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Abstract

Pretrained molecular encoders have become indispensable in computational chem-
istry for tasks such as property prediction and molecular generation. However,
the standard practice of relying solely on final-layer embeddings for downstream
tasks may discard valuable information. In this work, we first analyze the infor-
mation flow in five diverse molecular encoders and find that intermediate layers
retain more general-purpose features, whereas the final-layer specializes and com-
presses information. We then perform an empirical layer-wise evaluation across
22 property prediction tasks. We find that using frozen embeddings from op-
timal intermediate layers improves downstream performance by an average of
5.4%, up to 28.6%, compared to the final-layer. Furthermore, finetuning encoders
truncated at intermediate depths achieves even greater average improvements of
8.5%, with increases as high as 40.8%, obtaining new state-of-the-art results on
several benchmarks. These findings highlight the importance of exploring the full
representational depth of molecular encoders to achieve substantial performance
improvements and computational efficiency. The code is made publicly available
at https://github.com/luispintoc/Unlocking-Chemical-Insights.

1 Introduction

Deep learning has reshaped molecular science, where pretrained molecular encoders are essential
tools for applications from virtual screening in drug discovery to designing novel materials with
desired properties [} [2, 13]. These encoders, built on architectures such as Transformers [4] and
Graph Neural Networks (GNNs) [} 16]], learn rich representations of molecular structures that can be
applied to a wide range of downstream predictive tasks. The common practice of extracting molecular
representations from the final encoder layer, while simple and widely adopted, rests on the implicit
assumption that this layer consistently provides the most informative and task-relevant features.

However, this assumption is increasingly challenged by findings from Natural Language Processing
(NLP) and Computer Vision, where intermediate layers often encode richer, more generalizable, or
task-specific information, leading to significant performance gains [[7, 18, 9,|10]. Despite the unique
data modalities (e.g. molecular graphs, 3D conformers) and distinct pretraining objectives inherent
to cheminformatics, systematic layer-wise studies of molecular encoders have been notably scarce.
This leaves a critical question unanswered: are we overlooking superior molecular representations by
adhering to the final-layer convention in chemistry?

Our work consists of a two-stage analysis across five diverse pretrained encoders. First, we map the
information flow through their hidden layers, and second, we empirically evaluate the performance of
these layer-wise representations on a suite of downstream tasks.
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Figure 1: Left: Tokenized-molecule entropy rises with depth but falls at the final block for Mol-
Former, Uni-Mol and PosEGNN, indicating compression; Orb models maintain higher spread. Right:
Adjacent-layer CKA shows small changes across interior layers and a pronounced last-step change
for most models. Depth is normalized from first encoder block (0%) to last (100%).

Our main contributions are as follows:

1. We use two label-free probes, tokenized-molecule entropy and adjacent-layer linear centered
kernel alignment (CKA), to characterize information flow within molecules and across model
depth. Our analysis reveals that while the middle layers remain stable and capture general,
transferable features, the pronounced change in the final layer signals both information
compression and specialization for the pretraining task.

2. We conduct an empirical study evaluating frozen embeddings across 22 absorption, distri-
bution, metabolism, excretion, and toxicity (ADMET) tasks. We demonstrate that in over
81% of model-task combinations, an intermediate layer outperforms the conventionally used
final-layer, yielding an average increase of 5.4% in downstream performance.

3. We further show that these advantages persist when the encoders are partially finetuned. For
the same set of tasks, we observe that finetuning up to an optimal intermediate layer leads to
notable improvements over finetuning the complete encoder in over 71% of cases, with an
average gain of 8.5%.

2 Related Work

2.1 Molecular Encoders

Molecular encoders are deep learning models designed to transform chemical structures into fixed-
length numerical vectors, also known as embeddings, that can be used for downstream tasks such
as property prediction, molecular generation, or virtual screening. These models play a central
role in computational chemistry and drug discovery by enabling machine learning algorithms to
efficiently capture the relevant chemical, structural, and physical information inherent to molecules.
The effectiveness of a molecular encoder is critically dependent on both the representational richness
of its learned embeddings and its ability to generalize across diverse chemical spaces.

Molecular encoders are generally differentiated by two main aspects: the type of molecular input they
process, for example SMILES [[11]] strings, molecular graphs, or 3D conformers; and the underlying
computational architecture, which could be Transformers, Graph Neural Networks (GNNs), or other
specialized architectures.

Transformer-based sequence models such as ChemBERTa [12], ChemGPT [13]], and MolFormer
[14] are pretrained on textual representations of molecules and apply masked language modeling [[15]]
or autoregressive objectives [16]] to learn general purpose embeddings. ChemBERTa and MolFormer
operate on tokenized SMILES strings, whereas ChemGPT is trained on SELFIES [17], a robust string
grammar that guarantees valid molecules. These models inherit the architectural benefits of NLP
transformers, including multi-head self-attention and position embeddings.



Hybrid 2D/3D transformer encoders like Uni-Mol [18] extend transformer architectures to directly
incorporate both 2D topological information and 3D atomic coordinates. Uni-Mol leverages pairwise
distance matrices and spatial positional encodings to inject geometric priors, enabling the model to
learn both conformation-aware and topology-sensitive representations. Its architecture retains the
global receptive field of transformers while being sensitive to the spatial layout of molecules.

Graph Neural Networks for 2D molecular graphs represent a distinct branch of molecular represen-
tation learning. These models operate directly on the 2D graph structure of molecules, where atoms
are nodes and bonds are edges. Through iterative message passing steps, GNNs aggregate information
from neighboring atoms and bonds to learn representations that capture molecular topology and
chemical features. Models like the Directed Message Passing Neural Network (D-MPNN) [[19] are
often trained with supervised learning on specific molecular properties. Others, such as MolCLR [20],
employ self-supervised learning strategies, like contrastive learning between positive and negative
molecular pairs, to learn general purpose embeddings.

GNN-based 3D models employ graph neural networks to process three dimensional molecular
structures. Some of these models incorporate equivariant architectures to inherently respect physical
symmetries, while others may utilize data augmentation techniques to learn these invariances. A
specific subset of these 3D GNN models includes machine learning force fields [21} 22]], which are
trained to predict molecular energies and forces from DFT calculations [23]]. For instance, MACE [24]]
and Pos-EGNN [25]] are examples that use an equivariant architecture to predict such properties. In
contrast, Orb models [26] do not rely on equivariant architectures but instead leverage augmentations.

2.2 Layer-Wise Probing in Language and Vision Models

Most relevant to our study is the recent work of Skean et al. (2025) [27], who performed the most
comprehensive analysis to date of intermediate-layer representations in deep neural networks. Their
layer-by-layer investigation across transformer and state-space models in both language and vision
domains revealed that intermediate layers often exhibit higher utility than final ones across a range of
probing tasks. Using a unified framework integrating metrics from information theory, geometry, and
invariance, they demonstrated that the most informative representations, outperforming final-layer
embeddings by up to 16% on 32 tasks, tend to emerge midway through the model. At this stage,
task-relevant signals are preserved while over-specialization and noise accumulation, potentially
more prevalent in final-layers, have not yet occurred. Their work critically challenges the widely
adopted practice of extracting representations solely from the final-layer and uncovers how different
architectural and training paradigms shape internal information flow and compression.

Despite these advances, layer-wise representational analysis has not been applied to molecular
encoders, which differ from NLP and vision models in both data modality and pretraining objectives.
Molecular encoders often combine structural and chemical priors, and their performance is often
assessed using challenging benchmarks that include both regression and classification tasks, operate
with limited data, or employ scaffold splits to test distinct generalization capabilities. Yet nearly all
such models, from SMILES transformers to equivariant GNNs, default to using the final-layer as the
molecular embedding, without examining the structure or quality of intermediate representations.

2.3 Surrogate Evaluators for Embedding Quality

Evaluating the quality of learned representations without resorting to computationally expensive
end-to-end finetuning is crucial for efficient model development and analysis. This has led to the
use of various surrogate models to probe the information encoded in frozen embeddings. These
surrogates provide an estimate of the downstream utility across different tasks.

Linear probes, such as logistic regression or linear regression, are frequently used to assess the
linear separability of concepts within embedding spaces [28]]. More complex, tree-based ensemble
models such as Random Forests or Gradient Boosted Decision Trees (e.g., XGBoost [29], LightGBM
[30], CatBoost [31]]) are often effective when applied to frozen embeddings [32}33]. In some cases,
small Multi-Layer Perceptrons (MLPs) are also trained as probes [34}135]]. More recently, models
leveraging in-context learning principles have demonstrated significant promise. TabPFN [36], built
upon a transformer architecture and pretrained on vast amounts of synthetic tabular data, can make
accurate predictions without requiring task-specific gradient updates or hyperparameter tuning. These
surrogate evaluators enable efficient assessment of learned embeddings by pairing powerful pretrained



encoders with lightweight predictors. From linear models to in-context transformer models, they
offer a scalable alternative to finetuning, balancing speed and predictive reliability for downstream
evaluation.

3 Methods

This section details the molecular encoder architectures investigated, the benchmark datasets and
evaluation metrics employed, the information flow analysis and the experimental protocols for
evaluating layer-wise representations through both frozen embeddings and finetuning.

3.1 Molecular Encoder Models

Our study investigates the layer-wise representations from five diverse pretrained molecular encoder
architectures, selected to cover various input modalities and model designs relevant to molecular
representation learning. These include:

* MolFormer [[14]: A transformer architecture pretrained on tokenized SMILES strings with a
masked language modeling objective. This model consists of 12 layers.

* Uni-Mol [18]: We evaluated the first model in the Uni-Mol family, which extends trans-
former architectures to directly incorporate both 2D topological information and 3D atomic
coordinates. It features 15 encoder layers.

* Orb Family [26]]: We investigated two specific variants from the Orb family of machine
learning force fields. They do not rely explicitly on equivariant message passing architectures
but incorporate invariances through their data augmentation. The variants we used are:

— Orb-v3-conservative-omat: This variant is trained with a "conservative" objective,
where forces are derived as the negative gradient of the predicted energy. The check-
point used was trained on the ab initio molecular dynamics subset of OMat24 [37]. It
features 5 interaction layers.

— Orb-v3-direct-mpa: This variant is trained with a "direct" objective to predict forces
explicitly, alongside energy. This checkpoint was trained on the combination of MPTraj
[38]] and Alexandria (PBE) [39] datasets. It also features 5 interaction layers.

* Pos-EGNN [25]: A Position-based Equivariant Graph Neural Network (Pos-EGNN) that
functions as a machine learning force field. This foundation model for chemistry and
materials utilizes equivariant GNNs operating directly on 3D molecular conformers. Repre-
sentations were extracted from its 4 equivariant message passing blocks, which we treat as
distinct layers in our analysis.

To generate 3D conformations for all molecules, we employed the ETKDG algorithm [40]. These
conformations were subsequently optimized using the MMFF94 force field [41] to ensure physically
plausible geometries before input into models requiring 3D coordinates. It should be noted that fewer
than five data points per task (<0.5% of the total datasets) did not yield valid 3D conformers using
this protocol, and these instances were excluded from downstream analysis.

Finally, we emphasize that while the Orb models and Pos-EGNN are machine learning force fields
trained on inorganic datasets, we investigated their learned representations here in an organic property
prediction context for the first time. As these models were not trained for standard QSAR or ADMET
prediction, our evaluation provides insight into the generality and transferability of their intermediate
representations beyond their original design objectives.

3.2 Benchmark and Evaluation Protocol

We evaluated molecular encoder representations on the TDCommons (TDC) benchmark [42], a
curated suite of 22 ADMET-related tasks spanning both regression and classification settings. Each
task requires the prediction of a single target, a specific physicochemical or biological property, using
molecular structures as input. ADMET properties critically influence the development and safety
profiles of pharmaceutical compounds; thus, maximizing representational quality has tangible benefits
for reducing experimental costs and enhancing predictive accuracy in drug discovery [43| 44]].



To address the challenge of generalizing to novel chemical scaffolds, TDC provides scaffold-based
data splits that partition each dataset into training, validation, and testing sets. This ensures that
compounds in the test set have distinct core structures from those in the training set, enabling a
rigorous assessment of a model’s capacity to extrapolate to unseen chemical space.

We aggregated the training partitions across tasks to construct an unlabeled corpus for the informa-
tion flow analysis. For the empirical experiments, we used the prescribed splits per task without
modification. Following TDC benchmark guidelines, performance for each task was quantified using
its designated metric. For regression tasks, this metric was either Mean Absolute Error (MAE) or
Spearman Rank Correlation Coefficient, while for classification tasks, it was either the Area Under
the Receiver Operating Characteristic curve (AUROC) or the Area Under the Precision-Recall Curve
(AUCPR). Thus, our comprehensive evaluation framework employs these four performance metrics.
Further details on each task are provided in Appendix[A]

3.3 Information Flow Probes

We use two label-free probes to diagnose how information evolves across layers and to test the
hypothesis that the final-layer is often over-specialized for pretraining. Let ; denote a molecule and
¢ an encoder layer. The token matrix is H; 4 € RT:xd where T} is the number of valid tokens/atoms
for molecule x; and d is the hidden dimensionality of layer ¢. To derive a single vector representation
per molecule from each layer, we followed the conventions established in the original publications of
the respective models. For instance, MolFormer uses mean pooling over token embeddings, while
Uni-Mol utilizes the representation of the special [CLS] token. For GNN-based models such as
Pos-EGNN and the Orb variants, mean pooling over all scalar node embeddings was employed to
obtain the graph-level representation.

Tokenized-molecule entropy. We first quantify the diversity of within-molecule token signals with
a matrix-based entropy [45]]. For each z; and layer ¢, we form the token Gram K; y = H,; ¢H, ZT ¢» take
its eigenvalues {\; }, normalize ps = A;/ ), Ay, and average the Shannon entropy of this spectrum

across molecules: 1
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Higher values indicate that token embeddings are spread across many principal directions, expressing
greater variety and lower redundancy. Lower values indicate that variance concentrates in a small
number of directions, reflecting higher redundancy and representational compression, a collapse
towards a low-rank subspace.

Adjacent-layer CKA on pooled molecule vectors. We assess changes in the pooled space by
comparing adjacent layers using linear centered kernel alignment (CKA) [46]. For two adjacent
layers ¢ and /41, we form X by stacking, row-wise, the pooled molecule vectors from layer ¢ (one
row per molecule), and likewise Y from layer {+1. We then center each matrix across examples by
subtracting the corresponding row-mean vector, yielding X and Y. The centered second moments
are then defined as

¢ T % ¢ YR 6e+1) _ T
S =XTx, S =yTy, gttt =XTy.

And the linear CKA between layers is
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Values of CKA,_,,11 close to 1 indicate that consecutive layers produce highly similar molecule
embeddings, while values closer to 0 indicate larger geometric changes between layers. We report
adjacent-layer CKA across depth to quantify, in a label-free and scale-free manner, how representation
changes attenuate or persist throughout the encoder.

3.4 Evaluating Frozen Layer-wise Embeddings

To assess the predictive utility of representations from different layers, we use the hidden states from
every encoder layer as frozen molecule embeddings for each TDC task. As explained in Section



[3.3] we obtained a single vector representation for each molecule at every layer by following the
conventions outlined in the original publications of the corresponding models.

These fixed-length embeddings then served as input to TabPFNv2 [47]], hereafter simply TabPFN, a
transformer-based in-context learning model pretrained on a vast array of synthetic tabular data. We
selected TabPFN as our lightweight downstream predictive model for the following key reasons:

1. No Hyperparameter Tuning: TabPFN makes predictions for new tasks in a single forward
pass without requiring task-specific hyperparameter optimization. This was crucial for our
study, as it allows for a fair comparison of embedding quality across different layers and
models, minimizing the confound of surrogate model tuning.

2. Strong Validated Performance: TabPFN has demonstrated state-of-the-art performance on
diverse small to medium-scale tabular classification and regression tasks, making it a robust
choice for efficiently probing embedding utility. Furthermore, as detailed in Appendix|[B] our
own preliminary experiments confirmed that its performance when using cheminformatic
features as input is comparable to that of well-established tree-based models on the same
tasks, further validating its suitability as a reliable and efficient evaluator when applied to
learned embeddings in this analysis.

For every TDC task, we retrieved the embeddings produced by each individual layer, trained TabPFN
on the scaffold-split training portion of those embeddings and their labels, generated predictions for
the matching test embeddings, and scored them with the metrics from Section[3.2}

3.5 Finetuning with Layer-wise Representations

We also performed a comprehensive finetuning study across all pretrained molecular encoders and
TDC tasks. For each encoder and task, we extracted molecular representations from individual
encoder layers, using the same pooling strategy as Section[3.4] and fed them into a task-specific
prediction head. This prediction head consisted of two linear layers: the first projected to a hidden
dimension, followed by a SiLU activation [48]], 10% dropout, and a final linear layer projecting to the
output dimension.

For each specific encoder layer being evaluated on each task, key hyperparameters, namely the
prediction head’s hidden dimension selected from {32, 256} and the learning rate for the AdamW
optimizer [49] selected from {1e-5, 2e-5, Se-5, 1e-4, 2e-4}, were optimized via an independent
hyperparameter search. Hyperparameter ranges were selected based on preliminary studies and align
with configurations commonly used in the original publications of the respective models, effectively
capturing performance variance without excessive computational demands.

During training, both the parameters of the encoder up to and including the selected layer and those
of the prediction head were jointly finetuned; any encoder layers beyond the selected layer were
excluded. Models were trained for 50 epochs with a fixed batch size of 64 and the learning rate
was linearly warmed up over the first 5% steps and decayed over the remaining steps. Validation
performance was monitored at each epoch, and the model checkpoint yielding the best validation
metric was used for test set evaluation.

4 Results and Discussion

In this section, we begin with a label-free analysis of representation dynamics using the probes in
Section[3.3] These depth-wise diagnostics reveal how token diversity and layer-to-layer geometry
evolve inside each encoder. We then validate these findings by evaluating model performance
across 22 TDC ADMET tasks in two settings. We first show that intermediate layer representations
consistently outperform the final-layer when used as inputs to TabPFN. We then show that these
advantages largely persist when the encoders are finetuned up to an optimal intermediate layer.
Finally, we establish a correlation between these two evaluation paradigms, suggesting an efficient
strategy for selecting optimal layers for finetuning.
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Figure 2: Percentage improvement in test metric of the best intermediate layer relative to the final-
layer when evaluating frozen embeddings. Positive values mean the best non-final layer improves
over the final-layer. Negative values mean the final-layer outperforms the best non-final layer.

4.1 Unsupervised Probes of Representation Dynamics

Figure |1| summarizes depth-wise behavior across models using two label-free probes. First, an
analysis of token diversity using tokenized-molecule entropy reveals a pattern of end-of-encoder
compression in several models. MolFormer and Uni-Mol exhibit a sharp drop in entropy in their
final-layer, with Pos-EGNN showing a milder version of this effect. This drop indicates that the
token representations collapse into a low-rank subspace, concentrating their variance into fewer
principal directions. Such behavior is consistent with the final-layer becoming highly tailored to
its pretraining objective. Conversely, both Orb variants maintain a broader spread across principal
directions, indicating that token information stays more distributed instead of collapsing at the end.

Second, geometric stability between adjacent layers, captured by CKA, reveals that Uni-Mol sits
near 1 across depth, indicating very similar pooled molecule embeddings from one block to the next.
The remaining encoders live in the 0.90 to 0.95 range, which points to small but meaningful updates
as depth increases. Most models then show a pronounced last-step drop in CKA signaling a large
geometric remapping right before the output, that aligns with the pretraining task specialization and
coincides with the token-level compression above. Viewed jointly, these trends support the view that,
regardless of the specific architecture or pretraining objective, the final-layer is often over-specialized
and does not always carry the most transferable features.

4.2 Superior Performance of Intermediate Layer Embeddings

We evaluate downstream utility by using each layer’s hidden states as fixed feature embeddings
with TabPFN. Figure [2]reports, for each model and task pair, the signed percent change of the best
non-final layer relative to the final-layer, where green values indicate gains over the final-layer and
red values indicate that the final-layer is better.

Across all evaluations, 81% of model and task combinations prefer a non-final layer. Negative values
are present, although they are small in magnitude; when the final-layer wins, its average margin over
the best non-final layer is about 1%. The choice of encoder influences these gains. MolFormer and
Uni-Mol benefit the most from intermediate layers, with average improvements of 7.9% and 6.7%,
respectively. In contrast, the comparatively shallow models show an average improvement of only
~4%.

Moreover, while prior work in language and vision reports that the most informative representations
often emerge midway through the model [27], our empirical study did not identify a universally
optimal depth for molecular encoders. Instead, the ideal layer varies by architecture and ADMET task,
as illustrated by the full performance curves in Appendix [C| This pattern aligns with the information
flow findings. Across the interior of each encoder, adjacent-layer CKA is high and nearly constant,
indicating that successive layers produce very similar pooled molecule vectors; in practice this means
many intermediate layers supply comparably good features, so no single depth consistently dominates.
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Figure 3: Percentage change in test metric achieved by finetuning up to the best intermediate layer
compared to finetuning up to the final-layer. Positive values mean the best non-final layer improves
over the final-layer. Negative values mean the final-layer outperforms the best non-final layer.

In contrast, between the final two layers we observe a pronounced CKA drop, and tokenized-molecule
entropy shows a concurrent decrease, both consistent with a last-stage geometric remapping and
increased compression tailored to the pretraining objective. In aggregate, these observations explain
why intermediate layers frequently outperform the final-layer while the precise winning depth varies
by model—task pair.

Task-specific benefits were also evident. For instance, cyp2c9-substrate-carbonmangels saw sub-
stantial improvements from intermediate layers, with average gains of 19.8%. Conversely, tasks like
clearance-hepatocyte-az and ames showed limited advantage, with intermediate layers outperforming
the final-layer in only two of the five models examined. Furthermore, using intermediate layers also
yielded new state-of-the-art (SOTA) results, for example: Pos-EGNN Layer 0 on hia-hou (AUROC
0.994 vs. 0.989), Uni-Mol Layer 3 on clearance-microsome-az (Spearman 0.641 vs. 0.630), and
Pos-EGNN Layer 3 on dili (AUROC 0.942 vs. 0.925) [50, 51]].

4.3 Superiority of Intermediate Layers Persists with Finetuning

Next, we investigated whether the observed benefits of intermediate layers translate to a scenario
where the encoder, up to a selected layer, and a task-specific prediction head are jointly finetuned.
Figure[3|shows the relative difference in the test metric when finetuning to the optimal intermediate
layer compared to finetuning to the final-layer, again with each cell representing a specific model-task
pair and showing the numerical percentage gain. Layer-by-layer performance visualizations for all
models and tasks are provided in Appendix|[C|

We observed pronounced benefits from employing intermediate layers even in this finetuning context.
Averaged across all pairs, the optimal intermediate layer improves the test metric by 8.5%, with
71% of pairs showing gains. The gains were model-dependent but consistently substantial: Pos-
EGNN saw the highest average improvement at 11.2%, closely followed by Uni-Mol at 9.9%,
while MolFormer and OrbV3-Direct each experienced average gains of 8.4%. OrbV3-Conservative
exhibited smaller, yet still notable, gains of 5.8%. Consistent with the information flow diagnostics
and frozen embedding results, no single depth was best, which point to broadly similar interior
representations and a specialized final block.

Tasks evaluated with Spearman correlation benefited the most from intermediate layers (e.g., half-
life-obach +33.8%, vdss-lombardo +22%), although negatives do occur and clearance-hepatocyte-az
shows both large gains and large drops across models, underscoring task-specific sensitivity to depth.
Moreover, several intermediate layers deliver better results than prior SOTA benchmarks even without
extensive hyperparameter tuning. For instance, Pos-EGNN Layer 3 on lipophilicity-astrazeneca
(MAE 0.459 vs. 0.467), MolFormer Layer 8 on ppbr-az (MAE 7.221 vs. 7.526) and Uni-Mol Layer
13 on cyp3a4-substrate-carbonmangels (AUROC 0.688 vs. 0.662)[50, 51} 152} [53].

Beyond predictive improvements, leveraging intermediate layers substantially reduces the number
of trainable parameters. Since the number of parameters scales nearly linearly with encoder depth,
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Figure 4: Left: Example of scatter plot of frozen embedding AUCPR vs. finetuned AUCPR for each
MolFormer layer on task cyp2c9-veith. Each point is annotated with its corresponding layer number.
Right: Histogram of embedding-to-finetuned correlations for all 110 model-task combinations.

stopping finetuning at an intermediate layer proportionally reduces the computational burden. For
instance, MolFormer truncated at layer 8 of its 12 total layers prunes the final third of the network,
decreasing trainable parameters by approximately 33%. This yields models that not only train faster
but also require fewer computational resources, facilitating efficient experimentation and deployment
without compromising, and frequently even enhancing, predictive performance.

4.4 Frozen Embedding Performance as a Proxy for Finetuning Layer Selection

For each encoder-task pair in the TDC, we computed the Pearson correlation between the layer-wise
frozen embedding scores and the corresponding finetuned scores, thereby quantifying how well
embedding performance anticipates finetuning gains. Figure[d] shows the correlation distribution. The
left panel shows one representative scatter plot for MolFormer on the cyp2c9-veith task, where each
data point corresponds to a layer, with a Pearson correlation of 0.87. This near linear relationship
indicates that layers scoring highest in frozen embedding metric are typically the same layers that
achieve the top metric after finetuning. Individual scatter plots for all model-task combinations are
provided in Appendix[D|-[H] The right panel aggregates this analysis across all 110 model-task pairs.
The distribution is heavily skewed toward positive correlations: the median is 0.60, signaling a strong
alignment for half of the model-task pairs and indicating frozen embedding scores can serve as a
practical first-order filter to prioritize layers for finetuning, substantially reducing the search space.

5 Conclusion

This work systematically challenges the common practice of relying on final-layer representations
from pretrained molecular encoders. Our comprehensive study, spanning five diverse molecular
encoders and 22 ADMET tasks, demonstrates that intermediate layers frequently offer superior
downstream performance. This superiority is evident when evaluating frozen embeddings, where in
over 81% of model-task combinations an intermediate layer outperformed the final-layer, yielding an
average 5.4% performance increase. With finetuning, intermediate layers led to notable improvements
in over 71% of cases, with an average gain of 8.5%, alongside significant savings in parameters and
compute time. These empirical gains are supported by our label-free analysis, which shows that the
final-layer’s specialization often leads to representational compression, leaving intermediate layers
with more general transferable features.

While our findings are encouraging, we acknowledge certain limitations. Although constrained by
computational resources to five encoders and 22 ADMET tasks, extending this analysis to a broader
set of molecular encoders and chemical domains could further validate our findings. Future work
with additional architectures, multiple random seeds, and more exhaustive hyperparameter searches
would provide deeper insights and more robust generalizations. Nevertheless, our results strongly
advocate for a shift beyond the final-layer default, urging exploration of the rich representational
landscape within molecular encoders.
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Appendix

A TDC-ADMET Task Summary

Table [T summarizes the 22 tasks from the Therapeutics Data Commons ADMET benchmark suite
used in our experiments. Each row corresponds to a distinct molecular property prediction task, with
associated details including a brief description, the number of compounds available in the dataset,
and the evaluation metric used.

Dataset Description # compounds Metric

lipophilicity- Measures the ability of a drug to dissolve in a 4200 MAE

astrazeneca lipid

caco2-wang Estimates intestinal permeability 906 MAE

1d50-zhu Indicates drug’s lethal dose threshold 7385 MAE

solubility- Measures a drug’s ability to dissolve in water 9982 MAE

agsoldb

ppbr-az lasma protein binding percentage influences 1614 MAE
drug delivery efficiency

bbb-martins Drug penetration across the blood-brain barrier 1975 AUROC

hia-hou Human intestinal absorption impacting oral 578 AUROC
drug delivery

pgp-broccatelli P-glycoprotein inhibition affects drug bioavail- 1212 AUROC
ability, resistance

bioavailability- Oral bioavailability determines systemic drug 640 AUROC

ma exposure

cyp3ad-substrate- CYP3A4 metabolizes drugs for bodily clearance 667 AUROC

carbonmangels

ames Mutagenicity assesses genetic damage via Ames 7255 AUROC
test

herg hERG inhibition linked to cardiac safety risks 648 AUROC

dili Drug-induced liver injury impacting drug safety 475 AUROC

vdss-lombardo Volume of distribution reflects tissue drug con- 1130 SPEARMAN
centration

half-life-obach Half-life indicates duration of drug activity 667 SPEARMAN

clearance- Drug clearance measures rate of systemic elimi- 1102 SPEARMAN

microsome-az nation

clearance- Drug clearance measures rate of systemic elimi- 11020 SPEARMAN

hepatocyte-az nation

cyp2d6-substrate- CYP2D6 enzyme involved in drug metabolism 664 AUCPR

carbonmangels

cyp2c9-substrate- Octanol/water distribution coefficient of 666 AUCPR

carbonmangels molecules

cyp2d6-veith CYP2C9 catalyzes metabolism of various com- 13130 AUCPR
pounds

cyp3ad-veith CYP3A4 oxidizes xenobiotics for drug clear- 12328 AUCPR
ance

cyp2c9-veith CYP2C9 mediates oxidation of cellular com- 12092 AUCPR

pounds

Table 1: Evaluated datasets description.
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B Validating TabPFN Against a Strong Tree-Based Baseline

To ensure that TabPFN is an adequate surrogate for assessing embedding quality, we compared it
to a state-of-the-art gradient-boosted decision-tree model. Specifically, we followed the CatBoost
pipeline described in [50]: each molecule is represented by the concatenation of ECFP-1024 [54],
Avalon-1024 [55], ErG-315 [56], 200 descriptors from RDKit [57], and a 300-dimensional GIN
embedding [58]], yielding a 2863-feature input that achieved top-3 accuracy on 19/22 TDC-ADMET
leaderboards.

Due to compute constraints, we evaluated TabPFN and CatBoost on only 16 of the 22 ADMET bench-
marks, as shown in Figure@ On these 16 tasks, TabPFN matched CatBoost’s overall performance and
even outperformed it on five tasks. Remarkably, TabPFN achieved this with a single forward pass, no
hyperparameter tuning and far more features than it was pretrained on (a maximum of 500 features).
This confirms our choice of TabPFN as a lightweight, hyperparameter-free probe: it isolates the
impact of encoder representations without introducing variability from per-task model optimization.

]

1.00 4 : I CatBoost

' i B TabPFN

]
o 0751 !
Q 1
% 0.50 :
0.25 |
]

Figure 5: Comparison of CatBoost and TabPFN across a suite of ADMET benchmarks. The vertical
dashed line separates the MAE-based tasks on the left (lower is better) from the remaining tasks on
the right (higher is better). To display ppbr-az on a 0—1 scale, its MAE was divided by 10.

C Layer-wise Performance

Each figure in this appendix presents the complete layer-wise trajectories for all five encoders on
a given TDC task. The left panel reports the frozen embedding performance obtained by freezing
the encoder at successive depths and training a lightweight TabPFN surrogate on top; the right
panel shows the outcome when the encoder is finetuned up to the same depth together with a
task-specific prediction head. Finetuning hyperparameters for each model and layer were determined
by conducting a limited grid search over a few learning rates and hidden layer sizes. Depth is
expressed as a percentage of the total number of encoder blocks (0% = first encoder layer; 100 % =
final block), and performance is plotted according to its task metric.

As expected, the two Orb variants, pretrained on inorganic data, generally perform worse than the
other models across both evaluation paradigms, highlighting the significance of domain-aligned
pretraining for small-molecule property prediction. However, Pos-EGNN, trained on a subset
of the OrbV3-Direct dataset, consistently demonstrates strong performance, frequently matching
or surpassing models like MolFormer and Uni-Mol. This surprising outcome indicates that the
lower performance of the Orb variants may not result solely from domain mismatch, but also from
insufficient hyperparameter tuning.

Comparing the two panels reveals that frozen embedding curves frequently, but not always, anticipate
the relative ordering observed after fine-tuning. In some tasks (e.g. lipophilicity-astrazeneca and ppbr-
az) the layer that minimizes/maximizes the given metric in the surrogate setting also yields the best
or near best score after finetuning; in others, the correspondence weakens, suggesting that perhaps a
broader hyperparameter search is needed. Additionally, it should be noted that for a small percentage
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of cases, such as vdss-lombardo and half-life-obach, finetuning provided lower performance than
using frozen embeddings. This variability likely contributes to the long tail observed in the histogram
of Pearson correlations (Figure ).

Finally, no single region of the network consistently outperforms the rest. Optimal depths vary not
only across encoders but also across tasks within the same encoder. This heterogeneity reinforces
the utility of our two-step protocol: inexpensive frozen embedding evaluation first narrows the set
of candidate layers, after which targeted finetuning can focus computational resources on the most
promising depths.

Task: lipophilicity-astrazeneca
Fixed Embeddings Finetuned

0.90 0901

Models
MolFormer 0.75 1
Uni-Mol

Pos-EGNN
. OrbV3-Direct
0.60 1 ———— Orbv3-Conserv | 0.60 -

MAE L

0.45 ; 0.45 1 : i ;
0 20 40 60 80 100 o 20 40 60 80 100
% depth % depth

Figure 6: MAE ({, the lower the better) on the lipophilicity-astrazeneca dataset as a function of
encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).

Task: caco2-wang
Fixed Embeddings Finetuned
0.64 0.64

0.56 0.56
Models
MolFormer
7 0481 Uni-Mol 0.48 1
% Pos-EGNN

OrbV3-Direct
Orbv3-Conserv

T T T T T
0 20 40 60 80 100 o 20 40 60 80 100
% depth % depth

Figure 7: MAE ({, the lower the better) on the caco2-wang dataset as a function of encoder depth (%
depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Task: 1d50-zhu

Models
MolFormer
Uni-Mol
Pos-EGNN

OrbV3-Direct
Orbv3-Conserv

Finetuned
—
0.75 B e - E—
0.70
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0.60 |
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Figure 8: MAE (|, the lower the better) on the Id50-zhu dataset as a function of encoder depth (%
depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Task: solubility-agsoldb
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1.35 4
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T T T
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Figure 9: MAE (, the lower the better) on the solubility-aqsoldb dataset as a function of encoder
depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).

MAE |

Fixed Embeddings

40 60
% depth

80
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Task: ppbr-az

Models
MolFormer
Uni-Mol
Pos-EGNN
OrbV3-Direct
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Finetuned

T T
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100

Figure 10: MAE ({, the lower the better) on the ppbr-az dataset as a function of encoder depth (%
depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Task: bbb-martins
Fixed Embeddings Finetuned

0881 0.887

Models
. 0807 MolFormer 0.80 1
8 Uni-Mol
% Pos-EGNN
T 0724 OrbV3-Direct 0.72 1
OrbV3-Conserv
0.64 0.64

T T
0 20 40 60 80 100 o 20 40 60 80 100
% depth % depth

Figure 11: AUROC (7, the higher the better) on the bbb-martins dataset as a function of encoder
depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).

Task: hia-hou

Fixed Embeddings Finetuned
1.00 4 1.00 A
0.95 1 0.95 1
Models

- MolFormer
g 0.90 uni-Mol 0.90 1
% Pos-EGNN
< OrbV3-Direct

0.85 1 orbv3-Conserv | 983

0.80 1 0.80 1

T T T T T T T T
0 20 40 60 80 100 o 20 40 60 80 100
% depth % depth

Figure 12: AUROC (T, the higher the better) on the hia-hou dataset as a function of encoder depth
(% depth) for frozen embeddings (left) versus finetuned embeddings (right).

Task: pgp-broccatelli

Fixed Embeddings Finetuned
0.95

-—

0.90 1

Models
MolFormer

-
g 0.85 1 Uni-Mol 0.85
% Pos-EGNN
< OrbV3-Direct

0.80 OrbV3-Conserv | ggg

0.75 A 0.75 1

T T T T T T T T
0 20 40 60 80 100 o 20 40 60 80 100
% depth % depth

Figure 13: AUROC (T, the higher the better) on the pgp-broccatelli dataset as a function of encoder
depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Task: bioavailability-ma

Fixed Embeddings Finetuned
0.70 1 0.70 -
Models
- 0.651 MolFormer 0.65
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Figure 14: AUROC (7, the higher the better) on the bioavailability-ma dataset as a function of
encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).

Task: cyp3ad-substrate-carbonmangels

Fixed Embeddings Finetuned
0.70 0.70 1
0.65 1 0.65 1
Models
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Figure 15: AUROC (T, the higher the better) on the cyp3a4-substrate-carbonmangels dataset as
a function of encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings
(right).

Task: ames
Fixed Embeddings Finetuned

0.85 1 0.85 1

0.80 1 Models 0.80 1
- MolFormer
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Figure 16: AUROC (7, the higher the better) on the ames dataset as a function of encoder depth (%
depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Figure 17: AUROC (f, the higher the better) on the herg dataset as a function of encoder depth (%
depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Figure 18: AUROC (T, the higher the better) on the dili dataset as a function of encoder depth (%
depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Figure 19: SPEARMAN (7, the higher the better) on the vdss-lombardo dataset as a function of
encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Figure 20: SPEARMAN (T, the higher the better) on the half-life-obach dataset as a function of
encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Figure 21: SPEARMAN (T, the higher the better) on the clearance-microsome-az dataset as a

function of encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings
(right).
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Figure 22: SPEARMAN (1, the higher the better) on the clearance-hepatocyte-az dataset as a

function of encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings
(right).
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Figure 23: SPEARMAN (T, the higher the better) on the cyp2d6-substrate-carbonmangels dataset
as a function of encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings
(right).
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Figure 24: AUCPR (7, the higher the better) on the cyp2c9-substrate-carbonmangels dataset as
a function of encoder depth (% depth) for frozen embeddings (left) versus finetuned embeddings

(right).
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Figure 25: AUCPR (T, the higher the better) on the cyp2d6-veith dataset as a function of encoder
depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Figure 26: AUCPR (T, the higher the better) on the cyp3a4-veith dataset as a function of encoder
depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).
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Figure 27: AUCPR (1, the higher the better) on the cyp2c9-veith dataset as a function of encoder
depth (% depth) for frozen embeddings (left) versus finetuned embeddings (right).

D MolFormer: Frozen Embedding vs. Finetuned Scatter Plots

This appendix section presents a series of scatter plots dedicated to the MolFormer model. Each plot
illustrates the relationship between frozen embedding performance and full finetuning performance
across the model’s different layers for a specific downstream task. The plots were ordered by Pearson

correlation.
Task: lipophilicity astrazeneca
0.724 PoP y-
A
3

0.663 1 7
el '/
2 S
= "
T 0.602 - o
c 5
= .
7] e
£ e
ic Z 6

] 771
0.541 &
Best-fit: y =2.50x + — 1.24
10 "7 rpearson =0.95
12 P
0.481 T T -
0.669 0.695 0.722 0.749

Fixed Embeddings MAE |

0.775

0.853

Task: cyp3a4_veith

0.838

0.823 4

FineTuned AUCPR T

0.808

0.793

gl2z -

Best-fit: y =0.99x + 0.06
I'pearson = 0.93

0.748

0.764 0.781 0.797
Fixed Embeddings AUCPR 1t

0.813

Figure 28: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 29: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 30: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 31: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 32: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 33: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 34: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 35: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 36: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 37: Frozen embeddings vs. finetuned performance for every layer of MolFormer.
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Figure 38: Frozen embeddings vs. finetuned performance for every layer of MolFormer.

E Uni-Mol: Frozen embedding vs. Finetuned Scatter Plots

This appendix section presents a series of scatter plots dedicated to the Uni-Mol model. Each plot
illustrates the relationship between frozen embedding performance and full finetuning performance

across the model’s different layers for a specific downstream task. The plots were ordered by Pearson
correlation.
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Figure 39: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 40: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 41: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 42: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 43: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 44: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 45: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 46: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 47: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.
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Figure 48: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.

30



0.718
12 10
(6. 1
« 0.687 S =
6] S~
o) hO
5 2 IS
7 \"n.
Z 0.6561 s
o 14 I
2 .8
£ 5 T
L 0.626 7
Best-fit: y= —0.60x +1.07
T Fpearson = — 0.48
0.595 T T == —
0.614 0.643 0.673 0.703

Task: bioavailability_ma

Fixed Embeddings AUROC 7

0.733

FineTuned AUROC 1

Task: cyp3a4_substrate_carbonmangels

0.692 3
8
0.661 .. !
0.63 S e
: a2

14 \__3\

0.598 10 S
Best-fit: y = — 0.43x + 0.87
I I'pearson = — 0.56
0.567 T T T -
0.48 0.523 0.566 0.609 0.653

Fixed Embeddings AUROC 1

Figure 49: Frozen embeddings vs. finetuned performance for every layer of Uni-Mol.

F OrbV3-Direct: Frozen embedding vs. Finetuned Scatter Plots

This appendix section presents a series of scatter plots dedicated to the OrbV3-Direct model. Each plot
illustrates the relationship between frozen embedding performance and full finetuning performance
across the model’s different layers for a specific downstream task. The plots were ordered by Pearson

correlation.
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Figure 50: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 51: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 52: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 53: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 54: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 55: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 56: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 57: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 58: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 59: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.
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Figure 60: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Direct.

G OrbV3-Conservative: Frozen embedding vs. Finetuned Scatter Plots

This appendix section presents a series of scatter plots dedicated to the OrbV3-Conservative model.
Each plot illustrates the relationship between frozen embedding performance and full finetuning
performance across the model’s different layers for a specific downstream task. The plots were

ordered by Pearson correlation.
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Figure 61: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 62: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 63: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 64: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 65: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.

FineTuned Spearman 1

Task: clearance_hepatocyte az

0.246

0.22 1

0.194 1

0.168 1

0.142

Best-fit: y =1.16x + — 0.17
3 Ipearson =0.86

0.284

0.302 0.32 0.337
Fixed Embeddings Spearman 1

0.355

FineTuned Spearman 1

Task: vdss_lombardo

0.484 3
4 P
0.452 iz
0.42
L 2
0.388 1 7
e Best-fit: y =1.32x + — 0.38
// I Tpearson = 0.75
0.356 12 : . ‘
0.56 0.579 0.598 0.616 0.635

Fixed Embeddings Spearman *

Figure 66: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 67: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 68: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 69: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 70: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.
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Figure 71: Frozen embeddings vs. finetuned performance for every layer of OrbV3-Conservative.

H Pos-EGNN: Frozen embedding vs. Finetuned Scatter Plots

This appendix section presents a series of scatter plots dedicated to the Pos-EGNN model. Each plot
illustrates the relationship between frozen embedding performance and full finetuning performance
across the model’s different layers for a specific downstream task. The plots were ordered by Pearson

correlation.
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Figure 72: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 73: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 74: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 75: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 76: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 77: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 78: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 79: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 80: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 81: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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Figure 82: Frozen embeddings vs. finetuned performance for every layer of Pos-EGNN.
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