Good-Enough Structured Generation: A Case Study
on JSON Schema

Ivan Lee Loris D’Antoni Taylor Berg-Kirkpatrick
UC San Diego
iylee@ucsd.edu

Abstract

Grammar-constrained decoding—which masks invalid tokens during generation to
guarantee outputs stay within a specified formal language—promises to eliminate
structural errors in language model outputs. Yet when tested on JSON Schema (the
most common application of grammar-constrained decoding), popular implementa-
tions achieve as low as 50% coverage on real-world schemas. Through experiments
on 9,558 real-world JSON schemas, we find that treating validation as an external
tool—using validation failures as feedback for runtime alignment—outperforms
sophisticated constrained decoding methods, achieving 95% coverage in exchange
for higher latency—typically an additional 1-4 seconds per schema. This gap stems
from multiple issues: grammar-constrained decoding is theoretically limited to
context-free grammars, real-world schemas often require context-sensitive vali-
dation, and even within context-free constraints, implementations struggle with
token-boundary misalignment and state explosion. While our analysis focuses
specifically on JSON Schema—where language models may excel due to exten-
sive training exposure—it raises questions about whether increasingly complex
decoding algorithms are the right approach. As language models improve, treating
validation as a separate feedback tool in an agentic loop may prove more practical
than embedding constraints into the decoding process itself.

1 Introduction

The ability of large language models (LLMs) to produce structured data is fundamental to their
integration into modern software systems. To ensure reliability, a principled approach known as
Grammar-Constrained Decoding (GCD) [1]] has emerged as a leading technique. By masking invalid
tokens during the generation process, GCD offers the theoretical elegance of a formal guarantee:
every output will be syntactically correct according to a specified grammar. This promise of an
infallible generator has motivated extensive research, positioning GCD as a key technique for building
robust, predictable LLM-powered applications.

While GCD is a general technique for enforcing structured outputs, its primary application in both
industry and research is the enforcement of JSON Schema [2]. JSON has become the de facto lingua
franca for modern systems, mediating everything from web APIs and configuration files to, most
critically, the tool-calling protocols that underpin the emerging agentic paradigm. The ability to
reliably generate JSON that conforms to a specific schema is therefore not an academic exercise, but a
core requirement for enabling LLMs to act as reliable components and autonomous agents. This paper
challenges the prevailing assumption that GCD is the optimal solution for this critical task. Through a
rigorous case study on real-world JSON Schemas, we demonstrate that popular GCD implementations
are surprisingly brittle, often failing on the complex schemas that characterize modern software
systems. We contrast this with simple iterative approaches that treat validation as an external tool:
naive rejection sampling that retries from scratch, and a verifier loop that incorporates diagnostic

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Deep Learning For
Code in the Agentic Era.

Outlines #- GPT-5 nano

o XGrammar GPT-5 mini GitHub Hard GitHub Medium
+- Llamacpp Gemini 2.0 FL -
Guidance @~ Gemini 2.5 FL L e ——8,
OpenAl Py

Google N\

7
Github Trix@ GitHub Easy
[¥

0.6
0.4
0.2

Github Ultra 4> ¢ $ »

JsonSchemaStore shington Post

N |

Kubernetes Snowplow

Figure 1: Coverage comparison across the JSONSchemaBench datasets. Each axis represents a
dataset of increasing complexity; 100% coverage on all axes indicates a robust method. The verify-
retry approaches (right side of legend) consistently achieve high coverage across all complexities.
In contrast, GCD-based methods (left side of legend) exhibit brittle, dataset-specific failures, with
coverage collapsing on more complex schemas. Results for Outlines, XGrammar, Llama.cpp, and
Guidance from [2].

feedback. Both achieve near-perfect coverage, with the verifier loop providing additional gains on
complex schemas when paired with reasoning tokens. We argue that these simpler, tool-centric
approaches are not only more robust but also better aligned with the trajectory of both foundation
models and the agentic systems they enable.

We are careful to scope our claims. This paper presents a case study focused on JSON Schema—a
high-resource format that is ubiquitous in LLM training data. We acknowledge that our findings may
not generalize to novel, out-of-distribution Domain-Specific Languages (DSLs), where the formal
guarantees of GCD could be more critical. Our goal is not to dismiss GCD universally, but to initiate
a conversation about its cost-benefit trade-off for the majority of common applications. We aim to
question whether the pursuit of decode-time perfection remains the right goal as foundation models
grow more capable and the simple, scalable power of feedback loops becomes the defining feature of
the agentic era.

Our contributions are threefold: (1) We provide an empirical comparison showing a simple verify-
retry loop surpasses specialized GCD frameworks in robustness with an increase in latency. (2)
We perform a root-cause analysis, explaining how GCD’s failures stem from a combination of a
theoretical mismatch with the JSON Schema specification and documented practical implementation
challenges. (3) We contextualize these findings within two competing paradigms for structured
generation, prompting a re-evaluation of their respective trade-offs in the agentic era.

2 Empirical Reality: Coverage vs. Efficiency

We ground our analysis in a large-scale empirical study designed to test the real-world robustness of
structured generation. Our evaluation uses the diverse JSONSchemaBench benchmark [2], which

Table 1: Cost vs. Coverage analysis. The verifier loop and rejection sampling methods achieve
near-perfect final coverage at the cost of higher latency compared to the brittle structured output
(GCD) approach. The Coverage (%) column for these iterative methods shows the range from the
first attempt to the final result after up to five attempts. The Reasoning column specifies the budget of
"thinking" tokens the model was instructed to use before generating its final output.

Model Reasoning Decoding Strategy Coverage (%) Latency (s) Tokens

Structured Output 50.2 1.7 93

minimal Rejection Sampling 86.3—93.6 4.1 360

t-5-nano Verifier Loop 86.0—94.2 3.6 363

gp Structured Output 495 8.1 1022

medium Rejection Sampling 94.5—98.4 11.2 2008

Verifier Loop 94.8—98.9 11.4 1932

Structured Output 50.2 2.8 106

gpt-5-mini minimal Rejection Sampling 94.3—-97.1 6.3 313
Verifier Loop 93.9-98.1 6.3 309

Structured Output 77.8 2.0 196

gemini-2.0-flash-lite 0 Rejection Sampling 93.2—95.8 2.3 363
Verifier Loop 92.9-96.2 23 383

Structured Output 72.2 1.1 136

0 Rejection Sampling 91.3—96.2 2.1 363

emini-2.5-flash-lite Verifier Loop 91.5—96.6 1.9 389
g : Structured Output 77.9 1.9 445
512 Rejection Sampling 91.0—96.5 32 812

Verifier Loop 91.0—97.6 3.1 772

contains 9,558 schemas from sources like GitHub, Kubernetes, and JsonSchemaStore. On this
benchmark, we tested leading models from OpenAl (GPT-5 family) and Google (Gemini family)
using three distinct decoding strategies. As a baseline, we evaluate the proprietary structured output
(GCD) endpoints. We compare this to two iterative methods: a naive rejection sampling that retries
from scratch, and our proposed verifier loop, which uses diagnostic error messages as feedback
for runtime alignment. We measure performance primarily by coverage (the percentage of schemas
successfully passed), with secondary metrics of end-to-end latency and generated tokens.

2.1 Verify-Retry Achieves Superior Coverage

Across our benchmark of real-world JSON Schemas, a pragmatic verify-retry loop consistently
achieves near-perfect compliance, whereas all tested GCD methods exhibit brittle performance and
low coverage. The results, visualized in Figure[T] are stark. Our verify-retry approach using GPT-5
nano (orange lines) rapidly converges to near-perfect compliance on all datasets within five attempts.
Notably, even a single unconstrained attempt is competitive with or superior to many constrained
methods on complex datasets like JsonSchemaStore and Kubernetes. The result is the consistent,
near-perfect polygon described in Figure 1, visually representing a method that achieves robust
coverage across all tested schema complexities.

In sharp contrast, every GCD implementation produces an irregular, spiky shape, indicating an
inability to handle the full benchmark. While proprietary APIs (OpenAl, Gemini) and advanced
open-source frameworks (XGrammar [3]], Guidance [4]) perform reasonably on simpler datasets like
GitHub Easy, their coverage collapses on more complex, real-world schemas. Popular libraries such
as Outlines [3]] fail almost entirely. This demonstrates that while GCD methods can handle simple
structures, their coverage of the features and complexities found in modern software development is
severely limited—a weakness that the simple, iterative nature of verify-retry completely overcomes.

2.2 The Practical Cost of Full Coverage

The core appeal of GCD lies in its promise of single-shot efficiency. By guaranteeing a valid output
in one pass, it offers predictable latency and minimal token usage—a theoretically elegant alternative

to iterative correction. This is a powerful and compelling advantage, especially in latency-sensitive or
resource-constrained environments.

However, our empirical results reveal a stark trade-off: this theoretical efficiency is purchased at the
cost of practical coverage. Table[I|quantifies this choice. Achieving near-100% coverage with our
verifier loop required, on average, fewer than two attempts per schema. For example, with gpt-5-nano,
this translates to an end-to-end latency of 3.6 seconds per schema, an increase of 1.9 seconds over a
single, unconstrained generation pass. Given that GCD methods often fail entirely on these tasks, this
additional latency provides a near-guarantee of success.

2.3 Is Rejection Sampling Sufficient?

Table [I] reveals a potentially surprising result: rejection sampling achieves aggregate coverage
comparable to the verifier loop (e.g., 98.4% vs 98.9% for GPT-5 Nano with medium reasoning). This
raises a natural question: if independent retries perform nearly as well as cumulative feedback, is the
verifier loop’s added complexity justified?

To answer this, we analyze performance across JSONSchemaBench subsets, averaging results
separately for models with and without reasoning tokens. Table [2] shows coverage across the three
decoding strategies.

Table 2: Coverage (%) across decoding strategies for models with and without reasoning tokens.
Ayerifier Shows marginal gain from rejection sampling to verifier loop.

Subset Structured Rejection Verifier Ayerifier
With reasoning tokens

Github_trivial 60.9 98.2 99.1 +0.9
Github_easy 73.9 98.9 99.1 +0.3
Github_medium 59.2 97.8 98.3 +0.6
Github_hard 334 91.7 95.5 +3.9
Github_ultra 9.5 86.6 92.1 +5.5
Glaiveai2K 97.0 98.8 98.8 -0.0
JsonSchemaStore 25.5 97.0 96.9 -0.0
Kubernetes 59.9 99.9 99.9 -0.0
Snowplow 76.9 97.9 99.5 +1.6
WashingtonPost 43.2 99.6 100.0 +0.4
Without reasoning tokens

Github_trivial 60.7 96.5 97.0 +0.6
Github_easy 73.3 97.8 98.4 +0.6
Github_medium 56.5 94.6 95.4 +0.7
Github_hard 32.7 88.8 90.5 +1.7
Github_ultra 10.7 86.0 84.8 -1.2
Glaiveai2K 97.4 98.4 98.7 +0.2
JsonSchemaStore 25.1 92.8 93.2 +0.4
Kubernetes 56.8 99.5 99.5 -0.1
Snowplow 77.1 96.8 97.8 +1.0
WashingtonPost 40.2 96.2 97.0 +0.8

The data reveals a clear pattern: verifier loop effectiveness depends on whether reasoning tokens
are leveraged. With reasoning enabled, verifier loop provides clear gains over rejection sampling
on difficult subsets: +5.5 percentage points on Github_ultra and +3.9pp on Github_hard. On easier
subsets already near saturation (e.g., Glaiveai2K at 98.8%), the gains are minimal. Without reasoning
tokens, verifier loop shows little benefit and can even degrade performance (-1.2pp on Github_ultra).
These results demonstrate that while rejection sampling is competitive in aggregate, verifier loop
shows larger gains on hard schemas when paired with reasoning tokens.

Having established that verify-retry methods—particularly verifier loop with reasoning—achieve
better coverage than GCD, a critical question remains: is GCD’s failure an implementation flaw, or a
sign of a more fundamental problem? In the next section, we perform a root-cause analysis to answer
this question.

3 A Root Cause Analysis of GCD’s Brittleness

The stark performance gap documented in Section 2 is not a simple implementation flaw but stems
from a deep, two-part mismatch: a theoretical ceiling imposed by the limits of context-free grammars,
and the immense practical hurdles of implementing even a subset of the specification.

First, GCD is fundamentally limited to context-free grammars (CFGs), but the JSON Schema
specification is not purely context-free. Many of its most powerful and commonly used features
require validation that goes beyond syntactic structure. This includes not only explicitly context-
sensitive keywords like 1f/then/else and dependentSchemas, but also fundamental value-based
constraints such as minimum, maximum, minLength, and multiple0f. These constraints require
semantic interpretation of a parsed value—a capability that pure CFGs do not possess. For this entire
class of common schemas, any CFG-based decoder is guaranteed to be insufficient, not because of a
bug, but by design, making it theoretically incapable of supporting the full specification.

Second, even for the theoretically context-free subset of JSON Schema, practical implementations
face severe implementation challenges. Prior work has documented immense engineering challenges,
including token-boundary misalignment where an LLM’s vocabulary does not cleanly map to a
grammar’s terminals, and developers making pragmatic trade-offs to offer only incomplete feature
support [6} [7]]. Furthermore, complex features like regex patterns can lead to state explosion, creating
unmanageably large automata during parsing. Thus, the ’solvable’ portion of the problem remains a
significant practical hurdle, explaining the low coverage rates even on simpler schemas.

4 Discussion

Our findings are not merely a benchmark result, but a symptom of a larger shift in Al systems. They
suggest a fundamental re-evaluation of constrained decoding in the agentic era, where the ability
to use tools and learn from feedback is paramount. The case for GCD is challenged by the "Bitter
Lesson" of machine learning [8]]: simple methods that leverage scale often outperform complex,
specialized ones. As models become fluent with common formats like JSON, the core problem
shifts from enforcing syntax to correcting occasional errors. This is analogous to code generation,
where developers rely on an ecosystem of external tools like compilers and linters, not an infallible
generator.

This does not render GCD obsolete, but it demands a clear-eyed cost-benefit analysis. While its
single-shot guarantee remains valuable for latency-critical applications or novel DSLs, our work
shows that for the common case of JSON Schema, this efficiency is purchased at the cost of profound
brittleness. The simpler, more robust paradigm is the agentic loop. This approach accepts generators
as competent but fallible, and focuses on perfecting the feedback loop between the model and its
verification tools. We argue the future of reliable Al lies not in building ever-more-complex, perfect
decoders, but in embracing this pragmatic, powerful, and scalable tool-centric paradigm.

References

[1] Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding
for structured NLP tasks without finetuning. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 10932-10952. Association for Computational
Linguistics, 2023.

[2] Saibo Geng, Hudson Cooper, Michat Moskal, Samuel Jenkins, Julian Berman, Nathan Ranchin,
Robert West, Eric Horvitz, and Harsha Nori. Jsonschemabench: A rigorous benchmark of
structured outputs for language models, 2025.

[3] Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqgi Chen.
Xgrammar: Flexible and efficient structured generation engine for large language models, 2024.

[4] Scott Lundberg and Marco Tulio Ribeiro. Guidance: A guidance framework for constrained
generation, 2023. Microsoft Research. Software framework available athttps://github.com/
guidance-ai/guidance,

[5] Brandon T. Willard and Rémi Louf. Efficient guided generation for large language models, 2023.

https://github.com/guidance-ai/guidance
https://github.com/guidance-ai/guidance

[6] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding llms the right way: Fast,
non-invasive constrained generation, 2024.

[7] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syncode:
Llm generation with grammar augmentation, 2024.

[8] Richard S Sutton. The bitter lesson. Incomplete Ideas (blog), March 2019. http://www|
incompleteideas.net/IncIdeas/BitterLesson.html,

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

	Introduction
	Empirical Reality: Coverage vs. Efficiency
	Verify-Retry Achieves Superior Coverage
	The Practical Cost of Full Coverage
	Is Rejection Sampling Sufficient?

	A Root Cause Analysis of GCD's Brittleness
	Discussion

