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Zero-shot Depth Estimation
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Figure 1: We present FE2E, a DiT-based foundation model for monocular dense geometry pre-
diction. Trained with limited supervision, FE2E achieves promising performance improvements in
zero-shot depth and normal estimation. Bar length indicates the average ranking across all metrics
from multiple datasets, where lower values are better. ★ represents the amount of training data used.

ABSTRACT

Leveraging visual priors from pre-trained text-to-image (T2I) generative models
has shown success in dense prediction. However, dense prediction is inherently
an image-to-image task, suggesting that image editing models, rather than T2I
generative models, may be a more suitable foundation for fine-tuning. Motivated
by this, we conduct a systematic analysis of the fine-tuning behaviors of both edi-
tors and generators for dense geometry estimation. Our findings show that editing
models possess inherent structural priors, which enable them to converge more
stably by “refining” their innate features, and ultimately achieve higher perfor-
mance than their generative counterparts. Based on these findings, we introduce
FE2E, a framework that pioneeringly adapts an advanced editing model based on
Diffusion Transformer (DiT) architecture for dense geometry prediction. Specif-
ically, to tailor the editor for this deterministic task, we reformulate the editor’s
original flow matching loss into the “consistent velocity” training objective. And
we use logarithmic quantization to resolve the precision conflict between the ed-
itor’s native BFloat16 format and the high precision demand of our tasks. Addi-
tionally, we leverage the DiT’s global attention for a cost-free joint estimation of
depth and normals in a single forward pass, enabling their supervisory signals to
mutually enhance each other. Without scaling up the training data, FE2E achieves
impressive performance improvements in zero-shot monocular depth and normal
estimation across multiple datasets. Notably, it achieves over 35% performance
gains on the ETH3D dataset and outperforms the DepthAnything series, which is
trained on 100× data.
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Figure 2: FE2E Adaptation Pipeline. The grey background shows the original editor’s workflow,
while the other details FE2E: ① A pre-trained VAE encodes the logarithmically quantized depth d,
input image x, and normals n into latent space. ② The DiT fθ learns a constant velocity v from a
fixed origin zy0 to the target latent zy1 , independent of t or instructions. ③ By repurposing the dis-
carded output region, FE2E jointly predicts depth and normals without extra computation. Training
loss is computed in the latent space, with final predictions decoded by VAE only at inference.

1 INTRODUCTION

Dense geometry prediction tasks, such as depth/normal estimation, are crucial for a wide range of
applications such as augmented reality (Minaee et al., 2022), and 3D reconstruction (Li et al., 2025).
Estimating pixel-level geometric attributes from a single image is an ill-posed problem and can
only be solved with the help of prior knowledge, such as typical object shapes and sizes, occlusion
patterns, etc. Based on this observation, recent works ingeniously leverage the priors from pre-
trained text-to-image (T2I) generators, typically Stable Diffusion (Rombach et al., 2022), for zero-
shot dense prediction (Ke et al., 2024), yielding impressive results with limited training data.

However, these generative models are initially designed for T2I generation and lack the ability to
capture the geometric cues from the absent image inputs. In contrast, image editing models have
recently risen to be a universal framework to solve more diversified image-to-image (I2I) tasks, such
as semantic segmentation and depth estimation (Wu et al., 2025). We argue that these editing models
not only align with the dense estimation paradigm but also possess a deep understanding of input
images while maintaining the generative advantages, and offer a more suitable foundation for dense
geometry prediction.

Motivated by this intuition, we systematically analyze the fine-tuning process of the image editing
models versus their generative counterparts. Our analysis reveals that the features of editing mod-
els are inherently aligned with geometric structures, and the fine-tuning process only requires to
“refine” and “focus” this perceptual ability for dense estimation tasks. In contrast, although gen-
erative models can gradually acquire this capability from scratch, this process leads to substantial
feature reshaping and cannot fundamentally bridge this gap (Sec. 3.1). Therefore, in this paper, we
explore this editing option and propose From Editor to Estimator (FE2E) (Fig. 2), a diffusion
transformer (DiT) model built upon the current SoTA editor Step1X-Edit (Liu et al., 2025), along
with a fine-tuning protocol to adapt it for dense geometry prediction tasks.

However, the direct adaptation of an image editing model for geometric dense prediction is often
suboptimal, due to the inherent differences between the two tasks. First, compared to editing, the
dense geometry prediction is more deterministic, as only one unique ground-truth (GT) exists. Our
analysis of Step1X-Edit reveals that its training objectives—predicting instantaneous velocity1—are
only tailored for indeterminate tasks and will introduce errors in dense prediction. Based on this
observation, we reformulate the training objective as a consistent velocity1 and set a fixed starting
point for stable training. Second, image editing models like Step1X-Edit are typically trained with
BF16 precision, which is sufficient for RGB outputs, whereas dense geometry prediction tasks like

1velocity denotes the direction and speed of transformation that “change input to output”, see Sec. 3.2
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depth estimation demand much higher numerical precision. This discrepancy does not occur in
previously adopted foundation models like Stable Diffusion v1.5/v2, which offer FP32 checkpoints.
To address this limitation and improve computational efficiency, we analyze the GT quantization
strategies and adopt a logarithmic quantization to alleviate precision-related artifacts.

After adapting the editor, we now focus on its role as an estimator. In this paper, we select two
primary geometry prediction tasks: zero-shot depth estimation and normal estimation, to validate
FE2E’s effectiveness. Depth and normal both contribute to a unified geometric representation, and
joint estimation can leverage their potential connections. Unlike GeoWizard(Fu et al., 2024) that
introduces additional cross-attention and switchers, we observe that the global attention mechanism
of DiT can be repurposed to perform joint estimation of depth and surface normals in a single for-
ward pass, incurring virtually no additional computational cost. This design allows the supervisory
signals from both tasks to interact, enhancing the overall performance.

Extensive experiments demonstrate that our model achieves notable zero-shot performance improve-
ments compared to previous state-of-the-art (SoTA) models. Our contribution can be summarized
as follows:

• We systematically analyze the fine-tuning process of image editors and generators, revealing that
editing models are more suitable for dense geometry prediction. Based on this, we introduce
FE2E, a novel framework that, for the first time, successfully adapts a pre-trained image editing
model for this task.

• We identify and address the challenges that arise from this paradigm shift: 1) Reformulate the
training objective to align with the deterministic nature of dense prediction; 2) Adopt a logarith-
mic quantization to resolve the precision conflict. 3) Design cost-free joint estimation to allow
supervision from different tasks to mutually enhance predictions.

• Based on above enhancements, FE2E achieves impressive performance gains, including 35%
AbsRel improvement on the ETH3D dataset. Even when using only 0.2% of the geometric GT
data for training, FE2E outperforms the data-driven models like DepthAnything v1/v2.

2 RELATED WORK

Image Generative and Editing models In the field of image generation, Stable Diffusion se-
ries (Rombach et al., 2022) and FLUX series (Labs, 2024) models have basically become the
community standard. They both trained with massive datasets and demonstrate extremely high
generation quality. Meanwhile, the field of image editing is also evolving rapidly. Recent advance-
ments include Step1X-Edit (Liu et al., 2025), a model fine-tuned from FLUX demonstrating superior
instruction-following and image understanding capability; The multi-modal Qwen-Image (Wu et al.,
2025) Editor combines with LLM, attempting to expand the editor into a unified computer vision
framework; The concurrent work FLUX-Kontext (Labs et al., 2025) unifies editing and generation
with robust character consistency. We conduct a more detailed review in the appendix Sec E.
Dense Geometry Estimation, encompassing tasks like depth and normal estimation(Wang et al.,
2024a;b), is a cornerstone of 3D computer vision. Early research predominantly focused on su-
pervised learning paradigms, where models were trained and evaluated on specific datasets (Eigen
et al., 2014; Eigen & Fergus, 2015). A significant shift occurred with MiDaS (Ranftl et al., 2020),
which pioneered cross-dataset generalization for dense estimation. This line of work was extended
by models like DPT (Ranftl et al., 2021) and Omnidata (Eftekhar et al., 2021), which further im-
proved zero-shot performance. More recently, the field has witnessed the rise of data-driven models
such as the Depth Anything series (Yang et al., 2024a;b) and the Metric3D series (Hu et al., 2024),
which leverage massive datasets to train powerful, general-purpose geometric estimators.
Generative Models for Dense Estimation. In parallel to the trend of scaling up data, an alterna-
tive approach emerged by leveraging the rich priors of pre-trained generative models. Works like
Marigold (Ke et al., 2024) and GeoWizard (Fu et al., 2024) showed that fine-tuning diffusion mod-
els on limited data could yield remarkable performance, effectively harnessing the models’ learned
world knowledge. This paradigm was further refined by GenPercept (Xu et al., 2024), StableNor-
mal (Ye et al., 2024), Diffusion-E2E-FT (Martin Garcia et al., 2025), Lotus (He et al., 2024), and
Jasmine (Wang et al., 2025). These studies identified and addressed the limitations of standard dif-
fusion formulations, developing the single-step denoising architecture to boost performance. In this
paper, we also build FE2E with limited data, posit that the I2I editing models are inherently better
than the T2I models (Stable Diffusion (Rombach et al., 2022)) for dense estimation.

3
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Figure 3: Comparison between the Generative and Editing foundation models. We analyze the
feature evolution at both the initial (Epoch 1) and final (Epoch 30) stages of fine-tuning, resulting in
4 groups. Each group presents: the DiT features at the input end (Block1), middle layers (Block20),
output end (Block35), and the depth prediction’s AbsRel (Absolute Relative error). Visual imple-
mentation detailed in Sec B.

3 METHODS

We first conduct an investigation into the fine-tuning process between the editor and generator in
Sec 3.1. Then, we adapt the editor into an estimator (Sec 3.2) by introducing three key contributions
to the training objective (Sec 3.3), GT quantization(Sec 3.4), and joint estimation (Sec 3.5).

3.1 FINE-TUNING ANALYSIS OF EDITOR AND GENERATOR

Tr
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Training Epoch

0.10

0.09

0.08

0.073

Figure 4: Quantitative comparison of the train-
ing loss between Generative and Editing founda-
tion models. The main plot details the conver-
gence loss from epoch 5 to 30, while the inset
displays the steep initial loss reduction during the
first 10 epochs, which occurs on a different scale.

In this paper, we select Step1X-Edit as the ed-
itor and FLUX as the generator, owing to their
shared DiT architecture and SoTA performance
in their respective tasks. Note that FE2E can
also generalize to other DiT-based editing mod-
els (see Sec 4.4). To facilitate a fair com-
parison, we adopt the improved experimental
setup and additionally train a FLUX-based es-
timator for this analysis. The training details
are provided in Sec B. Through this systematic
analysis, we identify three key advantages of
editing-based models over generative predeces-
sors for dense estimation tasks.

First, the editing model possesses a superior in-
ductive bias for image-to-image dense estima-
tion tasks, providing a much stronger starting
point for finetuning. This is evident in Fig. 3
(a1 v.s. a2), in the early stage and blocks, the
editor’s internal features already align with the input image’s geometric structures, while the gener-
ative ones are abstract and unstructured. The loss difference in Fig. 4 ★ shows the same conclusion.

Second, the above difference directly impacts the learning dynamics: as illustrated in Fig. 4, the
editor achieves a more stable convergence, in contrast to the oscillations seen in the generative ones.
This difference can be further explained in Fig. 3, the fine-tuning process significantly reshapes
the characteristics of generative models, while the editor’s features are more like a “refinement”
and “focusing”. After 30 epochs of fine-tuning, the generative model learned highly structured and
semantic features (a4, b4, c4) from chaotic states (a2, b2, c2), achieving a qualitative leap. Whereas
the editing ones make the well-structured features (a1, b1, c1) clearer and task-oriented (a3, b3, c3),
with their features being incrementally honed rather than fundamentally altered.

Third, the “structured learning” and “characteristics reshaping” mentioned above are unable to ad-
dress the shortcomings of the generative model. As shown in Fig. 4 (epochs 20-30, especially ♦), the
generative model’s training loss meets a bottleneck around 0.08, while the editing ones can reduce
to 0.073. The Table 4 (ID6 vs. ID7) further verifies that this bottleneck persists at test time, resulting
in a significant performance gap.
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In summary, the analysis of feature evolution, training dynamics, and performance consistently
demonstrates that editing models provide a more stable, effective, and promising foundation for
dense geometry estimation.

3.2 FROM EDITOR TO ESTIMATOR

As shown in Fig. 2, we pose monocular dense estimation as an image editing task and use the Flow
Matching Loss for supervision.

Initially, we take the input image x ∈ RH×W×3 as the editing source and the geometric annotation
y ∈ RH×W×3 as the expected editing results. First, the VAE, which consists an encoder E(·) and a
decoder D(·), is used to encode the input image x into a latent representation zx = E(x) ∈ Rh×w×c.
Then, the editing process is modeled as a flow path from a noise vector zy0 ∼ N (0, I) to the target
latent representation zy1 = E(y). The trajectory is defined as:

zyt = tzy1 + (1− t)zy0, t ∈ [0, 1]. (1)

The DiT backbone, denoted as fθ, is trained to predict the velocity vector of this flow, which is
simply v =

dzy
t

dt = zy1 − zy0 . The model is optimized by minimizing the flow matching loss (Lipman
et al., 2022):

L = Et,zy
1 ,z

y
0
∥v − fθ(z

x, zyt , t)∥2. (2)

In the inference stage, we predict the editing target ẑy1 by solving the following ordinary differential
equation:

ẑy1 = zy0 +

∫ 1

0

fθ(z
x, zyt , t)dt, (3)

and the final dense geometry predictions are given by ŷ = D(ẑy1). More details of the flow matching
process are provided in Sec D.

3.3 CONSISTENT VELOCITY FLOW MATCHING WITH DETERMINISTIC DEPARTURE
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Figure 5: Left: GT velocity field for network
training. The gray dots represent different Gaus-
sian noise (top) or zero starting point (bottom),
the red dots represent data samples. Right: In-
stantaneous velocity v determines the tangent di-
rection and creates errors in the cumulative path
(top); The constant speed path is a straight line.

Flow Matching has been widely adopted
in modern generative and editing modeling.
As shown in Fig. 5, previous work Mean-
Flow (Geng et al., 2025) has identified that,
since the model learns the velocity over all pos-
sible flow paths in Eq 1, the global instanta-
neous velocity field becomes inherently non-
linear and typically induces a curved trajectory.

During inference, as shown in Fig. 5 (b), the
ideal integration path in Eq. 3 is approxi-
mated by a discrete numerical solver, which in-
troduces a non-trivial approximation error for
high-precision tasks such as dense geometric
estimation.

An intuitive idea is to find a straight integration
path, which means the velocity direction always
remains the same. In this paper, we further re-
quire the velocity magnitude to be consistent so
that the velocity is completely independent of t,
and redefine the loss as:

L = Ezy
1 ,z

y
0
∥v − fθ(z

x, zy0)∥2. (4)

Additionally, one key characteristic of generative/editing models is their stochastic nature, which
is essential for producing diverse outputs. For deterministic dense prediction tasks, however, this
stochasticity is not only unnecessary but also introduces undesirable variance into the training ob-
jective, complicating the optimization of fθ. Therefore, we simplify the objective by reducing it from

5
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a stochastic expectation over all possible zy0 to a deterministic formulation with a fixed zy0 = 0. This
further refines the loss as:

L = Ezy
1
∥v − fθ(z

x)∥2, (5)

and the inference process can be simplified as:

zy1 = zy0 +

∫ 1

0

fθ(z
x)dt = 0+ (1− 0)fθ(z

x) = fθ(z
x). (6)

Overall, as shown in Fig. 5 (c) and (d), our refined flow matching not only eliminates the errors in-
troduced by discretized curved trajectories and random starting points, but also significantly reduces
inference time, achieving simultaneous improvements in both performance and efficiency.

3.4 LOGARITHMIC ANNOTATION QUANTIZATION

Table 1: Quantization errors at BF16 precision on Vir-
tual KITTI dataset. Calculation details in Sec C.

(a) Uniform (b) Inverse (c) Logarithmic
Error Absrel Error Absrel Error Absrel

80m 16cm 0.002 125m 1.563 1.04m 0.013
0.1m 16cm 1.600 0.2mm 0.002 1.3mm 0.013

B
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Figure 6: Illustration of BF16 quantization error. (b)
and (d) show GT depth visualized with BF16 precision.
For clarity, (a) and (c) use Maigold’s VAE regulariza-
tion, mapping max/min values to 1/-1, respectively.

Modern generative/editing models are al-
most exclusively trained with BF16 preci-
sion. This is not only because BF16 pre-
cision saves the training cost, but also for
their typical outputs, RGB images; this
precision is entirely sufficient. Specifi-
cally, a normalized BF16 value is repre-
sented as:

V = (−1)S × 2(E−127) × (1.F )2,

where S is the sign (1 bit), E is the expo-
nent (8 bits), and F is the fraction (7 bits).
Due to the [-1,1] data range of VAE en-
coded input (Liu et al., 2025), the worst-
case precision occurs at ±[0.5, 1.0], which
is 2126−127 × 2−7 = 1/256 and perfectly
satisfies the RGB range of 0-255.

Uncritically finetuning these models with
FP32, as done in Marigold or Lotus, not
only increases training/inference costs, but
also leads to suboptimal inheritance of
the baseline model’s priors, and restricts
the capabilities of BF16-only models like
Step1X-Edit. Therefore, finetuning with
BF16 is necessary.

However, as shown in Fig. 6 (a,b), when meeting the depth annotations in the Virtual KITTI dataset,
the valid depth range is 0-80m. Uniformly regularizing to [-1,1] requires a reduction of 40 times,
and the accuracy of 1/256 is reflected in the original depth with a significant error of 40/256≈0.16m.
These errors result in an AbsRel of 1.6 at 0.1m (Table 1 (a)) and make the finetune process unfea-
sible. Previous works have employed an inverse quantization scheme, which means converting the
reciprocal of the depth, or disparity, to BF16 precision (Fig. 6 (c, d)). As shown in Table 1 (b),
despite offering extremely high precision at close ranges, this scheme becomes entirely unusable at
greater distances, and even makes 39m and 78m correspond to the same value. The principles and
calculations are detailed in Sec C.

After numerous attempts and explorations, we use the logarithmic depth quantization to achieve
good precision at both near and far ranges (Table 1(c)) while reducing training and inference costs.
Specifically, we first perform the logarithmic quantization with Dlog = ln(DGT + 1e − 6), then
follow and refine Marigold’s depth normalization strategy, defining the supervision label yD as:

yD =

〈(
(Dlog −Dlog,2)

(Dlog,98 −Dlog,2)
− 0.5

)
× 2

〉
, (7)

where Dlog,i corresponds to the i% percentiles of Dlog , and ⟨·⟩ is the BF16 precision truncation.

6
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Figure 7: Quantitative comparison on zero-shot depth and normal estimation. The 1st row
shows the input, the 2nd, 3rd rows are previous SoTA methods results, and the 4th row is ours
prediction. White arrows highlight the regions we significantly improved. Zoom in for better view.

3.5 COST-FREE JOINT ESTIMATION

There are inherent connections between depth and normal, as both contribute to a unified geometric
representation of 3D shapes. Normals describe surface variations and undulations, while depth
outlines the spatial arrangement that guides the orientation of the normals. Thus, previous work like
GeoWizard (Fu et al., 2024) attempted to control the SD model with a geometry switcher, but this
approach doubled the training cost.

In contrast, as shown in Fig. 2 grey part, Step1X-Edit and other DiT-based editing works have found
that, the DiT architecture can effectively guide image generation by horizontally concatenating the
noise and condition latents, that is, the input is formulated as zx+Θ = concat(zx, zΘ) ∈ Rh×2w×c

(zΘ is the noise latents, shown in Fig. 2). However, after processing by the DiT, although the model’s
output has the same shape as the input, fθ(zx+Θ) = [pl, pr] ∈ Rh×2w×c, supervision is only applied
to the region corresponding to the original noise, i.e., L = ∥v − pr∥2, where pl, pr ∈ Rh×w×c.

It is worth noting that DiT architecture possesses the global attention across the (h, 2w) dimension,
which naturally allows for mutual information exchange between pl and pr. Based on this observa-
tion, without introducing any additional training or inference costs, we further incorporate another
task’s supervision on pl during finetuning, extending Eq. 5 for both tasks (vD/vN are velocity train-
ing objectives for depth/normal task, respectively) as:

Lfm = Ezy
1
(∥vD − pl∥2 + ∥vN − pr∥2). (8)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We build FE2E upon the Step1X-Edit v1.0 framework (Liu et al., 2025). To further enhance the
DiT’s representational power, we also introduce an auxiliary dispersion loss that encourages features
from different samples to spread out in the hidden space, which is detailed in Sec A.1. During
finetuning, all parameters except for the DiT module are frozen, and the language control input is
left blank. The process employs LoRA (Hu et al., 2021) with rank = 64 and scale factor α = 32.
We trained for 30 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019) with an initial
learning rate of 1 × 10−4. With gradient checkpoint enabled, the model can be trained on a single
RTX 4090 GPU, but to accelerate experimentation, training was conducted on NVIDIA H20 GPUs,
completing in approximately 1.5 days.

4.2 TRAINING DATASETS

We train our model for joint depth and normal estimation on a mixture of two synthetic datasets: Hy-
persim (Roberts et al., 2021) and Virtual KITTI (Cabon et al., 2020). For Hypersim, a photorealistic
indoor dataset, we use its official training split after filtering out samples with over 1% invalid pixels,

7
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Table 2: Quantitative comparison on zero-shot affine-invariant depth estimation between FE2E
and SoTA methods. The best and second best performances are highlighted. ⋆ denotes the method
relies on pre-trained Stable Diffusion.

Method Training NYUv2 (Indoor) KITTI (Outdoor) ETH3D (Various) ScanNet (Indoor) DIODE (Various) Avg
Data↓ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ Rank↓

MiDaS 2M 11.1 88.5 23.6 63.0 18.4 75.2 12.1 84.6 33.2 71.5 10.6
GeoWizard 280K 5.6 96.3 14.4 82.0 6.6 95.8 6.4 95.0 33.5 72.3 8.4
GenPercept 74K 5.6 96.0 13.0 84.2 7.0 95.6 6.2 96.1 35.7 75.6 7.8
Marigoldv1.1

⋆ 74K 5.8 96.1 11.0 88.8 7.0 95.5 6.6 95.3 30.4 77.3 7.6
Marigold⋆ 74K 5.5 96.4 9.9 91.6 6.5 95.9 6.4 95.2 30.8 77.3 6.3
DepthAnything V2 62.6M 4.5 97.9 7.4 94.6 13.1 86.5 - - 26.5 73.4 5.4
Lotus-G⋆ 59K 5.4 96.8 8.5 92.2 5.9 97.0 5.9 95.7 22.9 72.9 4.7
Diffusion-E2E-FT⋆ 74K 5.4 96.5 9.6 92.1 6.4 95.9 5.8 96.5 30.3 77.6 4.6
Lotus-D⋆ 59K 5.1 97.2 8.1 93.1 6.1 97.0 5.5 96.5 22.8 73.8 3.7
DepthAnything 62.6M 4.3 98.1 7.6 94.7 12.7 88.2 4.3 98.1 26.0 75.9 3.5
FE2E 71K 4.1 97.7 6.6 96.0 3.8 98.7 4.4 97.5 22.8 81.2 1.4

Table 3: Quantitative comparison on zero-shot surface normal estimation between FE2E and
SoTA methods. ‡refers to the Marigold normal model as detailed in their repository.

Method Training NYUv2 (Indoor) ScanNet (Indoor) iBims-1 (Indoor) Sintel (Outdoor) Avg.
Data↓ MeanErr↓ 11.25◦↑ MeanErr↓ 11.25◦↑ MeanErr↓ 11.25◦↑ MeanErr↓ 11.25◦↑ Rank

Marigold‡⋆ 74K 20.9 50.5 21.3 45.6 18.5 64.7 - - 9.5
GeoWizard⋆ 280K 18.9 50.7 17.4 53.8 19.3 63.0 40.3 12.3 8.9
GenPercept⋆ 74K 18.2 56.3 17.7 58.3 18.2 64.0 37.6 16.2 7.4
StableNormal⋆ 250K 18.6 53.5 17.1 57.4 18.2 65.0 36.7 14.1 7.2
Lotus-G∗ 59K 16.5 59.4 15.1 63.9 17.2 66.2 33.6 21.0 5.2
DSINE 160K 16.4 59.6 16.2 61.0 17.1 67.4 34.9 21.5 4.6
Lotus-D⋆ 59K 16.2 59.8 14.7 64.0 17.1 66.4 32.3 22.4 3.0
Diffusion-E2E-FT⋆ 74K 16.5 60.4 14.7 66.1 16.1 69.7 33.5 22.3 2.6
Marigoldv1.1

∗ 77K 16.1 60.5 14.5 66.1 16.3 68.5 - - 2.0
FE2E∗ 71K 16.2 59.6 13.8 67.2 15.1 70.6 31.2 22.3 1.6

resulting in approximately 51k images at a 1024×768 resolution. For Virtual KITTI, a synthetic
street view dataset, we utilize four driving scenarios, totaling around 20k samples at a 1216×352
resolution with a maximum depth of 80m. Following Marigold, each training batch is constructed
by sampling from Hypersim and Virtual KITTI with probabilities of 90% and 10%, respectively.

The evaluation dataset and evaluation metrics also follow Marigold and are detailed in Sec A.2, A.3,
respectively.

4.3 QUANTITATIVE EVALUATION

Zero-shot Depth Estimation Comparison As presented in Table 2, FE2E significantly outper-
forms recent SoTA methods across five challenging benchmarks. Notably, on the ETH3D and
KITTI datasets, it reduces the AbsRel error by 35% and 10% respectively, compared to the 2nd-best
method. Remarkably, despite being trained on only 0.071M images, FE2E’s average rank surpasses
that of the DepthAnything series, which was trained on a massive 62.6M image dataset. This high-
lights the effectiveness of our strategy: inheriting the editing model priors rather than simply scaling
up training data. Furthermore, qualitative comparisons in Fig. 1 and 7 demonstrate that FE2E pro-
duces superior results in challenging lighting conditions (extreme-light, low-light, etc.) and better
preserves distant details, which reveal the core advantages that contribute to FE2E’s superior perfor-
mance. We provide further comparisons with concurrent unified works in Sec F.

Zeroshot Normal Estimation Comparison As presented in Table 3, FE2E also achieves SoTA
performance on the zero-shot normal estimation task, outperforming the methods in the recent 2
years across four benchmarks. This quantitative superiority stems from its ability to handle complex
geometries. As illustrated in Fig. 1, 7, FE2E excels at reconstructing intricate details such as surface
folds and small objects, which are often challenging for other models.

4.4 ABLATION STUDY

Effect of Foundation Model. FE2E is based on the new foundation model Step1X-Edit, the direct
adaptation protocol (ID2) establishes a strong baseline, outperforming Marigold (based on SD v2)
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by 8% and 4% on ETH3D and KITTI datasets, respectively (AbsRel, the same below). Building
on this, FE2E (ID8) further reduces the AbsRel by 32.1% on ETH3D and 30.5% on KITTI, which
confirms the effectiveness of our proposed techniques.

Effect of Editing Priors. We trained the FLUX-based model under both DirectAdapt and Improved
settings, corresponding to ID1 and ID7 in Table 4. Compared with their counterparts (ID2 and ID6),
the editing-based models consistently outperform the generative models, regardless of equipping
our proposed improvements. These results, together with the findings in Sec 3.1, highlight the
effectiveness of leveraging editing model priors for dense prediction tasks.

Effect of Improved Flow Matching. Adopting the consistent velocity training objective effectively
eliminates accumulated inference errors from the original paradigm, leading to notable performance
gains of 7% on KITTI and 10% on ETH3D (ID2 v.s. ID3). Introducing a fixed starting point further
eases optimization and brings additional improvements (ID3 v.s. ID4).

w/ Joint Estimation w/o Joint EstimationRGB

Figure 8: Qualitative comparison on the Joint Estimation.
The ‘w/o Joint Estimation’ shows 2 models’ results.

Effect of Data Quantization. Su-
pervision leads to substantial perfor-
mance gains, with ID6 outperform-
ing ID4 by 19% and 13% on the
KITTI and ETH3D datasets, respec-
tively. Notably, inverse quantization
(ID5) generally outperforms uniform
quantization, typically because there
are more valid pixels nearby.

Effect of Joint Estimation. Re-
sults from ID6 and ID8 demonstrate
that joint prediction further enhances
model performance. This synergistic
effect is more clearly illustrated in Fig. 8, where joint training yields notable improvements in chal-
lenging scenarios such as flat butterfly structures and distant buildings.

Extensibility to Other Editors. We apply our adaptation protocol to the concurrent FLUX-Kontext
model. The finetuned model (ID9) achieves comparable or even superior performance to its Step1X-
Edit counterpart (ID8), likely due to the stronger editing priors in FLUX-Kontext, which confirms
the broad applicability and high potential of our approach.
Table 4: Ablation studies of our adaptation protocol. Here we show the results in depth estimation.
CV: Consistent Velocity; FS: Fixed Start; JE: Joint Estimation; Quant: Quantization, sub-items same
with Table 1). DirectAdapt refers to the formulation in Sec 3.2, and Improved setting denotes all
improvements except JE (output dimensions of FLUX cannot support JE).

ID Note Foundation CV FS JE Quant KITTI ETH3D
AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑

1 DirectAdapt FLUX Direct 9.7 91.2 6.0 96.0
2 DirectAdapt Step1X-Edit Direct 9.5 91.4 5.6 96.2
3 Step1X-Edit ✓ Direct 8.8 93.2 5.0 97.2
4 Step1X-Edit ✓ ✓ Direct 8.6 94.0 4.8 97.3
5 Step1X-Edit ✓ ✓ Inverse 6.9 95.1 4.6 98.2
6 Improved Step1X-Edit ✓ ✓ Logarithmic 6.8 95.6 3.9 98.6
7 Improved FLUX ✓ ✓ Logarithmic 7.1 94.9 4.5 97.8
8 FE2E Step1X-Edit ✓ ✓ ✓ Logarithmic 6.6 96.0 3.8 98.7
9 Extension FLUX-Kontext ✓ ✓ ✓ Logarithmic 6.7 96.1 3.6 98.8

5 CONCLUSION

In this paper, our systematic analysis shows that editors provide a more stable and effective foun-
dation than their generative counterparts. Based on this, we introduced FE2E, a novel framework
that successfully adapts a pre-trained editing model for dense geometry prediction. To bridge the
gap between these tasks, we proposed a consistent velocity training objective for stable convergence
and logarithmic quantization to resolve precision conflicts. We also designed a cost-free joint esti-
mation strategy, enabling mutual enhancement within a single forward pass. FE2E achieves SoTA
performance and validates the ‘From Editor to Estimator’ paradigm, showcasing that harnessing
the inherent ability of editing models is an effective and data-efficient approach for dense prediction.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have included a comprehensive description of the
training details, hyperparameters, and training/evaluation datasets in Sec 4.1, 4.2, A.2. The code
will be made available upon paper acceptance.
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APPENDIX

In this appendix, we provide more implementation details, experiments, analysis, and discussions
for a comprehensive evaluation and understanding of FE2E. Detailed contents are listed as follows:

A Experiment Settings 14
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A EXPERIMENT SETTINGS

A.1 AUXILIARY DISPERSION LOSS

Table 5: Ablation study on Disperse Loss. The
baseline is the ID4 model in main paper, Table 4.

Method KITTI ETH3D
AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑

Baseline (CV + FS) 8.6 94.0 4.8 97.3
+ Disperse Loss (DL) 8.4 94.4 4.5 97.6

Following Diffuse-and-Disperse (Wang & He,
2025), we apply this loss to the output of the
9th block:

Ldisp = logEi,j

[
exp(−∥ηi − ηj∥22/τ)

]
, (9)

where ηi,j are the output features for the i-th
and j-th samples in a batch, respectively, and
temperature τ = 1. Finally, the training loss is defined as: Ltrain = Lfm + λLdisp, λ = 0.5. The
choices of λ, τ , and block all follow the optimal hyperparameters identified in the experiments from
Diffuse-and-Disperse.

For integrity, we also conducted ablation studies on this dispersed loss. The performance gains
observed in Table 5 confirm that this loss is also effective for dense geometric estimation tasks.

A.2 EVALUATION DATASETS

We evaluate our model on two tasks: Zero-shot Affine-Invariant Depth Estimation. We eval-
uate on five standard benchmarks: NYUv2 (Silberman et al., 2012), ScanNet (Dai et al., 2017),
KITTI (Geiger et al., 2012), ETH3D (Schops et al., 2017), and DIODE (Vasiljevic et al., 2019). Fol-
lowing standard practice, we report the Absolute Relative error (AbsRel) and δ1 accuracy. Surface

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Normal Prediction. We evaluate on NYUv2, ScanNet, iBims-1 (Koch et al., 2018), and Sintel (But-
ler et al., 2012) benchmarks. The evaluation metrics are the mean angular error (MeanErr) and the
percentage of pixels with an angular error below 11.25◦.

A.3 EVALUATION METRICS

For zero-shot depth estimation, similar to (Ke et al., 2024), we employ the following evaluation
metrics:

• AbsRel: 1
|Mvl|

∑
d∈Mvl

|d− dgt| /dgt;

• a1: percentage of d such that max( d
dgt

,
dgt

d ) < 1.25 ;

where dgt and d denote the GT and estimated pixel depth, Mvl is the valid mask (mask rules are
consistent with (He et al., 2024)).

For zero-shot normal estimation, we use the following evaluation metrics:

• MeanErr = 1
|Mvl|

∑
n∈Mvl

180
π arccos(clamp(n · ngt,−1, 1))

• 11.25◦: The percentage of n where the angular error is less than 11.25◦;

where ngt and n denote the GT and estimated normal vector.

B TRAINING DETAILS OF FINETUNE ANALYSIS

B.1 IMPROVED EXPERIMENT SETUP

For clarity, we term the direct adaptation of the original editing/generative formulation as “Direc-
tAdapt” (Sec 3.2), and Table 4 shows that DirectAdapt fails to achieve satisfactory performance. To
address this, we introduce two key improvements on training objective (Sec 3.3) and GT quantiza-
tion(Sec 3.4). They can benefit both editing and generative models, and these improved models are
better for analyzed our core motivation (Sec 3.1), as they isolate the error from training data and the
denoising process. We finally introduce joint training on the editing-based model to obtain FE2E.

B.2 IMPLEMENTATION DETAILS OF GENERATIVE-BASED MODELS

Step1X-Edit is fine-tuned from the generative model FLUX, and both share an almost identical DiT
architecture. To further reduce confounding factors, we follow the Step1X-Edit protocol and replace
the original FLUX input with a horizontally concatenated noise and RGB image. All hyperparame-
ters, including LoRA settings, optimizer, and training data, are kept exactly the same as those used
for FE2E in depth estimation.

FLUX consists of 38 block layers, each producing outputs of consistent dimensions. After rear-
rangement, the feature map has the shape B × 192×H/8×W/8, where B is the batch size, H and
W are the height and width of the input image. Typically, the output from the final block is projected
to 16 channels and passed to the VAE for reconstruction to B × 3 × H × W . For visualization,
we chose 1, 20, and 35 blocks, operate on the B × 192×H/8×W/8 feature map, normalize it to
B×1×H/8×W/8 using the L2 norm, upsample it to B×1×H×W , and finally visualize it using
the Rainbow colormap. The visualization of depth and normals follows the approach of Lotus.

Since our experimental comparisons are conducted using the improved model, only one single “de-
noising” step is performed during inference. Consequently, the output from the VAE decoder di-
rectly represents the depth map (the B × 3 × H × W output mentioned before was averaged to
obtain a 1-channel depth map), which makes it easier to visualize meaningful features.

C QUANTIZATION ERROR CALCULATION DETAILS

The following calculations are based on the effective depth range of 0-80m from the Virtual KITTI
dataset. The normalization scheme consistently maps an input domain X to the VAE’s mandatory
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input range of [-1, 1] using the standard min-max scaling formula: V = 2× X−Xmin

Xmax−Xmin
−1. While

other mapping schemes from [0m, 80m] to [-1, 1] may exist, they are not explored in this work. All
calculations use the worst-case precision of BF16 over the [-1, 1] interval, which corresponds to a
single quantization step of ∆V ≈ 1/256.

C.1 UNIFORM QUANTIZATION

In this scheme, the depth value D is linearly mapped to the [-1, 1] interval. The depth range is
[Dmin, Dmax] = [0m, 80m]. The mapping function is V = 2× D−0

80−0 − 1 = D
40 − 1. A quantization

step of ∆V = 1/256 in the normalized space corresponds to an error ∆D in the real-world depth
space. This error is constant across the entire depth range:

∆D = 40×∆V = 40× 1

256
≈ 0.15625

At 80m: Error ≈ 16cm. AbsRel = 0.16m
80m = 0.002.

At 0.1m: Error ≈ 16cm. AbsRel = 0.16m
0.1m = 1.600.

This method yields an unacceptably large relative error at close distances.

C.2 INVERSE QUANTIZATION

This scheme quantizes the reciprocal of depth, i.e., disparity P = 1/D. We consider an effec-
tive depth range of [0.1m, 80m] to avoid division by zero. The corresponding disparity range is
[Pmin, Pmax] = [1/80, 1/0.1] = [0.0125, 10]. The disparity P is linearly mapped to [-1, 1]. The
quantization step in disparity, ∆P , is constant:

∆P = (Pmax − Pmin)×
∆V

2
= (10− 0.0125)× 1/256

2
≈ 0.0195.

The relationship between depth error ∆D and disparity error ∆P is given by ∆D ≈ |d(1/P )
dP |∆P =

1
P 2∆P = D2∆P .

At 80m: Error = (80m)2 × 0.0195 = 6400× 0.0195 ≈ 124.8m ≈ 125m. AbsRel = 125m
80m ≈ 1.563.

At 0.1m: Error = (0.1m)2×0.0195 = 0.01×0.0195 = 0.000195m ≈ 0.2mm. AbsRel = 0.0002m
0.1m =

0.002.

As mentioned in the main text, the disparities for 39m and 78m are 1/39 ≈ 0.0256 and 1/78 ≈
0.0128, respectively. Their difference is ≈ 0.0128, which is smaller than the disparity quantization
step ∆P ≈ 0.0195, making them indistinguishable after quantization. This scheme fails completely
at large distances.

C.3 LOGARITHMIC QUANTIZATION

This scheme quantizes the logarithmic depth, Dlog = ln(D). We again consider the depth range
[0.1m, 80m]. The corresponding log-depth range is [ln(0.1), ln(80)] ≈ [−2.30, 4.38]. The log-depth
Dlog is linearly mapped to [-1, 1]. The quantization step in log-depth, ∆Dlog, is constant:

∆Dlog = (ln(80)− ln(0.1))× ∆V

2
= (4.38− (−2.30))× 1/256

2
≈ 0.013.

The relationship between depth error ∆D and log-depth error ∆Dlog is given by ∆D ≈
|d(e

Dlog )
dDlog

|∆Dlog = eDlog∆Dlog = D ·∆Dlog . This implies that the absolute relative error, AbsRel
= ∆D/D, is approximately constant and equal to ∆Dlog ≈ 0.013.

At 80m: AbsRel ≈ 0.013. Error = 80m × 0.013 = 1.04m.

At 0.1m: AbsRel ≈ 0.013. Error = 0.1m × 0.013 = 0.0013m = 1.3mm.

This method maintains a reasonable and nearly constant relative error across both near and far
ranges, making it a well-balanced and effective solution. The percentile-based normalization used
in the main text is a more robust implementation of this fundamental principle.
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D PRELIMINARIES OF FLOW MATCHING

Flow Matching (Lipman et al., 2022) is a highly effective framework for training Continuous Nor-
malizing Flows (CNFs). The core idea is to smoothly transform a simple prior distribution p0 (e.g.,
the standard Gaussian distribution N (0, I)) into a complex target data distribution p1 over a contin-
uous time variable t ∈ [0, 1].

This transformation process can be described by an Ordinary Differential Equation (ODE), where
the velocity at any time t and point z is defined by a vector field vt(z). However, estimating this
marginal vector field vt(z) directly from data samples is challenging. The Flow Matching framework
elegantly bypasses this issue by regressing a much simpler and easier-to-compute conditional vector
field ut(z|z0, z1) instead.

Specifically, we first sample a pair of points, (z0, z1), from the prior distribution p0 and the target
distribution p1, respectively. We then define a simple path zt from z0 to z1 and its corresponding
conditional vector field ut =

dzt

dt . It has been proven that if a neural network fθ(z, t) is trained to
approximate this simple conditional vector field ut, then in expectation over all sample pairs (z0, z1)
and time t, the network fθ will converge to the complex marginal vector field vt that we truly wish
to learn.

Rectified Flow (Liu et al., 2022) presents a particularly simple and powerful instance of Flow
Matching. It defines the path between z0 and z1 as a straight line:

zt = tz1 + (1− t)z0, t ∈ [0, 1].

The derivative of this path is trivial, yielding a constant velocity vector that is independent of both
time and space:

v =
dzt
dt

= z1 − z0.

Consequently, the training objective (loss function) becomes exceedingly simple: aligning the neural
network’s prediction with this constant velocity vector v:

L = Et,z1,z0
∥(z1 − z0)− fθ(zt, t)∥2.

Application in DirectAdapt In this paper, we adapt this framework for a conditional image editing
task. Our goal is not to learn an unconditional generative model, but rather a flow from noise zy0 to
the target geometry latent zy1 , guided by the input image x (encoded as zx). Therefore, our velocity
prediction model fθ must take zx as an additional condition. As shown in Eq. 2 in the main text, our
loss function is:

L = Et,zy
1 ,z

y
0
∥(zy1 − zy0)− fθ(t, z

x)∥2.

During inference, we generate the target latent ẑy1 by solving the following ODE, with zx serving as
the guiding condition:

dẑyt
dt

= fθ(t, z
x), with initial value ẑy0 ∼ N (0, I).

By integrating from t = 0 to t = 1 using a numerical ODE solver (e.g., Euler method), we can
obtain the final prediction ẑy1 .

E REVIEWS OF RELATED GENERATIVE AND EDITING MODELS

The fields of image generation and image editing have always been complementary, and they have
undergone several paradigm shifts. The first major breakthrough was the Generative Adversarial
Network (GAN) (Goodfellow et al., 2014), which introduced a novel adversarial training process.
Then, key advancements in this era include architectural refinements like DCGAN (Radford et al.,
2016), the development of conditional and text-to-image GANs such as the StackGAN series (Zhang
et al., 2017; 2018), and Cross-Modal Contrastive Learning based models (Zhang et al., 2021). The
StyleGAN series (Karras et al., 2019; 2020; 2021) marked a high point for GANs, achieving un-
precedented photorealistic high-resolution image synthesis and offering fine-grained control over
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visual attributes through a disentangled latent space, which became a cornerstone for many subse-
quent editing techniques.

More recently, the field has transitioned to Denoising Diffusion Models (Ho et al., 2020), which
have become the state-of-the-art for their superior image quality and textual coherence. A series
of influential diffusion-based methods were introduced, including GLIDE (Nichol et al., 2021),
DALL·E (Ramesh et al., 2021) and its successor DALL·E 2 (Ramesh et al., 2022), Imagen (Saharia
et al., 2022), and PIXART-α (Chen et al., 2023). The open-source Stable Diffusion (SD) (Rombach
et al., 2022) model, trained on the large-scale LAION-5B dataset (Schuhmann et al., 2022), further
democratized high-quality image generation and quickly became a community standard. A growing
body of evidence suggests that Diffusion Transformers (Chu et al., 2025; Labs, 2024) outperform U-
Nets, motivating the shift toward training modern diffusion models with Transformer architectures.

Building on these powerful generative foundations, the domain of image editing (Lan et al., 2025)
(generalized editing) has also advanced rapidly. Early diffusion-based methods like SDEdit (Meng
et al., 2022) demonstrated that real images could be edited by adding noise and then denoising
with a new text prompt. A significant leap was made with instruction-guided editing, pioneered by
InstructPix2Pix (Brooks et al., 2022), which enabled edits based on natural language commands.
The field has since diversified with numerous innovative approaches. For instance, DragGAN (Pan
et al., 2023) introduced a novel point-based interaction, allowing users to “drag” pixels to precisely
deform object shapes. OmniControl (Tan et al., 2025) further enhances controllability by creating
a unified framework that accepts diverse spatial guidance signals for both synthesis and editing.
This trend towards more powerful and versatile models is also reflected in large-scale systems like
UniWorld (Lin et al., 2025), which uses a unified transformer for multi-modal understanding and
generation, Step1X-Edit (Liu et al., 2025), fine-tuned from the FLUX architecture for superior in-
struction following, and multi-modal editors like Qwen-Image (Wu et al., 2025), which leverage
Large Language Models (LLMs) to build more comprehensive visual editing frameworks.

F ADDITION EXPERIMENTS RESULTS

Table 6: Quantitative comparison on zero-shot affine-invariant depth estimation between FE2E and
the concurrent unified model.

Method NYUv2 (Indoor) KITTI (Outdoor) ETH3D (Various) ScanNet (Indoor) DIODE (Various) Avg
AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ Rank↓

Qwen-Image 5.5 96.7 7.8 95.1 6.6 96.2 4.7 97.4 19.7 83.2 2.6
DINOv3 4.3 98.0 7.3 96.7 5.4 97.5 4.4 98.1 25.6 82.2 1.8
FE2E 4.1 97.7 6.6 96.0 3.8 98.7 4.4 97.5 22.8 81.2 1.6

Comparison with Concurrent Unified Model The field of dense geometry estimation is advanc-
ing rapidly, with the task of depth estimation particularly fast. Recently, several concurrent works
have been explored to unify the visual tasks, which also include depth estimation benchmarks. As
shown in Table 6, our method consistently achieves the top average ranking, even though they are
trained with extremely huge data compared to FE2E (e.g., Qwen Image utilizes billions of samples,
and DINO v3 is trained on 1.7 billion images).

Additional Qualitative Comparison Fig. 9 presents a qualitative comparison between FE2E and
other methods. The results demonstrate that our approach produces more refined and accurate depth
predictions, particularly in structurally complex regions that may not be fully captured by quan-
titative metrics. Furthermore, as illustrated in Fig. 10, FE2E consistently delivers precise surface
normal predictions, effectively handling intricate geometries and diverse environments. These re-
sults highlight the robustness of our method in fine-grained prediction tasks.

G LIMITATIONS AND FUTURE WORK
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RGB Depth Anything V2 Lotus-D FE2E

Figure 9: Additional qualitative comparison on zero-shot affine-invariant depth estimation.
FE2E achieves more accurate depth predictions, particularly in structurally complex regions. White
arrows highlight these improvements.

Table 7: Performance comparison of different models.

Methods Marigold Lotus-D Qwen Image DINO v3 FE2E
MACs 133T 2.65T 2.13P 14.5T 28.9T
RunTime 9.67s 212ms 63.4s 632ms 1.78s
AbsRel 6.5 6.1 6.6 5.4 3.8

Large computational load We present
the inference latency and computational
complexity of the FE2E model in Table 7,
alongside comparisons with previous SD-
based and unified methods. Although in-
corporating DiT does lead to a notable increase in computational complexity relative to other SD-
based approaches, FE2E strikes a trade-off between performance and computational efficiency.

Diversifying foundation models The field of image editing is evolving rapidly, and our approach
is designed to be model-agnostic. In future work, we plan to incorporate a broader range of editing
models to further substantiate the motivation and conclusions presented in this paper.
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RGB DSINE Lotus-D FE2E

Figure 10: Additional qualitative comparison on zero-shot surface normal estimation. FE2E
offers improved accuracy, particularly in detailed and complex regions.

Scaling up the training data While a key contribution of this work is demonstrating strong gen-
eralization performance with a limited amount of training data, we still anticipate that scaling up
the training dataset could further improve the model’s capabilities. This direction is meaningful for
domains that are not sensitive to computational complexity but require extremely high prediction
accuracy. We leave the exploration for future research.

H LLM CLARIFICATION

We clarify the use of Large Language Models (LLMs) in the preparation of this manuscript. Specif-
ically, LLMs were employed for language polishing, which involved correcting grammatical errors,
improving sentence structure, and enhancing the overall readability and flow of the text.
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