
Under review as a conference paper at ICLR 2023

QUANTUM VISION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, quantum transformers are designed and analysed in detail by extend-
ing the state-of-the-art classical transformer neural network architectures known
to be very performant in natural language processing and image analysis. Building
upon the previous work which use parametrised quantum circuits for data loading
and orthogonal neural layers, we introduce three types of quantum transformers
for training and inference, including a quantum transformer based on compound
matrices, which guarantees theoretical advantages of the quantum attention mech-
anism compared to their classical counterpart both in terms of asymptotic run time
and number of model parameters. These quantum architectures can be built using
shallow quantum circuits and produce qualitatively different classification mod-
els. The three proposed quantum attention layers vary on the spectrum between
closely following the classical transformers and exhibiting more quantum charac-
teristics. As building blocks of the quantum transformer, we propose a method for
loading a matrix as quantum states as well as two new trainable quantum orthog-
onal layers adaptable to different levels of connectivity and quality of quantum
computers. We performed extensive simulations of the quantum transformers on
standard medical image datasets that showed competitive, and at times better per-
formance compared to the classical benchmarks, including the best-in-class clas-
sical vision transformers. The trained quantum transformers require fewer param-
eters as compared to the standard classical benchmarks, confirming the predicted
computational advantage of our quantum attention layers with respect to the size
of the classified images. Finally, we implemented our quantum transformers on
superconducting quantum computers and obtained encouraging results for up to
six qubit experiments.

1 INTRODUCTION

Quantum machine learning Biamonte et al. (2017) uses quantum computation in order to provide
novel and powerful tools to enhance the performance of classical machine learning algorithms.
Some use parametrised quantum circuits to compute quantum neural networks and explore a higher-
dimensional optimisation space Cong et al. (2019); Bharti et al. (2021); Cerezo et al. (2020), while
others exploit interesting properties native to quantum circuits, such as orthogonality or unitarity
Kerenidis et al. (2021); Kiani et al. (2022).

In this work, we focus on transformers, a neural network architecture proposed by Vaswani et al.
(2017) which has been applied successfully to both natural language processing Devlin et al. (2018)
and visual tasks Dosovitskiy et al. (2020), providing state-of-the-art performance across different
tasks and datasets Tay et al. (2020). At a high level, transformers are neural networks that use an
attention mechanism that takes into account the global context while processing the entire input
data element-wise. For visual recognition or text understanding, the context of each element is
vital, and the transformer can capture more global correlations between parts of the sentence or
the image compared to convolutional neural networks without an attention mechanism Dosovitskiy
et al. (2020). In the case of visual analysis for example, images are divided into smaller patches,
and instead of simply performing patch-wise operations with fixed size kernels, a transformer learns
attention coefficients per patch that weigh the attention paid to the rest of the image by each patch.

In one related work, classical transformer architectures and attention mechanisms have been used
to perform quantum tomography Cha et al. (2021). Moreover, a quantum-enhanced transformer for
sentiment analysis has been proposed in Di Sipio et al. (2022), and a self-attention mechanism for

1

Under review as a conference paper at ICLR 2023

text classification has been used in Li et al. (2022). These works use standard variational quantum
circuits to compute the neural networks, and the attention coefficients are calculated classically. A
method for using a natively quantum attention mechanism for reinforcement learning has also been
proposed in Sanches et al. (2022). Yang & Sun (2022) performed semiconductor defect detection
using quantum self-attention, also using standard variational quantum circuits. We also note the
proposals of Cong et al. (2019); Henderson et al. (2020) for variational circuits with similarities to
convolutional neural networks for general purpose image classification.

The difference between the above-mentioned approaches and the proposed approached of this work
mainly stems from the linear algebraic tools we developed which make our quantum circuits much
more Noisy Intermediate-Scale Quantum (NISQ)-friendly with proven scalability in terms of run
time and model parameters, in contrast to variational quantum circuit approaches used in Farhi &
Neven (2018) and Cerezo et al. (2020) which lack proof of scalability Mitarai et al. (2018). This
advantage in scalability of our proposed parametrised quantum circuits is made possible by the
use of a specific amplitude encoding for translating vectors as quantum states, and consistent use
of hamming-weight preserving quantum gates instead of general quantum ansatz. In addition to a
quantum translation of the classical vision transformer, a novel and natively quantum method is pro-
posed in this work, namely the compound transformer, which invokes Clifford Algebra operations
that is hard to compute classically.

While we adapted the vision transformer architecture to ease the translation of the attention layer
into quantum circuits and benchmarked our methods on vision tasks, the proposed approaches for
quantum attention mechanism developed in this work can be easily adapted to apply to other fields
of applications, for example in natural language processing where transformers have been proven to
be particularly efficient Devlin et al. (2018).

Figure 1: Single transformer layer. Dosovit-
skiy et al. (2020). Figure 2: The attention mechanism at

the heart of the transformer layer. V and
W are trainable.

2 METHOD

The main ingredient in a transformer as introduced by Dosovitskiy et al. (2020) is the attention layer,
shown in Fig.2. This attention layer is also the focus of this work which seeks to leverage quantum
circuit for computational advantages. Given an input image X , we transform the input data into
n patches each with dimension of d, and denote each patch i with xi ∈ Rd. The trainable weight
matrix from the linear fully connected layer at the beginning of each attention layer is denoted by
V . The heart of the attention mechanism, i.e. the attention coefficients which weighs each patch
xi to every other patch is denoted by Aij = xiWxj , where W denotes the second trainable weight
matrix.

Based on the architecture shown in Fig.2 we propose three types of quantum transformers (Sections
2.3.1, 2.3.2 and 2.3.4). Section 2.3.3 outlines the approach of combining 2.3.1 and 2.3.2 into one
circuit to perform inference on the quantum circuit once the attention coefficients have been trained,

2

Under review as a conference paper at ICLR 2023

while sections 2.3.1, 2.3.2 and 2.3.4 propose 3 distinct quantum architecture for both training and
inference.

Figure 3: Data loader circuit for a matrix X ∈ Rn×d. The top register uses n qubits and
the vector data loader to load the norms of each row, (∥X1∥ , · · · , ∥Xn∥), to obtain the state
1

∥X∥
∑n

i=1 ∥Xi∥ |ei⟩. The lower register uses d qubits to load each row Xi ∈ Rd sequentially,
by applying the vector loader and their adjoint for each row Xi, with CNOTs controlled by the cor-
responding qubit i of the top register. Each loader on the lower register has depth O(log d).

The first quantum transformer introduced in Section 2.3.1 implements a trivial attention mechanism
which where each patch pays attention only to itself while retaining orthogonality of trained weight
matrices Jia et al. (2019). In the second quantum transformer introduced in Section 2.3.2, coined
the Orthogonal Transformer, we design a quantum analogue for each of the two main components
of a classical attention layer: a linear fully connected layer and the attention matrix to capture the
interaction between patches. In Section 2.3.4, the Compound Transformer, which takes advantage
of the quantum computer to load input states in superposition, is defined. For each of our quantum
methods, we provide theoretical analysis of the computational complexity of the quantum attention
mechanisms which is lower compared to their classical counterparts.

The fundamental building blocks for the implementation of a transformer architecture including the
matrix data loader, quantum orthogonal layers, and a quantum transformer with trivial attention
mechanism are introduced in Sections 2.1, 2.2 and 2.3.1.

2.1 QUANTUM DATA LOADERS FOR MATRICES

Loading a whole matrix X ∈ Rn×d in a quantum state is a powerful technique for machine learning.
We build upon previously published methods to define a quantum data loader for matrices. Johri
et al. (2021) designed quantum circuits to load input vectors using unary amplitude encoding, more
specifically a basis of states of hamming weight 1 where all qubits are in state 0 except one in state
1 is used. The number of required gates to load a vector is d − 1. In this work, we extend their
approach to build a data loader for matrices (Fig.3) where each row, Xi is loaded in superposition.
The required number of gates to load a matrix is (n− 1) + (2n− 1)(d− 1). The resulting state of
the matrix loader shown in Fig.3 is a superposition of the form:

|X⟩ = 1

∥X∥

n∑
i=1

d∑
j=1

Xij |ej⟩ |ei⟩ (1)

Data loaders used for loading vectors and matrices are described in detail in the Appendix B.1.

2.2 QUANTUM ORTHOGONAL LAYERS

The classical attention layer (Fig.2) starts with a linear fully connected layer, where each input, i.e.
patch xi, is a vector and is multiplied by a weight matrix V . To perform this operation quantumly
we generalise the work of Kerenidis et al. (2021), where a quantum orthogonal layer is defined as
a quantum circuit applied on a state |x⟩ (encoded in the unary basis) to produce the output state
|V x⟩. More precisely, V is the matrix corresponding to the unitary of the quantum orthogonal
layer, restricted to the unary basis. In addition to the already existing Pyramid circuit (Fig.5) from
Kerenidis et al. (2021), we define two new types of quantum orthogonal layers with different levels
of expressivity and resource requirements: the butterfly circuit (Fig.4), and the X circuit (Fig.6).

Looking at Table 1, the X circuit is the most suited for noisy hardware. It requires smaller number of
gates while maintaining a path from every input qubit to every output qubit. It is also less expressive
with a restrained set of possible orthogonal matrices and fewer trainable parameters. The butterfly

3

Under review as a conference paper at ICLR 2023

Figure 4: Butterfly Figure 5: Pyramid Figure 6: X

Three different types of Quantum Orthogonal Layer Circuits. Vertical lines represent two-qubit
Reconfigurable Beam Splitter (RBS) gates each parameterised with one independent angle θ (Ap-
pendix B.1).

Circuit Hardware Connectivity Depth # Gates
Pyramid NN 2n− 3 n(n−1)

2
X NN n− 1 2n− 3

Butterfly All-to-all log(n) n
2 log(n)

Table 1: Comparison of different quantum orthogonal layer circuits with n qubits. NN stands for
Nearest Neighbor connectivity.

circuit requires logarithmic circuit depth, a linear number of gates, and exhibits a higher level of
expressivity. It originates from the classical Cooley–Tukey algorithm Cooley & Tukey (1965) used
for Fast Fourier Transform. Note that the butterfly circuit requires the ability to apply gates on all
possible qubit pairs. More details are outlined in Appendix B.2.

As shown in Kerenidis & Prakash (2022), quantum orthogonal layers can be generalised to work
with inputs which encode a vector on a larger basis. Namely, instead of the unary basis, where all
qubits except one are in state 0, basis of hamming weight k can be used as well. Note a basis of
hamming weight k comprises of

(
n
k

)
possible states over n qubits. A vector x ∈ R(

n
k) can be loaded

as a quantum state |x⟩ using only n qubits. Since the quantum orthogonal layers are hamming
weight preserving circuits, the output state from such circuits will also be a vector encoded in the
same basis.

2.3 QUANTUM TRANSFORMERS

The second component of the attention layer is the interaction between patches (Fig.2). Parame-
terised quantum circuits are specifically designed to learn the attention coefficients Aij = xT

i Wxj

by performing xT
i Wxj for a trainable orthogonal matrix W and all pairs of patches xi and xj . After

that, a non-linearity, for example softmax, is applied to obtain each output yi. Three different ap-
proaches for implementing the quantum attention layer are introduced in the next sections, listed in
the order of increasing complexity in terms of quantum resource requirement, which reflect the de-
gree to which quantum circuits are leveraged to replace the attention layer. A comparison between
these different quantum methods is provided in Table 2, which is applicable to both training and
inference.

Table 2 lists 5 key parameters of the proposed quantum architecture which reflect their theoretical
scalability. Classical Vision Transformer has O(2d2) trainable parameters (See Section A), which
can be directly compared with the number of trainable parameters of the proposed quantum ap-
proaches. The fixed number of parameters are required for data loading. The circuit depth together
with the number of distinct circuits dictate the overall run time of the quantum architectures, which
can be compared to the circuit depth of the classical transformer of O(nd2 + n2d). The number
of distinct circuits per quantum architecture indicate the possibility for each architecture to be pro-
cessed in parallel, akin to multi-core CPU processing. Notice that the circuit depth shown in Table
2 already includes the data loader.

4

Under review as a conference paper at ICLR 2023

Algorithm # Qubits Circuit Depth #Trainable parameters #Fixed parameters # Distinct circuits
A - Orthogonal Patch-wise d O(log d) O(d log d) d− 1 n

B - Quantum Orthogonal Transformer d O(log d) O(d log d) 3(d− 1) n+ n2

C - Quantum Attention Mechanism n+ d O(log n+ n log d+ log d) O(d log d) n− 1 + (2n− 1)(d− 1) n
D - Compound Transformer n+ d O(log n+ n log d+ log(n+ d)) O((n+ d) log(n+ d))) n− 1 + (2n− 1)(d− 1) 1

Classical Transformer - O(nd2 + n2d) O(2d2) - -

Table 2: Comparison of different quantum methods to perform a single attention layer of a trans-
former network. n and d stand respectively for the number of patches and their individual dimension.
All quantum orthogonal layers are implemented using the butterfly circuits.

Figure 7: Quantum circuit to perform the matrix multiplication V xi (fully connected layer) using a
data loader for xi and a quantum orthogonal layer for V .

2.3.1 ORTHOGONAL PATCH-WISE NEURAL NETWORK

The orthogonal patch-wise neural network can be thought of as a transformer with a trivial attention
mechanism, where each patch pays attention only to itself. As illustrated in Fig 7, each input patch is
multiplied by the same trainable matrix V and one circuit per patch is used. Each circuit has d qubits
and each patch xi is encoded in a quantum state with a vector data loader. A quantum orthogonal
layer is used to perform multiplication of each patch with V . The output of each circuit is a quantum
state encoding V xi, a vector which is retrieved through tomography.

The computational complexity of this circuit is calculated as follows: from Section 2.1, a data loader
with d qubits has a complexity of log(d) steps. For the orthogonal quantum layer, as shown in Table
1, a butterfly circuit takes log(d) steps, with d

2 log(d) trainable parameters. Overall, the complexity
is O(log(d)) and the number of trainable parameters are of O(d log d). Since this circuit uses one
vector data loader, the number of fixed parameters required is d− 1.

2.3.2 QUANTUM ORTHOGONAL TRANSFORMER

Figure 8: Quantum circuit to compute |xT
i Wxj |2, a single attention coefficient, using data loaders

for xi and xj and a quantum orthogonal layer for W .

Looking at Fig.8, each attention coefficient Aij = xT
i Wxj , xj is calculated first by loading xj into

the circuit with a vector loader followed by a trainable quantum orthogonal layer, W , resulting in
the vector Wxj . Next, an inverse data loader of xi is applied, creating a state where the probability
of measuring 1 on the first qubit is exactly |xT

i Wxj |2 = A2
ij . Note the square that appears in the

quantum circuit is already one type of non-linearity. Using this method, coefficients of A are always
positive, which can still be learned during training as we show later in the Section 3. The estimation
of Aij (and therefore A′

ij if needed, by applying a column-wise softmax classically) is repeated
for each pair of patches and the same trainable quantum orthogonal layer W . The computational
complexity of this quantum circuit is similar to the previous one, with one more data loader.

Putting Figures 7 and 8 together: the quantum circuit presented in Section 2.3.1 is implemented
to obtain each V xj . At the same time, each attention coefficient |xT

i Wxj |2 is computed on the
quantum circuit, which is further post-processed column-wise with the softmax function to obtain
the A′

ij . The two parts can then be classically combined to compute each yi =
∑

j A
′
ijV xj . For

computing |xT
i Wxj |2, we would require two data loaders (2× (d− 1) gates) for xi and xj , and one

Quantum Orthogonal Layer (d log d gates in the case of Butterfly layer) for W . To obtain V xj , we
require d − 1 gates to load each xj and a Quantum Orthogonal Layer (d log d gates in the case of
Butterfly layer) for the matrix V .

5

Under review as a conference paper at ICLR 2023

Figure 9: Quantum circuit to directly apply the attention mechanism, given each coefficient in A.
The first part of the circuit corresponds to the matrix data loader from Fig.3, where Load(∥X∥) is
replaced by Load(Ai). A quantum orthogonal layer from Section 2.2 is used for V .

2.3.3 DIRECT QUANTUM ATTENTION

In Section 2.3.2, the output of the attention layer yi =
∑

j A
′
ijV xj is computed classically once the

quantities A′
ij and V xj have been computed separately with the help of quantum circuits. During

inference, where the matrices V and W have been learnt, and the attention matrix A (or A′) is
stored classically, Direct Quantum Attention implements the attention layer directly on the quantum
computer. The matrix data loader from Fig.3 is used to compute each yi =

∑
j AijV xj using a

single quantum circuit.

In Fig.9, yi, which corresponds to the output patch with index i, is computed using a quantum circuit
where the qubits are split into two main registers. On the top register, the vector Ai, ith row of the
attention matrix A (or A′), is loaded via a vector data loader, as

∑
j Aij |ej⟩ |0⟩.

Next, on the lower register, as in Fig.3, the data loader for each vector xi, and their respective adjoint,
are applied sequentially, with CNOTs controlled on each qubit i of the top register. This gives the
quantum state

∑
j Aij |ej⟩ |xj⟩ , i.e. the matrix X is loaded with all rows re-scaled according to the

attention coefficients. As for any matrix data loader, this requires (n− 1) + (2n− 1)(d− 1) gates
with fixed (non-trainable) parameters.

The last step consists of applying the quantum orthogonal layer V that has been trained before
on the second register of the circuit. As previously established, this operation performs matrix
multiplication between V and the vector encoded on the second register. Since the kth element of
the vector V xj can be written as

∑
q Vkqxjq, we get:

∑
j

Aij |ej⟩ |V xj⟩ =
∑
j

Aij |ej⟩
∑
k

(
∑
q

Vkqxjq) |ek⟩ =
∑
k

∑
j

Aij(
∑
q

Vkqxjq) |ej⟩ |ek⟩ (2)

Since yi =
∑

j AijV xj , its kth element can be written yik =
∑

j Aij(
∑

q Vkqxjq). Therefore, the
quantum state at the end of the circuit can be written as |yi⟩ =

∑
k yik |ϕk⟩ |ek⟩ for some normalised

states |ϕk⟩. Performing tomography on the second register generates the output vector yi.

This circuit is a more direct method to compute each yi. Each yi uses a different Ai in the first
part of the circuit. As shown in Table 2, compared with the previous method, this method requires
fewer circuits to run, but each circuit requires more qubits and a deeper circuit. To analyse the
computational complexity: the first data loader on the top register has n qubit and log n depth; the
following 2n − 1 loaders on the bottom register have d qubits, so (2n − 1) log d depth; and the
final quantum orthogonal layer V implemented using a butterfly circuit, has a depth of log d and
O(d log d) trainable parameters.

2.3.4 QUANTUM COMPOUND TRANSFORMER

Until now, each step of the classical vision transformer has been reproduced closely by quantum
linear algebraic procedures. The same quantum tools can also be used in a more natively quantum
fashion, while retaining the spirit of the classical transformers, as shown in Fig.10. Instead of
loading each patch independently, the Compound Transformer starts with loading all patches in
superposition, and then a orthogonal matrix with trainable weights is used to apply attention to
each patch in superposition Kerenidis & Prakash (2022). The mathematical formalism behind the
Compound Transformer is the second-order compound matrix Horn & Johnson (2012) since both
the input vector and the trainable weight matrix are no longer a simple vector or a simple matrix.

6

Under review as a conference paper at ICLR 2023

Figure 10: Quantum circuit to execute one attention layer of the Compound Transformer. We use a
matrix data loader for X (equivalent to Fig.3) and a quantum orthogonal layer for V applied on both
registers.

This quantum circuit has two registers: the top one of size n and the bottom one of size d. The
full matrix X ∈ Rn×d is loaded into the circuit using the matrix data loader from Section 2.1 with
n + d qubits. This could correspond to the entire image, as every image can be split into n patches
of size d each. Next, a quantum orthogonal layer V is applied on both registers at the same time.
The resulting state is |Y ⟩ = |V(2)X⟩, where V(2) is the 2nd-order compound matrix of V defined
above. Tomography is performed for a state of the form |Y ⟩ = 1

∥Y ∥
∑n

i=1

∑d
j=1 yij |ej⟩ |ei⟩ which

is used to conclude that this quantum circuit produces transformed patches (y1, · · · , yn) ∈ Rn×d.

To calculate the computational complexity of this circuit: the matrix data loader, detailed in Fig.3
has depth of log n+ 2n log d; the Quantum Orthogonal Layer applied on n+ d qubits, has a depth
of log(n+ d) and (n+ d)log(n+ d) trainable parameters if implemented using the butterfly circuit.
Since this circuit uses exactly one matrix loader, the number of fixed parameters is (n− 1) + (2n−
1)(d− 1).

In order to calculate the cost of performing the same operation on a classical computer, consider the
equivalent operation of creating the compound matrix V(2) by first computing all determinants of the
matrix and then performing a matrix-vector multiplication of dimension

(
n+d
2

)
, which takes O((n+

d)4) time. Performing this operation on a quantum computer can provide a polynomial speedup
with respect to n. More generally, this compound matrix operation on an arbitrary input state of
hamming weight k is quite hard to perform classically, since all determinants must be computed,
and a matrix-vector multiplication of size

(
n+d
k

)
needs to be applied.

Overall, the compound transformer can replace both the Orthogonal Patch-wise Network (2.3.1) and
the Quantum Transformer layer (2.3.2) with one combined operation. The use of compound matrix
multiplication makes this approach different from the classical transformers, while retaining some
interesting properties with its classical counterpart: patches are weighted in its global context and
gradients are shared through the determinants used to generate the compound matrix.

The Compound Transformer operates in a similar spirit as the MLPMixer architecture presented
in Tolstikhin et al. (2021). This state-of-the-art architecture used for image classification tasks ex-
changes information between the different patches without using convolution or attention mecha-
nisms. The underlying mechanism operates in two steps by first mixing the patches and then ex-
tracting the patch-wise features using fully connected layers. The Compound Transformer performs
both steps at the same time.

3 EXPERIMENTS

In order to benchmark the proposed methods, we applied them to a set of medical image classifi-
cation tasks, using both simulations and quantum hardware experiments. MedMNIST, a collection
of 12 preprocessed, two-dimensional, open source medical image datasets from Yang et al. (2020;
2021), annotated for classification tasks and benchmarking using a diverse set of classical tech-
niques, is used to provide the complete training and validation data.

3.1 SIMULATION SETTING

Orthogonal Patch-wise Network from Section 2.3.1, Orthogonal Transformer from Section 2.3.2,
and Compound Transformer from Section 2.3.4 were trained via simulation, along with two baseline
methods. The first baseline is the Vision Transformer from Dosovitskiy et al. (2020), which has been

7

Under review as a conference paper at ICLR 2023

successfully applied to different image classification tasks and is described in detail in Appendix A.
The second baseline is the Orthogonal Fully-Connected Neural Network (OrthoFNN), a quantum
method without attention layer that has been previous trained on the RetinaMNIST dataset in Mathur
et al. (2021). For each of the five architectures, one model was trained on each dataset of MedMNIST
and validated using the same validation method as in Yang et al. (2020; 2021).

To ensure comparable evaluations between the five neural networks, similar architectures were im-
plemented for all five. The benchmark architectures all comprise of three parts: pre-processing,
features extraction, and post-processing. The first part is classical and pre-processes the input image
of size 28 × 28 by extracting 16 patches (n = 16) of size 7 × 7. We then map every patch to the
dimension of the feature extraction part of the neural network, by using a fully connected neural
network layer to turn the 7 × 7 patch is a 16 dimensional feature space (d = 16). Note that this
first feature extraction part is a single fully connected layer trained in conjunction to the rest of the
architecture. For the OrthoNN networks, used as our quantum baseline, one patch of size 16 was ex-
tracted from the complete input image using a fully connected neural network layer of size 784×16.
This fully connected layer is also trained in conjunction to the quantum circuits. The second part
of the common architecture transforms the extracted features by applying a sequence of 4 attention
layers on the extracted patches, which maintain the dimension of the layer. Moreover, the same gate
layout, i.e. the butterfly circuit, is used for all circuits that compose the quantum layers. Finally, the
last part of the neural network is classical, which linearly projects the extracted features and outputs
the predicted label.

3.2 SIMULATION RESULTS

Network PathMNIST ChestMNIST DermaMNIST OCTMNIST PneumoniaMNIST RetinaMNIST
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

OrthoFNN (baseline) 0.939 0.643 0.701 0.947 0.883 0.719 0.819 0.516 0.950 0.864 0.731 0.548
OrthoPatchWise 0.953 0.713 0.692 0.947 0.898 0.730 0.861 0.554 0.945 0.867 0.739 0.560
VisionTransformer (baseline) 0.957 0.755 0.718 0.948 0.895 0.727 0.879 0.608 0.957 0.902 0.736 0.548
OrthoTransformer 0.964 0.774 0.703 0.947 0.891 0.719 0.875 0.606 0.947 0.885 0.745 0.542
CompoundTransformer 0.957 0.735 0.698 0.947 0.901 0.734 0.867 0.545 0.947 0.885 0.740 0.565

Network BreastMNIST BloodMNIST TissueMNIST OrganAMNIST OrganCMNIST OrganSMNIST
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

OrthoFNN (baseline) 0.815 0.821 0.972 0.820 0.819 0.513 0.916 0.636 0.923 0.672 0.875 0.481
OrthoPatchWise 0.830 0.827 0.984 0.866 0.845 0.549 0.973 0.786 0.976 0.805 0.941 0.640
VisionTransformer (baseline) 0.824 0.833 0.985 0.888 0.880 0.596 0.968 0.770 0.970 0.787 0.934 0.620
OrthoTransformer 0.770 0.744 0.982 0.860 0.856 0.557 0.968 0.763 0.973 0.785 0.946 0.635
CompoundTransformer 0.859 0.846 0.985 0.870 0.841 0.544 0.975 0.789 0.978 0.819 0.943 0.647

Table 3: Performance analysis using AUC and ACC on each test dataset of MedMNIST of our quan-
tum architectures (Orthogonal PatchWise, Orthogonal Transformer and Compound Transformer)
compared to the classical (Vision Transformer Dosovitskiy et al. (2020)) and quantum (Orthogonal
FNN Kerenidis et al. (2021)) baselines described in Section 3.

A summary of the simulation results is shown in Table 3 where the area under receiver operating
characteristic (ROC) curve (AUC) and the accuracy (ACC) are reported as evaluation metrics. A
full comparison with the classical benchmark provided by Yang et al. (2020) is given in Appendix
D, Table 6.

From Table 3, we observe that Vision Transformer, Orthogonal Transformer, and Compound Trans-
former architectures outperform the Orthogonal Fully-Connected and Orthogonal Patch-wise neural
networks for all 12 tasks. This may be due to the fact that the latter two do not contain on any mech-
anism that exchange information across the patches, confirming the effectiveness of the attention
mechanism to extract useful features from images. Second, all three quantum transformer networks
developed in this work provide competitive performances compared to the two benchmark methods
and outperform the two benchmark methods on 7 out of 12 MedMNIST datasets.

Moreover, comparisons can be made with regard to the number of trainable parameters used by
each architecture. Table 5 presents a resource analysis for the quantum circuits that were simulated
per layer. E.g. the Compound Transformer requires 80 trainable parameters compared to the 512
required by the Classical Vision Transformer. Note again this resource analysis focuses on the
attention layer of each transformer network, and does not include parameters used for preprocessing
the images (see Appendix A), other parts found in the transformer layer, nor the single layer used in
the final classification (Fig.11), which are common to all simulated methods.

8

Under review as a conference paper at ICLR 2023

Overall, our quantum transformers have reached comparable levels of accuracy compared to the
classical equivalent transformers, while using a smaller number of trainable parameters, providing
confirmation of our theoretical predictions on a small scale. Summary of the hardware experiments
are listed in Table 4 with details to be found in Appendix C.3.

Model Classical (JAX) IBM Simulator IBM Hardware
AUC ACC AUC ACC AUC ACC

Google AutoML (Best in Yang et al. (2021)) 0.750 53.10 % - - - -
VisionTransformer (classical benchmark) 0.736 55.75 % - - - -

OrthoPatchWise (Pyramid Circuit) 0.738 56.50 % 0.731 54.75 % 0.727 51.75 %
Ortho Transformer (Pyramid Circuit) 0.729 55.00 % 0.715 55.00 % 0.717 54.50 %

Ortho Transformer with Quantum Attention 0.749 56.50 % 0.743 55.50 % 0.746 55.00 %
CompoundTransformer (X Circuit) 0.729 56.50 % 0.683 56.50 % 0.666 45.75 %
CompoundTransformer (\ Circuit) 0.716 55.75 % 0.718 55.50 % 0.704 49.00 %

Table 4: Hardware Results for RetinaMNIST using various models. Note that “\ Circuit” (see
Appendix C.3.2) contains a single diagonal of trainable RBS gates. Classical (JAX): classical code
run by JAX, equivalent to quantum operations. IBM Simulator: code compiled to run on actual IBM
hardware and executed using their Aer Simulator.

Model Qubits Number of Fixed Parameters for Data Loading Number of Trainable Parameters Circuit Depth Number of
Distinct Circuits

Orthogonal PatchWise 16 15 32 9 16
Orthogonal Transformer 16 45 64 9 & 13 272
Compound Transformer 32 480 80 150 1

Table 5: Resource analysis on a single attention layer used for the MedMNIST simulations (Section
3.1). The number of trainable parameters for each attention layer of each quantum network are to be
compared with the 512 trainable parameters per attention layer of the classical Vision Transformers.
Note that the Quantum Transformer is using two different types of circuits per layer.

4 CONCLUSION

In this work, three different quantum transformers are presented: Orthogonal Patchwise implements
trivial attention mechanism and is the simplest approach; Orthogonal Transformer is the most similar
to the classical transformers; Compound Transformer steps away from the classical architecture with
a quantum-native linear algebraic operation that cannot be efficiently done classically: multiplying
a vector with a higher-dimensional compound matrix. Inside all these quantum transformers are
the quantum orthogonal layers, which efficiently apply matrix multiplication on vectors encoded on
specific quantum basis states. All circuits implementing orthogonal matrix multiplication can be
trained using backpropagation detailed in Kerenidis et al. (2021).

As shown in Table 2, our quantum circuits show definite advantage in terms of computational com-
plexity of the attention layer. In addition to theoretical analysis, we performed extensive numerical
simulations and quantum hardware experiments, which shows that our quantum circuits can clas-
sify the small MedMNIST images just as well as or at times better than the state-of-the-art classical
methods (Table 3). Our quantum methods have the potential to address over-fitting issues by using
a small number of parameters.

While the run time of the quantum fully connected and attention layers has been theoretically proven
to be advantageous, this is hard to observe on the current quantum computers due to their limited
size, high level of noise, and latency of cloud access. From our hardware experiments, it can be
observed that results from the current hardware become too noisy as soon as the number of qubits or
the size of the quantum circuit increased (see Table 4). Hence the exact number of parameters used
to run the quantum circuits is expected to change with the availability of larger quantum computers,
which will allow for larger quantum operations and eliminate usage of classical preprocessing to
downsize the input images.

Overall, our results are encouraging and show the benefit of using trainable quantum circuits to
perform efficient linear algebra operations. This approach allows for much better control over the
size of the Hilbert space that is explored by the model and provides models that are both expressive
and trainable.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

It is fairly straightforward to reproduce our results. We have used publicly available MedMNIST
datasets, the benchmarks of which are also available online. The steps for preprocessing the data
points to make it into patches have been well defined in Appendix A. Implementing a quantum
orthogonal layer can be done both on quantum hardware (or simulator) by defining the circuit and
by classically performing the quantum operations. We have used JAX to perform our classical
simulations and IBM’s simulator and hardware for the quantum experiments. We tried to find decent
enough hyperparameters for all our models but we do not claim to have found the best ones.

REFERENCES

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav
Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. Noisy
intermediate-scale quantum (nisq) algorithms. arXiv preprint arXiv:2101.08448, 2021.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fu-
jii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum
algorithms. arXiv preprint arXiv:2012.09265, 2020.

Peter Cha, Paul Ginsparg, Felix Wu, Juan Carrasquilla, Peter L McMahon, and Eun-Ah Kim.
Attention-based quantum tomography. Machine Learning: Science and Technology, 3(1):01LT01,
2021.

Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature
Physics, 15(12):1273–1278, 2019.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Riccardo Di Sipio, Jia-Hong Huang, Samuel Yen-Chi Chen, Stefano Mangini, and Marcel Worring.
The dawn of quantum natural language processing. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8612–8616. IEEE, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term pro-
cessors. arXiv:1802.06002, 2018.

Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook. Quanvolutional
neural networks: powering image recognition with quantum circuits. Quantum Machine Intelli-
gence, 2(1):1–9, 2020.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Kui Jia, Shuai Li, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural networks.
IEEE transactions on pattern analysis and machine intelligence, 2019.

10

http://github.com/google/jax
http://github.com/google/jax

Under review as a conference paper at ICLR 2023

S Johri, S Debnath, A Mocherla, A Singh, A Prakash, J Kim, and I Kerenidis. Nearest cen-
troid classification on a trapped ion quantum computer. npj Quantum Information (to appear),
arXiv:2012.04145, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International Conference on Ma-
chine Learning, pp. 5156–5165. PMLR, 2020.

Iordanis Kerenidis and Anupam Prakash. Quantum machine learning with subspace states. arXiv
preprint arXiv:2202.00054, 2022.

Iordanis Kerenidis, Jonas Landman, and Natansh Mathur. Classical and quantum algorithms for
orthogonal neural networks. arXiv:2106.07198, 2021.

Bobak Kiani, Randall Balestriero, Yann Lecun, and Seth Lloyd. projunn: efficient method for
training deep networks with unitary matrices. arXiv preprint arXiv:2203.05483, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Guangxi Li, Xuanqiang Zhao, and Xin Wang. Quantum self-attention neural networks for text
classification. arXiv preprint arXiv:2205.05625, 2022.

Natansh Mathur, Jonas Landman, Yun Yvonna Li, Martin Strahm, Skander Kazdaghli, Anupam
Prakash, and Iordanis Kerenidis. Medical image classification via quantum neural networks.
arXiv preprint arXiv:2109.01831, 2021.

Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit learning.
Physical Review A, 98(3):032309, 2018.

Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. Regularizing deep neural
networks by noise: Its interpretation and optimization. NeurIPS, 2017.

Fabio Sanches, Sean Weinberg, Takanori Ide, and Kazumitsu Kamiya. Short quantum circuits in re-
inforcement learning policies for the vehicle routing problem. Physical Review A, 105(6):062403,
2022.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys (CSUR), 2020.

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy.
Mlp-mixer: An all-mlp architecture for vision. In NeurIPS, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight automl
benchmark for medical image analysis. arXiv preprint arXiv:2010.14925, 2020.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for 2d and 3d biomedical
image classification. arXiv preprint arXiv:2110.14795, 2021.

Yuan-Fu Yang and Min Sun. Semiconductor defect detection by hybrid classical-quantum deep
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 2323–2332, 2022.

Xue Ying. An overview of overfitting and its solutions. In Journal of Physics: Conference Series,
volume 1168, pp. 022022. IOP Publishing, 2019.

11

Under review as a conference paper at ICLR 2023

A VISION TRANSFORMERS

Here, the details of a classical Vision Transformers introduced by Dosovitskiy et al. (2020) are
outlined. Some slight changes in the architecture have been made to ease the correspondence with
quantum circuits. We also introduce important notations that will be reused in the quantum methods.

The transformer network starts by decomposing an image into patches and pre-processing the set
of patches to map each one into a vector, as shown in Fig.12. The initial set of patches is enhanced
with an extra vector of the same size as the patches, called class embedding. This class embedding
vector is used at the end of the network, to feed into a fully connected layer that yields the output
(see Fig.11). We also include one trainable vector called positional embedding, which is added to
each vector. At the end of this pre-processing step, we obtain the set of n vectors of dimension d,
denoted xi to be used in the next steps.

Figure 11: Representation of a Vision Transformer network architecture. Dosovitskiy et al. (2020).

Figure 12: Patch division part of the transformer network for an image split into four patches. Note
Class Embedding and Position Embedding are trainable vectors. Dosovitskiy et al. (2020).

Next, feature extraction is performed using a transformer layer Vaswani et al. (2017); Dosovitskiy
et al. (2020) which is repeated L times, as shown in Fig.1. Within the transformer layer, we first
apply layer normalisation over all patches xi, and then apply the attention mechanism detailed in
Fig.2. After this part, we obtain a state to which we add the initial input vectors before normalisation
in an operation called residual layer, represented by the blue arrow in Fig.1, followed by another
layer normalisation. After this, we apply a Multi Layer Perceptron (MLP), which consists of multi-
ple fully connected linear layers for each vector that result in same-sized vectors. Again, we add the
residual from just before the last layer normalisation, which is the output of one transformer layer.

12

Under review as a conference paper at ICLR 2023

After repeating the transformer layer L times, we finally take the vector corresponding to the class
embedding, that is the vector corresponding to x0, in the final output and apply a fully connected
layer of dimension (d × number of classes) to provide the final classification result (see Fig.11). It
is important to observe here that we only use the first vector outcome in the final fully connected
layer to do the classification (therefore the name ”class embedding”).

Looking inside the attention mechanism (see Fig.2), we start by using a fully connected linear layer
with trainable weights V to calculate for each patch xi the feature vector V xi. Then to calculate
the attention coefficients, we use another trainable weight matrix W and define the attention given
by patch xi to patch xj as xT

i Wxj . Next, for each patch xi, we get the final extracted features as
the weighted sum of all feature vectors V xj where the weights are the attention coefficients. This
is equivalent to performing a matrix multiplication with a matrix A defined by Aij = xT

i Wxj .
Note, in classical transformer architecture, a column-wise softmax is applied to all Aij and attention
coefficients A′

ij = softmaxj(Aij) is used instead. Overall, the attention mechanism makes use of
2d2 trainable parameters, evenly divided between V and W each of size d× d.

In fact, the above description is a slight variant from the original transformers proposed in Vaswani
et al. (2017), where the authors used two trainable matrices to obtain the attention coefficients instead
of one (W) in this work. This choice was made to simplify the quantum implementation but could
be extended to the original proposal using the same quantum tools.

Computational complexity of classical attention mechanism depends mainly on the number of
patches n and their individual dimension d: the first patch-wise matrix multiplication with the ma-
trix V ∈ Rd×d takes O(nd2) steps, while the subsequent multiplication with the large matrix A′

takes O(n2d). Obtaining A′ from W requires O(nd2) steps as well. Overall, the complexity is
O(nd2+n2d). In classical deep learning literature, the emphasis is made on the second term, which
is usually the most costly. Note that a recent proposal Katharopoulos et al. (2020) proposes a differ-
ent attention mechanism as a linear operation that only has a O(nd2) computational complexity.

We compare the classical computational complexity with those of our quantum methods in Table 2.
These running times have an real impact on both training and inference, as they measure how the
time to perform each layer scales with the number and dimension of the patches.

B QUANTUM TOOLS (EXTENDED)

B.1 QUANTUM DATA LOADERS FOR MATRICES

RBS gates implement the following unitary:

RBS(θ) =

 1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (3)

In order to perform a machine learning task with a quantum computer, classical data (a vector,
a matrix) needs to be loaded into the quantum circuit. The technique we choose for this task is
called amplitude encoding, which uses the classical scalar component of the data as amplitudes of
a quantum state made of d qubits. In particular we build upon previous methods to define quantum
data loaders for matrices, as shown in Fig.3.

Johri et al. (2021) proposes three different circuits to load a vector x ∈ Rd using d − 1 gates for
a circuit depth ranging from O(log(d)) to O(d) as desired (see Fig.13). These data loaders use
the unary amplitude encoding, where a vector x = (x1, · · · , xd) is loaded in the quantum state
|x⟩ = 1

∥x∥
∑d

i=1 xi |ei⟩ where |ei⟩ is the quantum state with all qubits in 0 except the ith one in
state 1 (e.g. |0 · · · 010 · · · 0⟩). The circuit uses RBS gates: a parametrised two-qubit gate given by
Eq.3.

The d − 1 parameters θi of the RBS gates are classically pre-computed to ensure that the output of
the circuit is indeed |x⟩.
We require a data loader for matrices. Given a matrix X ∈ Rn×d, instead of loading a flattened
vector, rows Xi are loaded in superposition. As shown in Fig.3, on the top qubit register, we first

13

Under review as a conference paper at ICLR 2023

Figure 13: Three possible data loaders for d-dimensional vectors (d = 8). From left to right: the
parallel, diagonal, and semi-diagonal circuit have respectively a circuit depth of log(d), d, and d/2.
The X gate represent the Pauli X gate, and the vertical lines represent RBS gates with tunable
parameters.

load the vector (∥X1∥ , · · · , ∥Xn∥) made of the norms of each row, using a data loader for a vector
and obtain a state 1

∥X∥
∑n

i=1 ∥Xi∥ |ei⟩. Then, on a lower register, we are sequentially loading each
row Xi ∈ Rd. To do so, we use vector data loaders and their adjoint, as well as CNOTs controlled
on the ith qubit of the top register. The resulting state is a superposition of the form:

|X⟩ = 1

∥X∥

n∑
i=1

d∑
j=1

Xij |ej⟩ |ei⟩

One immediate application of data loaders that construct amplitude encodings is the ability to per-
form fast inner product computation with quantum circuits. Applying the inverse data loader of xi

after the regular data loader of xj effectively creates a state of the form ⟨xi, xj⟩ |e1⟩ + |G⟩ where
|G⟩ is a garbage state. The probability of measuring |e1⟩, which is simply the probability of having
a 1 on the first qubit, is | ⟨xi, xj⟩ |2. Techniques to retrieve the sign of the inner product have been
developed in Mathur et al. (2021).

B.2 QUANTUM ORTHOGONAL LAYERS

In this section, we outline the concept of quantum orthogonal layers used in neural networks, which
generalises the work in Kerenidis et al. (2021). These layers correspond to parametrised circuits of
n qubits made of RBS gates. More generally, RBS gates preserve the number of ones and zeros in
any basis state: if the input to a quantum orthogonal layer is a vector in unary amplitude encoding,
the output will be another vector in unary amplitude encoding. Similarly, if the input quantum
state is a superposition of only basis states of hamming weight 2, so is the output quantum state.
This output state is precisely the result of a matrix-vector product, where the matrix is the unitary
matrix of the quantum orthogonal layer, restricted to the basis used. Therefore, for unary basis, we
consider a n × n matrix W instead of the full 2n × 2n unitary. Similarly for the basis of hamming
weight two, we can restrict the unitary to a

(
n
2

)
×

(
n
2

)
matrix. Since the reduced matrix conserves

its unitary property and has only real values, these are orthogonal matrices. More generally, we can
think of such hamming weight preserving circuits with n qubits as block-diagonal unitaries that act
separately on n+ 1 subspaces, where the k-th subspace is defined by all computational basis states
with hamming weight equal to k. The dimension of these subspaces is equal to

(
n
k

)
.

There exist many possibilities for building a quantum orthogonal layer, each with different proper-
ties. The Pyramid circuit, proposed in Kerenidis et al. (2021), is composed of exactly n(n − 1)/2
RBS gates. This circuit requires only adjacent qubit connectivity, which is the case for most super-
conducting qubit hardware. More precisely, the set of matrices that are equivalent to the quantum
orthogonal layers with pyramidal layout is exactly the Special Orthogonal Group, made of orthogo-
nal matrices with determinant equal to +1. We have showed that by adding a final Z gate on the last
qubit would allow having orthogonal matrices with −1 determinant. The pyramid circuit is therefore
very general and cover all the possible orthogonal matrices of size n× n.

The two new types of quantum orthogonal layers we have introduced are the butterfly circuit (Fig.4),
and the X circuit (Fig.6) (Section 2.2).

14

Under review as a conference paper at ICLR 2023

There exists a method Kerenidis et al. (2021) to compute the gradient of each parameter θi in order
to update them. This backpropagation method for the pyramid circuit takes time O(n2), correspond-
ing to the number of gates, and provided a polynomial improvement in run time compared to the
previously known orthogonal neural network training algorithms Jia et al. (2019). The exact same
method developed for the pyramid circuit can be used to perform quantum backpropagation on the
new circuits introduced in this paper. The run time also corresponds to the number of gates, which
is lower for the butterfly and X circuits. See Table 1 for full details on the comparison between the
three types of circuits.

C MEDICAL IMAGE CLASSIFICATION VIA QUANTUM TRANSFORMERS
(EXTENDED)

C.1 DATASETS

In order to benchmark our models, we used MedMNIST, a collection of 12 pre-processed, two-
dimensional medical image open datasets Yang et al. (2020; 2021). The collection has been stan-
dardised for classification tasks on 12 different imaging modalities, each with medical images of
28× 28 pixels. All three quantum transformers and two benchmark methods were trained and vali-
dated on all 12 MedMNIST datasets. For the hardware experiments, we focused on one dataset, Reti-
naMNIST. The MedMNIST dataset was chosen for our benchmarking efforts due to its accessible
size for simulations of the quantum circuits and hardware experiments, while being representative
of one important field of computer vision application: classification of medical images.

C.2 SIMULATIONS

First, simulations of our models are performed on the 2D MedMNIST datasets and demonstrate
that the proposed quantum attention architecture reaches accuracy comparable to and at times better
than the various standard classical models. Next, the setting of our simulations are described and
the results compared against those reported in the AutoML benchmark performed by the authors in
Yang et al. (2021).

C.2.1 SIMULATION SETTING MEDMNIST

The JAX package Bradbury et al. (2018) was used to efficiently simulate the complete training
procedure of the five benchmark architectures. The experimental hyperparameters used in Yang
et al. (2021) were replicated for our benchmark: every model is trained using the cross-entropy loss
with the Adam optimiser Kingma & Ba (2015) for 100 epochs, with batch size of 32 and a learning
rate of 10−3 that is decayed by a factor of 0.1 after 50 and 75 epochs.

The 5 different neural networks were trained over 3 random seeds, and the best overall performance
for each one of them was selected. The evaluation procedure is similar to the AutoML benchmark
in Yang et al. (2020; 2021), and the benchmark results are shown in Table 3 where the area under
receiver operating characteristic (ROC) curve (AUC) and the accuracy (ACC) are reported as eval-
uation metrics. A full comparison with the classical benchmark provided by Yang et al. (2020) is
given in (Appendix D, Table 6).

C.2.2 SIMULATION RESULTS MEDMNIST

From Table 3, we observe that Quantum Orthogonal and Compound Transformer architectures out-
perform the Orthogonal Fully-Connected and Orthogonal Patch-wise neural networks most of the
time. This may be due to the fact that the latter do not rely on any mechanism that exchange
information across the patches. Second, all quantum neural networks provide very competitive per-
formances compared to the AutoML benchmark and outperform their classical counterparts on 7 out
of 12 MedMNIST datasets.

Moreover, comparisons can be made with regard to the number of parameters used by each archi-
tecture, in particular for feature extraction. Table 5 presents a resource analysis for the quantum
circuits that were simulated, per layer. It includes the number of qubits, the number of gates with
trainable parameters, and the number of gates with fixed parameters used for loading the data. The

15

Under review as a conference paper at ICLR 2023

table shows that our quantum architectures have a small number of trainable parameters per layer.
The global count for each quantum method is as follows.

• Orthogonal Patch-wise Neural Network: 32 parameters per circuit, 16 circuits per layer
which use the same 16 parameters, and 4 layers, for a total of 128 trainable parameters.

• Quantum Orthogonal Transformer: 32 parameters per circuit, 17 circuits which use the
same 16 parameters and another 289 circuits which use another set of 16 parameters per
layer, and 4 layers, for a total of 256 trainable parameters.

• Compound Transformer: 80 parameters per circuit, 1 circuit per layer, and 4 layers, for a
total of 320 trainable parameters.

These numbers are to be compared with the number of trainable parameters in the classical Vision
Transformer that is used as a baseline. As stated in Section A, each classical attention layer requires
2d2 trainable parameters, which in the simulations performed here corresponds to 512. Note again
this resource analysis focuses on the attention layer of the each transformer network, and does not
include parameters used for the preprocessing of the images (see Section C.2.1), as part of other
transformer layers (Fig.1), and for the single layer used in the final classification (Fig.11), which are
common in all cases.

More generally, performance of other classical neural network models provided by the authors of
MedMNIST is compared to our approaches in Table 6 found in the Appendix. Some of these clas-
sical neural networks reach somewhat better levels of accuracy, but are known to use an extremely
large number of parameters. For instance, the smallest reported residual network has approximately
a total number of 107 parameters, and the automated machine learning algorithms train numerous
different architectures in order to reach that performance.

Based on the results of the simulations in this section, quantum transformers are able to train across a
number different of classification tasks, deliver performances that are highly competitive and some-
times better than the equivalent classical methods.

C.3 QUANTUM HARDWARE EXPERIMENTS

Quantum hardware experiments were performed on one specific dataset: RetinaMNIST. It has 1080
images for training, 120 images for validation, and 400 images for testing. Each image contains
28× 28 RGB pixels. Each image is classified into 1 of 5 classes (ordinal regression).

C.3.1 HARDWARE DESCRIPTION

The hardware demonstration was performed on two different superconducting quantum computers
provided by IBM, with the smaller experiments performed on the 16-qubit ibmq guadalupe machine
(see Fig.14) and the larger ones on the 27-qubit ibm hanoi machine. Results are reported here from
experiments with four, five and six qubits; experiments with higher numbers of qubits, which entails
higher numbers of gates and depth, did not produce meaningful results.

Figure 14: Connectivity of the 16-qubit ibmq guadalupe quantum computer.

Note that the main sources of noise are the device noise and the finite sampling noise. In general,
noise is undesirable during computations. In the case of a neural network, however, noise may not be
as troublesome: noise can help escape local minima Noh et al. (2017), or act as data augmentation to
avoid over-fitting. In classical deep learning, noise is sometimes artificially added for these purposes
Ying (2019). Despite this, when the noise is too large, we also see a drop in the accuracy.

16

Under review as a conference paper at ICLR 2023

Figure 15: Connectivity of the 27-qubit ibm hanoi quantum computer.

C.3.2 HARDWARE RESULTS

Hardware experiments were performed with four, five and six qubits to push the limits of the current
hardware, in terms of both the number of qubits and circuit depth. Three quantum proposals were
run: the Orthogonal Patch-wise network (from Section 2.3.1), the Quantum Orthogonal transformers
(from Sections 2.3 and 2.3.3) and finally the Quantum Compound Transformer (from Section 2.3.4).

Each quantum model was trained using a JAX-based simulator, and inference was performed on the
entire test dataset of 400 images of the RetinaMNIST on the IBM quantum computers.

The first model, the Orthogonal Patch-wise neural network, was trained using 16 patches per image,
4 features per patch, and one 4×4 orthogonal layer, using a 4-qubit pyramid as the orthogonal layer.
The experiment used 16 different quantum circuits of 9 RBS gates per circuit per image. The result
was compared with an equivalent classical (non-orthogonal) patch-wise neural network, and a small
advantage in accuracy for the quantum native method could be reported.

The second model, the Quantum Orthogonal Transformer, used 4 patches per image, 4 features
per patch, and an attention mechanism with one 4 × 4 orthogonal layer and trainable attention
coefficients. 4-qubit pyramids were used as orthogonal layers. The experiment used 25 different
quantum circuits of 12 RBS gates per circuit per image and 15 different quantum circuits of 9
RBS gates per circuit per image.

The third set of experiments ran the Orthogonal Transformer with the quantum attention mechanism.
We used 4 patches per image, 4 features per patch, and a quantum attention mechanism that paid
attention to only the neighbouring patch, thereby using a 5-qubit quantum circuit with the X as
the orthogonal layer. The experiment used 12 different quantum circuits of 14 RBS gates and 2
CNOT s per circuit per image.

The last two quantum proposals were compared with a classical transformer network with a similar
architecture and demonstrated similar level of accuracy.

Finally, the fourth experiment was performed on the ibmq hanoi machine with 6 qubits, with the
Compound Transformer, using 4 patches per image, 4 features per patch, and one orthogonal layer
using the X layout. The hardware results were quite noisy with the X layer, therefore the same
experiments were performed with a further-reduced orthogonal layer named the “\Circuit”: half of
a X Circuit (Fig.6) where only one diagonal of RBS gates is kept, and which reduced the noise in
the outcomes. The experiment used 2 different quantum circuits of 18 RBS gates and 3 CNOT s
per circuit per image.

Note that with the restriction to states with a fixed hamming weight, strong error mitigation tech-
niques become available. Indeed, as we expect to obtain only quantum superpositions of unary states
or states with hamming weight 2 in the case of Compound Transformers, at every layer, every mea-
surement can be processed to discard the ones that have a different hamming weight i.e. states with
more than one (or two) qubit in state |1⟩. This error mitigation procedure can be applied efficiently
to the results of a hardware demonstration, and has been used in the results presented in this paper.

The conclusion from the hardware experiments is that all quantum proposals achieve state-of-the-art
test accuracy, comparable to classical networks. In particular, the quantum Compound methods on
the simulator are notably more efficient than the classical networks, and they have no efficient clas-
sical equivalent. However, the current hardware is often too noisy to achieve similar performance,
even with a low number of qubits.

17

Under review as a conference paper at ICLR 2023

D EXTENDED PERFORMANCE ANALYSIS

We add our results to the already existing results on the MedMNIST Yang et al. (2021) datasets in
the table 6 below.

Network PathMNIST ChestMNIST DermaMNIST OCTMNIST PneumoniaMNIST RetinaMNIST
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 (28) 0.983 0.907 0.768 0.947 0.917 0.735 0.943 0.743 0.944 0.854 0.717 0.524
ResNet-18 (224) 0.989 0.909 0.773 0.947 0.920 0.754 0.958 0.763 0.956 0.864 0.710 0.493
ResNet-50 (28) 0.990 0.911 0.769 0.947 0.913 0.735 0.952 0.762 0.948 0.854 0.726 0.528
ResNet-50 (224) 0.989 0.892 0.773 0.948 0.912 0.731 0.958 0.776 0.962 0.884 0.716 0.511
auto-sklearn 0.934 0.716 0.649 0.779 0.902 0.719 0.887 0.601 0.942 0.855 0.690 0.515
auto-keras 0.959 0.834 0.742 0.937 0.915 0.749 0.955 0.763 0.947 0.878 0.719 0.503
auto-ml 0.944 0.728 0.914 0.948 0.914 0.768 0.963 0.771 0.991 0.946 0.750 0.531
VisionTransformer 0.957 0.755 0.718 0.947 0.895 0.727 0.923 0.830 0.957 0.902 0.749 0.562
OrthoFNN 0.939 0.643 0.701 0.947 0.883 0.719 0.819 0.516 0.950 0.864 0.731 0.548
OrthoPatchWise 0.953 0.713 0.692 0.947 0.898 0.730 0.861 0.554 0.945 0.867 0.739 0.560
OrthoTransformer 0.964 0.774 0.703 0.947 0.891 0.719 0.875 0.606 0.947 0.885 0.745 0.542
CompoundTransformer 0.957 0.735 0.698 0.947 0.901 0.734 0.867 0.545 0.947 0.885 0.740 0.565

Network BreastMNIST BloodMNIST TissueMNIST OrganAMNIST OrganCMNIST OrganSMNIST
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 (28) 0.901 0.863 0.998 0.958 0.930 0.676 0.997 0.935 0.992 0.900 0.972 0.782
ResNet-18 (224) 0.891 0.833 0.998 0.963 0.933 0.681 0.998 0.951 0.994 0.920 0.974 0.778
ResNet-50 (28) 0.857 0.812 0.997 0.956 0.931 0.680 0.997 0.935 0.992 0.905 0.972 0.770
ResNet-50 (224) 0.866 0.842 0.997 0.950 0.932 0.680 0.998 0.947 0.993 0.911 0.975 0.785
auto-sklearn 0.836 0.803 0.984 0.878 0.828 0.532 0.963 0.762 0.976 0.829 0.945 0.672
auto-keras 0.871 0.831 0.998 0.961 0.941 0.703 0.994 0.905 0.990 0.879 0.974 0.813
auto-ml 0.919 0.861 0.998 0.966 0.924 0.673 0.990 0.886 0.988 0.877 0.964 0.749
VisionTransformer 0.824 0.833 0.985 0.888 0.880 0.596 0.968 0.770 0.970 0.787 0.934 0.620
OrthoFNN 0.815 0.821 0.972 0.820 0.819 0.513 0.916 0.636 0.923 0.672 0.875 0.481
OrthoPatchWise 0.830 0.827 0.984 0.866 0.845 0.549 0.973 0.786 0.976 0.805 0.941 0.640
OrthoTransformer 0.770 0.744 0.982 0.860 0.856 0.557 0.968 0.763 0.973 0.785 0.946 0.635
CompoundTransformer 0.859 0.846 0.985 0.870 0.841 0.544 0.975 0.789 0.978 0.819 0.943 0.647

Table 6: Extended Performance Analysis in metrics of AUC and ACC on each test dataset of MedM-
NIST where we included the results reported in Yang et al. (2021).

18

	Introduction
	Method
	Quantum Data Loaders for Matrices
	Quantum Orthogonal Layers
	Quantum Transformers
	Orthogonal Patch-wise Neural Network
	Quantum Orthogonal Transformer
	Direct Quantum Attention
	Quantum Compound Transformer

	Experiments
	Simulation Setting
	Simulation Results

	Conclusion
	Vision Transformers
	Quantum Tools (Extended)
	Quantum Data Loaders for Matrices
	Quantum Orthogonal Layers

	Medical Image Classification via Quantum Transformers (Extended)
	Datasets
	Simulations
	Simulation setting MedMNIST
	Simulation results MedMNIST

	Quantum Hardware Experiments
	Hardware Description
	Hardware Results

	Extended Performance Analysis

