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ABSTRACT

Neural Ordinary Differential Equations (ODEs) have been used extensively to
model physical systems because they represent a continuous-time function that
can make predictions over the entire time domain. However, most of the time,
the parameters of these physical systems are subject to strict laws/constraints. But
there is no guarantee that the Neural ODE model satisfies these constraints. There-
fore, we propose a two-stage training for Neural ODE. The first stage aims at find-
ing feasible parameters by minimizing a loss function defined by the constraints
violation. The second stage aims at improving the feasible solution by minimiz-
ing the distance between the predicted and ground-truth values. By training the
Neural ODE in two stages, we ensure that the governing laws of the system are
satisfied and the model fits the data.

1 INTRODUCTION

Neural networks (NN) have proven useful in modeling physical, biological, and chemical systems
(Kutz, 2017; Soleymani et al., 2022; Atz et al., 2021). Recently, Chen et al. (2018) proposed Neural
ODEs, a NN that models a continuous-time function, ODE, to the hidden dynamics of the data.
Because of their ability to handle irregularly sampled data and make predictions throughout the time
domain, Neural ODEs have been used to model natural systems (Xing et al., 2022; Su et al., 2022).
In general, natural systems follow strict rules that are known. Therefore, a NN modeling them would
ideally operate strictly according to the governing laws. However, due to the black-box approach,
there is no guarantee that these constraints will be extracted from the data (Greydanus et al., 2019).
The lack of understanding of the laws governing natural systems can lead to inconclusive predic-
tions, which raises the distrust of experts in the field (Dobbelaere et al., 2021). A popular way to
ensure that these constraints are satisfied is to add penalty terms to the loss function (Nocedal &
Wright, 2006). This approach has already been used in the context of Neural ODEs (Tuor et al.,
2020). However, when combining the original loss function l(θ), which measures the agreement
between the prediction and the ground truth, with a measure of the constraint violations, c(θ), a
positive constant µ (penalty hyperparameter) must be given to penalize the constraint violation. Un-
fortunately, setting a suitable µ is still a problematic issue, which requires a priori experimentation
(Nocedal & Wright, 2006). Therefore, we introduce a new two-stage training Neural ODE technique
to avoid the usage of penalty terms while satisfying the constraints.
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2 METHOD

We propose a two-stage training method to incorporate prior knowledge on the constraints of the sys-
tem into Neural ODEs without using penalty terms. The method is composed of two stages: admissi-
bility phase; and optimization phase. In phase I the goal is to find an admissible solution by training
the Neural ODE with a violation loss function LI(θ) =

∑
i∈Γ |cti(θ)| +

∑
j∈Υ∥max(0, ctj(θ))∥,

where cti(θ) = 0, i ∈ Γ and ctj(θ) ≥ 0, j ∈ Υ are the prior knowledge constraints, with
t = t1, . . . , tf . Phase I training ends when the loss value is below a given threshold.

The parameters at the end of phase I are the starting point for phase II. In phase II, the loss function
is given by l(θ), LII(θ) = l(θ), which measures the agreement between the prediction and the
ground truth. To keep the search from leaving the admissibility region during phase II, two different
strategies are used. If the violation loss function LI at the new current solution yields a higher
constraint violation value, the point solution is discarded. In this case, either the parameters from
the previous iteration are kept (updatePrevious) or the best iteration parameters are used instead
(updateBest).
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Figure 1: Schematic of the two-stage training method for Neural ODE with initial condition y(t0) =
y0 and solving in the time interval (t0, tf ).

The proposed method was evaluated numerically by modelling the growth of the world population
with an upper boundary constraint defined by the carrying capacity, and a chemical reaction with
an equality constraint for the conservation of mass. The experimental details and results for these
natural systems can be found in A.1 and A.2, respectively.

3 CONCLUSION

The proposed two-stage training method successfully introduces prior knowledge on the physical
system into the Neural ODE by avoiding penalty hyperparameters. By using two separate training
phases, we ensure that the constraints are satisfied while the agreement between the predictions and
the ground-truth is minimized. The explicit introduction of constraints contributes to the explain-
ability of the Neural ODE models. Moreover, numerical experiments demonstrate the robustness
of the models produced with our method. In the future, further investigation will be carried out to
facilitate the choice between updatePrevious and updateBest. In addition, numerical experiments
will be conducted to model more complex natural systems (with more constraints).

2



Published as a Tiny Paper at ICLR 2023

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments, which helped improve this paper con-
siderably. The authors acknowledge the funding by Fundação para a Ciência e Tecnologia (Por-
tuguese Foundation for Science and Technology) through CMAT projects UIDB/00013/2020 and
UIDP/00013/2020. C. Coelho would like to thank FCT for the funding through the scholarship with
reference 2021.05201.BD.

URM STATEMENT

All authors meet the URM criteria of ICLR 2023 Tiny Papers Track.

REFERENCES

Kenneth Atz, Francesca Grisoni, and Gisbert Schneider. Geometric deep learning on molecular
representations. Nature Machine Intelligence, 3(12):1023–1032, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

C. Coelho, M. Fernanda P. Costa, and L.L. Ferrás. Synthetic chemical reaction, 2023a. URL
https://www.kaggle.com/ds/3010478.

C. Coelho, M. Fernanda P. Costa, and L.L. Ferrás. World population growth, 2023b. URL https:
//www.kaggle.com/ds/3010437.

Maarten R. Dobbelaere, Pieter P. Plehiers, Ruben Van de Vijver, Christian V. Stevens, and Kevin M.
Van Geem. Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities,
and Threats. Engineering, 7(9):1201–1211, 2021. ISSN 2095-8099. doi: 10.1016/j.eng.2021.03.
019.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

J. Nathan Kutz. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 814:1–4, 2017. ISSN
0022-1120, 1469-7645. doi: 10.1017/jfm.2016.803.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operation Re-
search and Financial Engineering. Springer, New York, NY, second edition, 2006. ISBN 978-0-
387-30303-1 978-1-4939-3711-0.

Farzan Soleymani, Eric Paquet, Herna Viktor, Wojtek Michalowski, and Davide Spinello. Pro-
tein–protein interaction prediction with deep learning: A comprehensive review. Computa-
tional and Structural Biotechnology Journal, 20:5316–5341, 2022. ISSN 2001-0370. doi:
10.1016/j.csbj.2022.08.070.

Xingyu Su, Weiqi Ji, Jian An, Zhuyin Ren, Sili Deng, and Chung K. Law. Kinetics Parameter
Optimization via Neural Ordinary Differential Equations. (arXiv:2209.01862), 2022.

Aaron Tuor, Jan Drgona, and Draguna Vrabie. Constrained neural ordinary differential equations
with stability guarantees. arXiv preprint arXiv:2004.10883, 2020.

Yuting Xing, Hangting Ye, Xiaoyu Zhang, Wei Cao, Shun Zheng, Jiang Bian, and Yike Guo. A
continuous glucose monitoring measurements forecasting approach via sporadic blood glucose
monitoring. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
pp. 860–863, 2022. doi: 10.1109/BIBM55620.2022.9995522.

3

https://www.kaggle.com/ds/3010478
https://www.kaggle.com/ds/3010437
https://www.kaggle.com/ds/3010437


Published as a Tiny Paper at ICLR 2023

A NUMERICAL EXPERIMENTS

For each case study (world population growth (Coelho et al., 2023b) and chemical reaction evolution
(Coelho et al., 2023a)), three different experiments were conducted: same data for training/testing
(reconstruction); larger test time horizon (extrapolation); same time interval for training and testing
but higher frequency sampling in the testing set, i.e., using a smaller step size (completion). Per-
formance was analysed by Mean Squared Error (MSE), sum of constraint violations and standard
deviation (std).

A.1 POPULATION GROWTH

The World Population Growth Dataset was synthesized and has one feature, world population p(t).
The goal is to predict the population at each point in time. The system has an inequality constraint
defined by the carrying capacity p(t) ≤ 12 at each time step t with t = t1, . . . , tN . For the recon-
struction task, the training and testing datasets are the same. For the extrapolation task, the training
was done with 200 data points in the time interval [0, 300] and 200 test points in the interval [0, 400].
For the completion task, 200 training and 300 testing points are used in the interval [0, 300] (Coelho
et al., 2023b).

The NN has 4 hidden layers: linear with 50 neurons; hyperbolic tangent (tanh); linear with 50
neurons; Exponential Linear Unit (ELU). The input and output layers have 1 neuron. The Adam
optimizer was used with a learning rate of 1e − 5, an admissibility threshold of 1e − 4, and 10000
iterations.

The results of each experiment are shown in the 1 and 2 tables for the strategies updatePrevious and
updateBest, respectively. In addition, the ground-truth and predicted values for the testing dataset
were plotted for the strategies updatePrevious, Figure 2, and updateBest, Figure 3.

Table 1: Performance on the population growth testing dataset with updatePrevious strategy(N=3).

EXPERIMENT MSE±STD VIOLATION±STD

Reconstruction 0.007954± 0.004054 0.009379± 0.004777
Extrapolation 0.013587± 0.013542 0.035037± 0.030044
Completion 0.008397± 0.004406 0.011079± 0.005657

Table 2: Performance on the population growth testing dataset with updateBest strategy (N=3).

EXPERIMENT MSE±STD VIOLATION±STD

Reconstruction 0.010587± 0.002240 0.013616± 0.001424
Extrapolation 0.030280± 0.012093 0.069097± 0.012446
Completion 0.012709± 0.006797 0.013774± 0.005567

A.2 CHEMICAL REACTION

The chemical reaction dataset is a synthetic reaction with four chemical components defined by
A+B → C+D. The goal is to predict the mass of each component over time. At each time step t,
this system must satisfy an equality constraint defined by the conservation of mass: A(t) + B(t) +
C(t) +D(t) = mtotal, with mtotal the total constant mass of the system. For the reconstruction task,
the training and testing datasets are identical. For the extrapolation task, training was performed
with 100 data points in the time interval [0, 100] and 100 test points in the interval [0, 200]. For the
completion task, 100 training and 200 testing points are used in the interval [0, 100] (Coelho et al.,
2023a).

The NN has 6 hidden layers: linear with 50 neurons; tanh; linear with 64 neurons; ELU; linear with
50 neurons; tanh. The input and output layers have 4 neurons. The Adam optimizer was used with a
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(a) (b) (c)

Figure 2: Plot of the real (dashed line) and predicted (solid line) curves, for the world population
growth, on different tasks using updatePrevious: (a) Reconstruction; (b) Extrapolation; (c) Comple-
tion.

(a) (b) (c)

Figure 3: Plot of the real (dashed line) and predicted (solid line) curves, for the world population
growth, on different tasks using updateBest: (a) Reconstruction; (b) Extrapolation; (c) Completion.

learning rate of 1e−5, an admissibility threshold of 1e−4, and 10000 iterations. In this experiment,
the NN architecture used is more complex given that the problem is harder.

The results of each experiment are shown in the 3 and 4 tables for the strategies updatePrevious and
updateBest, respectively. Letters A to D represent masses of the chemical species in the reaction, real
(dashed line) and predicted (solid line) values for the testing dataset were plotted for the strategies
updatePrevious, Figure 4, and updateBest, Figure 5.

Table 3: Performance on the chemical reaction testing dataset with updatePrevious strategy (N=3).

EXPERIMENT MSE±STD VIOLATION±STD

Reconstruction 0.000104± 5.26688e− 5 0.006874± 0.003609
Extrapolation 9.66667e− 5± 5.92021e− 5 0.091390± 0.073354
Completion 0.000181± 0.000156 0.030485± 0.012531
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Table 4: Performance on the chemical reaction testing dataset with updateBest strategy(N=3).

EXPERIMENT MSE±STD VIOLATION±STD

Reconstruction 0.000461± 0.000536 0.113920± 0.058010
Extrapolation 0.001244± 0.001665 0.143724± 0.108796
Completion 0.001007± 0.000914 0.027309± 0.013076

(a) (b) (c)

Figure 4: Plot of the real (dashed lines) and predicted (solid lines) curves, for the chemical reaction,
on different tasks using updatePrevious: (a) Reconstruction; (b) Extrapolation; (c) Completion.

(a) (b) (c)

Figure 5: Plot of the real (dashed lines) and predicted (solid lines) curves, for the chemical reaction,
on different tasks using updateBest: (a) Reconstruction; (b) Extrapolation; (c) Completion.
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