
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A VERSATILE INFLUENCE FUNCTION FOR DATA AT-
TRIBUTION WITH NON-DECOMPOSABLE LOSS

Anonymous authors
Paper under double-blind review

ABSTRACT

Influence function, a technique rooted in robust statistics, has been adapted in
modern machine learning for a novel application: data attribution—quantifying
how individual training data points affect a model’s predictions. However, the
common derivation of influence functions in the data attribution literature is lim-
ited to loss functions that can be decomposed into a sum of individual data point
losses, with the most prominent examples known as M-estimators. This restricts
the application of influence functions to more complex learning objectives, which
we refer to as non-decomposable losses, such as contrastive or ranking losses,
where a unit loss term depends on multiple data points and cannot be decomposed
further. In this work, we bridge this gap by revisiting the general formulation
of influence function from robust statistics, which extends beyond M-estimators.
Based on this formulation, we propose a novel method, the Versatile Influence
Function (VIF), that can be straightforwardly applied to machine learning models
trained with any non-decomposable loss. In comparison to the classical approach
in statistics, the proposed VIF is designed to fully leverage the power of auto-
differentiation, hereby eliminating the need for case-specific derivations of each
loss function. We demonstrate the effectiveness of VIF across three examples:
Cox regression for survival analysis, node embedding for network analysis, and
listwise learning-to-rank for information retrieval. In all cases, the influence esti-
mated by VIF closely resembles the results obtained by brute-force leave-one-out
retraining, while being up to 103 times faster to compute. We believe VIF rep-
resents a significant advancement in data attribution, enabling efficient influence-
function-based attribution across a wide range of machine learning paradigms,
with broad potential for practical use cases.

1 INTRODUCTION

Influence function (IF) is a well-established technique originating from robust statistics and has
been adapted to the novel application of data attribution in modern machine learning (Koh & Liang,
2017). Data attribution aims to quantify the impact of individual training data points on model out-
puts, which enables a wide range of data-centric applications such as mislabeled data detection (Koh
& Liang, 2017), data selection (Xia et al., 2008), and copyright compensation (Deng & Ma, 2023).

Despite its broad potential, the application of IFs for data attribution has been largely limited to
loss functions that can be decomposed into a sum of individual data point losses—such as those
commonly used in supervised learning or maximum likelihood estimation, which are also known
as M-estimators. This limitation arises from the specific way that IFs are typically derived in the
data attribution literature (Koh & Liang, 2017; Grosse et al., 2023), where the derivation involves
perturbing the weights of individual data point losses. As a result, this restricts the application of
IF-based data attribution methods to more complex machine learning objectives, such as contrastive
or ranking losses, where a unit loss term depends on multiple data points and cannot be further
decomposed into individual data point losses. We refer to such loss functions as non-decomposable
losses.

To address this limitation, we revisit the general formulation of IF in statistics literature (Huber &
Ronchetti, 2009), which can extend beyond M-estimators. Specifically, statistical estimators are
viewed as functionals of probability measures, and the IF is derived as a functional derivative in a

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

specific perturbation direction. In principle, this formulation applies to any estimator defined as the
minimizer of a loss function that depends on an (empirical) probability measure, which corresponds
to the learned parameters in the context of machine learning. However, directly applying this general
formulation to modern machine learning models poses significant challenges. Firstly, deriving the
precise IF for a particular loss function often requires complex, case-by-case mathetical derivations,
which can be challenging for intricate loss functions and models. Secondly, for non-convex models,
the (local) minimizer of the loss function is not unique; as a result, the mapping from the probability
measure to the learned model parameters is not well-defined, making it unclear how the IF should
be derived.

To overcome these challenges, we propose the Versatile Influence Function (VIF), a novel method
that extends IF-based data attribution to models trained with non-decomposable losses. The pro-
posed VIF serves as an approximation of the general formulation of IF but can be efficiently com-
puted using auto-differentiation tools available in modern machine learning libraries. This approach
eliminates the need for case-specific derivations of each loss function. Furthermore, like existing
IF-based data attribution methods, VIF does not require model retraining and can be generalized to
non-convex models using similar heuristic tricks (Koh & Liang, 2017; Grosse et al., 2023).

We validate the effectiveness of VIF through both theoretical analysis and empirical experiments.
In special cases like M-estimation, VIF recovers the classical IF exactly. For Cox regression, we
show that VIF closely approximates the classical IF. Empirically, we demonstrate the practicality of
VIF across several tasks involving non-decomposable losses: Cox regression for survival analysis,
node embedding for network analysis, and listwise learning-to-rank for information retrieval. In all
cases, VIF closely approximates the influence obtained from the brute-force leave-one-out retraining
while significantly reducing computational time—achieving speed-ups of up to 103 times. We also
provide case studies demonstrating VIF can help interpret the behavior of the models. By extending
IF to non-decomposable losses, VIF opens new opportunities for data attribution in modern machine
learning models, enabling data-centric applications across a wider range of domains.

2 RELATED WORK

Data Attribution. Data attribution methods can be roughly categorized into two groups: retraining-
based and gradient-based methods (Hammoudeh & Lowd, 2024). Retraining-based methods (Ghor-
bani & Zou, 2019; Jia et al., 2019; Kwon & Zou, 2021; Wang & Jia, 2023; Ilyas et al., 2022) typically
estimate the influence of individual training data points by repeatedly retraining models on subsets
of the training dataset. While these methods have been shown effective, they are not scalable for
large-scale models and applications. In contrast, gradient-based methods (Koh & Liang, 2017; Guo
et al., 2020; Barshan et al., 2020; Schioppa et al., 2022; Kwon et al., 2023; Yeh et al., 2018; Pruthi
et al., 2020; Park et al., 2023) estimate the training data influence based on the gradient and higher-
order gradient information of the original model, avoiding expensive model retraining. In particular,
many gradient-based methods (Koh & Liang, 2017; Guo et al., 2020; Barshan et al., 2020; Schioppa
et al., 2022; Kwon et al., 2023; Pruthi et al., 2020; Park et al., 2023) can be viewed as variants of IF-
based data attribution methods. Therefore, extending IF-based data attribution methods to a wider
domains could lead to a significant impact on data attribution.

Influence Function in Statistics. The IF is a well-established concept in statistics dating back at
least to Hampel (1974), though it is typically applied for purposes other than data attribution. Orig-
inally introduced in the context of robust statistics, it was used to assess the robustness of statistical
estimators (Huber & Ronchetti, 2009) and later adapted as a tool for developing asymptotic theo-
ries (van der Vaart, 2012). Notably, IFs have been derived for a wide range of estimators beyond
M-estimators, including L-estimators, R-estimators, and others (Huber & Ronchetti, 2009; van der
Vaart, 2012). Closely related to an example of this study, Reid & Crepeau (1985) developed the IF
for the Cox regression model. However, the literature in statistics often approaches the derivation of
IFs through precise definitions specific to particular estimators, requiring case-specific derivations.
In contrast, this work proposes an approximation for the general IF formulation in statistics, which
can be straightforwardly applied to a broad family of modern machine learning loss functions for the
purpose of data attribution. While this approach involves some degree of approximation, it benefits
from being more versatile and computationally efficient, leveraging auto-differentiation capabilities
provided by modern machine learning libraries.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 THE VERSATILE INFLUENCE FUNCTION

3.1 PRELIMINARIES: IF-BASED DATA ATTRIBUTION FOR DECOMPOSABLE LOSS

We begin by reviewing the formulation of IF-based data attribution in prior literature (Koh & Liang,
2017; Schioppa et al., 2022; Grosse et al., 2023). IF-based data attribution aims to approximate
the effect of leave-one-out (LOO) retraining—the change of model parameters after removing one
training data point and retraining the model—which could be used to quantify the influence of this
training data point.

Formally, suppose we have the following loss function1,

LD(θ) =

n∑
i=1

ℓ(θ; zi), (1)

where θ is the model parameters, {zi}ni=1 is the training dataset, and each ℓ(·; zi), i = 1, . . . , n,
corresponds to the loss function of one training data point zi. The IF-based data attribution is
derived by first inserting a binary weight wi in front of each ℓ(·; zi) to represent the inclusion or
removal of the individual data points, transforming LD(θ) to a weighted loss

LD(θ, w) =

n∑
i=1

wiℓ(θ; zi). (2)

Note that w = 1 corresponds to the original loss in Eq. (1); while removing the i-th data point is to
set wi = 0 or, equivalently, w = 1−i, where 1−i is a vector of all one except for the i-th element
being zero. Denote the learned parameters as θ̂D(w) := argminθ LD(θ, w)2. The LOO effect for
data point i is then characterized by θ̂D(1−i)− θ̂D(1).

However, evaluating θ̂D(1−i) is computationally expensive as it requires model retraining. Koh &
Liang (2017) proposed to approximate the LOO effect by relaxing the binary weights in w to the
continuous interval [0, 1] and measuring the influence of the training data point zi on the learned
parameters as

∂θ̂D(w)

∂wi

∣∣∣∣∣
w=1

= −
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi), (3)

which can be evaluated using only θ̂D(1), hence eliminating the need for expensive model retraining.

However, by construction, this approach critically relies on the introduction of the loss weights wi’s,
and is thus limited to loss functions that are decomposable with respect to the individual training
data points, taking the form of Eq. (1).

3.2 NON-DECOMPOSABLE LOSS

In practice, there are many common loss functions that are not decomposable. Below we list a few
examples.

Example 1: Cox’s Partial Likelihood. The Cox regression model (Cox, 1972) is one of the most
widely used models in survival analysis, designed to analyze the time until specific events occur
(e.g., patient death or customer churn). A unique challenge in survival analysis is handling censored
observations, where the exact event time is unknown because the event has either not occurred by
the end of the study or the individual is lost to follow-up. These censored data points contain partial
information about the event timing and should be properly modeled to improve estimation. The
Cox regression model is defined through specifying a hazard function over time t conditional on the
individual feature x:

h(t | x) = h0(t) exp(θ
⊤x),

1The subscript D in LD refers to “decomposable”, which is included to differentiate with the later notation.
2While this definition is technically valid only under specific assumptions about the loss function (e.g., strict

convexity), in practice, methods developed based on these assumptions (together with some heuristics tricks)
are often applicable to more complicated models such as neural networks (Koh & Liang, 2017).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where h0(t) is a baseline hazard function and exp(θ⊤x) is the relative risk with θ as the model
parameters to be estimated. Given n data points {(Xi, Yi,∆i)}ni=1, where Xi represents the features
for the i-th data point, Yi denotes the observed time (either the event time or the censoring time),
and ∆i is the binary event indicator (∆i = 1 if the event has occurred and ∆i = 0 if the observation
is censored), the parameters θ can be learned through minimizing the following negative log partial
likelihood

LCox(θ) = −
∑

i:∆i=1

θ⊤Xi − log
∑
j∈Ri

exp(θ⊤Xj)

 , (4)

where Ri := {j : Yj > Yi} is called the at-risk set for the i-th data point.

In Eq. (4), each data point may appear in multiple loss terms if it belongs to the at-risk sets of other
data points. Consequently, we can no longer characterize the effect of removing a training data point
by simply introducing the loss weight.

Example 2: Contrastive Loss. Contrastive losses are commonly seen in unsupervised represen-
tation learning across various modalities, such as word embeddings (Mikolov et al., 2013), image
representations (Chen et al., 2020), or node embeddings (Perozzi et al., 2014). Generally, contrastive
losses rely on a set of triplets, D = {(ui, vi, Ni)}mi=1, where ui is an anchor data point, vi is a posi-
tive data point that is relevant to ui, while Ni is a set of negative data points that are irrelevant to ui.
The contrastive loss is then the summation over such triplets:

LContrast(θ) =

m∑
i=1

ℓ(θ; (ui, vi, Ni)), (5)

where the loss l(·) could take many forms. In word2vec (Mikolov et al., 2013) for word embeddings
or DeepWalk (Perozzi et al., 2014) for node embeddings, θ corresponds to the embedding parameters
for each word or node, while the loss l(·) could be defined by heirarchical softmax or negative
sampling (see Rong (2014) for more details).

Similar to Eq. (4), each single term of the contrastive loss in Eq. (5) involves multiple data points.
Moreover, taking node embeddings as an example, the set of triplets D is constructed by running
random walks on the network. Removing one data point, which is a node in this context, could also
affect the proximity of other pairs of nodes and hence the construction of D.

Example 3: Listwise Learning-to-Rank. Learning-to-rank is a core technology underlying infor-
mation retrieval applications such as search and recommendation. In this context, listwise learning-
to-rank methods aim to optimize the ordering of a set of documents or items based on their relevance
to a given query. One prominent example of such methods is ListMLE (Xia et al., 2008). Suppose
we have annotated results for m queries over n items as a dataset {(xi, (y

(1)
i , y

(2)
i , . . . , y

(k)
i )}mi=1,

where xi is the query feature, y(1)i , y
(2)
i , . . . , y

(k)
i ∈ [n] := {1, . . . , n} indicate the top k items for

query i. Then the ListMLE loss function is defined as following

LLTR(θ) = −
m∑
i=1

k∑
j=1

f(xi; θ)j − log
∑

l∈[n]\{y(1)
i ,...,y

(j−1)
i }

exp(f(xi; θ)l)

 , (6)

where f(·; θ) is a model parameterized by θ that takes the query feature as input and outputs n logits
for predicting the relevance of the n items.

In this example, Eq. (6) is decomposable with respect to the queries while not decomposable with
respect to the items. The influence of items could also be of interest in information retrieval appli-
cations. For example, in a search engine, we may want to detect webpages with malicious search
engine optimization (Invernizzi et al., 2012); in product co-purchasing recommendation (Zhao et al.,
2017), both the queries and items are products.

A General Loss Formulation. The examples above can be viewed as special cases of the following
formal definition of non-decomposable loss.
Definition 3.1 (Non-Decomposable Loss). Given n objects of interest within the training data, let
a binary vector b ∈ {0, 1}n indicate the presence of the individual objects in training, i.e., for

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

i = 1, . . . , n,

bi =

{
1 if the i-th object presents,
0 otherwise.

Suppose the machine learning model parameters are denoted as θ ∈ Rd, a non-decomposable loss
is any function

L : Rd × {0, 1}n → R,

that maps given model parameters θ and the object presence vector b to a loss value L(θ, b).

Denoting θ̂(b) = argminθ L(θ, b) on any non-decomposable loss L(θ, b), the LOO effect of data
point i on the learned parameters can still be properly defined by

θ̂(1−i)− θ̂(1).

However, in this case, we can no longer use the partial derivative with respect to bi to approximate
the LOO effect, as θ̂(b) is only well-defined for binary vectors b.

Remark 1 (“Non-Decomposable” v.s. “Not Decomposable”). The class of non-decomposable loss
in Definition 3.1 includes the decomposable loss in Eq. (1) as a special case when L(θ, b) :=∑

i:bi=1 li(θ). Throughout this paper, we will call loss functions that cannot be written in the form
of Eq. (1) as “not decomposable”. We name the general class of loss functions in Definition 3.1 as
non-decomposable loss to highlight that they are generally not decomposable.

Remark 2 (Randomness in Losses). Strictly speaking, many contrastive losses are not deterministic
functions of training data points as there is randomness in the construction of the triplet set D,
due to procedures such as negative sampling or random walk. However, our method derived for
the deterministic non-decomposable loss still gives meaningful results in practice for losses with
randomness.

3.3 THE STATISTICAL PERSPECTIVE OF INFLUENCE FUNCTION

The Statistical Formulation of IF. To derive IF-based data attribution for non-decomposable
losses, we revisit a general formulation of IF in robust statistics (Huber & Ronchetti, 2009). Let
Ω be a sample space, and T (·) is a function that maps from a probability measure on Ω to a vector in
Rd. Let P and Q be two probability measures on Ω. The IF of T (·) at P in the direction Q measures
the infinitesimal change towards a specific perturbation direction Q, which is defined as

IF(T (P );Q) := lim
ε→0

T ((1− ε)P + εQ)− T (P )

ε
.

In the context of machine learning, the learned model parameters, denoted as θ̃(P ), can be viewed as
a function of the data distribution P . Specifically, the parameters of the learned model are typically
obtained by minimizing a loss function, i.e., θ̃(P ) = argminθ L̃(θ, P ). Here, L̃(θ, P ) is a loss
function that depends on a probability measure P , distinguishing it from the non-decomposable loss
L(θ, b) that depends on the object presence vector b.

Assuming the loss is strictly convex and twice-differentiable with respect to the parameters, the
learned parameters θ̃(P ) are then implicitly determined by the following equation

∇θL̃(θ̃(P ), P ) = 0.

Moreover, the IF of θ̃(P ) with a perturbation towards Q is given by3

IF(θ̃(P );Q) = −
[
∇2

θL̃(θ̃(P ), P )
]−1

lim
ε→0

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε
. (7)

The advantage of the IF formulation in Eq. (7) is that it can be applied to more general loss functions
by properly specifying P,Q, and L̃.

3See Appendix A.1 for the derivation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Example: Application of Eq. (7) to M-Estimators. As an example, the following Lemma 3.1
states that the IF in Eq. (3) for decomposable loss can be viewed as a special case of the formulation
in Eq. (7). This is a well-known result for M-estimators in robust statistics (Huber & Ronchetti,
2009), and the proof of which can be found in Appendix A.2. Intuitively, with the choice of P,Q,
and L̃ in Lemma 3.1, (1− ε)P + εQ = (1− ε)Pn + εδzi leads to the effect of upweighting the loss
weight of zi with a small perturbation, which is essentially how the IF in Eq. (3) is derived.
Lemma 3.1 (IF for M-Estimators). Eq. (7) reduces to Eq. (3) up to a constant when we specify that
1) P is the empirical distribution Pn =

∑n
i=1 δzi/n, where δzi is the Dirac measure, i.e., Pr(zi) = 1

and Pr(zj) = 0, j ̸= i; 2) Q = δzi ; and 3) L̃(θ, P ) := Ez∼P [ℓ(θ; z)]. Specifically,

IF(θ̃(Pn); δzi) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi).

Challenges of Applying Eq. (7) in Modern Machine Learning. While the IF in Eq. (7) is a prin-
cipled and well-established notion in statistics, there are two unique challenges when applying it to
modern machine learning models for general non-decomposable losses. Firstly, solving the limit
in the right hand side of Eq. (7) requires case-by-case derivation for different loss functions and
models, which can be complicated (see an example of IF for the Cox regression (Reid & Crepeau,
1985) in Appendix A.5). Secondly, the mapping θ̃(P ), hence the limit, are not well-defined for
non-convex loss functions as the (local) minimizer is not unique. A similar problem exists in the IF
for decomposable loss in Eq. (3) and Koh & Liang (2017) mitigate this problem through heuristic
tricks specifically designed for Eq. (3). However, the IF in Eq. (7) is in general more complicated for
non-decomposable losses and generalizing it to modern setups like neural networks remains unclear.

3.4 VIF AS A FINITE DIFFERENCE APPROXIMATION

We now derive the proposed VIF method by applying Eq. (7) to the non-decomposable loss while
addressing the aforementioned challenges through a finite-difference approximation.
Definition 3.2 (Finite-Difference IF). Define the finite-difference IF as following

ÎFε(θ̃(P );Q) := −
[
∇2

θL̃(θ̃(P ), P )
]−1 ∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε
, (8)

which approximates the IF in Eq. (7), IF(θ̃(P );Q), by replacing the limit with a finite difference.

Observation on M-Estimators. The proposed VIF method for general non-decomposable losses is
motivated by the following observation in the special case for M-estimators.
Theorem 3.1 (Finite-Difference IF for M-Estimators). Under the specification of P = Pn, Q = δzi ,

and L̃ = Ez∼P [ℓ(θ; z)] in Lemma 3.1, the IF is identical to the finite-difference IF with ε = − 1
n−1 ,

i.e.,
IF(θ̃(Pn); δzi) = ÎF− 1

n−1
(θ̃(Pn); δzi).

Furthermore, denote Q(−i)
n−1 as the empirical distribution where Pr(zi) = 0 and Pr(zj) =

1
n−1 , j ̸=

i. Then we have

(1 +
1

n− 1
)Pn − 1

n− 1
δzi = Q(−i)

n−1, ÎF− 1
n−1

(θ̃(Pn); δzi) = −(n− 1)ÎF1(θ̃(Pn);Q(−i)
n−1).

The first part of Theorem 3.1 suggests that, for M-estimators, the limit in IF(θ̃(Pn); δzi) can be
exactly replaced by a finite difference with a proper choice of ε. The second part of Theorem 3.1
further shows that we can construct another finite-difference IF, ÎF1(θ̃(Pn);Q(−i)

n−1), with a different
choice of Q = Q(−i)

n−1 and ε = 1, that differs from IF(θ̃(Pn); δzi) only by a constant factor. For the
purpose of data attribution, we typically only care about the relative influence among the training
data points, so the constant factor does not matter.

Generalization to General Non-Decomposable Losses. The benefit of having the form
ÎF1(θ̃(Pn);Q(−i)

n−1) is that it is straightforward to generalize this formula from M-estimators to gen-
eral non-decomposable losses. Specifically, noticing that Pn and Q(−i)

n−1 are respectively empirical
distribution on the full dataset and the dataset without zi, we can apply this finite-difference IF to
any non-decomposable loss through an appropriate definition of L̃.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proposition 3.1 (Finite-Difference IF on Non-Decomposable Loss). Let P(n) be the set of uniform
distributions supported on subsets of n fixed points {zi}i=1. Note that both of the empirical distri-
butions Pn and Q(−i)

n−1 belong to the set P(n). For any P ∈ P(n), denote bP ∈ {0, 1}n as a binary
vector such that bPi = 1[P (zi) > 0], i = 1, . . . , n. Under the following definition of L̃:

L̃(θ, P ) := L(θ, bP ),
we have

ÎF1(θ̃(Pn);Q(−i)
n−1) =

[
∇2

θL(θ̂(1),1)
]−1

∇θ

(
L(θ̂(1),1)− L(θ̂(1),1−i)

)
. (9)

The Proposed VIF. We propose the following method to approximate the LOO effect for any non-
decomposable loss.
Definition 3.3 (Versatile Influence Function). The Versatile Influence Function (VIF) that measures
the influence of a data object i on the parameters θ̂(1) learned from a non-decomposable loss L is
defined as following

VIF(θ̂(1); i) := −
[
1

n
∇2

θL(θ̂(1),1)
]−1

∇θ

(
L(θ̂(1),1)− L(θ̂(1),1−i)

)
. (10)

The proposed VIF is a variant of Eq. (9), as it can be easily shown that

VIF(θ̂(1); i) = −nÎF1(θ̃(Pn);Q(−i)
n−1).

The inclusion of the additional constant factor is motivated by Theorem 3.1 to make it better align
with the original IF in Eq. (7). In practice, this definition is also typically more numerically stable
as the Hessian is normalized by 1

n .

Computational Advantages. The VIF defined in Eq. (10) enjoys a few computational advantages.
Firstly, VIF depends on the parameters only at θ̂(1) and does not require θ̂(1−i). Therefore, it
does not require model retraining. Secondly, compared to Eq. (7), VIF only involves gradients
and the Hessian of the loss, which can be easily obtained through auto-differentiation provided in
modern machine learning libraries. Thirdly, VIF can be applied to more complicated models and
accelerated with similar heuristic tricks employed by existing IF-based data attribution methods for
decomposable losses (Koh & Liang, 2017; Grosse et al., 2023). We have included the results of effi-
cient approximate implementations of VIF based on Conjugate Gradient (CG) and LiSSA (Agarwal
et al., 2017; Koh & Liang, 2017) in Appendix C. Finally, note that VIF calculates the difference
L(θ̂(1),1) − L(θ̂(1),1−i) before taking the gradient with respect to the parameters. In some spe-
cial cases (see, e.g., the decomposable loss case in Section 3.5), taking the difference before the
gradient significantly simplifies the computation as the loss terms not involving the i-th data object
will cancel out.

Attributing a Target Function. In practice, we are often interested in attributing certain model
outputs or performance. Similar to Koh & Liang (2017), given a target function of interest, f(z, θ),
that depends on both some data z and the model parameter θ, then the influence of a training data
point i on this target function can be obtained through the chain rule:

∇θf(z, θ̂(1))
⊤VIF(θ̂(1); i). (11)

3.5 APPROXIMATION QUALITY IN SPECIAL CASES

To provide insights into how accurately the proposed VIF approximates Eq. (7), we examine the
following special cases. Although there is no universal guarantee of the approximation quality for
all non-decomposable losses, our analysis in these cases suggests that VIF may perform well in
many practical applications.

M-Estimation (Decomposable Loss). For a decomposable loss, we have ∇θLD(θ̂D(1),1) =∑n
i=1 ∇θℓ(θ̂D(1); zi) and ∇θLD(θ̂D(1),1−i) =

∑n
j=1,j ̸=i ∇θℓ(θ̂D(1); zj). In this case, it is

straightforward to see that

VIF(θ̂(1); i) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi),

which indicates that the VIF here is identical to the IF in Lemma 3.1 without approximation error.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Cox Regression. The close-form of the IF for the Cox regression model, obtained by directly solv-
ing the limit in Eq. (7) under the Cox regression model, exists in the statistics literature (Reid &
Crepeau, 1985), which allows us to characterize the approximation error of the VIF in comparison
to the exact solution.
Theorem 3.2 (Approximation Error under Cox Regression; Informal). Denote the exact solution
by Reid & Crepeau (1985) as IFCox(θ̂(1); i) while the application of VIF on Cox regression as
VIFCox(θ̂(1); i). Their difference is bounded as following:

VIFCox(θ̂(1); i)− IFCox(θ̂(1); i) = Op(
1

n
).

Theorem 3.2 suggests that the approximation error of the VIF vanishes when the training data size
is large. A formal statement of this result and its proof can be found in Appendix A.5.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments on three examples listed in Section 3.2: Cox Regression, Node Embedding,
and Listwise Learning-to-Rank. In this section, we present the performance and runtime of VIF
compared to brute-force LOO retraining. We also provide two case studies to demonstrate how the
influence estimated by VIF can help interpret the behavior of the trained model.

Datasets and Models. We evaluate our approach on multiple datasets across different scenarios. For
Cox Regression, we use the METABRIC and SUPPORT datasets (Katzman et al., 2018). For both
of the datasets, we train a Cox model using the negative log partial likelihood following Eq. (4).
For Node Embedding, we use Zachary’s Karate network (Zachary, 1977) and train a DeepWalk
model (Perozzi et al., 2014). Specifically, we train a two-layer model with one embedding layer
and one linear layer optimized via contrastive loss following Eq. (5), where the loss is defined as
the negative log softmax. For Listwise Learning-to-Rank, we use the Delicious (Tsoumakas et al.,
2008) and Mediamill (Snoek et al., 2006) datasets. We train a linear model using the loss defined in
Eq. (6). Please refer to Appendix B for more detailed experiment settings.

Target Functions. We apply VIF to estimate the change of a target function, f(z, θ), before and
after a specific data object is excluded from the model training process. Below are our choice of
target functions for difference scenarios.

• For Cox Regression, we study how the relative risk function, f(xtest, θ) = exp(θ⊤xtest), of a test
object, xtest, would change if one training object were removed.

• For Node Embedding, we study how the contrastive loss, f((u, v,N), θ) = l(θ; (u, v,N)), of an
arbitrary pair of test nodes, (u, v), would change if a node w ∈ N were removed from the graph.

• For Listwise Learning-to-Rank, we study how the ListMLE loss of a test query,
f((xtest, y

[k]
test), θ) = −

∑k
j=1

(
f(xtest; θ)j − log

∑
l∈[n]\{y(1)

test,...,y
(j−1)
test } exp(f(xtest; θ)l)

)
,

would change if one item l ∈ [n] were removed from the training process.

4.2 PERFORMANCE

We utilize the Pearson correlation coefficient to quantitatively evaluate how closely the influence
estimated by VIF aligns with the results obtained by brute-force LOO retraining. Furthermore, as
a reference upper limit of performance, we evaluate the correlation between two brute-force LOO
retraining with different random seeds. As noted in Remark 2, some examples like contrastive losses
are not deterministic, which could impact the observed correlations.

Table 1 presents the Pearson correlation coefficients comparing VIF with brute-force LOO retraining
using different random seeds. The performance of VIF matches the brute-force LOO in all experi-
mental settings. Except for the Node Embedding scenario, the Pearson correlation coefficients are
close to 1, indicating a strong resemblance between the VIF estimates and the retraining results.
In the Node Embedding scenario, the correlations are moderately high for both methods due to the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: The Pearson correlation coefficients of VIF and brute-force LOO retraining under different
experimental settings. Specifically, “Brute-Force” refers to the results of two times of brute-force
LOO retraining using different random seeds, which serves as a reference upper limit of perfor-
mance.

Scenario Dataset Method Pearson Correlation

Cox Regression
METABRIC VIF 0.997

Brute-Force 0.997

SUPPORT VIF 0.943

Brute-Force 0.955

Node Embedding Karate VIF 0.407

Brute-Force 0.419

Listwise Learning-to-Rank
Mediamill VIF 0.823

Brute-Force 0.999

Delicious VIF 0.906

Brute-Force 0.999

inherent randomness in the random walk procedure for constructing the triplet set in the DeepWalk
algorithm. Nevertheless, VIF achieves a correlation that is close to the upper limit by brute-force
LOO retraining.

4.3 RUNTIME

We report the runtime of VIF and brute-force LOO retraining in Tabel 2. The computational advan-
tage of VIF is significant, reducing the runtime by factors up to 1097×. This advantage becomes
more pronounced as the dataset size increases. The improvement ratio on the Karate dataset is
moderate due to the overhead from the random walk process and potential optimizations in the
implementation. All runtime measurements were recorded using an Intel(R) Xeon(R) Gold 6338
CPU.

Table 2: Runtime comparison of VIF and brute-force LOO retraining.

Senario Dataset Brute-Force VIF Improvement Ratio

Cox Regression METABRIC 24 min 2.43 sec 593×
SUPPORT 225 min 12.3 sec 1097×

Network Embedding Karate 204 min 109 min 1.87×

Listwise Learning-to-Rank Mediamill 52 min 2.6 min 20×
Delicious 660 min 2.8 min 236×

4.4 CASE STUDIES

We present two case studies to show how the influence estimated by VIF can help interpret the
behavior of the trained model.

Case study 1: Cox Regression. In Table 3, we show the top-5 most influential training samples, as
estimated by VIF, for the relative risk function of two randomly selected test samples. We observe
that removing two types of data samples in training will significantly increase the relative risk func-
tion of a test sample: (1) training samples that share similar features with the test sample and have
long survival times (e.g., training sample ranks 1, 3, 4, 5 for test sample 0 and ranks 5 for test sample
1) and (2) training samples that differ in features from the test sample and have short survival times
(e.g., training sample ranks 2 for test sample 0 and ranks 1, 2, 3, 4 for test sample 1). These findings
align with domain knowledge.

Case study 2: Node Embedding. in Figure 1b and 1c, we show the influence of all nodes to the
contrastive loss of 2 pairs of test nodes. The spring layout of the Karate dataset is provided in
Figure 1a. We observe that the most influential nodes (on the top right in Figure 1b and 1c) are
the hub nodes that lie on the shortest path of the pair of test nodes. For example, the shortest path

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: The top-5 influential training samples to 2 test samples in the METABRIC dataset. “Fea-
tures Similarity” is the cosine similarity between the feature of the influential training sample and
the test sample. “Observed Time” and “Event Occurred” are the Y and ∆ of the influential training
sample as defined in Eq. (4).

Influence Rank Test Sample 0 Test Sample 1

Feature Similarity Observed Time Event Occurred Feature similarity Observed time Event occurred

1 0.84 322.83 False -0.49 16.57 True

2 -0.34 9.13 True -0.22 30.97 True

3 0.77 258.17 True -0.39 15.07 True

4 0.23 131.27 False -0.65 4.43 True

5 0.81 183.43 False 0.72 307.63 False

from node 12 to node 10 passes through node 0, while the shortest path from node 15 to node 13
passes through node 33. Conversely, the nodes with the most negative influence (on the bottom left
in Figure 1b and 1c) are those that likely “distract” the random walk away from the test node pairs.
For instance, node 3 distracts the walk from node 12 to node 10, and node 30 distracts the walk from
node 15 to node 13.

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

Karate Club Graph

(a) Karate Club Graph

0.2 0.0 0.2 0.4 0.6
Influence estimated by VIF

1

0

1

2

3

Ac
tu

ra
l d

iff
 in

 C
on

tra
st

iv
e 

lo
ss 0

12

3

4
56 78911 13141516171819202122232425262728293031 32

33

Contrastive loss of 
 Node 12 and Node 10, 

 Pearson correlation = 0.934

(b) Node 12 and Node 10

0.2 0.0 0.2 0.4
Influence estimated by VIF

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
tu

ra
l d

iff
 in

 C
on

tra
st

iv
e 

lo
ss

0

1

2

3

4
5

6
7

8
9

1011

12
1416

17

181920
21

22

2324
25

26
2728 29

30

31

32

33

Contrastive loss of 
 Node 15 and Node 13, 

 Pearson correlation = 0.761

(c) Node 15 and Node 13

Figure 1: VIF is applied to Zachary’s Karate network to estimate the influence of each node on the
contrastive loss of a pair of test nodes. Figure 1a is a spring layout of the Karate network. Figure 1b
and Figure 1c illustrate the alignment between the influence estimated by VIF (x-axis) and the brute-
force LOO retrained loss difference (y-axis).

5 CONCLUSION

In this work, we introduced the Versatile Influence Function (VIF), a novel method that extends
IF-based data attribution to models trained with non-decomposable losses. The key idea behind
VIF is a finite difference approximation of the general IF formulation in the statistics literature,
which eliminates the need for case-specific derivations and can be efficiently computed with the
auto-differentiation tools provided in modern machine learning libraries. Our theoretical analysis
demonstrates that VIF accurately recovers classical influence functions in the case of M-estimators
and provides strong approximations for more complex settings such as Cox regression. Empirical
evaluations across various tasks show that VIF closely approximates the influence obtained by brute-
force leave-one-out retraining while being orders-of-magnitude faster. By broadening the scope of
IF-based data attribution to non-decomposable losses, VIF opens new avenues for data-centric appli-
cations in machine learning, empowering practitioners to explore data attribution in more complex
and diverse domains.

Limitation and Future Work. Similar to early IF-based methods for decomposable loss (Koh &
Liang, 2017), the formal derivation of VIF assumes convexity of the loss function, which requires
practical tricks to adapt the proposed method to large-scale neural network models. While we have
explored the application of Conjugate Gradient and LiSSA (Agarwal et al., 2017) for efficient in-
verse Hessian approximation (see Appendix C), more advanced techniques to stabilize and accel-
erate IF-based methods developed for decomposable losses, such as EK-FAC (Grosse et al., 2023),
ensemble (Park et al., 2023), or gradient projection (Choe et al., 2024), may be adapted to further
enhance the practical applicability of VIF on large-scale models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine
learning in linear time. Journal of Machine Learning Research, 18(116):1–40, 2017. URL http:
//jmlr.org/papers/v18/16-491.html.

Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite. Relatif: Identifying explana-
tory training samples via relative influence. In International Conference on Artificial Intelligence
and Statistics, pp. 1899–1909. PMLR, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for
Contrastive Learning of Visual Representations. In Hal Daumé Iii and Aarti Singh (eds.), Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 1597–1607. PMLR, 2020.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
gpt? llm-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954, 2024.

D R Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B,
Statistical methodology, 34(2):187–202, January 1972. ISSN 1369-7412,1467-9868. doi: 10.
1111/j.2517-6161.1972.tb00899.x.

Junwei Deng and Jiaqi Ma. Computational Copyright: Towards A Royalty Model for Music Gener-
ative AI. arXiv [cs.AI], December 2023.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
2242–2251. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
ghorbani19c.html.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R Bowman. Studying large lan-
guage model generalization with influence functions. arXiv [cs.LG], August 2023.

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif:
Scalable influence functions for efficient model interpretation and debugging. arXiv preprint
arXiv:2012.15781, 2020.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
Machine Learning, 113(5):2351–2403, 2024.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393, June 1974. ISSN 0162-1459,1537-274X. doi: 10.1080/
01621459.1974.10482962.

Peter J Huber and Elvezio M Ronchetti. Robust Statistics. Wiley Series in Probability and Statistics.
Wiley-Blackwell, Hoboken, NJ, 2 edition, January 2009. ISBN 9780470129906,9780470434697.
doi: 10.1002/9780470434697.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. arXiv preprint arXiv:2202.00622, 2022.

Luca Invernizzi, Paolo Milani Comparetti, Stefano Benvenuti, Christopher Kruegel, Marco Cova,
and Giovanni Vigna. Evilseed: A guided approach to finding malicious web pages. In 2012 IEEE
symposium on Security and Privacy, pp. 428–442. IEEE, 2012.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel,
Bo Li, Ce Zhang, Dawn Song, and Costas J. Spanos. Towards efficient data valuation based
on the shapley value. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pp. 1167–1176. PMLR, 16–18 Apr 2019. URL
https://proceedings.mlr.press/v89/jia19a.html.

11

http://jmlr.org/papers/v18/16-491.html
http://jmlr.org/papers/v18/16-491.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v89/jia19a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jared L Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval
Kluger. Deepsurv: personalized treatment recommender system using a cox proportional hazards
deep neural network. BMC medical research methodology, 18:1–12, 2018.

Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influence Functions. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1885–1894.
PMLR, 2017.

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation frame-
work for machine learning. arXiv preprint arXiv:2110.14049, 2021.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models. arXiv preprint arXiv:2310.00902, 2023.

T Mikolov, I Sutskever, K Chen, G S Corrado, and J Dean. Distributed representations of words and
phrases and their compositionality. Neural information processing systems, 2013.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710, New York, NY, USA, August 2014. ACM. ISBN 9781450329569.
doi: 10.1145/2623330.2623732.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

N Reid and H Crepeau. Influence functions for proportional hazards regression. Biometrika, 72(1):
1, April 1985. ISSN 0006-3444,1464-3510. doi: 10.2307/2336329.

Xin Rong. word2vec Parameter Learning Explained. arXiv [cs.CL], November 2014.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-
tions. In Proc. Conf. AAAI Artif. Intell., volume 36, pp. 8179–8186. Association for the Advance-
ment of Artificial Intelligence (AAAI), June 2022. doi: 10.1609/aaai.v36i8.20791.

Cees GM Snoek, Marcel Worring, Jan C Van Gemert, Jan-Mark Geusebroek, and Arnold WM
Smeulders. The challenge problem for automated detection of 101 semantic concepts in multi-
media. In Proceedings of the 14th ACM international conference on Multimedia, pp. 421–430,
2006.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Effective and efficient multilabel
classification in domains with large number of labels. In Proc. ECML/PKDD 2008 Workshop on
Mining Multidimensional Data (MMD’08), volume 21, pp. 53–59, 2008.

A W van der Vaart. Asymptotic Statistics. Cambridge University Press, Cambridge, England, June
2012. ISBN 9780511802256,9780521496032. doi: 10.1017/cbo9780511802256.

Jiachen T Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine
learning. In International Conference on Artificial Intelligence and Statistics, pp. 6388–6421.
PMLR, 2023.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning
to rank: theory and algorithm. In Proceedings of the 25th international conference on Machine
learning - ICML ’08, pp. 1192–1199, New York, New York, USA, 2008. ACM Press. ISBN
9781605582054. doi: 10.1145/1390156.1390306.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection
for explaining deep neural networks. Advances in neural information processing systems, 31,
2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of
anthropological research, 33(4):452–473, 1977.

Tong Zhao, Julian McAuley, Mengya Li, and Irwin King. Improving recommendation accuracy
using networks of substitutable and complementary products. In 2017 International Joint Con-
ference on Neural Networks (IJCNN), pp. 3649–3655. IEEE, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A OMITTED DERIVATIONS

A.1 DERIVATION OF EQ. (7)

Consider an ε perturbation towards another distribution Q, i.e., (1 − ε)P + εQ. Note that θ̃((1 −
ε)P + εQ) solves ∇θL̃(θ, (1 − ε)P + εQ) = 0. We take derivative with respect to ε and evaluate
at ε = 0 on both side, which leads to

∇2
θL̃(θ̃(P ), P ) lim

ε→0

θ̃((1− ε)P + εQ)− θ̃(P )

ε
+lim

ε→0

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε
= 0.

Given the strict convexity, the Hessian is invertible at the global optimal. By plugging the definition
of IF, we have

IF (θ̃(P );Q) = −
[
∇2

θL̃(θ̃(P ), P )
]−1

lim
ε→0

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε
.

A.2 PROOF OF LEMMA 3.1

Proof. Under M-estimation, the objective function becomes the empirical loss, i.e., L̃(θ, P ) =
Ez∼P [ℓ(θ; z)], where P = Pn =

∑n
i=1 δzi/n is the empirical distribution over the dataset. Note

that L̃(θ, P ) = 1
nLD(θ,1) for any θ, therefore they share the same minimizer, i.e.,

θ̃(P ) = θ̂D(1).

The gradient and Hessian of L̃(θ̃(P ), P ) are respectively

∇θL̃(θ̃(P ), P ) = Ez∼P [∇θℓ(θ̃(P ); z)] =
1

n

n∑
j=1

∇θℓ(θ̃(P ); zj) = 0

and

∇2
θL̃(θ̃(P ), P ) = Ez∼P [∇2

θℓ(θ̃(P ); z)] =

n∑
i=1

∇2
θℓ(θ̃(P ); zi)/n =

1

n
∇2

θLD(θ̂D(1),1).

The infinitesimal change on the gradient towards the distribution Q = δzi equals to

lim
ε→0

∇θL̃(θ̃(P ), (1− ε)P + εQ)−∇θL̃(θ̃(P ), P )

ε

= lim
ε→0

Ez∼(1−ε)P+εQ[∇θℓ(θ̃(P ), z)]− 0

ε

= lim
ε→0

(1− ε)Ez∼P [∇θℓ(θ̃(P ), z)] + εEz∼Q[∇θℓ(θ̃(P ), z)]

ε

= lim
ε→0

(1− ε) · 0 + εEz∼Q[∇θℓ(θ̃(P ), z)]

ε

=Ez∼Q[∇θℓ(θ̃(P ), z)]

=∇θℓ(θ̃(P ), zi) = ∇θℓ(θ̂D(1), zi).

Plugging the above equations into Eq. (7), it becomes

IF(θ̃(Pn); δzi) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 PROOF OF THEOREM 3.1

Lemma A.1. Let Pn and Q(−i)
n−1 be the empirical distributions respectively on {zj}nj=1 and {zj}nj=1\

{zi}, while δzi is the distribution concentrated on zi. Then

(1 +
1

n− 1
)Pn − 1

n− 1
δzi = Q(−i)

n−1.

Proof of Lemma A.1. For any j ̸= i,

(1 +
1

n− 1
)Pn(zj)−

1

n− 1
δzi(zj) = (1 +

1

n− 1
) · 1

n
− 0

=
1

n− 1

= Q(−i)
n−1(zj).

For i,

(1 +
1

n− 1
)Pn(zi)−

1

n− 1
δzi(zi) = (1 +

1

n− 1
) · 1

n
− 1

n− 1
· 1

= 0

= Q(−i)
n−1(zi).

Proof of Theorem 3.1. We first prove the first part of Theorem 3.1, where our goal is to show

ÎF− 1
n−1

(θ̃(Pn); δzi) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi).

Expanding ÎFε(θ̃(Pn); δzi) by its definition in Eq. (8),

ÎFε(θ̃(Pn); δzi) = −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 ∇θL̃(θ̃(Pn), (1− ε)Pn + εδzi)−∇θL̃(θ̃(Pn),Pn)

ε
.

Setting ε = − 1
n−1 and by Lemma A.1,

ÎF− 1
n−1

(θ̃(Pn); δzi) = −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 ∇θL̃(θ̃(Pn),Q(−i)

n−1)−∇θL̃(θ̃(Pn),Pn)

−1/(n− 1)
(12)

= −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 E

z∼Q(−i)
n−1

[∇θℓ(θ̃(Pn); z)]− Ez∼Pn
[∇θℓ(θ̃(Pn); z)]

−1/(n− 1)

= −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1

∑n
j=1,j ̸=i ∇θℓ(θ̃(Pn); zj)/(n− 1)−

∑n
j=1 ∇θℓ(θ̃(Pn); zj)/n

−1/(n− 1)

= −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1

− n∑
j=1,j ̸=i

∇θℓ(θ̃(Pn); zj) +
n− 1

n

n∑
j=1

∇θℓ(θ̃(Pn); zj)

 .

(13)

Noting that θ̃(Pn) is the optimizer for L̃(θ,Pn), so

0 = ∇θL̃(θ̃(Pn),Pn) =
1

n

n∑
j=1

∇θℓ(θ̃(Pn); zj).

Therefore,

−
n∑

j=1,j ̸=i

∇θℓ(θ̃(Pn); zj) = ∇θℓ(θ̃(Pn); zi).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Plugging the two equations above into Eq. (13), we have

ÎF− 1
n−1

(θ̃(Pn); δzi) = −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1

∇θℓ(θ̃(Pn); zi).

From the proof of Lemma 3.1 in Appendix A.2, we know

θ̃(Pn) = θ̂D(1), ∇2
θL̃(θ̃(Pn),Pn) =

1

n
∇2

θLD(θ̂D(1),1).

Therefore,

ÎF− 1
n−1

(θ̃(Pn); δzi) = −n
[
∇2

θLD(θ̂D(1),1)
]−1

∇θℓ(θ̂D(1); zi),

which completes the proof for the first part of Theorem 3.1. For the second part, the first equation
has been proved as Lemma A.1. The second equation is straightforward from Eq. (12):

ÎF− 1
n−1

(θ̃(Pn); δzi) = −
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 ∇θL̃(θ̃(Pn),Q(−i)

n−1)−∇θL̃(θ̃(Pn),Pn)

−1/(n− 1)

= −(n− 1)

(
−
[
∇2

θL̃(θ̃(Pn),Pn)
]−1 ∇θL̃(θ̃(Pn),Q(−i)

n−1)−∇θL̃(θ̃(Pn),Pn)

1

)
= −(n− 1)ÎF1(θ̃(Pn);Q(−i)

n−1).

A.4 PROOF OF PROPOSITION 3.1

Proof. It is easy to verify that
bPn = 1, bQ

(−i)
n−1 = 1−i.

Hence, based on the definition of L̃ in Proposition 3.1, we have

L̃(θ,Pn) = L(θ,1), L̃(θ,Q(−i)
n−1) = L(θ,1−i).

Therefore, we also have θ̃(Pn) = θ̂(1). The result in Eq. (9) follows directly by plugging these
quantities into the definition of ÎF1(θ̃(Pn);Q(−i)

n−1).

A.5 FORMAL STATEMENT AND PROOF OF THEOREM 3.2

Setup and Notation. For convenience, we adopt a set of slightly different notations tailored for the
Cox regression model. Consider n i.i.d. generated right-censoring data {Zi = (Xi, Yi,∆i)}ni=1,
where Yi = min{Ti, Ci} is the observed time, Ti is the time to event of interest, and Ci is the
censoring time. We assume non-informative censoring, i.e., T and Ci are independent conditional on
X , which is a common assumption in the literature. Suppose there are no tied events for simplicity.

A well-known estimate for the coefficients β under the Cox model is obtained by minimizing the
negative log-partial likelihood:

Ln(θ) := −
n∑

i=1

∆i

θ⊤Xi − log

∑
j∈Ri

exp
(
θ⊤Xj

)
= −

n∑
i=1

∆i

θ⊤Xi − log

 n∑
j=1

I(Yj ≥ Yi) exp
(
θ⊤Xj

) .

Note that Ln(θ) is a convex function and the estimate θ̂ equivalently solves the following score
equation:

∇θLn(θ̂) =

n∑
i=1

−∆i

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

)
︸ ︷︷ ︸

∇θℓn(θ̂;Zi)

= 0,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where

S(0)
n (t; θ) =

1

n

n∑
i=1

I (Yi ≥ t) exp
(
θ⊤Xi

)
, (14)

S(1)
n (t; θ) =

1

n

n∑
i=1

I (Yi ≥ t) exp
(
θ⊤Xi

)
Xi. (15)

It has been shown that, under some regularity conditions, θ̂ is a consistent estimator for θ∗. Note
that the above score equation is not a simple estimation equation that takes the summation of i.i.d.
terms, because S

(0)
n (t; θ) and S

(1)
n (t; θ) depend on all observations.

Analytical Form of Influence Function in Statistics. Reid & Crepeau (1985) derived the influence
function by evaluating the limit in (7) with P being the underlying data-generating distribution and
Q = δZi (i.e., the Gateaux derivative at θ∗ = θ(P ) in the direction δZi ). To start with, we define the
population counterparts of Eq. (14) and Eq. (15):

s(0)(t; θ) = E
(
I (Y ≥ t) exp

(
θ⊤X

))
,

s(1)(t; θ) = E
(
I (Y ≥ t) exp

(
θ⊤X

)
X
)
,

and introduce the counting process notation: the counting process associated with i-th data Ni(t) =
I(Yi ≤ t,∆i = 1), the process Gn(t) = 1

n

∑n
i=1 Ni(t), and its population expectation G(t) =

E(Gn(t)). Then the influence function for the observation Zi = (Xi, Yi,∆i) is given by

A · IF(i) =∆i

(
Xi −

s(1)(Yi; θ
∗)

s(0)(Yi; θ∗)

)
− exp(θ∗⊤Xi) ·

∫
I(Yi ≥ t)

s(0)(t; θ∗)

(
Xi −

s(1)(t; θ∗)

s(0)(t; θ∗)

)
dG(t)

where A is the non-singular information matrix. A consistent estimate for A is given by
∇2

θLn(θ̂)/n. The empirical influence function given n data points is obtained by substituting A,
θ∗, and G(t) by ∇2

θL(θ̂)/n, θ̂, and Gn(t) respectively:

IFn(i) =− [∇2
θL(θ̂)/n]−1∇θℓn(θ̂;Zi)− [∇2

θL(θ̂)/n]−1Ci(θ̂),

where

Ci(θ̂) = exp(θ̂⊤Xi) ·
1

n

n∑
j=1

∫
I(Yi ≥ t)

S
(0)
n (t; θ̂)

(
Xi −

S
(1)
n (t; θ̂)

S
(0)
n (t; θ̂)

)
dNj(t)

= exp(θ̂⊤Xi) ·
1

n

n∑
j=1

I(Yi ≥ Yj)∆j

S
(0)
n (Yj ; θ̂)

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
.

The first term is analogous to the standard influence function for M-estimators and the second term
captures the influence of the i-th observation in the at-risk set.

The Proposed VIF. Under the Cox regression, the proposed VIF becomes

VIFn(i) := −
[
∇2

θLn(θ̂)/n
]−1 (

∇θLn(θ̂)−∇θL(−i)
n−1(θ̂)

)
,

where ∇θL(−i)
n−1(θ̂) is the gradient of the negative log-partial likelihood after excluding the i-th data

point at θ̂. Given no tied events, we can rewrite ∇θL(−i)
n−1(θ̂) as

∇θL(−i)
n−1(θ̂) =−

∑
j:Yj<Yi

∆j

(
Xj −

S
(1)
n (Yj ; θ̂)− exp(θ̂⊤Xi)Xi/n

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

)
−

∑
j:Yj>Yi

∆j

(
Xj −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)
.

Then it follows that

VIFn(i) =− [∇2
θLn(θ̂)/n]

−1
(
∇θLn(θ̂)−∇θL(−i)

n−1(θ̂)
)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

=− [∇2
θLn(θ̂)/n]

−1

∇θℓn(θ̂;Zi) +
∑

j:Yj<Yi

∆j

(
S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

− S
(1)
n (Yj ; θ̂)− exp(θ̂⊤Xi)Xi/n

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

)
=− [∇2

θLn(θ̂)/n]
−1∇θℓn(θ̂;Zi)

− [∇2
θLn(θ̂)/n]

−1

exp(θ̂⊤Xi) ·
1

n

n∑
j=1

I(Yj < Yi)∆j

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

) .

Approximation Error. Below, we formally bound the difference between the analytical form of
IF and our proposed approximation. Our result implies that the difference between the analytic
expression of the IF and the proposed VIF approximation, i.e., VIFn(i) − IFn(i), diminishes at
a rate of 1/n as the sample size grows and is of a smaller order than IFn(i). This is because
IFn(i) = IF(i) + op(1), where IF(i) is a non-degenerate random variable that doesn’t converge
to zero in probability; therefore IFn(i) remains bounded away from zero in probability, denoted as
= Ωp(1).
Theorem A.1 (Approximation Error Bound under Cox Model). Assume that (1) the true parameter
θ∗ is an interior point of a compact set B ⊂ Rd; (2) the density of X is bounded below by a constant
c > 0 over its domain X , which is a compact subset of Rd; (3) there is a truncation time τ < ∞
such that for some constant δ0, Pr(Y > τ |X) ≥ δ0 almost surely; (4) the information matrix A
is non-singular. Assuming uninformative censoring, the difference between IFn(i) and VIFn(i) is
upper bounded by

Diff(i) := VIFn(i)− IFn(i) = Op(
1

n
).

Proof. The difference between IFn(i) and VIFn(i) is given by

Diffn(i) = VIFn(i)− IFn(i)

=
[
∇2

θL(θ̂)/n
]−1

exp(θ̂⊤Xi) ·
1

n

{
n∑

j=1

I(Yj ≤ Yi)∆j

S
(0)
n (Yj ; θ̂)

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)

−
n∑

j=1

I(Yj < Yi)∆j

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)}

=
[
∇2

θL(θ̂)/n
]−1

exp(θ̂⊤Xi) ·
1

n

{
n∑

j=1

I(Yj ≤ Yi)∆j

S
(0)
n (Yj ; θ̂)

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)

−
n∑

j=1

I(Yj ≤ Yi)∆j

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)}

+
∆i

S
(0)
n (Yi; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

))

= −
[
∇2

θL(θ̂)/n
]−1 exp(2θ̂⊤Xi)

n
· 1
n

n∑
j=1

{
I(Yj ≤ Yi)∆j

S
(0)
n (Yj ; θ̂)

· 1

S
(0)
n (Yj ; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yj ; θ̂)

S
(0)
n (Yj ; θ̂)

)}

+
[
∇2

θL(θ̂)/n
]−1 exp(θ̂⊤Xi)

n
· ∆i

S
(0)
n (Yi; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

)
.

Define

Jn(t; θ, Zi) =
I(t ≤ Yi)

S
(0)
n (t; θ)

· 1

S
(0)
n (t; θ)− exp(θ⊤Xi)/n

·

(
Xi −

S
(1)
n (t; θ)

S
(0)
n (t; θ)

)
,

and

J(t; θ, Zi) =
I(t ≤ Yi)

s(0)(t; θ)
· 1

s(0)(t; θ)− exp(θ⊤Xi)/n
·
(
Xi −

s(1)(t; θ)

s(0)(t; θ)

)
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Then we rewrite Diffn(i) using the empirical process notation:

Diffn(i) =−
[
∇2

θL(θ̂)/n
]−1 exp(2θ̂⊤Xi)

n
·
∫ τ

0

Jn(t; θ̂, Zi)dGn(t)

+
[
∇2

θL(θ̂)/n
]−1 exp(θ̂⊤Xi)

n
· ∆i

S
(0)
n (Yi; θ̂)− exp(θ̂⊤Xi)/n

·

(
Xi −

S
(1)
n (Yi; θ̂)

S
(0)
n (Yi; θ̂)

)
.

(16)

Next, we show that ∫ τ

0

Jn(t; θ̂, Zi)dGn(t) =

∫ τ

0

J(t; θ∗, Zi)dG(t) + op(1). (17)

To prove Eq. (17), we further decompose it into four terms:∫ τ

0

Jn(t; θ̂, Zi)dGn(t)−
∫ τ

0

J(t; θ∗, Zi)dG(t) =

∫ τ

0

(
Jn(t; θ̂, Zi)− J(t; θ̂, Zi)

)
d(Gn(t)−G(t))︸ ︷︷ ︸

I1

+

∫ τ

0

J(t; θ̂, Zi)d(Gn(t)−G(t))︸ ︷︷ ︸
I2

+

∫ τ

0

(
Jn(t; θ̂, Zi)− J(t; θ̂, Zi)

)
dG(t)︸ ︷︷ ︸

I3

+

∫ τ

0

(
J(t; θ̂, Zi)− J(t; θ∗, Zi)

)
dG(t)︸ ︷︷ ︸

I4

.

For the first term I1, by the triangle inequality, we have

sup
t∈[0,τ ],θ∈B

∥Jn(t; θ, Zi)− J(t; θ, Zi)) ∥

≤ sup
t∈[0,τ ],θ∈B

∥∥∥∥∥∥ I(t ≤ Yi)

S
(0)
n (t; θ)

(
S
(0)
n (t; θ)− exp(θ⊤Xi)/n

) ·Xi −
I(t ≤ Yi)[
(s(0)(t; θ)

]2 ·Xi

∥∥∥∥∥∥
+ sup

t∈[0,τ ],θ∈B

∥∥∥∥∥∥∥
I(t ≤ Yi)[

S
(0)
n (t; θ)

]2 (
S
(0)
n (t; θ)− exp(θ⊤Xi)/n

) · S(1)
n (t; θ)− I(t ≤ Yi)[

(s(0)(t; θ)
]3 s(1)(t; θ)

∥∥∥∥∥∥∥
≲ sup

t∈[0,τ ],θ∈B

∣∣∣∣∣∣∣
1[

(S
(0)
n (t; θ)

]2 − 1[
(s(0)(t; θ)

]2
∣∣∣∣∣∣∣+Op(

1

n
)

+ sup
t∈[0,τ ],θ∈B

∥∥∥∥∥∥∥
1[

S
(0)
n (t; θ)

]3 · S(1)
n (t; θ)− 1[

(s(0)(t; θ)
]3 s(1)(t; θ)

∥∥∥∥∥∥∥ (18)

where the second inequality relies on the the boundedness of the support of Xi, τ , and B. Here,
“W1 ≲ W2” denotes that there exists a universal constant C > 0 such that W1 ≤ CW2. Under
Conditions (1)-(3), the function class {ft,θ(x, y) = I(y ≥ t) exp(θ⊤x) : t ∈ [0, τ ], θ ∈ B} is a
Glivenko-Cantelli class, i.e., supt∈[0,τ ],θ∈B ∥S(0)

n (t; θ) − s(0)(t; θ)∥ = op(1). Similarly, we have

supt∈[0,τ ],θ∈B ∥S(1)
n (t; θ)− s(1)(t; θ)∥ = op(1). By applying Taylor expansion to terms in Eq. (18)

and the boundedness, we obtain the uniform convergence:

sup
t∈[0,τ ],θ∈B

∥Jn(t; θ, Zi)− J(t; θ, Zi)) ∥ = op(1). (19)

By the empirical process theory, we have
√
n(Gn(t) −G(t)) converges to a Gaussian process uni-

formly. Therefore, it follows that

I1 =

∫ τ

0

(
Jn(t; θ̂, Zi)− J(t; θ̂, Zi)

)
d(Gn(t)−G(t)) = op(1/

√
n).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

For the second term, note that J(t; θ̂, Zi) is bounded and thereby I2 = Op(1/
√
n). For the third

term, due to uniform convergence in Eq. (19), it follows that I3 = op(1). Given the boundedness and
the consistency of θ̂, i.e., θ̂ = θ∗ + op(1), we have supt∈[0,τ ] ∥J(t; θ̂, Zi) − J(t; θ∗, Zi)∥ = op(1)

and thereby I4 = op(1). So far, we have completed the proof of Eq. (17).
Finally, we plug in Eq. (17) together with known consistency results into Eq. (16): θ̂ = θ∗ + op(1)

and ∇2
θL(θ̂)/n = A+ op(1), and obtain that

Diff(i) =− [A+ op(1)]
−1 exp(2θ∗⊤Xi) + op(1)

n
·
(∫ τ

0

J(t; θ∗, Zi)dG(t) + op(1)

)
+ [A+ op(1)]

−1 exp(θ∗⊤Xi) + op(1)

n
· ∆i

s(0)(Yi; θ∗) + op(1)

(
Xi −

s(1)(Yi; θ
∗) + op(1)

s(0)(Yi; θ∗) + op(1)

)
=− [A]

−1 exp(2θ∗⊤Xi)

n
·
∫ τ

0

J(t; θ∗, Zi)dG(t)

+ [A]
−1 exp(θ∗⊤Xi)

n
· ∆i

s(0)(Yi; θ∗)

(
Xi −

s(1)(Yi; θ
∗)

s(0)(Yi; θ∗)

)
+ op(

1

n
)

=Op(
1

n
).

The second equality holds by the continuous mapping theorem and the third equality holds due to
the boundedness of the support of X , B, and τ . We used the fact that there exists a positive constant
C > 0 such that inft∈[0,τ ],θ∈B s(0)(t; θ) = E

(
I (Y ≥ t) exp

(
θ⊤X

))
≥ C. This completes the

proof.

B DETAILED EXPERIMENT SETUP

Datasets. For Cox regression, both METABRIC and SUPPORT datasets are split into training, val-
idation, and test sets with a 6:2:2 ratio. The training objects and test objects are defined as the
full training and test sets. For node embedding, the test objects are all valid pairs of nodes, i.e.,
34 × 34 = 1156 objects, while the training objects are the 34 individual nodes. In the case of list-
wise learning-to-rank, we sample 500 test samples from the pre-defined test set as the test objects.
For the Mediamill dataset, we use the full label set as the training objects, while for the Delicious
dataset, we sample 100 labels from the full label set (which contains 983 labels in total). The brute-
force leave-one-out retraining follows the same training hyperparameters as the full model, with one
training object removed at a time.

Scenario Dataset Training obj Test obj

Cox regression METABRIC 1217 samples 381 samples

SUPPORT 5677 samples 1775 samples

Node embedding Karate 34 nodes 1156 pairs of nodes

Listwise learning-to-rank Mediamill 101 labels 500 samples

Delicious 100 labels 500 samples

Table 4: Training objects and test objects in different experiment settings.

Models. For Cox regression, we train a CoxPH model with a linear function on the features for both
the METABRIC and SUPPORT datasets. The model is optimized using the Adam optimizer with a
learning rate of 0.01. We train the model for 200 epochs on the METABRIC dataset and 100 epochs
on the SUPPORT dataset. For node embedding, we sample 1,000 walks per node, each with a length
of 6, and set the window size to 3. The dimension of the node embedding is set to 2. For listwise
learning-to-rank, the model is optimized using the Adam optimizer with a learning rate of 0.001,
weight decay of 5e-4, and a batch size of 128 for 100 epochs on both the Mediamill and Delicious
datasets. We also use TruncatedSVD to reduce the feature dimension to 8.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C EFFICIENT INVERSE HESSIAN APPROXIMATION

Existing methods for efficient inverse Hessian approximation used by the conventional IF for de-
composable losses can be adapted to accelerate VIF. Specifically, we consider two methods used
by Koh & Liang (2017), Conjugate Gradient (CG) and LiSSA (Agarwal et al., 2017). The appli-
cation of CG to VIF is straightforward, as it can be directly applied to the original Hessian matrix.
LiSSA is originally designed for decomposable losses in the form

∑n
i=1 ℓi(θ) and it accelerates

the inverse Hessian vector product calculation by sampling the Hessians of individual loss terms,
∇2

θℓi(θ). The adaptation of LiSSA to VIF depends on the specific form of the loss function. In
many non-decomposable losses (e.g., the all three examples in this paper), the total loss can still be
written as the summation of simpler loss terms, even though they are not decomposable to individ-
ual data points. In such cases, LiSSA can still be applied to efficiently estimate the inverse Hessian
vector product through sampling the simpler loss terms.

C.1 EXPERIMENTS

We implement the CG and LiSSA versions of accelerated VIF for the Cox regression model, and ex-
periment them on the METABRIC dataset. In addition to the linear model, we also experiment with
a neural network model, where the relative risk function is implemented as a two-layer MLP with
ReLU activation. We use VIF (Explicit) to refer to the VIF with explicit inverse Hessian calculation,
while using VIF (CG) and VIF (LiSSA) to refer to the accelerated variants.

Performance. As can be seen from Table 5, the accelerated methods VIF (CG) and VIF (LiSSA)
achieve similar performance as both the original VIF (Explicit) and the Brute-Force LOO on both the
linear and neural network models. The correlation coefficients of all methods on the neural network
model are lower than those on the linear model due to the randomness inherent in the model training.

Table 5: The Pearson correlation coefficients of methods for Cox regression on the METABRIC
dataset.

Methods
Models Linear Neural Network

VIF (Explicit) 0.997 0.238

VIF (CG) 0.997 0.201

VIF (LiSSA) 0.981 0.197

Brute-Force 0.997 0.219

Runtime. We further report the runtime of different methods on neural network models with varying
model sizes. VIF (CG) and VIF (LiSSA) are not only faster than VIF (Explicit), especially as the
model size grows, but also much more memory efficient. VIF (Explicit) runs out of memory quickly
as the model size grows, while VIF (CG) and VIF (LiSSA) can be scaled to much larger models.

Table 6: Runtime comparison of methods for Cox regression on the METABRIC dataset. The
“#Param” refers to the total number of parameters in the neural network model.

#Param VIF (Explicit) VIF (CG) VIF (LiSSA) Brute-Force

0.04K 9.88s 5.68s 8.85s 5116s

10.3K 116s 27.7s 17.18s 6289s

41.0K OOM 113s 67.7s /

81.9K OOM 171s 79.1s /

D HEATMAP OF NODE EMBEDDING

In Figure 2, we present the heatmap of the influence estimated by VIF and the actual LOO loss
difference on two pairs of nodes. VIF could identify the top and bottom influential nodes accurately,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

while the estimation of node influence in the middle more noisy. One caveat of these heatmap plots
is that there is a misalignment between the color maps for VIF and LOO. This reflects the fact
that, while VIF is effective at having a decent correlation with LOO, the absolute values tend to be
misaligned.

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

VIF Heatmap; Node (12, 10)

(a) VIF on (12,10)

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

Groundtruth Heatmap; Node: (12, 10)

(b) LOO on (12, 10)

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

VIF Heatmap; Node (15, 13)

(c) VIF on (15,13)

01

2
3

4 5
6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23

24

2526
27 28

29

30

31

32
33

Groundtruth Heatmap; Node: (15, 13)

(d) LOO on (15,13)

Figure 2: VIF is applied to Zachary’s Karate network to estimate the influence of each node on the
contrastive loss of a pair of test nodes. Figure 2a and Figure 2b represent the heatmap of influence
on the node pair (12,10). Figure 2c and Figure 2d represent the heatmap of influence on the node
pair (15,13).

22


	Introduction
	Related Work
	The Versatile Influence Function
	Preliminaries: IF-Based Data Attribution for Decomposable Loss
	Non-Decomposable Loss
	The Statistical Perspective of Influence Function
	VIF as A Finite Difference Approximation
	Approximation Quality in Special Cases

	Experiments
	Experimental setup
	Performance
	Runtime
	Case Studies

	Conclusion
	Omitted Derivations
	Derivation of eq:IF-general
	Proof of lemma:IF-M
	Proof of thm:finite-difference-IF-M
	Proof of thm:finite-difference-IF-non-decomposable
	Formal Statement and Proof of thm:informal-cox

	Detailed experiment setup
	Efficient Inverse Hessian Approximation
	Experiments

	Heatmap of Node Embedding

