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ABSTRACT

Automatic data augmentation (AutoDA) improves the generalization of neural
networks by filling in the missing data in the target distribution. However, main-
stream AutoDA methods suffer from either a time-consuming search process that
sets barriers for a wide range of applications, or limited performance due to a lack
of dynamic policy adjustments during training. We propose an asymmetric search-
free augmentation strategy Sample-aware RandAugment (SRA) that dynamically
adjusts the augmentation policy while maintaining a simple implementation. SRA
introduces a heuristic score-based module to dynamically evaluate the difficulty
of the original training data, which guides the appropriate augmentation indepen-
dently for each sample. To improve the generalization of the proposed score-based
module, SRA adopts an asymmetric augmentation strategy including three steps
for two updates: 1) distribution exploration, 2) sample perception, and 3) distribu-
tion refinement. In a variety of settings, SRA significantly shrinks the gap between
search-based and search-free AutoDA methods. SRA achieves 78.31% ResNet-
50 Top-1 accuracy on ImageNet, which is the state-of-the-art among search-free
methods. SRA can lead to simpler, more effective, and more practical AutoDA
designs for diverse applications in the future.

1 INTRODUCTION

Automatic data augmentation (AutoDA) is ubiquitous in training methods and can automatically
adjust and explore optimal augmentation policies for various target tasks (Cubuk et al., 2019). It
improves the generalization of neural networks for image recognition by filling in the missing data
in the target distribution (Lim et al., 2019; Ratner et al., 2017). However, current AutoDA methods
generally suffer from prohibitive search time before being applied in training (Cubuk et al., 2019;
Tian et al., 2020; Cubuk et al., 2020), or introduce dynamic adjusting policy at the cost of large
search overheads (Zhou et al., 2021; Zhang et al., 2019; Kuriyama, 2023). Furthermore, the compli-
cated optimization strategies set barriers for a wide range of applications (Li et al., 2020; Liu et al.,
2021a; Hounie et al., 2023), which limit the popularity and applicability of AutoDA to other tasks.

An emerging trend in the field of AutoDA is to design methods that prioritize both simplicity and
effectiveness. with the emergency of policy transferring strategies (Cubuk et al., 2019; Lim et al.,
2019), AutoDA can be applied without notable performance degradation. In addition, the dramatic
search space reduction also allows manual tuning to avoid time-consuming search from scratch
(Cubuk et al., 2020). These phenomena boost the development of search-free AutoDA methods
(Müller & Hutter, 2021; LingChen et al., 2020; Wightman et al., 2021). The search-free augmen-
tation strategies show great potential by yielding randomly augmented samples of original images.
Nevertheless, their capacity to attain the zenith of performance remains limited by their inherent
simplicity. For instance, they are unaware of factors such as dataset-specific inclinations towards
some transformation operators and deformation levels (Cubuk et al., 2020; Müller & Hutter, 2021).

We carefully summarize two main problems existing in current AutoDA methods: 1) For search-
based methods, the complicated time-consuming search process sets barriers for a wide range of
applications, and 2) For search-free methods, the suboptimal performance is mainly due to the defi-
cient flexibility to adapt and adjust the policy dynamically during training. These problems inspire
us to design a flexible search-free method to dynamically generate effective input for image recogni-
tion, without severely increasing the complexity and cost of the training process. To achieve this, we
develop a search-free sample-aware AutoDA method named Sample-aware RandAugment (SRA).
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Simply put, the core idea of improving the performance of search-free AutoDA methods is to focus
more on samples that are more valuable for determining the decision boundaries during training. To
achieve this goal, we propose an asymmetric training strategy that splits the original batch into two
sub-batches, and augments them with two different policies for exploration and refinement, respec-
tively. During exploration, the target data distribution is explored through random augmentation
to improve the representation ability of the target model. During refinement, a heuristic module
Magnitude Instructor Score (MIS) based on cosine similarity is proposed to measure the difficulty
of each sample in the sub-batch, which further instructs augmentation policy to generate more hard
samples that contribute to decision boundaries.

The proposed SRA is evaluated on CIFAR (Krizhevsky et al., 2009) and ImageNet (Russakovsky
et al., 2015) benchmarks. Experiments on both convolutional neural networks (CNN) and vision
Transformers demonstrate that SRA outperforms current search-free AutoDA methods in a variety
of settings, meanwhile achieving competitive or even better performance compared with search-
based state-of-the-art methods. We emphasize that SRA achieves 78.31% Top-1 accuracy on Ima-
geNet using ResNet-50 without plenty of tricks, which outperforms the search-free state-of-the-art
by 0.24%. In addition, it is also compatible with frameworks such as repeated augmentation (Hoffer
et al., 2020) and multi-view contrastive learning (Kurtuluş et al., 2023). As a search-free method,
SRA is ready-to-use for a wide range of applications. The contributions are summarized as follows:

• We propose Sample-aware RandAugment (SRA), a search-free sample-aware auto-
matic data augmentation method that shrinks the gap between well-performed yet time-
consuming search-based methods and simple yet sub-optimal search-free ones. SRA shows
competitive or better performance compared with search-based ones under many settings,
demonstrating the potential of search-free heuristic augmentation designs.

• A heuristic module Magnitude Instructor Score (MIS) that dynamically evaluates the diffi-
culty of the original training data is proposed to instruct SRA to generate more samples that
contribute to decision boundaries during training. The proposed MIS also provides new in-
sight of sample-awareness in data augmentation to focus on the how to do augmentation to
samples rather than simply evaluating the importance of samples.

• We also propose an asymmetric data augmentation strategy that augments samples within
one batch through two augmentation policies, aiming at exploring and refining the training
data distribution, respectively. The asymmetric strategy provides a new train of thought
that the design of hybrid data augmentation is worthwhile for exploration to fully release
the power of data augmentation in neural network training.

2 RELATED WORK

Automatic data augmentation (AutoDA) has recently appeared and shows significant performance
improvement in image recognition. It is generally controlled by a set of policy parameters that
determine the deformation, ranges, and sampling probabilities. Compared with human-designed
widely applied augmentation methods (Zhong et al., 2020; DeVries & Taylor, 2017; Zhang et al.,
2018; Yun et al., 2019), AutoDA methods usually generate images with less synthetic semantics.
This technique aims to automatically find a proper augmentation strategy to fill in the missing points
in the target data distribution (Lim et al., 2019; Ratner et al., 2017), which is expected to improve
the generalization of neural networks.

The development of AutoDA arises from extremely time-consuming search-based methods that re-
quire hundreds or thousands of GPU hours to find the optimized policy for the target task even on a
proxy that uses a subset or smaller model for policy estimation (Cubuk et al., 2019), which is unreal-
istic for wide applications. Works afterward try to improve the performance meanwhile reducing the
search cost, with techniques such as Bayes optimization (Ho et al., 2019; Lim et al., 2019), weight-
sharing strategies (Tian et al., 2020), differentiable learning (Li et al., 2020; Hataya et al., 2020;
Liu et al., 2021a), multi-armed bandit algorithm (Lu et al., 2023), or simply expanding the potential
augmented image space (Mehta et al., 2022; Zheng et al., 2022). Some AutoDA methods try to dy-
namically adjust policy during training (Lin et al., 2019; Zhang et al., 2019; Kuriyama, 2023), while
requiring repeatedly augmenting the same batch that obviously prolongs training time. In general,
search-based AutoDA methods are difficult to simultaneously achieve simplicity, cost-effectiveness,
and performance advantages.
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Figure 1: Training pipeline of the proposed Sample-aware RandAugment (SRA) compared with traditional
AutoDA. The dotted line illustrates the process in some search-based methods that dynamically adjust policy
during training. MIS is the proposed module to evaluate the difficulty of samples.

A rising trend for designing AutoDA is simple yet effective. RandAugment (Cubuk et al., 2020)
(RA) was intended to pursue effectiveness while keeping simplicity on the target task to avoid the
bias from proxy search. Thanks to the dramatic reduction of the search space, RA is also manually
tunable without any search. Meanwhile, methods like TrivialAugment (Müller & Hutter, 2021) and
UniformAugment (LingChen et al., 2020) generate augmentation sub-policy through random sam-
pling, which also yields plenty of variants of the original data. In addition, Wightman et al. (2021)
hypothesizes magnitudes following a normal distribution in RA, therefore increasing the flexibility
of the original RA. These search-free methods only require tuning a few hyperparameters, which is
easy to achieve through human priors. The simple heuristic designs show amazing performance that
is competitive with many search-based ones, meanwhile, the simplicity makes them more suitable
for wide applications. However, the heuristic designs are usually sub-optimal for the target task,
therefore search-free methods can hardly achieve the state-of-the-art performance.

Another general problem of the previously mentioned methods is target-aware, neglecting the vari-
ations within individual samples in the target task. The idea of customized augmentation boosts
the development of sample-aware (Zhou et al., 2021; Lin et al., 2023) or label-aware (Zhao et al.,
2022) AutoDA, with which the performance further improves. In particular, MetaAugment (Zhou
et al., 2021) uses a policy network for reweighting loss weights to achieve sample awareness, while
SelectAugment (Lin et al., 2023) uses two actor-critic structures to determine the suitable samples to
apply augmentation. These sample-aware methods mainly focus on the evaluation of importance of
different samples rather than the deformation for samples. Meanwhile, they also require complicated
optimization strategies to achieve policy learning, which sets barriers to easy implementation.

3 SAMPLE-AWARE RANDAUGMENT

3.1 REVISIT RANDAUGMENT

RA is a widely applied AutoDA method that boosts the recognition performance of CNNs like
ResNets (He et al., 2016) and newly emerging vision Transformers such as DeiT (Touvron et al.,
2021) and Swin (Liu et al., 2021b). It only contains two policy parameters that severely reduce the
search cost for a direct search on the target task, which determine the level of deformation for all
images and the number of augmentation operators to sequentially apply, respectively. The search
space reduction that allows direct search without proxy is one of the important contributions of this
work. However, the two policy parameters in RA are settled through grid search in the original
design, the cost of which is also a heavy burden for wide applications. Thanks to the limited number
of policy parameters, these parameters are also tunable through human priors. Meanwhile, the
performance of using a transferred policy is competitive with the searched optimal one. Therefore,
in practice, RA is widely used without searching, even the policy of which is usually sub-optimal for
the target task. Detailed designs of RA, such as the search space including the candidate operators
and valid transformation ranges, can refer to Cubuk et al. (2020).

3.2 SAMPLE-AWARE RANDAUGMENTATION

We analyze that current mainstream AutoDA methods suffer from either complicated time-
consuming search process, or limited performance due to a deficiency of awareness to dynamically
adapt and adjust the policy during training. To address the two problems, we propose SRA that
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can simultaneously achieve search-free and sample-aware. We add a heuristic sample perception
module Magnitude Instructor Score (MIS) that uses cosine similarity-based formula to dynamically
evaluate the difficulty of the original data during training. Note that focusing only on hard samples
may result in a biased represented distribution of the original training data. Therefore, we also in-
troduce an asymmetric augmentation strategy that alternatively explores and refines the training
data distribution, respectively. The exploration step is designed to adjust the model weights to avoid
severe over-fitting on hard samples. The modified pipeline, compared with the traditional one, is
shown in Fig. 1. In theory, the strategy is equivalent to training with the alternation of exploration
and refinement. To balance the iterations and the number of processed samples of the two policies,
we adopt a large batch split strategy in practice, where batch size is twice of the traditional one.

Step 1: Distribution exploration. Data augmentation is expected to fill in the missing points of
the training data distribution (Lim et al., 2019; Ratner et al., 2017). The augmented image space is
usually larger than the original one due to the complex transformations that generate variants of the
samples. It is expected to cover more samples in the target data distribution. Therefore, exploring
the target distribution with augmented samples is important to avoid models over-fit on the original
training data.

Since we have no prior to guide on how to yield beneficial augmented data in the target data distri-
bution, we adopt a random exploration strategy to generate variants of the original samples. We
sample random operators from the candidate operator set and random magnitudes from a uniform
distribution U(0, 1) to transform the training data. Different augmentation operators may be se-
quentially applied to form the sub-policy that widens the augmented image space, where D is the
number of augmentation operators in one sub-policy, or augmentation depth in the following. The
magnitude is sampled independently for each operator within the sub-policy.

Step 2: Sample Perception. We propose an intuitive sample-aware augmentation strategy that
easy samples require heavier deformations while hard samples less, which is expected to generate
plenty of hard samples for determining decision boundaries. Evaluating the difficulty of the original
training data is necessary to control the deformation of the augmented images. A heuristic sample-
aware perception module to evaluate the difficulty of the original images is proposed, which we call
Magnitude Instructor Score (MIS). For convenience, this score is directly applied as the magnitude
for the augmentation operators. To be directly applied in data augmentation, the score requires two
features: 1) The range of the value should be within [0, 1]; and 2) Easier samples should have larger
scores, while harder samples smaller.

To satisfy the two demands, we simply choose cosine similarity as the basis of MIS, the original
value of which is in range [−1, 1]. Here, we evaluate the cosine similarity between the softmax-
activated logits, or probabilities of each class, of the original image and the label. Therefore, the
value exactly lies in the range [0, 1] due to the non-negative characteristic of probabilities. In addi-
tion, it also meets the demand of the second feature for MIS.

In the single-class image recognition task, the labels are one-hot vectors, and the cosine similar-
ity represents the predicted probability of the target class. However, inconsistency exists between
classification accuracy and confidence of the prediction on image recognition tasks (Papyan et al.,
2020), especially when there are numerous target classes. This brings a negative effect to the cosine
similarity-based MIS, where tasks with more classes generally get smaller scores compared with
tasks with fewer classes. Therefore, we also introduce a scaling hyperparameter γ to normalize MIS
for different tasks. Therefore, the final applied MIS in this work is denoted as

MISi = cos(pori
i , li)

γ = (
pori
i · li

∥pori
i ∥∥li∥

)γ , (1)

where cos is cosine similarity function, γ is the MIS scaling hyperparameter. pori
i and li are the

prediction and the label of sample i. To adjust the value of γ in different tasks, we define a new
formula that is denoted as

γ =
ϵ

log c
, ϵ ≥ 0, (2)

where ϵ is the hyperparameter to control the normalization scale of MIS, and c is the number of
classes in the target task. The restriction ϵ ≥ 0 ensures MIS lies in the range (0, 1]. We choose
this formula because it yields the same MIS for any c when the predicted probability is uniformly
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distributed in each class. With this formula, tasks with more classes require smaller cosine similarity
to have the same MIS compared to the ones with fewer classes, which compensates for the difficulty
of these tasks to have larger confidence in the target class.

Step 3: Distribution Refinement. With the MIS calculated in Step 2, sample-aware data augmenta-
tion can be conveniently applied during model training. Since one sub-policy may contain multiple
augmentation operators while there is only one MIS for each sample, the calculated MIS is shared
among all operators in the same sub-policy as the magnitude. This design is similar to the original
RA that shares the same magnitude among different operators in the whole augmentation policy.
Apart from the magnitudes used in this step, other procedures are the same as Step 1.

Note that although the MIS module can be applied in more augmentation frameworks that require
to settle magnitudes for augmentation operators, the proposed SRA is not simply a combination of
MIS and RA. The asymmetric augmentation strategy ensures the effectiveness and generalization of
MIS, making the designs of SRA as a whole for wide applications.

3.3 TRAIN WITH SRA

Asymmetrically augment batches.
The training pipeline of SRA is differ-
ent from most of the previous works
which augment each batch in the same
way to fill the missing points in the
training data distribution. Instead, an
asymmetric update strategy is adopted
to achieve exploration and refinement
through three steps. In detail, for
each iteration during training, a large
batch containing two small sub-batches
with a balanced number of samples is
randomly sampled from the training
dataset, with the first sub-batch going
through Step 1 for exploration while
the other Step 2 and 3 for refinement.
Thereafter, the loss is calculated and
the gradients are propagated backward
to update model weights. Therefore,
the model weights of Step 2 and 3 are
shared while different from Step 1. The
process is similar to meta-learning that
uses nested update steps to estimate
the optimal model weights and meta
parameters, while different because
the "meta parameters" here are model
weights as well. In addition, the train-
ing data are not separated into different
parts for updating model weights and
meta parameters, respectively. The
pseudo-code of SRA is in Algorithm 1.

Algorithm 1: Sample-aware RandAugment (SRA)
Input: Image batches B and corresponding labels y,

training dataset Dtrain, augmentation depth D,
candidate operator set O, uniform sampling U ,
model M, loss function L, softmax function δ,
cosine similarity function cos, the MIS scaling
hyperparameter γ

Output: Trained model M
1 for (B, y) in Dtrain do
2 Randomly split (B, y) into (B1, y1) and (B2, y2)
3 N1, N2 are the batchsize of B1, B2, respectively
4 # Step 1 : Distribution Exploration
5 for Ii in B1 do
6 Sample

{
Od

i |0 < d ≤ D,Od
i ∈ O

}
7 Ai = O1

i ◦ · · · ◦ OD
i

8 Iexpi = Ai(Ii,U(0, 1, size = (D)))
9 end

10 B′
1 =

{
Iexp1 , · · · , IexpN1

}
11 L(M(B′

1), y1).backward()
12 # Step 2 : Sample Perception
13 l′2 = M(B2)
14 MIS = cos(δ(l′2), y2)

γ .repeat(1, D)
15 # Step 3 : Distribution Refinement
16 for Ij in B2 do
17 Sample

{
Od

j |0 < d ≤ D,Od
j ∈ O

}
18 Aj = O1

j ◦ · · · ◦ OD
j

19 Irefj = Aj(Ij ,MISj)

20 end
21 B′

2 =
{
Iref1 , · · · , IrefN2

}
22 L(M(B′

2), y2).backward()
23 end

Definition of the search space. SRA shares several similar designs with RA, one of which is
the search space for the augmentation policy. SRA contains 14 candidate augmentation operators
that are the same as RA. It also contains multiple augmentation operators in one sub-policy for
augmenting one image. The main difference between the search space of SRA and RA is that the
magnitudes of SRA are continuous floating-point numbers rather than discrete deformation levels.
The ranges and names of these operators are shown in Table A1 in the Appendix. Although the
candidate operators can be specifically selected or use learnable weights for sampling, for simplicity,
we hypothesize that operators in the candidate operator set are the same important to contribute to
the model training, therefore they have the same probability to be sampled and applied.
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CIFAR-10 CIFAR-100Methods Search-based
WRN-28-10 SS-26-2x96d WRN-28-10 SS-26-2x96d

AA (Cubuk et al., 2019) ✓ 97.4 98.0 82.9 85.7
FastAA (Lim et al., 2019) ✓ 97.3 98.0 82.8 85.4
DDAS (Liu et al., 2021a) ✓ 97.3 98.0 83.4 85.0
DeepAA (Zheng et al., 2022) ✓ 97.56 98.11 84.02 85.19
LA3 (Zhao et al., 2022) ✓ 97.80 98.07 84.54 85.17
BDA (Lu et al., 2023) ✓ 97.49 98.05 83.48 85.01
RA (Cubuk et al., 2020) ✓ / 7 97.3 98.0 83.3 -
UA (LingChen et al., 2020) 7 97.33 98.10 82.82 84.99
TA (RA) (Müller & Hutter, 2021) 7 97.46 - 83.54 -
TA (Wide) (Müller & Hutter, 2021) 7 97.46 98.21 84.33 86.19
SRA (Ours) 7 97.67 ± 0.02 98.36 ± 0.08 84.64 ± 0.04 85.74 ± 0.05
Table 1: CIFAR results using CNNs with different structures. We label whether the listed AutoDA methods
require a search. RED: Best performance. BLUE: Second best performance.

4 EXPERIMENTS AND ANALYSES

We conduct the experiments to evaluate the performance of SRA on three classical benchmarks:
CIFAR-10, CIFAR-100, and ImageNet, and compare it with other mainstream AutoDA methods.
The performances of other methods are from their original paper if not specially mentioned. How-
ever, we notice that the settings of different methods are not the same. For relatively fair compar-
isons, we also report the performance of our methods under different settings to be comparable to
other methods. Apart from benchmark comparisons, we also show the compatibility of SRA with
other augmentation frameworks such as Tied Augment (Kurtuluş et al., 2023). We also compare
the performance of SRA with online AutoDA methods that integrate repeated augmentation (Hoffer
et al., 2020). The hyperparameter settings of our SRA generally follow previous works, which are
shown in Table A2 in the Appendix. All experiments are run for three times, the average perfor-
mance and standard deviations of which are reported for self-implemented experiments.

4.1 CIFAR-10 & CIFAR-100

Following previous works, we evaluated our SRA on two models Wide-ResNet-28-10 (Zagoruyko &
Komodakis, 2016) (WRN-28-10) and ShakeShake-26-2x96d (Gastaldi, 2017) (SS-26-2x96d). Per-
formances of Top-1 accuracy (%) of different AutoDA methods are shown in Table 1. For a fair
comparison, only methods with similar epochs and tricks during training to our work are listed in
the table. Note that we also label whether the method requires a search in the table, where search-free
methods are expected to be more convenient for wide applications. We mark RA as both search-
based and search-free because it has only a few policy parameters that are easily tuned through
human priors. TA has two search spaces (RA and Wide), of which RA space is the same as our
SRA, while Wide space has wider ranges of magnitudes for each operator.

As a search-free method, SRA outperforms other search-free methods in many cases, while achiev-
ing competitive or even slightly better performance than search-based ones. For SS-26-2x96d on
CIFAR-100, SRA is slightly worse than TA (Wide). We analyze this is because CIFAR-100 prefers
wider magnitude ranges, especially where ShakeShake views more samples in the wider ranges due
to the longer training period (1800 epochs). The experiments demonstrate that our SRA can improve
the performance of search-free AutoDA methods under many conditions on CIFAR benchmarks.

4.2 IMAGENET

To show the performance of SRA on a larger and more challenging dataset ImageNet that contains
1,000 categories and 1.3 million images, we evaluate SRA with a classical CNN model ResNet-
50 (He et al., 2016) and a larger one ResNet-200. We compare both Top-1 and Top-5 accuracy
on this dataset with other methods. Both performance of SRA with and without label smoothing
(Szegedy et al., 2016) are shown in Table 2. Since RA is one of the main focuses for comparison,
while it has fewer training epochs (200 vs. 270) on ImageNet in the original paper, we reproduce
its results under our settings for a fair comparison. Note that the current reported state-of-the-art is
Augmentation-wise Weight Sharing (AWS) (Tian et al., 2020), where the Top-1/5 performance on
ResNet-50 is 79.39% and 94.51%, respectively. However, the detailed settings of this method are
not mentioned, meanwhile, the code is not available for public use. Considering these factors, we
do not list the performance of it in Table 2.

For comparison on ResNet-50, SRA significantly outperforms all search-free methods, while also
achieving better performance than many search-based ones. Even though the performance of SRA
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Label
Smoothing Methods

ResNet-50 ResNet-200
Top-1 Top-5 Top-1 Top-5

No

AA (Cubuk et al., 2019) 77.6 93.8 80.0 95.0
FastAA (Lim et al., 2019) 77.6 93.7 80.6 95.3
DDAS (Liu et al., 2021a) 78.0 - 80.5 -
DeepAA (Zheng et al., 2022) 78.30 - 81.32 -
BDA (Lu et al., 2023) 78.12 93.87 80.14 95.09
RA (Cubuk et al., 2020) 77.6 93.8 - -
RA (repro.) 78.06 ± 0.01 93.82 ± 0.02 80.43 ± 0.13 95.16 ± 0.02
UA (LingChen et al., 2020) 77.63 - 80.4 -
TA (Wide) (Müller & Hutter, 2021) 78.07 93.92 - -
SRA (Ours) 78.31 ± 0.09 94.02 ± 0.03 81.11 ± 0.09 95.56 ± 0.02

Yes
LA3 (Zhao et al., 2022) 78.71 - - -
RA (repro.) 78.53 ± 0.04 94.20 ± 0.01 81.00 ± 0.04 95.32 ± 0.02
SRA (Ours) 78.83 ± 0.07 94.24 ± 0.03 81.70 ± 0.05 95.79 ± 0.04

Table 2: ImageNet results using CNNs with different scales. Top-1 and Top-5 accuracy (%) of different AutoDA
methods under two settings that are reported.

is not competitive to the state-of-the-art, we emphasize that AWS is an extremely time-consuming
method that requires ∼157 GPU hours to search for the augmentation policy on ImageNet, which
is not practical for out-of-the-box use. On the contrary, our SRA is search-free and only requires
minor modifications to the traditional training pipeline, without any complicated search procedure
to achieve a performance improvement. While for comparison on ResNet-200, most search-free
methods do not report the results. Our SRA outperforms the reproduced RA under both settings,
meanwhile achieving competitive performance over the search-based ones. The results demonstrate
that SRA shrinks the gap between the search-free and search-based AutoDA methods, especially on
models with more parameters and deeper layers.

Methods Top-1 Top-5
Original 72.2 91.1
RA 73.76 ± 0.07 91.41 ± 0.06
RA+mag std. 73.96 ± 0.12 91.48 ± 0.09
SRA (Ours) 74.05 ± 0.11 91.55 ± 0.16

Table 3: Accuracy (%) on ImageNet using DeiT-
Tiny with patch size 16 and resolution 224× 224.
RA results are reproduced under our settings.

To further evaluate the generalization of SRA on dif-
ferent neural architectures, we also compare the per-
formance of SRA using vision Transformer DeiT-
Tiny (Touvron et al., 2021) without distillation. We
show the original performance of DeiT-Tiny for ref-
erence. Note that for both SRA and the reproduced
RA, Erasing Zhong et al. (2020), repeated augmen-
tation (Hoffer et al., 2020), Mixup (Zhang et al.,
2018), and CutMix (Yun et al., 2019) are not applied.
The results are shown in Table 3, where RA + mag std. is using the RA with standard deviation pro-
posed by Wightman et al. (2021), which is also used in the original DeiT implementation (Touvron
et al., 2021). SRA outperforms the existing DA settings, which further demonstrates the potential of
SRA for wide applications on different types of neural networks.

4.3 COMBINATION WITH TIED AUGMENT

Methods CIFAR-10 CIFAR-100
Tied-RA 98.1 85.0
Tied-RA (repro.) 97.89 ± 0.07 84.80 ± 0.26
Tied-SRA (Ours) 98.04 ± 0.05 85.43 ± 0.14

Table 4: Top-1 accuracy (%) on CIFAR using WRN-
28-10 and Tied Augment.

Tied Augment (Kurtuluş et al., 2023) is a newly
proposed augmentation framework that is in-
spired by contrastive learning. It significantly im-
proves the representation ability of models with
the alignment of features and logits of different
views. Since Tied Augment requires a combina-
tion with other data augmentation, we integrate
SRA with it to evaluate the compatibility and performance, which is denoted as Tied-SRA. For a
fair comparison, we also reproduce the Tied Augment with RA (Tied-RA) under the same training
settings of SRA. The results are shown in Table 4.

Tied-SRA outperforms reproduced Tied-RA on both CIFAR benchmarks, illustrating the advantage
of SRA on aligning different views of the original images. However, we note that the reproduced
Tied-RA results are slightly worse than the original ones, which may arise from the lack of detailed
configurations of the training hyperparameters.

4.4 COMBINATION WITH BATCH AUGMENT

The online AutoDA methods that dynamically adapt augmentation policy during training are usu-
ally combined with Batch Augment (Hoffer et al., 2020) (BA) that repeatedly augment the same
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batch into different variants, aiming at estimating the loss expectations of the augmented images for
learning optimal policy parameters. These methods show superior performance compared with the
ones without BA, but the duplication of augmentation requires more time for training. To compare
our SRA with online methods, we combine SRA with BA to show the performance. We also display
the results of the state-of-the-art search-free method TA (Wide) repeated by 8 times as a reference.
Since BA allows faster convergence compared with the training without BA (Hoffer et al., 2020),
we reduce the training epochs for our SRA (see Table A3 in the Appendix). The results are shown
in Table 5. We label the repeated times after each method, which is denoted as ×4 or ×8.

Methods CIFAR-10 CIFAR-100
WRN SS WRN SS

MetaA (×4) (Zhou et al., 2021) 97.76 98.29 83.79 85.97
AdvAA (×8) (Zhang et al., 2019) 98.10 98.15 84.51 85.90
LatentA (×8) (Kuriyama, 2023) 98.16 - - -
TA (Wide) (×8) (Müller & Hutter, 2021) 98.04 98.12 84.62 86.02
SRA (×8) (Ours) 98.34 98.38 85.23 86.65

Table 5: Accuracy (%) on CIFAR combined with Batch Augment.
WRN: WRN-28-10. SS:SS-26-2x96d.

Interestingly, we find SRA out-
performs both online search-
based AutoDA methods and
search-free method TA on CI-
FAR. We emphasize that SRA
achieves state-of-the-art perfor-
mance with only 200 epochs on
SS-26-2x96d under ×8 settings,
which saves ∼3 times training
cost compared with other methods that at least require 600 epochs (TA). The augmented images
generated by BA estimate the loss expectations of the augmented images generated by the com-
bined AutoDA method. SRA shows better recognition performance through learning from the loss
expectations of the augmented samples compared with previous search-free methods, indicating the
augmented image distribution of SRA is closer to the target data distribution. The result demon-
strates that SRA indeed improves the generalization of represented classes.

4.5 TIME COST EVALUATION

Figure 2: Total search and training cost (GPU hours) of
different AutoDA methods.

Since Step 2 in SRA requires an extra infer-
ence to calculate MIS of a sub-batch compared
with the traditional training pipeline, the pro-
posed SRA requires ×0.5 extra forward calcu-
lation in total. This extra cost is in practical
cheap, because the backpropagation rather than
forward inference consumes the majority of the
training time. To evaluate the practical extra
cost of SRA, we also report both the traditional
training time and the training time of SRA on
CIFAR-100 using single RTX 3090 and WRN-
28-10. We find that SRA takes 105 s/epoch,
which is only ∼1.1 times the traditional train-
ing pipeline (96 s/epoch for RA). With the es-
timated training cost, we draw the scatter plot
of performance (% accuracy) and total training
cost (GPU hours) of other AutoDA methods in Fig. 2. The total cost is evaluated according to the
reported search cost and training epochs in the corresponding papers. Details of how we measure
the total cost are listed in Sec. A.3 in the Appendix. As a search-free method, SRA is located at the
top-left corner of this figure. It strikes a good balance between performance and time cost.

4.6 UNDERSTAND SAMPLE-AWARE RANDAUGMENT

Description CIFAR-10 CIFAR-100
1) Remove γ 97.60 84.49
2) Remove random aug in Step 1 97.47 83.93
3) Replace Step 1 with Step 2 & 3 97.60 84.09
4) Use Euclidean distance for MIS 97.65 84.37
5) Replace Step 2 & 3 with Step 1 97.41 83.92
6) Proposed SRA 97.67 84.64

Table 6: Ablation studies of SRA performance (%) using WRN-
28-10 on CIFAR.

Ablation studies. Ablation studies
is conducted to measure the contribu-
tions of each design in SRA. We split
the core designs into five parts: 1)
The MIS scaling hyperparameter γ;
2) Random augmentation for explor-
ing distributions; 3) The distribution
exploration process; 4) MIS calcula-
tion methods; and 5) Sample percep-
tion and distribution refinement. We

8



Under review as a conference paper at ICLR 2024

separately remove or modify each part of these designs, and retrain the models for three times.
Results are shown in Table 6.

SRA outperforms all the ablated or modified settings on CIFAR, indicating the effectiveness of the
proposed design. We note that both distribution exploration and refinement significantly contribute
to the performance, especially on CIFAR-100 which is more challenging. We analyze the effective
of SRA is due to the positive regularization effect from hard samples significantly overwhelms the
negative overfitting effect. Besides, more formulas to calculate MIS are worth trying, while we find
cosine similarity is both intuitive and sufficiently effective for distribution refinement. The results
underscore the merits of the asymmetric augmentation strategy in SRA, which may be a catalyst for
the advancement of future design of AutoDA methods.

a) Feature Distribution of Each Subset b) Feature Distribution of Each Class

10% CIFAR DATA +Textsize

Figure 3: Feature distributions of CIFAR-10 after SRA augmentation
represented through well-trained WRN-28-10.

Represented feature distribu-
tion. We also draw the repre-
sented data distribution of SRA
in Fig. 3, where augmented
data are generated using random
sub-policy with corresponding
MIS. Features after Global Av-
erage Pooling are first reduced
to 64 dimensions using Principal
Component Analysis, and then
shown in 2D t-SNE (Van der
Maaten & Hinton, 2008). The
figure shows the distributions
of the represented features of
10% stratified sampled CIFAR-
10 data. The augmented data generally lie at the border of each cluster, indicating the effectiveness
of MIS in generating hard samples. Although some augmented samples lie in other clusters due
to augment ambiguity (Wei et al., 2020), or are outliers due to over-transformation, they in general
benefit the representation of unseen samples.

5 LIMITATIONS

Although SRA shrinks the gap between search-based and search-free AutoDA, it has a small search
space that limits the performance upper bound. We adopt this design because it is a balance between
performance and simplicity. With the selection of augmentation operators through reinforcement
learning or gradient optimization, the performance can be further improved. Another existing prob-
lem is that mainstream AutoDA methods can hardly avoid the over-transformation, and nor does
SRA, due to the lack of further evaluation of the semantics in the augmented samples. Setting more
constraints to the augmented data is excepted to alleviate the over-transformation problem. SRA
also requires explorations in tasks other than supervised image recognition and downstream task,
which requires modifications to the MIS formula and augmentation operators.

6 CONCLUSION

In this work, we propose a search-free AutoDA Sample-aware RandAugment to enhance the gen-
eralization ability of neural networks. The results demonstrate that heuristic designs can achieve
competitive performance to optimized ones, while keeping the simplicity for easy implementation
in wide applications. The proposed MIS and asymmetric augmentation strategy may inspire fu-
ture works to design more novel simple, effective, and practical AutoDA methods, which further
contribute to the development of the community.

7 REPRODUCIBILITY

The SRA code is accessible in the Supplementary Materials for review, and the camera-ready version
will provide the URL. Essential training hyperparameters are documented in Table A2 and A3.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pp. 446–461. Springer, 2014.

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaug-
ment: Learning augmentation strategies from data. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 113–123, 2019.

Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical auto-
mated data augmentation with a reduced search space. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3008–3017, 2020.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation. In European Conference on Computer
Vision (ECCV), pp. 1–16. Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population based augmentation:
Efficient learning of augmentation policy schedules. In International Conference on Machine
Learning (ICML), pp. 2731–2741. PMLR, 2019.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Aug-
ment your batch: Improving generalization through instance repetition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8129–8138,
2020.

Ignacio Hounie, Luiz FO Chamon, and Alejandro Ribeiro. Automatic data augmentation via
invariance-constrained learning. In International Conference on Machine Learning (ICML), pp.
13410–13433. PMLR, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Koichi Kuriyama. Latentaugment: Dynamically optimized latent probabilities of data augmentation.
arXiv preprint arXiv:2305.02668, 2023.
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A APPENDIX

A.1 SEARCH SPACE

Operator Name Valid Range
ShearX [-0.3, 0.3]
ShearY [-0.3, 0.3]
TranslateX [-0.45, 0.45]
TranslateY [-0.45, 0.45]
Rotate [−30◦, 30◦]
Brightness [0.1, 1.9]
Color [0.1, 1.9]
Sharpness [0.1, 1.9]
Contrast [0.1, 1.9]
Solarize [0, 256]
Posterize [0, 4]*
Equalize -
AutoContrast -
Identity -

Table A1: The candidate 14 operations and corresponding valid ranges in the search space of SRA. *: Imple-
mented using PyTorch, which is identical to [4,8] when using Pillow1.

Consistent with RA, SRA contains 14 candidate augmentation operators, as in Table A1. And the
valid range of the operators are also listed in the table. The main difference between the search space
of SRA and RA is that the magnitudes of SRA are continuous floating-point numbers rather than
discrete deformation levels.

A.2 IMPLEMENTATION DETAILS

WRN-28-10 SS-26-2x96d ResNet-50 ResNet-200 DeiT-Tiny
epochs 200 1800 270 270 300
warmup epochs 5 5 5 5 5
batch size* 128 * 2 128 * 2 1024 * 2 1024 * 2 1024 * 2
learning rate 0.1 0.01 0.4 0.4 1e-3
weight decay 5e-4 1e-3 1e-4 1e-4 0.05
dataset CIFAR-10/100 CIFAR-10/100 ImageNet ImageNet ImageNet
resolution 32×32 32×32 224×224 224×224 224×224
label smoothing 0 0 0 (0.1) 0 (0.1) 0.1
dropout 0 0 0 0 0
droppath - - - - 0.1
Cutout 16 16 - - -
ϵ 2 2 2 2 log 1000

Table A2: The hyperparameters for SRA in the comparing experiments with mainstream AutoDA. *: SRA
adopts a batch split strategy to update model weights twice with sub-batches respectively, where batch size is
required to be twice the comparing methods for a fair comparison. The practical batch size to update model
weight is identical to comparing methods regardless of the boundary conditions.

• For experiments on CIFAR, we apply SRA after basic cropping and random horizontal flip-
ping, while before Cutout. For experiments on ImageNet, we only sequentially apply basic
cropping, random horizontal flipping, and our SRA. Augmentation depth D for all SRA
experiments is set to 2. Other hyperparameters for experiments on CIFAR and ImageNet

1https://github.com/python-pillow/Pillow
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are listed in Table A2. We also apply a cosine annealing learning rate schedule with a min-
imum learning rate of 0 for all experiments, which is adjusted after each step for updating
model weights.

• For experiments that combine SRA with Tied Augment, the hyperparameter settings are the
same as those in CIFAR experiments. The weight to calculate the alignment loss between
features of the two views is set to 20 for all experiments, which is the same as the original
paper (Kurtuluş et al., 2023).

• For experiments that combine SRA with Batch Augment, the hyperparameters are listed in
Table A3.

WRN-28-10 SS-26-2x96d WRN-28-10 SS-26-2x96d
epochs 200 200 35 200
warmup epochs 5 5 5 5
batch size 128 * 2 128 * 2 128 * 2 128 * 2
learning rate 0.1 0.08 0.4 0.08
weight decay 5e-4 1e-3 5e-4 1e-3
dataset CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100
repeated times 8 8 8 8

Table A3: The hyperparameters for SRA in the comparing experiments with combined with BA.

All the experiments on CIFAR are conducted on RTX 3090 GPU, while those on ImageNet are
conducted on A100. Performances are reported with three different random seeds.

A.3 TOTAL COST EVALUATION

The total costs in the following are evaluated using WRN-28-10 on CIFAR-100, which is the sum
of search overheads and training cost. We use GPU hour as the unit. The basic training time in
general is 96 s/epoch, while it is 105 s/epoch for SRA. Therefore, the training cost in general is 96
s/epoch×200 epochs≈5.3 H, while for SRA it is 105 s/epoch×200 epochs≈5.8 H. Methods in the
following are listed in the descent of total cost.

AA: The reported search overheads is 5000 H, and the training cost is 5.3 H. Thus, in total it costs
5005.3 H.

AWS: No directly reported search overheads. Reported search overheads is ×1.5 of OHL (Lin et al.,
2019), which is 1

60 of AA. Therefore, we estimate the training overheads as 5000 H×1.5× 1
60=125

H. The training epochs are set to 300, therefore training cost is 96 s/epoch×300 epochs=8.0 H. Thus,
in total it costs 133.0 H.

AdvAA (×8): As an online search-based method, the search overheads is about 0 H. We omit the
time for updating policy parameters. The repeated time for one batch during training is 8, therefore
the training cost is estimated as 96 s/epoch×200 epochs×8≈42.7 H. Thus, in total it costs 42.7 H.

RA: No directly reported search overheads. During the search, 5000 samples are left out for eval-
uation. Five different policy parameter settings are evaluated. Therefore, we estimate the search
overheads as 45000/50000×96 s/epoch×200 epochs×5=24.0 H. The training cost is 5.3 H. Thus, in
total it costs 29.3 H.

MetaA (×4): As an online search-based method, the search overheads is about 0 H. We omit the
time for updating policy parameters. During the search, 1000 samples are left out for evaluation.
The reported search epochs is 20, while it takes three times the training time than a standard training
scheme (Zhou et al., 2021). The repeated time for one batch during training is 8, therefore we
estimate the training cost as (180 epochs+(20 epochs×3×49000/50000))×96 s/epochs×4≈25.5 H.
Thus, in total it costs 25.5 H.

BDA: The reported search overheads is 11 H, and the training cost is 5.3 H. Thus, in total it costs
16.3 H.
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DeepAA: The reported search overheads is 9 H. We ignore the influence of deep augmentation to
training cost and estimate the training cost the same as in general, which is 5.3 H. Thus, in total it
costs 14.3 H.

FastAA: The reported search overheads is 3.5 H, and the training cost is 5.3 H. Thus, in total it costs
8.8 H.

SRA (×8): As a search-free method, the search overheads is 0 H. SRA combined with BA only takes
35 epochs for training, therefore we estimate the training cost as 35 epochs×105 s/epochs×8≈8.2
H. Thus, in total it costs 8.2 H.

LA3: No directly reported search overheads. We run the code provided in the paper and evaluate
the search overheads as 1.29 H for Stage 1 and 0.02 H for Stage 2. Therefore, the search overheads
is about 1.3 H. The training cost is 5.3 H. Thus, in total it costs 6.6 H.

SRA: As a search-free method, the search overheads is 0 H. The training cost is 5.8 H. Thus, in total
it costs 5.8 H.

DDAS: The reported search overheads is about 0.15 H, and the training cost is 5.3 H. Thus, in total
it costs 5.45 H.

TA (RA), TA (Wide), and UA: As search-free methods, the search overheads are 0 H for all of the
three. Different search space of RA mainly affects the deformation of augmented images, where the
time cost for each epoch is almost the same. Therefore, the training cost for TA (Wide) is also 5.3
H. Thus, in total TA (RA), TA (Wide), and UA cost 5.3 H.

A.4 IMPACT OF NORMALIZATION SCALE ϵ

ϵ 0 1 2
Accuracy (%) 84.44 84.48 84.64

(continue) 3 4 log c
84.49 84.57 84.57

Table A4: Impact of different values of normal-
ization scale ϵ on CIFAR-100 performance using
WRN-28-10.

Figure A1: MIS during training on CIFAR-100.

We evaluate the impact of normalization factor ϵ on CIFAR-100 using WRN-28-10, the results of
which are shown in Table A4. Meanwhile, we also show how MIS changes during training in Fig.
A1. Training with larger ϵ yields sharper MIS curves, indicating quick changes in the distribution of
augmented samples. However, the performance does not monotonically increase with the increase
of ϵ. This phenomenon indicates that the adjustment in data distribution should strike a balance
between gradual speed and diversity of samples.

We speculate that ϵ requires careful tuning on the target task to yield the best performance. How-
ever, we also find that the MIS without normalization also achieves competitive performance with
the best one. Therefore for simplicity, directly using MIS without normalization is a compromise
choice when prior information is minor while the training budget is limited, which is adopted in
our Transformer experiments. We select ϵ = 2 for all CNNs experiments since it has the best
performance.

A.5 IMPACT OF AUGMENTATION DEPTH D

D 1 2 3 4
Accuracy (%) 84.49 84.64 84.56 84.02

Table A5: Impact of augmentation depth D on CIFAR-100 using WRN-28-10.

Augmentation depth is an important hyperparameter that determines the scale of the search space.
With multiple operators sequentially applied, the diversity of the augmented data increases while
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becoming more challenging to learn from. Following previous settings in AA and RA, we mainly
select augmentation depth as 2 in our experiments. To evaluate the impact of this hyperparameter on
the proposed SRA, we conduct experiments on CIFAR-100 using WRN-28-10. As shown in Table
A5, a balance between diversity and the representation ability of the target model is necessary for
SRA. Augmentation depth D = 2 performs the best, which is consistent with the results in SRA’s
prototype RA (Cubuk et al., 2020).

A.6 IMPACT OF AUGMENTATION OPERATORS

We conduct operator ablation experiments on CIFAR-10 using WRN-28-10 in Table A6 to show the
sensitivity of SRA to each operator in the search space. For each line, we delete one specific operator
from the original 14 operators, and report the performance of SRA on the remaining 13 operators.
Each experiment is run for 3 times. As shown, SRA is sensitive to the selection of augmentation
operators, which is also the characteristics of previous AutoDA (Cubuk et al., 2020; Li et al., 2020;
Zheng et al., 2022). Removing operators like ShearX, TranslateX, Brightness, and Equalize from the
configurations of SRA may further improve the performance. However, for simplicity and relatively
fair comparisons with previous works, we adopt the candidate operator set chosen in RA.

Ablated
Operator

Accuracy
(%)

Operator
Gain (%)

Ablated
Operator

Accuracy
(%)

Operator
Gain (%)

ShearX 97.78±0.02 -0.11 Sharpness 97.58±0.03 0.09
ShearY 97.56±0.05 0.11 Contrast 97.65±0.06 0.02
TranslateX 97.70±0.01 -0.03 Solarize 97.60±0.11 0.07
TranslateY 97.60±0.07 0.07 Posterize 97.51±0.05 0.16
Rotate 97.58±0.05 0.09 Equalize 97.74±0.01 -0.07
Brightness 97.74±0.06 -0.07 Autocontrast 97.59±0.02 0.08
Color 97.59±0.08 0.08 Identity 97.61±0.04 0.06

Table A6: Impact of augmentation operators on CIFAR-10 using WRN-28-10. Operators that show negative
effect are shown in red.

A prospective way to select candidate operators that are beneficial for training is learning the im-
portance of each operator. Through optimization strategies to select beneficial operators, SRA may
be further improved. However, the most important characteristics of SRA is its simplicity for wide
application. The optimization of operator selection, which generally uses reinforcement learning,
evolutionary algorithms, or gradient optimization, will undoubtedly increase the complexity of SRA,
which sets barriers for tuning the proper hyperparameters and realize the implementation in other
tasks.

A.7 ADVANTAGES ON GENERALIZATION TO NEW TASKS

To demonstrate the generalization ability of SRA, we also conduct experiments on a more fine-
grained image recognition benchmark Food101 (Bossard et al., 2014). The dataset contains food
of 101 categories, with 750 images for training and 250 for validation per class. We treat this
benchmark as a new task for exploration, and adopt training configurations of ResNet-50 with label
smoothing in Table A2, except no normalization factor γ is applied in SRA. We compare the perfor-
mance of ResNet-50 with different augmentation settings (basic augmentation, RA with 2 operators
applied for each sample and value of magnitude 9, and SRA without γ) on the transferred configu-
rations. Top-1 accuracy on the dats are shown in Table A7, in which all experiments are evaluated
on 3 runs.

Model &
Aug Settings

ResNet-50
Basic RA(2, 9) SRA (w/o γ)

Accuracy (%) 83.18±0.06 85.97±0.03 87.04±0.02

Table A7: The Top-1 accuracy on Food101 benchmark. All models uses the same training hyperparameter
settings as in ImageNet experiments (with label smoothing). Evaluated on three runs.
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As shown, SRA significantly outperforms the models under the settings of basic augmentation and
RA(2,9), indicating a better generalization ability in new tasks. The results also show the potential
of SRA to shorten the adaption time and cost for AutoDA method in new applications, which is
valuable for the community.

A.8 LOSS VISUALIZATION

Figure A2: The average loss curves for RA and SRA on CIFAR-10/100 using WRN-28-10 on three runs. The
ranges indicate the maximum and minimum loss on each epoch.

We also draw the loss curves of SRA and reproduced RA on CIFAR-10/100 to show how SRA affects
the learning process. As shown in Fig. A2, SRA has larger training losses while smaller test losses
compared with RA, indicating it generalized better to unknown data. The distribution refinement
step shows larger losses compared with the distribution exploration step, which also proves the
effectiveness of the distribution refinement step in focusing on hard samples. However, the increase
in training loss should be emphasized and accentuated, which may arouse slow convergence that
decreases the performance under the same training budget. Meanwhile, it may also increase the
difficulty for the target model to represent different classes properly.
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