OEA: Online Environmental Adaptation for Task-Oriented Language
Agents

Anonymous ACL submission

Abstract

Recent advancements in the field of intelligent
agents, especially those leveraging large lan-
guage models, have been impressively substan-
tial. However, these models still encounter sig-
nificant challenges in interactive and dynamic
scenarios, such as online shopping, mainly due
to their lack of knowledge of the current envi-
ronment. In this paper, we propose an innova-
tive online method for environmental adapta-
tion. The trajectories generated by large lan-
guage models during task execution are uti-
lized to update a global action-observation tree.
When encountering new tasks, our method
transforms the action-observation tree into text
and integrates this information into the con-
text to aid the model in solving the task. This
iterative process enables the model to progres-
sively enhance its understanding of the envi-
ronment, resulting in steadily improved per-
formance over time. Our approach obviates
the need for offline fine-tuning and serves as a
versatile plug-and-play solution applicable to
various scenarios. In two widely-used environ-
ments, Webshop and Alfworld, our method has
significantly improved performance beyond Re-
Act and Reflection, achieving higher accuracy
and reducing the required token expenditure.

1 Introduction

In the constantly evolving field of Natural Lan-
guage Processing (NLP), the issue of distribution
discrepancies between the downstream tasks and
the pretraining corpora has always been a criti-
cal area of research. In the past, researchers have
proposed various simple yet effective adaptation
methods to address inconsistencies at both the do-
main and task levels, as detailed in Table 1. How-
ever, with the rapid advancement of large language
model agents and their real-world applications, a
new form of distribution discrepancy has become
increasingly prominent: the environmental level.
This discrepancy is particularly evident in real-

Method | Level
‘ Domain Task Environment
Gururangan et al. (2020) | v v
Wu et al. (2021) v
Liet al. (2021) v
Ours v

Table 1: Comparison between our method and previous
adaptive methods across different problem settings.

world scenarios that involve interactive decision-
making, such as online shopping, where each ac-
tion can modify the web page environment. Since
models were not pretrained with knowledge of
various environmental interactions, and given that
the real-world environment is constantly changing,
achieving efficient planning and rational operation
by the language model remains a challenge.

To address this issue, we propose an online en-
vironment adaptation method. Specifically, for
each environment, we explicitly iterate and up-
date a global action-observation tree. Initially, tra-
jectories generated from the interaction between
the language agent and the environment are trans-
formed into abstract action-observation sequences
through the in-context learning approach. These
action-observation sequences are then integrated
into the global tree. Subsequently, the sequences of
nodes from the global action-observation tree are
transformed into textual information through an in-
context learning approach and integrated into the
context. This enables the language model to utilize
this information for more accurate and effective
resolution of the subsequent task. The newly gener-
ated trajectories during the task resolution are then
used to further update the global tree. Through this
iterative process, the model progressively enhances
its understanding of the environment, thereby in-
creasing the success rate of task resolution. This
entire process does not require additional human
annotation of environmental information, facilitat-



ing the language model’s adaptation to the envi-
ronment. Compared to offline fine-tuning methods,
our approach fully leverages the language model’s
capability for in-context learning, achieving online
adaptation. So our approach more conveniently
and swiftly addresses the challenges posed by the
dynamic updates often seen in real environments,
such as web page updates or changes in the place-
ment of objects in embodied scenarios, among oth-
ers.
The contributions of our study are threefold:

1. To tackle the challenge of large language mod-
els lacking environmental knowledge in real-
world sequential decision-making scenarios,
we propose an online, dynamic method for en-
vironmental adaptation. This approach allows
the model to increasingly understand its envi-
ronment as it completes more tasks, leading
to progressively better performance.

2. Leveraging the in-context learning of large
language models, our method requires no of-
fline fine-tuning. This plug-and-play approach
is well-suited for the ever-changing and updat-
ing environments of the real world.

3. In two typical environments, Webshop and
Alfworld, our method has significantly en-
hanced the performance of both ReAct and
Reflection. Not only is the accuracy higher,
but the number of required steps and trials is
also reduced.

2 Related Work
2.1 Language Agent

The field of research concerning intelligent agents
based on language models is experiencing rapid
advancements. This encompasses a spectrum from
the classical enhancement of reasoning capabilities
like the Chain of Thought (Wei et al., 2022) to the
representative tool-utilizing approaches such as Au-
toGPT and HuggingGPT (Shen et al., 2023) in plan-
ning and solving paradigm. Researchers have taken
a step further by exploiting the feedback and as-
sessment capabilities inherent in language models,
introducing innovations like the Tree of Thought
(Yao et al., 2023) and Graph of Thoughts (Besta
et al., 2023), aiming to solve increasingly complex
problems. The issues addressed by these method-
ologies, such as solving mathematical problems or
planning how to schedule APIs given specific tools

and problems, inherently contain comprehensive
information, so language models can leverage their
intrinsic knowledge to achieve global planning.

However, in more realistic scenarios (Liu et al.,
2023; Ma et al., 2024), such as online shopping
on websites (Yao et al., 2022a) or benchmarks like
TextWorld (Shridhar et al., 2021), every action in-
curs varying changes in the environment, necessi-
tating models to make sequential decisions. ReAct
(Yao et al., 2022b) incorporates environmental feed-
back to support reasoning, and Reflexion (Shinn
et al., 2023) combines internal and external feed-
back. The method we propose assists these agents
in explicitly providing and adaptively updating en-
vironmental information, thereby enabling them to
make more reasonable plans and decisions.

2.2 Adaption on Language Model

In the constantly evolving field of Natural Lan-
guage Processing (NLP), the issue of distribution
discrepancies between the downstream tasks and
the pretraining corpora has always been a critical
area of research. In the past, researchers have pro-
posed various simple yet effective unsupervised
adaptation methods, such as domain-adaptive pre-
training (Gururangan et al., 2020; Wu et al., 2021)
and task-adaptive pretraining (Li et al., 2021). Un-
like previous work, our focus is on the adaptability
of language models within environments. Further-
more, instead of relying on continuous pretraining
methods, we employ in-context learning to incor-
porate continuously updated environmental infor-
mation into the context. This strategy facilitates
the online adaptability of large language models to
their environments.

2.3 Environmental Exploration and Modeling
in Reinforcement Learning

In the domain of Reinforcement Learning (RL),
several classic exploration strategies have been pro-
posed, including the Epsilon-Greedy method (Sut-
ton and Barto, 2018), the incorporation of curiosity-
driven learning models (Pathak et al., 2017; Burda
et al., 2018a), rewarding the agent for encounter-
ing unpredictable states and actions (Burda et al.,
2018b), and the combination of count-based ex-
ploration with environments that provide sparse
rewards (Ostrovski et al., 2017). Our approach also
explores the environment during the pre-task phase,
primarily utilizing the large language model’s own
knowledge and reasoning capabilities to explore
key information about the environment as much as
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Figure 1: Comparison of previous methods with our OEA approach in terms of acquiring environmental informa-
tion. ReAct accumulates environmental information across different steps, while Reflection can accumulate this
information across different trajectories. In contrast, OEA enables language models to adapt to the environment
across different tasks. Our approach explicitly maintains a global action-observation tree. The trajectories generated
during task execution are used to update this global tree, which is then converted into textual form as environmental
interaction information and incorporated into the context to further facilitate the execution of subsequent tasks.

possible.

At the same time, for reinforcement learning,
environmental modeling stands as a pivotal compo-
nent, aiding agents in the learning and decision-
making processes. A widely-adopted approach
to environmental modeling involves leveraging
Markov Decision Processes (MDP) to formalize
environments, as portrayed by Sutton and Barto
(2018). Delving into deep learning, neural network
models emerge as quintessential tools for approxi-
mating environmental dynamics. Studies by Mnih
et al. (2015) explicate the integration of Convo-
lutional Neural Networks (CNN) to approximate
environmental states in RL. The works by Ha and
Schmidhuber (2018) serve as exemplary instances
of employing world models, allowing agents to
predict future states and formulate optimal poli-
cies, thereby enhancing their efficacy across var-
ious tasks. Contrary to environmental modeling
in reinforcement learning, our approach explicitly
maintains a global action-observation tree. During
task execution, this tree is converted into textual
information and added to the context to help the
agent better solve the task.

3 Method

As shown in Figure 1, previous frameworks for
interaction between large language models and the
environment primarily accumulate environmental
information and learn interaction methods at differ-
ent step levels or trajectory levels within a single
task. However, within the same environment, lan-
guage models should also share the environmental
information and interaction methods acquired when
executing different tasks.

Specifically, for each environment, we explic-
itly iterate and update a global action-observation
tree. The entire algorithmic process is illustrated in
Algorithm 1. In practice, to provide the language
model with an initial understanding of the envi-
ronment before task execution, we have designed
Pre-Task Environment Exploration in addition to
In-Task Environment Adaptation. In this phase, the
Large Language Model (LLM) does not execute
specific tasks but aims to survey the environment,
exploiting the profound knowledge amassed during
its pre-training phase to select actions that opti-
mally explore environmental information. Both
Pre-Task Environment Exploration and In-Task En-
vironment Adaptation include the following core



iterative mechanism:

1. Trajectories generated from the interaction
between the language agent and the envi-
ronment are transformed into abstract action-
observation sequences through the in-context
learning approach. For raw trajectories, we
retain only the sequences of action and ob-
servation pairs. For instance, in the step
involving the ReAct method, we remove
’think,” and for consecutive repetitive action-
observation pairs, we merge them into a sin-
gle entity. Once we obtain clean action-
observation sequences, they will be abstracted
if needed. For example, in the webshop
environment, the action "search [3 ounce
bright citrus deodorant sensitive skin]" is
transformed into "search [Keywords based on
given requirements and conditions]". Simi-
larly, "click| BO78GWRC1J]" is converted to
"click[product]". Then we guide the language
model to perform these conversions in an in-
context learning manner through instructions
and a few common examples of action and
observation transformations. This language
model for conversion can be the same as or
different from the one executing the tasks.

These action-observation sequences are then
integrated into the global tree. In practice, a se-
quence of action-observation pairs can be con-
sidered as a subtree, where each pair serves
as the successor node to the previous one. In
our method, nodes encapsulate both actions
and observations, while edges represent the
temporal sequence, indicating the progression
from one to the next. Starting from the root
node, identical nodes are merged, and their
frequency is incremented by one. If the nodes
are different, a new node is initialized on the
global tree, with its frequency set to 1.

The sequences of nodes from the global action-
observation tree are transformed into textual
information through an in-context learning ap-
proach and integrated into the context. To
achieve this, we utilize breadth-first search al-
gorithms to identify the shortest paths from
the root to each leaf node, subsequently con-
catenating the nodes encountered along these
paths into sequences. Initially, these se-
quences may not form grammatically correct
sentences. We guide the large language model

L R
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Algorithm 1 Online Environmental Adaptation Al-
gorithm
Global: Action-Observation Tree Gee, Environ-
ment F
Procedure PreTask (E, LLM,trails)
for i = 1 to trails do
texteny — Convert(Gipee)
traj < Explore(E, LLM, texteny)
tree <— Convert(traj)
Giree < Merge(tree, Giree)

Procedure InTask (E, LLM, Tasks)
for each T in Tasks do
texteny < Convert(Giree)
traj < Generate(E, LLM,T, texteyy)
tree <— Convert(traj)
Giree < Merge(tree, Giree)

to transform these sequences into grammat-
ically correct environmental descriptions by
providing task instructions and several exam-
ples of common transformations. These de-
scriptions are then sampled in a non-repetitive
manner, based on the frequency of the leaf
nodes, using normalized frequencies as the
probability distribution, until the cumulative
token count of the sampled sentences aligns
with the predetermined maximum context
length allocated for environmental informa-
tion.

Utilizing this refined environmental informa-
tion, the language model is then able to more
accurately and effectively tackle tasks, setting
the stage for the commencement of the subse-
quent iteration cycle.

In practical applications, these two phases can
either be interpreted within a unified framework or
as distinct methodologies. The efficacy of the task
performance is directly proportional to the extent of
the pre-task environment exploration; however, this
implies a reduced benefit from the in-task environ-
ment update, and vice versa. In real-world scenar-
ios, if the objective is to ensure optimum and stable
performance of the intelligent agent, consideration
should be given to allocating additional computa-
tional resources for exploration. If resources are
constrained, emphasis can be placed on in-task en-
vironment update to acquire environmental infor-
mation through the trajectory of task execution,



necessitating minimal additional resources.

Our method does not require additional human
annotation of environmental information, achieving
environmental adaptability for the language model.
It is universally applicable to various interaction en-
vironments due to its general nature. Furthermore,
our approach fully leverages the in-context learning
capabilities of language models, facilitating online
adaptation. Compared to offline fine-tuning meth-
ods, it more conveniently and rapidly addresses
issues associated with the dynamic updating of
real-world environments, such as updates to web
pages or or changes in the placement of objects in
embodied scenarios, among others.

4 Experiment

4.1 Baselines Setting

We utilize two popular methods for intelligent
agent-environment interactions as our baselines:
ReAct (Yao et al., 2022b) and Reflection (Shinn
et al., 2023). For a detailed introduction, please
see the appendix. It is noteworthy that the original
papers adopted the text-davinci-003 as the core lan-
guage model; however, as OpenAl will soon cease
to offer this API, we opted for more prevalent lan-
guage models. Consequently, the core language
models available for the agent are GPT-3.5-turbo
and GPT-4, respectively. The reported experimen-
tal results are the average of multiple runs.

4.2 Benchmark

‘We conducted evaluations on two benchmarks:

WebShop (Yao et al., 2022a) is a sophisticated
web-based problem-solving benchmark WebShop
designed to assess agents’ ability to adeptly nav-
igate through an e-commerce website, with the
objective to accurately locate and secure products
in response to client requests. This environment
is enriched with a diverse array of 1.18M real-
world products accompanied by 12k articulate hu-
man instructions. WebShop encapsulates an ex-
tensive variety of both structured and unstructured
texts, including product titles, descriptions, and di-
verse options meticulously crawled from Amazon.
The evaluation of this intricate task is orchestrated
through an average score, representing the percent-
age of desired attributes covered by the selected
product across all episodes. Our evaluations are
conducted meticulously on the first 500 distinct test
instructions, ensuring comprehensive assessment

and validation of the agents’ proficiency in manag-
ing complex, real-world e-commerce navigations
and transactions.

ALFWorld-Eco . We have developed
ALFWorld-Eco, a new environment based
on ALFWorld. Shridhar et al. (2021) created
the ALFWorld to align with the embodied
ALFRED benchmark (Shridhar et al., 2020), is a
sophisticated, synthetic text-based game designed
to challenge agents to navigate and perform
multi-step tasks within a range of interactive
environments. It incorporates six diverse types of
tasks, each requiring the agent to accomplish a
high-level goal, like examining a paper under a
desk lamp, by navigating and interacting with a
simulated household through textual actions (e.g.,
go to coffee table 1, take paper 2, use desk lamp
1). The original ALFWorld dataset is constructed
with a task-centric focus, containing 134 different
tasks in the unseen dataset, with nearly every
task corresponding to a distinct environment.
This approach does not align with our objective,
as we aspire to build a new dataset centered
around environments, allowing the execution
of multiple tasks within a single environment.
Consequently, we have developed ALFWorld-Eco,
a new environment based on ALFWorld, where
agents can complete 60 different tasks, categorized
into six types, with each category comprising ten
specific tasks. We employ the success rate as our
metric for evaluation. The agent is assigned a
score of 1 upon the successful completion of the
task, and conversely, it receives a score of O if it
fails to complete the task. We will release this
new benchmark alongside the corresponding code.
Our ALFWorld-Eco focuses on fostering a more
diversified interaction within each environment,
enabling agents to achieve a wider range of
tasks and goals. This shift from task-centric to
environment-centric design empowers agents to
better understand and adapt to varying contextual
circumstances within the same environment,
enhancing their flexibility and applicability in
real-world scenarios.

4.3 Parameter Setting

For GPT-3.5-turbo and GPT-4, we specify the pa-
rameters for related API calls. The temperature
is meticulously set to zero, ensuring the output is
strictly limited to a maximum token count of one
hundred. The top-p value is securely fixed at one,



Environment

LLM Method Webshop  ALFWorld-Eco
ReAct 65.0 11.7
ReAct + OEA 70.2 18.3
GPT-3.5 Reflection 68.6 45.8
Reflection + OEA 73.5 54.2
ReAct 59.7 83.3
ReAct + OEA 67.4 89.6
GPT-4 Reflection 69.5 94 .4
Reflection + OEA 73.8 96.1

Table 2: Experimental Results of OEA on Webshop and ALFWorld-Eco

with both frequency and presence penalties effec-
tively set to zero.

During the pre-task exploration phase, we estab-
lish the number of exploration trials as 5. When
integrating our method with ReAct and Reflection,
it is only necessary to add an additional module for
environment interaction information in the context.
For this component, we set its maximum length to
512 tokens. The code, along with the newly con-
structed environments and tasks, will be made open
source.

4.4 Results

Table 2 demonstrates that our OEA method con-
sistently yielded significant improvements across
various baseline methods (ReAct and Reflection),
environments (WebShop and ALFWorld-Eco), and
language models (GPT-3.5-turbo and GPT-4), un-
derscoring its effectiveness and broad applicability.
In a detailed comparison, several conclusions can
be drawn:

* Environmental Comparison: Our method ex-
hibited a more pronounced improvement in
ALFWorld-Eco compared to WebShop. This
distinction suggests that tasks in ALFWorld-
Eco require a deeper reliance on environmen-
tal knowledge, underlining the importance of
our adaptation approach in scenarios where
understanding the environment is crucial for
task success.

* Methodological Comparison: When compar-
ing the improvements provided by our OEA
method to the baseline approaches, a greater
enhancement was observed with ReAct than
with Reflection. This discrepancy may be at-
tributed to Reflection’s inherent inclusion of
some environmental interaction information

within its reflective process, thus presenting
a smaller scope for our method to offer addi-
tional improvements.

Language Model Impact: The performance
impact varied significantly with the size of the
language model. Larger models, such as GPT-
4, demonstrated more substantial performance
gains, indicating that our adaptation method
effectively leverages the increased capacity of
larger models to enhance task performance.

We further conducted a bad case analysis on Re-
Act and ReAct+ OEA, identifying three types of
errors related to Webshop environmental interac-
tion information:

1. Executing the search action directly on the
product page instead of returning to the search

page,

2. Encountering an error due to the agent select-
ing the [Next] button in the environment;

3. Continuously browsing products without
clicking ‘buy now’ until reaching the maxi-
mum number of steps.

Large language models equipped with environmen-
tal adaptation largely avoided the aforementioned
errors. The main cases where they failed were
when they reached the maximum number of steps
during multiple refinements of search keywords for
products.

4.4.1 Average Success Rate across Different
Stage

While the main results from the previous sec-

tion highlight an increase in the final average suc-

cess rate, they do not showcase the gradual im-
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Figure 2: Average Accuracy across Different Stages on ALFWorld-Eco

provement in success rate during the adaptive pro-
cess. Therefore, in this section, we delve even
further into analyzing the advantages yielded by
environmental adaptation during the in-task phase
within the ALFWorld-Eco environment. Specifi-
cally, 60 tasks are randomly assorted, into six dis-
tinct groups, each encompassing 10 tasks. The
average accuracy is then calculated within each
group, representing the accuracy for varying stages
during the in-task phase. To mitigate the potential
bias introduced by varying difficulties of different
tasks, we conduct a total of five rounds of repeated
experiments. Subsequently, the average accuracy
of the six groups at diverse stages is once more
averaged per round to denote the final accuracy. As
shown in Figure 2, there is a noticeable increase in
accuracy in the later stages, illustrating that, during
the in-task phase, the agent’s continuous adapta-
tion to the environment systematically amplifies
its capability to resolve tasks. The figure presents
the ablation performance of the method, where
“ReAct” indicates the exclusive application of the
ReAct method without any environmental adapta-
tion. “ReAct+Pre-task” denotes that the examina-
tion only occurs in the pre-task phase, with no up-
dates occurring in the in-task phase. A comparison
of these results reveals that both exploration and
updating are crucial for the agent’s performance in
the ALFWorld-Eco environment, underscoring the

importance of the two components.

Ablations Webshop
Ours 70.2
w/o Frequencies 68.5
w/o Abstract Tree 68.8
w/o Grammatically Correct | 66.9
w/o Pre-task Exploration 69.3
w/o In-task Adaptation 67.1
w/o all (React only) 65.0

Table 3: Summary of Ablation Studies in the Webshop
Environment Using GPT-3.5-turbo

4.4.2 Ablation Studies

In our ablation studies conducted within the Web-
shop environment using the GPT-3.5-turbo model,
we explored a variety of ablation experiments.
These experiments included ablations on strate-
gies such as using random frequencies instead of
normalized frequencies as the probability distribu-
tion, constructing and merging trees directly from
raw text without converting them into an abstract
action-observation tree, and adding node sequences
to the context without converting them into gram-
matically correct text. Additionally, we performed
ablations on phases by eliminating the pre-task ex-
ploration phase and the in-task exploration phase.
These ablations helped us understand the impact of
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different components and stages on our method’s
overall performance.

Table 3 shows that at the strategy level, the fail-
ure to convert sequences into grammatically correct
sentences significantly affects model performance.
When trees are constructed and merged directly
from raw text, without being converted into an ab-
stract action-observation tree, the resulting global
tree is large, with most nodes’ frequencies essen-
tially being 1. This situation is almost the same as
not using normalized frequencies as the probability
distribution, which explains why the results of the
two ablations in the table are similar. Moreover,
from a phase perspective, In-task Adaptation ex-
erts a greater influence on the model than Pre-task
Exploration.

4.4.3 Success Rate across Different Trials

Using the GPT-3.5-turbo model in the ALFWorld-
Eco environment, we further explored the model’s
performance across various trials. Figure 3 demon-
strates that our method consistently improves the
model’s performance across different trials. In
other words, to achieve the same success rate, our
method allows the model to require fewer trials.

4.44 Token Usage Across Different Methods

Although the integration of environmental informa-
tion modules in the context consumes additional
tokens, the results from the previous section have
shown a reduction in the average number of trials.
This reduction prompts a further investigation into
whether the overall token usage has increased or
decreased. Using the same GPT-3.5-turbo model
within the ALFWorld-Eco environment, we ana-
lyzed the token usage for two methods (Reflection

and Reflection + OEA) with the maximum number
of trials set to 10. The results reveal that our method
often succeeds in fewer trials and concludes earlier.
Therefore, despite the addition of extra environ-
mental information in the context, the total number
of tokens used is, in fact, lower by 8%. This out-
come suggests that our approach, by efficiently
reducing the number of trials needed for success,
compensates for the additional token expenditure
on environmental information, ultimately leading
to a decrease in overall token usage.

5 Conclusion

Our approach aims to address the lack of knowl-
edge about real-world environmental interactions
in pretrained large language models. We propose
an online Environmental Adaptation method to aug-
ment their decision-making processes both before
and during task execution, proving to be pivotal
in enhancing the effectiveness and adaptability of
language agents in various applications. Moving
forward, we plan to conduct evaluations using a
wider array of agents and more authentic datasets.
Additionally, we hope to explore how the integra-
tion of environmental information can enable the
amalgamation of various global planning method-
ologies, further elevating the performance of se-
quential decision-making tasks that require interac-
tion with the environment.

6 Limitation

Because our method utilizes text to describe en-
vironmental interactions, it is still subject to the
limitations of limited context. If the environmen-
tal space is extremely large or in an open-domain
setting, where it is challenging to describe the envi-
ronment with limited text, the effectiveness of our
approach would theoretically be impacted.
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Baselines Setting

We utilize two popular methods for intelligent
agent-environment interactions as our baselines:
ReAct (Yao et al., 2022b) and Reflection (Shinn
et al., 2023).

* ReAct (Yao et al., 2022b) is a method that cap-
italizes on Large Language Models (LLMs)
to generate reasoning traces and task-specific
actions in an interleaved manner, thereby im-
proving the interaction between reasoning and
action. Reasoning traces assist the model in
deducing, monitoring, and updating action
plans, as well as in managing exceptions. Si-
multaneously, actions allow the model to inter-
act with external sources, such as knowledge
bases or environments, to acquire additional
information. We utilized the original code-
base, setting the maximum steps for ReAct to
50.

¢ Reflection (Shinn et al., 2023) introduces an
innovative framework designed to enhance
the learning of goal-driven language agents
that interact with external environments by
leveraging linguistic feedback rather than tra-
ditional weight updates. This method permits
agents to verbally process feedback signals,
storing these reflections in an episodic mem-
ory buffer to facilitate better decision-making
in future attempts. It has shown considerable
progress over baseline agents in tasks requir-
ing sequential decision-making and coding,
all without the necessity for extensive training
samples or model fine-tuning. We utilized the
original codebase, setting the maximum trials
for Reflection to 10.
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