org/P19-1355.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan Narang, Vinh Q.
Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures: How does inductive bias influence
scaling? In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL https:
//openreview.net/forum?id=E9dH0BP5VW.

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable llms, 2023. URL
www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05.

Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan Yan, Jack Kosaian, Mark Hoemmen,
Haicheng Wu, Andrew Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr Majcher, Paul Springer,
Markus Hohnerbach, Jin Wang, and Manish Gupta. CUTLASS, January 2023. URL https://github.com/NVIDIA/
cutlass.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increasing inference time. In International conference on machine
learning, pp. 23965–23998. PMLR, 2022.

Amy Yang, Jingyi Yang, Aya Ibrahim, Xinfeng Xie, Bangsheng Tang, Grigory Sizov, Jeremy Reizenstein, Jongsoo Park,
and Jianyu Huang. Context parallelism for scalable million-token inference. arXiv preprint arXiv:2411.01783, 2024.

15

https://arxiv.org/abs/1811.02084
https://api.semanticscholar.org/CorpusID:202660670
https://aclanthology.org/P19-1355
https://openreview.net/forum?id=E9dH0BP5VW
https://openreview.net/forum?id=E9dH0BP5VW
www.mosaicml.com/blog/mpt-7b
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass


Published in Transactions on Machine Learning Research (06/2025)

Tailing Yuan, Yuliang Liu, Xucheng Ye, Shenglong Zhang, Jianchao Tan, Bin Chen, Chengru Song, and Di Zhang.
Accelerating the training of large language models using efficient activation rematerialization and optimal hybrid
parallelism. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pp. 545–561, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liangchen Luo, Chien chin Huang, Min Xu, Less Wright, Hamid Shojanazeri,
Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, and Shen
Li. Pytorch fsdp: Experiences on scaling fully sharded data parallel. Proc. VLDB Endow., 16:3848–3860, 2023.
URL https://api.semanticscholar.org/CorpusID:258297871.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang, Yuanzhong
Xu, Danyang Zhuo, Eric P Xing, et al. Alpa: Automating inter-and {Intra-Operator} parallelism for distributed deep
learning. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22), pp. 559–578,
2022.

A Limitations and Statement of Broader Impact

In this work, we consider the set of data and model parallelization techniques for distributing training of neural
networks – primarily focusing on the interactions of scale and parallelization in the Fully Sharded Data Parallel
Setting as commonly used in the training of many open models. However, there are additional methods for workload
parallelization and memory footprint reduction such as activation checkpointing, Hybrid Hierarchical Sharded Data
Parallelism, 3D Parallelism without ZeRO or FSDP, and asynchronous algorithmic methods for optimization; which
each utilize different computation and communication patterns and may exhibit differences in scaling behaviors.

In our investigation across computing platforms, we primarily consider variations in the speed of compute (i.e. GPU
generation). In future work, we plan to demonstrate the consistency of the observed trends across settings with variable
speeds of communication (i.e. varying speed of internode fabric by comparing InfiniBand interconnects with common
alternatives such as RDMA over Converged Ethernet, RoCE).

Additionally, our work is focuses on the training of neural networks based on the Llama 2 transformer neural network
architecture and GPU hardware accelerators. Although we expect our findings to be consistent across other model
architectures, it is the case that even other transformer model architectures may vary in their choice of self-attention,
position embeddings, tokenization, dropout, and norm layers which may affect communication and computation volume.

Likewise, we focus our investigations on GPUs as it is the most commonly used and easily available hardware accelerator.
We expect that similar trends and tradeoffs between communication and computation would occur for alternative
hardware accelerator architectures such as TPUs, IPUs, etc. However, other hardware platforms may exhibit differences
in network topology and communication patterns which we reserve as settings for future study.

One of the primary goals of our work is to provide guidance and best practices for researchers and practitioners training
large language models in order to reduce the computational, financial, and environmental impact of training. However,
in doing so, this may incentivize further growth in training workloads leading to greater energy use and environmental
harm from model training (i.e. Jevon’s Paradox).

16

https://api.semanticscholar.org/CorpusID:258297871


Published in Transactions on Machine Learning Research (06/2025)

B Software, Hardware, and Dataset Details

Training is conducted in bfloat16 precision with a Megatron-inspired framework and further optimizations provided
by FlashAttention-2 (Dao, 2024) and xFormers (Lefaudeux et al., 2022). For our primary experiments, we trained
models using PyTorch 2.3.1 built with CUDA 12.1, with attention implementation provided by XFormers 0.27. We
utilize PyTorch FSDPv2 with prefetch of subsequent layers enabled.

For the A100 and H100 clusters, intra-node GPU communication occurs via fully connected second and third generation
NVLink with NVSwitch, respectively. Inter-node communication occurs over an Infiniband fabric with 200 GB/s and
400 GB/s per-node bandwidth, respectively.

In supplementary experiments with V100 GPUs in Appendix H, models are trained in fp16 with loss rescaling and
CUTLASS (Thakkar et al., 2023) attention kernels on Volta hardware – due to limited hardware support on older Volta
hardware. Nodes within the V100 cluster consist of 8-GPU setups connected with first-generation NVLink in a Hybrid
Cube Mesh (HCM) topology.

We compute the runtime of communication and computation kernels by using PerfettoSQL to query Kineto profiles
extracted by the PyTorch profiler, which is built on top of NVidia CUPTI to identify relevant NCCL and CUDA kernels,
respectively. In Table 1, we provide additional details on the hardware platforms used for running our experiments.

The Llama 2 model is used via the Llama Community License and Acceptable Use Policy. Wikipedia and StackExchange
data was made available via Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA).

V100 2 A100 3 H100 4

Tensor Core BF16 FLOPS 125 TFLOPS 312 TFLOPS 990 TFLOPS
GPU HBM 900 GB/s 2 TB/s 3.35 TB/s
NVLink (GPU to GPU Comm) 300 GB/s 600 GB/s 900 GB/s
Internode InfiniBand (Node to Node) 100 GB/s 200 GB/s 400 GB/s

Table 1: Nvidia Reported DGX-Node Specifications by Generation.

C Parallelism Configuration Details

Below we provide the parallelism configurations swept for experiments in Section 4.

Global Batch Size Node Count Tensor Parallelism Pipeline Parallelism GPU Type Model Architecture Sequence Length

Weak Scaling [16, 32, 64, 128, 256, 512]5 [1, 2, 4, 8, 16, 32] 1 1 H100 7B 4096
Strong Scaling 32 [2, 4, 8, 16, 32] 1 1 H100 7B 4096
Model Parallelism 512 32 [1, 2, 4, 8, 16] [1, 2, 4, 8, 16] H100 7B 4096
Hardware Platform [2566, 512] 32 [1, 2, 4, 8, 16] [1, 2, 4, 8, 16] [V100, A100, H100] 7B 4096
Model Size [256, 10247] 32 [1, 2, 4, 8, 16] [1, 2, 4, 8, 16] H100 [1B, 7B, 13B, 70B] 4096
Context Length [256, 512] 32 1 1 H100 7B [1024, 2048, 4096, 8192]

Table 2: Parallelization Configurations Swept for Experimental Results.

2NVIDIA DGX-1 V100 Whitepaper
3NVIDIA DGX A100 Whitepaper
4NVIDIA DGX H100 Whitepaper
5For weak scaling experiments, models are trained with a fixed local batch size of 2, global batch size scales 1:1 with node count.
6Due to memory limitations, V100 experiments are only conducted with a local batch size of 1.
7Larger global batch size was used for the 1B parameter model to ensure higher GPU utilization.

17



Published in Transactions on Machine Learning Research (06/2025)

D Additional Experiments: Model Parallelism in Alternate Settings

We extend the experiments from Section 4.3, in which we examine the effectiveness of model parallelism via Tensor and
Pipeline parallelism with evaluations of other hardware settings and computational workloads. Here, we consider the
effects of model parallelism in settings with lower hardware utilization, due to either: (1) smaller per-device workloads
as determined by reduced effective local batch sizes (Figure 11a); or (2) larger communication loads from training in a
increasingly distributed hardware settings (Figure 11b). In both regimes, there are a larger number of viable model
parallelism strategies.

20 21 22 23 24 25

Total Parallelism
5

6

7

8

9

10

11

12

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

Effective Model Parallelism
Data Parallel Baseline

20 21 22 23 24 25

Total Parallelism

0.10

0.15

0.20

0.25

0.30

M
FU

Hardware Utilization

20 21 22 23 24 25

Total Parallelism

500

1000

1500

2000

2500

3000

3500

Ex
po

se
d 

Co
m

m
s (

m
s)

Exposed Communication

28 29 210 211 212

Exposed Comms (ms)

2000

3000

4000

5000

6000

7000

W
or

ds
 p

er
 S

ec
on

d

Exposed Comm vs. Throughput

(a) Training Llama-7B with an effective local batch size of 1 on 32 DGX-H100 nodes.

20 21 22 23 24 25

Total Parallelism

6

8

10

12

14

To
ke

ns
 p

er
 G

PU
 W

at
t

Power Efficiency

Effective Model Parallelism
Data Parallel Baseline

20 21 22 23 24 25

Total Parallelism

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
FU

Hardware Utilization

20 21 22 23 24 25

Total Parallelism

500

1000

1500

2000

2500

3000

3500

4000

Ex
po

se
d 

Co
m

m
s (

m
s)

Exposed Communication

29 210 211 212

Exposed Comms (ms)

2000

3000

4000

5000

6000

7000

8000

9000

W
or

ds
 p

er
 S

ec
on

d

Exposed Comm vs. Throughput

(b) Training Llama-7B with an effective local batch size of 2 on 256 DGX-H100 nodes.
Figure 11: In regimes that are low in arithmetic intensity or communication bounded, there exist many viable strategies for model
parallelism that: alleviate communication boundedness, increase power efficiency and hardware utilization.

18



Published in Transactions on Machine Learning Research (06/2025)

E Additional Experiments: Fixed Global Batch Size at Pretraining Scale

We extend the experiments from Section 4, in which we increase the allocation of hardware accelerators to a fixed
computational workload with a constant global batch size – i.e. increasing the degree of parallelism across more
accelerators without increasing the local effective batch size hardware utilization.

(a) Performance Metrics of Llama-70B Training on 512, 1024, and 2048 GPUs.

(b) Performance Metrics of Llama-7B Training on 512, 1024, and 2048 GPUs.

Figure 12: At pretraining scale, both Llama-7B and 70B observe regressions in hardware utilization and per-device local throughput
as the number of devices is increased for a fixed computational workload.

F Effects of Scaling on Memory Utilization

In fully-sharded data parallelism (FSDP), increasing the number of data parallel instances decreases per-GPU memory
utilization by sharding parameters and gradients additional data parallel instances. However, memory savings diminish
with device world size.

Figure 13: Increasing the data parallel group size reduces local per-GPU memory utilization, but reductions diminish
with scale.

19



Published in Transactions on Machine Learning Research (06/2025)

G Additional Experiments: Context Parallelism

We extend the results Section 4.3, to examine an additional form of parallelism, context parallelization Dubey et al.
(2024). We use the context parallelization implementation provided by Nvidia’s TransformerEngine. As context parallel
is primarily used for very long contexts in Llama-3.1 with sequence lengths of 131,072, we find that context parallelism
is a sub-optimal alternative to standard tensor parallelism for relatively common shorter sequence lengths of 4096.

1 2 4 8 16
Context Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize
Throughput (WPS)

1 2 4 8 16
Context Parallel Size

1

2

4

8

16

Te
ns

or
 P

ar
al

le
l S

ize

Exposed Communications

0

1000

2000

3000

4000

5000

6000

7000

W
PS

0

25

50

75

100

125

150

175

200

m
s

Figure 14: Effectiveness of Context Parallelism in training a Llama-7B model on 4k sequence length with H100 GPUs.

H Additional Experiments: V100 Hardware

In addition to our experiments in Section 4.3, we conduct additional experiments using older V100 GPUs from the Volta
architecture training a Llama-7B model with an effective local batch size of 1 on 32 nodes. We observe similar trends
in which small degrees of model parallelism improve overall throughput at scale. However, due to lack of optimized
kernels (e.g. CUTLASS vs FlashAttention kernels) and Ampere hardware optimizations, we observe that the transition
to Ampere A100 GPUs in fact improves overall hardware utilization.

1 2 4 8 16
Pipeline Parallel Size

1

M
od

el
 P

ar
al

le
l S

ize

V100: Local Throughput

1 2 4 8 16
Pipeline Parallel Size

1

M
od

el
 P

ar
al

le
l S

ize

Exposed Communication

0

200

400

600

800

W
PS

0

1

2

3

4

5

6

Ti
m

e 
(m

icr
os

ec
on

ds
)

1e6

Figure 15: Throughput & Exposed Communication for Tensor Model Parallelization and Pipeline Parallelism Strategies
on V100.

20


	Introduction
	Preliminaries
	Parallelization Strategies
	Communication Primitives and Libraries

	Experimental Methodology
	Performance Analysis
	Weak Scaling: Variable Global Batch Size
	Strong Scaling: Fixed Global Batch Size
	Scaling Model Parallelism
	Scaling Hardware Speeds
	Scaling Size of Model Architecture
	Scaling Context Length

	Recommendations and Implications
	Related Work
	Conclusion
	Limitations and Statement of Broader Impact
	Software, Hardware, and Dataset Details
	Parallelism Configuration Details
	Additional Experiments: Model Parallelism in Alternate Settings
	Additional Experiments: Fixed Global Batch Size at Pretraining Scale
	Effects of Scaling on Memory Utilization
	Additional Experiments: Context Parallelism
	Additional Experiments: V100 Hardware

