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Abstract

Recent advancements in the field of intelligent001
agents, especially those leveraging large lan-002
guage models, have been impressively substan-003
tial. However, these models still encounter sig-004
nificant challenges in interactive and dynamic005
scenarios, such as online shopping, mainly due006
to their lack of knowledge of the current envi-007
ronment. In this paper, we propose an innova-008
tive online method for environmental adapta-009
tion. The trajectories generated by large lan-010
guage models during task execution are uti-011
lized to update a global action-observation tree.012
When encountering new tasks, our method013
transforms the action-observation tree into text014
and integrates this information into the con-015
text to aid the model in solving the task. This016
iterative process enables the model to progres-017
sively enhance its understanding of the envi-018
ronment, resulting in steadily improved per-019
formance over time. Our approach obviates020
the need for offline fine-tuning and serves as a021
versatile plug-and-play solution applicable to022
various scenarios. In two widely-used environ-023
ments, Webshop and Alfworld, our method has024
significantly improved performance beyond Re-025
Act and Reflection, achieving higher accuracy026
and reducing the required token expenditure.027

1 Introduction028

In the constantly evolving field of Natural Lan-029

guage Processing (NLP), the issue of distribution030

discrepancies between the downstream tasks and031

the pretraining corpora has always been a criti-032

cal area of research. In the past, researchers have033

proposed various simple yet effective adaptation034

methods to address inconsistencies at both the do-035

main and task levels, as detailed in Table 1. How-036

ever, with the rapid advancement of large language037

model agents and their real-world applications, a038

new form of distribution discrepancy has become039

increasingly prominent: the environmental level.040

This discrepancy is particularly evident in real-041

Method Level

Domain Task Environment

Gururangan et al. (2020) ✓ ✓

Wu et al. (2021) ✓

Li et al. (2021) ✓

Ours ✓

Table 1: Comparison between our method and previous
adaptive methods across different problem settings.

world scenarios that involve interactive decision- 042

making, such as online shopping, where each ac- 043

tion can modify the web page environment. Since 044

models were not pretrained with knowledge of 045

various environmental interactions, and given that 046

the real-world environment is constantly changing, 047

achieving efficient planning and rational operation 048

by the language model remains a challenge. 049

To address this issue, we propose an online en- 050

vironment adaptation method. Specifically, for 051

each environment, we explicitly iterate and up- 052

date a global action-observation tree. Initially, tra- 053

jectories generated from the interaction between 054

the language agent and the environment are trans- 055

formed into abstract action-observation sequences 056

through the in-context learning approach. These 057

action-observation sequences are then integrated 058

into the global tree. Subsequently, the sequences of 059

nodes from the global action-observation tree are 060

transformed into textual information through an in- 061

context learning approach and integrated into the 062

context. This enables the language model to utilize 063

this information for more accurate and effective 064

resolution of the subsequent task. The newly gener- 065

ated trajectories during the task resolution are then 066

used to further update the global tree. Through this 067

iterative process, the model progressively enhances 068

its understanding of the environment, thereby in- 069

creasing the success rate of task resolution. This 070

entire process does not require additional human 071

annotation of environmental information, facilitat- 072
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ing the language model’s adaptation to the envi-073

ronment. Compared to offline fine-tuning methods,074

our approach fully leverages the language model’s075

capability for in-context learning, achieving online076

adaptation. So our approach more conveniently077

and swiftly addresses the challenges posed by the078

dynamic updates often seen in real environments,079

such as web page updates or changes in the place-080

ment of objects in embodied scenarios, among oth-081

ers.082

The contributions of our study are threefold:083

1. To tackle the challenge of large language mod-084

els lacking environmental knowledge in real-085

world sequential decision-making scenarios,086

we propose an online, dynamic method for en-087

vironmental adaptation. This approach allows088

the model to increasingly understand its envi-089

ronment as it completes more tasks, leading090

to progressively better performance.091

2. Leveraging the in-context learning of large092

language models, our method requires no of-093

fline fine-tuning. This plug-and-play approach094

is well-suited for the ever-changing and updat-095

ing environments of the real world.096

3. In two typical environments, Webshop and097

Alfworld, our method has significantly en-098

hanced the performance of both ReAct and099

Reflection. Not only is the accuracy higher,100

but the number of required steps and trials is101

also reduced.102

2 Related Work103

2.1 Language Agent104

The field of research concerning intelligent agents105

based on language models is experiencing rapid106

advancements. This encompasses a spectrum from107

the classical enhancement of reasoning capabilities108

like the Chain of Thought (Wei et al., 2022) to the109

representative tool-utilizing approaches such as Au-110

toGPT and HuggingGPT (Shen et al., 2023) in plan-111

ning and solving paradigm. Researchers have taken112

a step further by exploiting the feedback and as-113

sessment capabilities inherent in language models,114

introducing innovations like the Tree of Thought115

(Yao et al., 2023) and Graph of Thoughts (Besta116

et al., 2023), aiming to solve increasingly complex117

problems. The issues addressed by these method-118

ologies, such as solving mathematical problems or119

planning how to schedule APIs given specific tools120

and problems, inherently contain comprehensive 121

information, so language models can leverage their 122

intrinsic knowledge to achieve global planning. 123

However, in more realistic scenarios (Liu et al., 124

2023; Ma et al., 2024), such as online shopping 125

on websites (Yao et al., 2022a) or benchmarks like 126

TextWorld (Shridhar et al., 2021), every action in- 127

curs varying changes in the environment, necessi- 128

tating models to make sequential decisions. ReAct 129

(Yao et al., 2022b) incorporates environmental feed- 130

back to support reasoning, and Reflexion (Shinn 131

et al., 2023) combines internal and external feed- 132

back. The method we propose assists these agents 133

in explicitly providing and adaptively updating en- 134

vironmental information, thereby enabling them to 135

make more reasonable plans and decisions. 136

2.2 Adaption on Language Model 137

In the constantly evolving field of Natural Lan- 138

guage Processing (NLP), the issue of distribution 139

discrepancies between the downstream tasks and 140

the pretraining corpora has always been a critical 141

area of research. In the past, researchers have pro- 142

posed various simple yet effective unsupervised 143

adaptation methods, such as domain-adaptive pre- 144

training (Gururangan et al., 2020; Wu et al., 2021) 145

and task-adaptive pretraining (Li et al., 2021). Un- 146

like previous work, our focus is on the adaptability 147

of language models within environments. Further- 148

more, instead of relying on continuous pretraining 149

methods, we employ in-context learning to incor- 150

porate continuously updated environmental infor- 151

mation into the context. This strategy facilitates 152

the online adaptability of large language models to 153

their environments. 154

2.3 Environmental Exploration and Modeling 155

in Reinforcement Learning 156

In the domain of Reinforcement Learning (RL), 157

several classic exploration strategies have been pro- 158

posed, including the Epsilon-Greedy method (Sut- 159

ton and Barto, 2018), the incorporation of curiosity- 160

driven learning models (Pathak et al., 2017; Burda 161

et al., 2018a), rewarding the agent for encounter- 162

ing unpredictable states and actions (Burda et al., 163

2018b), and the combination of count-based ex- 164

ploration with environments that provide sparse 165

rewards (Ostrovski et al., 2017). Our approach also 166

explores the environment during the pre-task phase, 167

primarily utilizing the large language model’s own 168

knowledge and reasoning capabilities to explore 169

key information about the environment as much as 170
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Figure 1: Comparison of previous methods with our 0EA approach in terms of acquiring environmental informa-
tion. ReAct accumulates environmental information across different steps, while Reflection can accumulate this
information across different trajectories. In contrast, 0EA enables language models to adapt to the environment
across different tasks. Our approach explicitly maintains a global action-observation tree. The trajectories generated
during task execution are used to update this global tree, which is then converted into textual form as environmental
interaction information and incorporated into the context to further facilitate the execution of subsequent tasks.

possible.171

At the same time, for reinforcement learning,172

environmental modeling stands as a pivotal compo-173

nent, aiding agents in the learning and decision-174

making processes. A widely-adopted approach175

to environmental modeling involves leveraging176

Markov Decision Processes (MDP) to formalize177

environments, as portrayed by Sutton and Barto178

(2018). Delving into deep learning, neural network179

models emerge as quintessential tools for approxi-180

mating environmental dynamics. Studies by Mnih181

et al. (2015) explicate the integration of Convo-182

lutional Neural Networks (CNN) to approximate183

environmental states in RL. The works by Ha and184

Schmidhuber (2018) serve as exemplary instances185

of employing world models, allowing agents to186

predict future states and formulate optimal poli-187

cies, thereby enhancing their efficacy across var-188

ious tasks. Contrary to environmental modeling189

in reinforcement learning, our approach explicitly190

maintains a global action-observation tree. During191

task execution, this tree is converted into textual192

information and added to the context to help the193

agent better solve the task.194

3 Method 195

As shown in Figure 1, previous frameworks for 196

interaction between large language models and the 197

environment primarily accumulate environmental 198

information and learn interaction methods at differ- 199

ent step levels or trajectory levels within a single 200

task. However, within the same environment, lan- 201

guage models should also share the environmental 202

information and interaction methods acquired when 203

executing different tasks. 204

Specifically, for each environment, we explic- 205

itly iterate and update a global action-observation 206

tree. The entire algorithmic process is illustrated in 207

Algorithm 1. In practice, to provide the language 208

model with an initial understanding of the envi- 209

ronment before task execution, we have designed 210

Pre-Task Environment Exploration in addition to 211

In-Task Environment Adaptation. In this phase, the 212

Large Language Model (LLM) does not execute 213

specific tasks but aims to survey the environment, 214

exploiting the profound knowledge amassed during 215

its pre-training phase to select actions that opti- 216

mally explore environmental information. Both 217

Pre-Task Environment Exploration and In-Task En- 218

vironment Adaptation include the following core 219
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iterative mechanism:220

1. Trajectories generated from the interaction221

between the language agent and the envi-222

ronment are transformed into abstract action-223

observation sequences through the in-context224

learning approach. For raw trajectories, we225

retain only the sequences of action and ob-226

servation pairs. For instance, in the step227

involving the ReAct method, we remove228

’think,’ and for consecutive repetitive action-229

observation pairs, we merge them into a sin-230

gle entity. Once we obtain clean action-231

observation sequences, they will be abstracted232

if needed. For example, in the webshop233

environment, the action "search [3 ounce234

bright citrus deodorant sensitive skin]" is235

transformed into "search [Keywords based on236

given requirements and conditions]". Simi-237

larly, "click[B078GWRC1J]" is converted to238

"click[product]". Then we guide the language239

model to perform these conversions in an in-240

context learning manner through instructions241

and a few common examples of action and242

observation transformations. This language243

model for conversion can be the same as or244

different from the one executing the tasks.245

2. These action-observation sequences are then246

integrated into the global tree. In practice, a se-247

quence of action-observation pairs can be con-248

sidered as a subtree, where each pair serves249

as the successor node to the previous one. In250

our method, nodes encapsulate both actions251

and observations, while edges represent the252

temporal sequence, indicating the progression253

from one to the next. Starting from the root254

node, identical nodes are merged, and their255

frequency is incremented by one. If the nodes256

are different, a new node is initialized on the257

global tree, with its frequency set to 1.258

3. The sequences of nodes from the global action-259

observation tree are transformed into textual260

information through an in-context learning ap-261

proach and integrated into the context. To262

achieve this, we utilize breadth-first search al-263

gorithms to identify the shortest paths from264

the root to each leaf node, subsequently con-265

catenating the nodes encountered along these266

paths into sequences. Initially, these se-267

quences may not form grammatically correct268

sentences. We guide the large language model269

Algorithm 1 Online Environmental Adaptation Al-
gorithm
Global: Action-Observation Tree Gtree, Environ-

ment E
1 Procedure PreTask (E, LLM ,trails)
2 for i = 1 to trails do
3 textenv ← Convert(Gtree)
4 traj ← Explore(E,LLM, textenv)
5 tree← Convert(traj)
6 Gtree ← Merge(tree,Gtree)

7

8 Procedure InTask (E, LLM , Tasks)
9 for each T in Tasks do

10 textenv ← Convert(Gtree)
11 traj ← Generate(E,LLM,T, textenv)
12 tree← Convert(traj)
13 Gtree ← Merge(tree,Gtree)

to transform these sequences into grammat- 270

ically correct environmental descriptions by 271

providing task instructions and several exam- 272

ples of common transformations. These de- 273

scriptions are then sampled in a non-repetitive 274

manner, based on the frequency of the leaf 275

nodes, using normalized frequencies as the 276

probability distribution, until the cumulative 277

token count of the sampled sentences aligns 278

with the predetermined maximum context 279

length allocated for environmental informa- 280

tion. 281

4. Utilizing this refined environmental informa- 282

tion, the language model is then able to more 283

accurately and effectively tackle tasks, setting 284

the stage for the commencement of the subse- 285

quent iteration cycle. 286

In practical applications, these two phases can 287

either be interpreted within a unified framework or 288

as distinct methodologies. The efficacy of the task 289

performance is directly proportional to the extent of 290

the pre-task environment exploration; however, this 291

implies a reduced benefit from the in-task environ- 292

ment update, and vice versa. In real-world scenar- 293

ios, if the objective is to ensure optimum and stable 294

performance of the intelligent agent, consideration 295

should be given to allocating additional computa- 296

tional resources for exploration. If resources are 297

constrained, emphasis can be placed on in-task en- 298

vironment update to acquire environmental infor- 299

mation through the trajectory of task execution, 300
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necessitating minimal additional resources.301

Our method does not require additional human302

annotation of environmental information, achieving303

environmental adaptability for the language model.304

It is universally applicable to various interaction en-305

vironments due to its general nature. Furthermore,306

our approach fully leverages the in-context learning307

capabilities of language models, facilitating online308

adaptation. Compared to offline fine-tuning meth-309

ods, it more conveniently and rapidly addresses310

issues associated with the dynamic updating of311

real-world environments, such as updates to web312

pages or or changes in the placement of objects in313

embodied scenarios, among others.314

4 Experiment315

4.1 Baselines Setting316

We utilize two popular methods for intelligent317

agent-environment interactions as our baselines:318

ReAct (Yao et al., 2022b) and Reflection (Shinn319

et al., 2023). For a detailed introduction, please320

see the appendix. It is noteworthy that the original321

papers adopted the text-davinci-003 as the core lan-322

guage model; however, as OpenAI will soon cease323

to offer this API, we opted for more prevalent lan-324

guage models. Consequently, the core language325

models available for the agent are GPT-3.5-turbo326

and GPT-4, respectively. The reported experimen-327

tal results are the average of multiple runs.328

4.2 Benchmark329

We conducted evaluations on two benchmarks:330

WebShop (Yao et al., 2022a) is a sophisticated331

web-based problem-solving benchmark WebShop332

designed to assess agents’ ability to adeptly nav-333

igate through an e-commerce website, with the334

objective to accurately locate and secure products335

in response to client requests. This environment336

is enriched with a diverse array of 1.18M real-337

world products accompanied by 12k articulate hu-338

man instructions. WebShop encapsulates an ex-339

tensive variety of both structured and unstructured340

texts, including product titles, descriptions, and di-341

verse options meticulously crawled from Amazon.342

The evaluation of this intricate task is orchestrated343

through an average score, representing the percent-344

age of desired attributes covered by the selected345

product across all episodes. Our evaluations are346

conducted meticulously on the first 500 distinct test347

instructions, ensuring comprehensive assessment348

and validation of the agents’ proficiency in manag- 349

ing complex, real-world e-commerce navigations 350

and transactions. 351

ALFWorld-Eco . We have developed 352

ALFWorld-Eco, a new environment based 353

on ALFWorld. Shridhar et al. (2021) created 354

the ALFWorld to align with the embodied 355

ALFRED benchmark (Shridhar et al., 2020), is a 356

sophisticated, synthetic text-based game designed 357

to challenge agents to navigate and perform 358

multi-step tasks within a range of interactive 359

environments. It incorporates six diverse types of 360

tasks, each requiring the agent to accomplish a 361

high-level goal, like examining a paper under a 362

desk lamp, by navigating and interacting with a 363

simulated household through textual actions (e.g., 364

go to coffee table 1, take paper 2, use desk lamp 365

1). The original ALFWorld dataset is constructed 366

with a task-centric focus, containing 134 different 367

tasks in the unseen dataset, with nearly every 368

task corresponding to a distinct environment. 369

This approach does not align with our objective, 370

as we aspire to build a new dataset centered 371

around environments, allowing the execution 372

of multiple tasks within a single environment. 373

Consequently, we have developed ALFWorld-Eco, 374

a new environment based on ALFWorld, where 375

agents can complete 60 different tasks, categorized 376

into six types, with each category comprising ten 377

specific tasks. We employ the success rate as our 378

metric for evaluation. The agent is assigned a 379

score of 1 upon the successful completion of the 380

task, and conversely, it receives a score of 0 if it 381

fails to complete the task. We will release this 382

new benchmark alongside the corresponding code. 383

Our ALFWorld-Eco focuses on fostering a more 384

diversified interaction within each environment, 385

enabling agents to achieve a wider range of 386

tasks and goals. This shift from task-centric to 387

environment-centric design empowers agents to 388

better understand and adapt to varying contextual 389

circumstances within the same environment, 390

enhancing their flexibility and applicability in 391

real-world scenarios. 392

4.3 Parameter Setting 393

For GPT-3.5-turbo and GPT-4, we specify the pa- 394

rameters for related API calls. The temperature 395

is meticulously set to zero, ensuring the output is 396

strictly limited to a maximum token count of one 397

hundred. The top-p value is securely fixed at one, 398
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LLM Method
Environment

Webshop ALFWorld-Eco

GPT-3.5

ReAct 65.0 11.7
ReAct + OEA 70.2 18.3

Reflection 68.6 45.8
Reflection + OEA 73.5 54.2

GPT-4

ReAct 59.7 83.3
ReAct + OEA 67.4 89.6

Reflection 69.5 94.4
Reflection + OEA 73.8 96.1

Table 2: Experimental Results of OEA on Webshop and ALFWorld-Eco

with both frequency and presence penalties effec-399

tively set to zero.400

During the pre-task exploration phase, we estab-401

lish the number of exploration trials as 5. When402

integrating our method with ReAct and Reflection,403

it is only necessary to add an additional module for404

environment interaction information in the context.405

For this component, we set its maximum length to406

512 tokens. The code, along with the newly con-407

structed environments and tasks, will be made open408

source.409

4.4 Results410

Table 2 demonstrates that our OEA method con-411

sistently yielded significant improvements across412

various baseline methods (ReAct and Reflection),413

environments (WebShop and ALFWorld-Eco), and414

language models (GPT-3.5-turbo and GPT-4), un-415

derscoring its effectiveness and broad applicability.416

In a detailed comparison, several conclusions can417

be drawn:418

• Environmental Comparison: Our method ex-419

hibited a more pronounced improvement in420

ALFWorld-Eco compared to WebShop. This421

distinction suggests that tasks in ALFWorld-422

Eco require a deeper reliance on environmen-423

tal knowledge, underlining the importance of424

our adaptation approach in scenarios where425

understanding the environment is crucial for426

task success.427

• Methodological Comparison: When compar-428

ing the improvements provided by our OEA429

method to the baseline approaches, a greater430

enhancement was observed with ReAct than431

with Reflection. This discrepancy may be at-432

tributed to Reflection’s inherent inclusion of433

some environmental interaction information434

within its reflective process, thus presenting 435

a smaller scope for our method to offer addi- 436

tional improvements. 437

• Language Model Impact: The performance 438

impact varied significantly with the size of the 439

language model. Larger models, such as GPT- 440

4, demonstrated more substantial performance 441

gains, indicating that our adaptation method 442

effectively leverages the increased capacity of 443

larger models to enhance task performance. 444

We further conducted a bad case analysis on Re- 445

Act and ReAct+ OEA, identifying three types of 446

errors related to Webshop environmental interac- 447

tion information: 448

1. Executing the search action directly on the 449

product page instead of returning to the search 450

page; 451

2. Encountering an error due to the agent select- 452

ing the [Next] button in the environment; 453

3. Continuously browsing products without 454

clicking ‘buy now’ until reaching the maxi- 455

mum number of steps. 456

Large language models equipped with environmen- 457

tal adaptation largely avoided the aforementioned 458

errors. The main cases where they failed were 459

when they reached the maximum number of steps 460

during multiple refinements of search keywords for 461

products. 462

4.4.1 Average Success Rate across Different 463

Stage 464

While the main results from the previous sec- 465

tion highlight an increase in the final average suc- 466

cess rate, they do not showcase the gradual im- 467
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Figure 2: Average Accuracy across Different Stages on ALFWorld-Eco

provement in success rate during the adaptive pro-468

cess. Therefore, in this section, we delve even469

further into analyzing the advantages yielded by470

environmental adaptation during the in-task phase471

within the ALFWorld-Eco environment. Specifi-472

cally, 60 tasks are randomly assorted, into six dis-473

tinct groups, each encompassing 10 tasks. The474

average accuracy is then calculated within each475

group, representing the accuracy for varying stages476

during the in-task phase. To mitigate the potential477

bias introduced by varying difficulties of different478

tasks, we conduct a total of five rounds of repeated479

experiments. Subsequently, the average accuracy480

of the six groups at diverse stages is once more481

averaged per round to denote the final accuracy. As482

shown in Figure 2, there is a noticeable increase in483

accuracy in the later stages, illustrating that, during484

the in-task phase, the agent’s continuous adapta-485

tion to the environment systematically amplifies486

its capability to resolve tasks. The figure presents487

the ablation performance of the method, where488

“ReAct” indicates the exclusive application of the489

ReAct method without any environmental adapta-490

tion. “ReAct+Pre-task” denotes that the examina-491

tion only occurs in the pre-task phase, with no up-492

dates occurring in the in-task phase. A comparison493

of these results reveals that both exploration and494

updating are crucial for the agent’s performance in495

the ALFWorld-Eco environment, underscoring the496

importance of the two components. 497

Ablations Webshop
Ours 70.2
w/o Frequencies 68.5
w/o Abstract Tree 68.8
w/o Grammatically Correct 66.9
w/o Pre-task Exploration 69.3
w/o In-task Adaptation 67.1
w/o all (React only) 65.0

Table 3: Summary of Ablation Studies in the Webshop
Environment Using GPT-3.5-turbo

4.4.2 Ablation Studies 498

In our ablation studies conducted within the Web- 499

shop environment using the GPT-3.5-turbo model, 500

we explored a variety of ablation experiments. 501

These experiments included ablations on strate- 502

gies such as using random frequencies instead of 503

normalized frequencies as the probability distribu- 504

tion, constructing and merging trees directly from 505

raw text without converting them into an abstract 506

action-observation tree, and adding node sequences 507

to the context without converting them into gram- 508

matically correct text. Additionally, we performed 509

ablations on phases by eliminating the pre-task ex- 510

ploration phase and the in-task exploration phase. 511

These ablations helped us understand the impact of 512
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Figure 3: Success Rate across Different Trials in the
ALFWorld-Eco

different components and stages on our method’s513

overall performance.514

Table 3 shows that at the strategy level, the fail-515

ure to convert sequences into grammatically correct516

sentences significantly affects model performance.517

When trees are constructed and merged directly518

from raw text, without being converted into an ab-519

stract action-observation tree, the resulting global520

tree is large, with most nodes’ frequencies essen-521

tially being 1. This situation is almost the same as522

not using normalized frequencies as the probability523

distribution, which explains why the results of the524

two ablations in the table are similar. Moreover,525

from a phase perspective, In-task Adaptation ex-526

erts a greater influence on the model than Pre-task527

Exploration.528

4.4.3 Success Rate across Different Trials529

Using the GPT-3.5-turbo model in the ALFWorld-530

Eco environment, we further explored the model’s531

performance across various trials. Figure 3 demon-532

strates that our method consistently improves the533

model’s performance across different trials. In534

other words, to achieve the same success rate, our535

method allows the model to require fewer trials.536

4.4.4 Token Usage Across Different Methods537

Although the integration of environmental informa-538

tion modules in the context consumes additional539

tokens, the results from the previous section have540

shown a reduction in the average number of trials.541

This reduction prompts a further investigation into542

whether the overall token usage has increased or543

decreased. Using the same GPT-3.5-turbo model544

within the ALFWorld-Eco environment, we ana-545

lyzed the token usage for two methods (Reflection546

and Reflection + OEA) with the maximum number 547

of trials set to 10. The results reveal that our method 548

often succeeds in fewer trials and concludes earlier. 549

Therefore, despite the addition of extra environ- 550

mental information in the context, the total number 551

of tokens used is, in fact, lower by 8%. This out- 552

come suggests that our approach, by efficiently 553

reducing the number of trials needed for success, 554

compensates for the additional token expenditure 555

on environmental information, ultimately leading 556

to a decrease in overall token usage. 557

5 Conclusion 558

Our approach aims to address the lack of knowl- 559

edge about real-world environmental interactions 560

in pretrained large language models. We propose 561

an online Environmental Adaptation method to aug- 562

ment their decision-making processes both before 563

and during task execution, proving to be pivotal 564

in enhancing the effectiveness and adaptability of 565

language agents in various applications. Moving 566

forward, we plan to conduct evaluations using a 567

wider array of agents and more authentic datasets. 568

Additionally, we hope to explore how the integra- 569

tion of environmental information can enable the 570

amalgamation of various global planning method- 571

ologies, further elevating the performance of se- 572

quential decision-making tasks that require interac- 573

tion with the environment. 574

6 Limitation 575

Because our method utilizes text to describe en- 576

vironmental interactions, it is still subject to the 577

limitations of limited context. If the environmen- 578

tal space is extremely large or in an open-domain 579

setting, where it is challenging to describe the envi- 580

ronment with limited text, the effectiveness of our 581

approach would theoretically be impacted. 582
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Baselines Setting690

We utilize two popular methods for intelligent691

agent-environment interactions as our baselines:692

ReAct (Yao et al., 2022b) and Reflection (Shinn693

et al., 2023).694

• ReAct (Yao et al., 2022b) is a method that cap-695

italizes on Large Language Models (LLMs)696

to generate reasoning traces and task-specific697

actions in an interleaved manner, thereby im-698

proving the interaction between reasoning and699

action. Reasoning traces assist the model in700

deducing, monitoring, and updating action701

plans, as well as in managing exceptions. Si-702

multaneously, actions allow the model to inter-703

act with external sources, such as knowledge704

bases or environments, to acquire additional705

information. We utilized the original code-706

base, setting the maximum steps for ReAct to707

50.708

• Reflection (Shinn et al., 2023) introduces an709

innovative framework designed to enhance710

the learning of goal-driven language agents711

that interact with external environments by712

leveraging linguistic feedback rather than tra-713

ditional weight updates. This method permits714

agents to verbally process feedback signals,715

storing these reflections in an episodic mem-716

ory buffer to facilitate better decision-making717

in future attempts. It has shown considerable718

progress over baseline agents in tasks requir-719

ing sequential decision-making and coding,720

all without the necessity for extensive training721

samples or model fine-tuning. We utilized the722

original codebase, setting the maximum trials723

for Reflection to 10.724

10


	Introduction
	Related Work
	 Language Agent
	Adaption on Language Model
	Environmental Exploration and Modeling in Reinforcement Learning

	Method
	Experiment
	Baselines Setting
	Benchmark
	Parameter Setting
	Results
	Average Success Rate across Different Stage 
	Ablation Studies
	Success Rate across Different Trials 
	Token Usage Across Different Methods


	Conclusion
	Limitation

