
Metritocracy:
Representative Metrics for Lite Benchmarks

Ariel D. Procaccia

Harvard University

Benjamin Schiffer

Harvard University

Serena Wang

Harvard University

Shirley Zhang

Harvard University

Abstract

A common problem in LLM evaluation is how to choose a subset of metrics from
a full suite of possible metrics. Subset selection is usually done for efficiency or
interpretability reasons, and the goal is often to select a “representative” subset
of metrics. However, “representative” is rarely clearly defined. In this work, we
use ideas from social choice theory to formalize two notions of representation for
the selection of a subset of evaluation metrics. We first introduce positional repre-
sentation, which guarantees every alternative is sufficiently represented at every
position cutoff. We then introduce positional proportionality, which guarantees
no alternative is proportionally over- or under-represented by more than a small
error at any position. We prove upper and lower bounds on the smallest number of
metrics needed to guarantee either of these properties in the worst case. We also
study a generalized form of each property that allows for additional input on groups
of metrics that must be represented. Finally, we tie theory to practice through
real-world case studies on both LLM evaluation and hospital quality evaluation.

1 Introduction

The last few years have seen an explosion in metrics to evaluate large language models (LLMs).
While this has improved our ability to understand the capabilities of LLMs, it is also increasingly
computationally expensive to evaluate all of these measures. This challenge is directly felt by
platforms like BIG-bench [Srivastava et al., 2022] and HELM [Liang et al., 2022] that aggregate
numerous metrics to provide as complete a picture as possible of LLM performance.

A common approach that evaluation platforms take to mitigate these growing computational difficul-
ties is to create a “lite” version of the full evaluation suite, which consists of a subset of the original
measures. For example, BIG-bench Lite contains a subset of 24 JSON metrics from the full collection
of over 200 metrics, which is “designed to provide a canonical measure of model performance, while
being far cheaper to evaluate than the full set.” HELM Lite also contains a subset of scenarios from
HELM Classic (in addition to some others), constructed to have a lighter computational overhead.

The problem of selecting a subset of evaluation metrics is actually quite general beyond LLM
evaluation, and is also common in public policy and business operations. For example, Cal Hospital
Compare awards Patient Safety Honor Roll status to hospitals using a subset of 12 measures from a
full set of hundreds of hospital quality measures collected by the Centers for Medicare and Medicaid
Services [Cal Hospital Compare, 2025]. This subset is carefully hand-selected, but Cal Hospital
Compare still acknowledges that “measurement of patient safety is complex and there is no single
validated method for measuring the overall safety of care provided in a given health care setting.”
Beyond computational considerations, an additional reason for selecting a subset of metrics is
understandability for stakeholders.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Across these settings, a recurring theme is that practitioners want to select a subset of metrics that is in
some sense “representative” of the underlying full set of metrics.1 However, there is no formal notion
of representation that is common across these contexts. To provide the tools to more clearly discuss
and achieve representation in the selection of a subset of evaluation metrics, we introduce formal
definitions of representation inspired by notions in computational social choice. Our theoretical
framework provides the basis for discussing tradeoffs between representation and computational cost
or understandability, and allows practitioners to more clearly reason about the consequences of subset
selection on downstream decision-making. Our framework also opens the door to algorithmic support
for metric selection, which we characterize theoretically and empirically.

1.1 Our Contributions
We study the problem of selecting a representative subset from a set of n evaluation metrics that each
rank m alternatives.2 We introduce two desirable properties for the subset and provide lower and
upper bounds on the number of metrics needed to satisfy each of the two properties.

We start by defining positional representation, which prevents under-representation. Positional
representation guarantees that every alternative is sufficiently represented at every rank. This property
is parameterized by a group size g, which indicates the granularity of representation. We show upper
and lower bounds on the number of metrics necessary to satisfy positional representation in the worst
case that are tight up to a logarithmic factor. We also provide a polynomial-time algorithm which
always finds a subset satisfying positional representation with size at most n

g log(m).

We next introduce positional proportionality, which guarantees that no alternative is under- or over-
represented at any position in the chosen subset by more than an additive factor of ϵ. We give tight
(up to constant factors) upper and lower bounds on the number of metrics needed to satisfy positional
proportionality in the worst case. We also show that any subset of metrics satisfying positional
proportionality can approximate any social choice scoring rule on the original set of metrics.

Finally, we generalize both properties to enable preserving information about the original set of
metrics which may be external to the rank information. We show that our upper and lower bound
extend to the general versions of our properties, and prove that finding the smallest set satisfying
either general property is NP-hard. Our theoretical results are summarized in Table 1.

Properties Parameter Upper Bound Lower Bound Complexity

Positional Representation Group size g O
(

n
g log(m)

)
Ω
(n

g log(m)

log(n
g log(m))

)
NP-hard

Positional Proportionality Accuracy ϵ O
(

1
ϵ2 log(m)

)
Ω
(

1
ϵ2 log(m)

)
NP-hard

Table 1: Summary of theoretical results.

To connect these theoretical results to the above motivating practical examples, we evaluated algo-
rithms to achieve positional representation and positional proportionality in three case studies with
real data: two on LLM evaluation and one on hospital quality evaluation. We show that the outputs of
our methods compare favorably with the existing subsets currently deployed in the real world for
each of these settings.

1.2 Related Work
There has been a surge of recent work studying benchmarks as voters from the social choice perspec-
tive. These works differ from ours in that none study subset selection of metrics. Many of these works
study how metrics should be aggregated, particularly to improve robustness [Colombo et al., 2022b,a,
Peyrard et al., 2017, Mishra and Arunkumar, 2021, Himmi et al., 2023]. Colombo et al. [2022a]
propose using Borda count to aggregate benchmarks as an approximation of the Kemeny Rule and
Rofin et al. [2022] propose VOTE’N’RANK, which consists of several scoring rules based on social
choice theory for benchmark aggregation. In a different direction, Zhang and Hardt [2024] give a

1Not all “Lite” benchmarks are trying to be representative — SWE-bench Lite [Jimenez et al., 2023] also
tries to include easier metrics. In this work we focus on settings where the goal is to be representative.

2A metric refers to anything that gives a ranking over alternatives (and not necessarily a loss function).

2

form of Arrow’s Impossibility result for the benchmark setting and highlight an inherent tradeoffs
between sensitivity and diversity.

In social choice, our properties are most closely related to Justified Representation (JR) introduced
by Aziz et al. [2017] in the committee selection setting. JR guarantees representation for sufficiently-
large “coalitions” of voters that approve the same candidate; it is similar to our notion of positional
representation, which guarantees representation for “coalitions” of benchmarks that all rank alternative
a in the top r. However, our setting has no voters and no notion of approval, which makes a direct
comparison impossible. See Appendix C for more discussion of the relationship to JR. Also in
the approval setting, Skowron and Faliszewski [2015] study the relationship between set cover and
proportional representation with approval ballots, similar to our NP-hardness results in Section 4.

Other methods have also been proposed to speed up LLM evaluation through selection of individual
prompts from all possible evaluation metrics [Perlitz et al., 2023, Polo et al., 2024, Li et al., 2024]. Our
work differs in that we restrict to selecting a subset of full metrics, and not the more granular selection
of prompts. This captures more general public policy settings like hospital quality evaluation, where
only full metrics are available. Note, however, that the two approaches are complementary and can
be used in tandem.

1.3 Model
Let there be a set N = [n] of metrics and a set A = [m] of alternatives. Each metric i has a ranking
σi over alternatives. Let σir be the alternative ranked in position r in metric i’s ranking, and let σi(a)
be the rank of alternative a in metric i’s ranking. The set of all metric rankings forms a preference
profile σN = {σ1, . . . , σn}. For K ⊆ N , define σK = {σi : i ∈ K}. We study the following:

How should we select a small subset of metrics K ⊂ N such that K preserves
some information from the metrics in N?

We say that metric i ranks alternative a at least at position r if σi(a) is r or better (i.e. σi(a) ≤ r).
Similarly, we say that metric i ranks alternative a above position r if σi(a) is strictly better than r
(i.e. σi(a) < r). Define C(N, r, a) as the number of metrics in N that rank alternative a in the top r.
Likewise, for K ⊆ N , C(K, r, a) is the number of metrics in K that rank alternative a in the top r.

2 Positional Representation
Consider some alternative a ∈ A. If a is ranked highly by many metrics in N , then we want a
to be ranked highly in many metrics in the subset K as well — otherwise, a would not be getting
the representation it deserves in K. Intuitively, it would be undesirable if a is ranked in the top 10
positions by the majority of the metrics in N , but does not appear in the top 10 positions for any
metric in K. Similarly, it would be undesirable if b is ranked in the top 50 by 90% of metrics in N ,
but b is ranked in the top 50 by less than half of the metrics in K. We therefore begin by introducing
positional representation, which guarantees that the subset K gives every alternative a ∈ A sufficient
representation at every cutoff position. More specifically, positional representation guarantees that
for every position cutoff, if a is ranked above the cutoff in a sufficiently large number of the original
metrics, then that alternative is also ranked above the cutoff in a (close to) proportional number of
metrics in K.
Definition 1. A subset K satisfies positional representation for group size g if for every r ∈ [1 : m],
any alternative that is ranked in the first r positions in at least ℓ · g metrics is ranked in the first r
positions in at least ℓ metrics in K. Equivalently, for all r ∈ [1 : m] and all a ∈ A,

C(K, r, a) ≥
⌊
C(N, r, a)

g

⌋
. (1)

Positional representation is parameterized by a group size g, which will capture the tradeoff between
the granularity of representation and the size of K needed to satisfy positional representation. As g
gets larger, the minimum necessary |K| decreases, but for each alternative a it takes more high-ranked
votes to deserve representation. If g = n, for instance, then positional representation guarantees only
that every alternative is ranked by some metric in K at least as high as its lowest ranking. By the
pigeonhole principle, it will always be possible to satisfy this specific guarantee with |K| = 1. At the
other extreme, if g = 1, then we must have that K = N in order to satisfy positional representation.

3

As a concrete example, suppose that we have n = 100 metrics and g = 10. If alternative a is ranked
first by exactly 23 metrics in N , then Definition 1 requires that a is ranked first by at least two metrics
in K. Similarly, if alternative a is ranked in one of the top two places by exactly 76 metrics in N ,
then Definition 1 also requires that alternative a is ranked in the top two by at least 7 metrics in K.

2.1 Lower Bound
In this section, we first provide a lower bound on the size of K needed to satisfy positional represen-
tation. We then give an algorithm that returns a solution satisfying positional representation where
|K| is at most a logarithmic factor larger than the lower bound.

Observe that any K satisfying positional representation for group size g must have size |K| ≥ ⌊ng ⌋.
This is because every alternative a must be ranked in the top m by all n metrics, and therefore
Definition 1 requires that a is ranked in the top m by at least ⌊ng ⌋ metrics in K. Naturally, we might
hope that for any g and N , we can always find K ⊆ N such that K satisfies positional representation
for group size g and |K| = ⌊ng ⌋. Unfortunately, we show this is impossible in the following example.

b1 b2 b3 b4
x x w w
y z y z
u v v u
z y z y
v u u v
w w x x

Table 2: Example where positional representation for group size g = 2 is impossible with |K| = n
g .

Each metric in {b1, b2, b3, b4} has preference ordering among the alternatives {u, v, w, x, y, z}
corresponding to that metric’s column. Each color needs to be represented in K.

In this example, a set K satisfies positional representation for group size g = 2 if and only if every
color appears in K. However, there is no such subset K ⊂ {b1, b2, b3, b4} where |K| ≤ 2 = n

g , and
therefore any K satisfying positional representation for g = 2 must have |K| ≥ 3. More generally, we
show the following worst-case lower bound on the number of metrics needed to guarantee positional
representation.
Theorem 2 (Proof in Appendix F). For every g ≥ 2, there exists σN such that no subset K ⊆ N

satisfies positional representation for group size g with size |K| ≤ Ω

(
n
g log(m)

log(n
g log(m))

)
.

Proof Sketch. We will construct a preference profile σN where K must be large to satisfy positional
representation. First, we enumerate all possible subsets of N of size g as {G1, ..., G(ng)

}. We then
construct a preference profile σN such that σir = ar if i ∈ Gr and σir = br if i ̸∈ Gr where ar, br
are distinct alternatives for all r ∈

(
n
g

)
. By this construction, for every r ≤

(
n
g

)
, a subset K satisfying

Equation (2) for alternative ar must include at least one metric from Gr. Therefore, K must include
at least one metric from every subset of size g of N , which means K must have size at least n− g+1.
We then show that n− g + 1 satisfies the desired bound.
Although achieving |K| = ⌊n/g⌋ is not always possible, we still want to efficiently find a K that
satisfies positional representation for group size g and contains relatively few metrics. We next
present Algorithm 1, a polynomial time greedy algorithm that finds such a K with |K| ≤ n

g log(m).

2.2 Algorithm
We first give a high-level overview of the algorithm. The algorithm iterates through every element of
the preference profile row by row. As it does so, it keeps track of how many times each alternative j
has shown up. Whenever j has shown up g times, the algorithm colors the last g entries of j with a
new color and resets the counter for alternative j. Table 2 provides an example of the coloring at the
end of this procedure. Note that if n/g is not integral, not all of the elements will be colored.

After completing this process, the algorithm greedily selects metrics to include in the subset K based
on the number of colored alternatives in each metric’s column that are not included in a previously
selected metric. Specifically, the algorithm will select the first metric from the set of metrics that have

4

the most colored elements. The second metric is selected from the set of metrics that have the most
new colors, and so on. This process continues until there are no new colors remaining among the
unselected metrics, at which point the algorithm returns the set of selected metrics.

Algorithm 1 Greedy (pseudo-code)
Require: Preference profile σN , group size g

1: while there exist alternatives with at least g uncolored instances do
2: Choose an alternative a with at least g uncolored instances
3: Color the highest g uncolored instances of a with a new color (breaking ties arbitrarily)
4: end while
5: Initialize K ← ∅
6: Let C be the set of colors used
7: while C is nonempty do
8: Choose a metric i ∈ N \K that covers the most colors in C
9: Add i to K

10: Remove the colors that i covers from C
11: end while
12: return K

The full algorithm is presented in Appendix D. Theorem 3 gives the formal bound for Algorithm 1.
Theorem 3 (Proof in Appendix E). For any preference profile σN and any group size g, Algorithm
1 terminates in polynomial time and returns a subset K with |K| ≤ O(ng log(m)) which satisfies
positional representation for group size g .

Proof sketch. The key idea of the proof is to keep track of the number of distinct colors that K does
not yet cover after iteration t of the loop on Line 7 of Algorithm 1. Denote this quantity Qt. By
construction, the number of colors at the beginning of the loop is Q0 ≤ mn

g . The algorithm terminates
at the smallest time t where Qt = 0. We first show that for each round of the loop, the metric i ∈ N\K
that covers the most remaining colors in C must cover at least Qt

n/g colors. Therefore, for all t, we
have Qt+1 ≤ Qt

(
1− g

n

)
. We also know that if Qt ≤ n/g, then Qt+1 ≤ Qt − 1. Combining these

two equations, we show the desired result that Qt = 0 for t ≥ (n/g + 1) log(m).

Because any K satisfying positional representation must have size at least ⌊n/g⌋, Algorithm 1 selects
no more than a log(m) factor more metrics than the smallest number needed to satisfy positional
representation, For any σN . For a given σN , we can find the minimum number of metrics needed
to satisfy positional representation using an integer program (see Appendix A); however this is not
guaranteed to run in polynomial time.

3 Positional proportionality
While positional representation guarantees that each alternative gets sufficient representation in the
subset of metrics chosen for each position cutoff, it does not prevent over-representation. For example,
if an alternative a is ranked in the top 10 in σN exactly g times, then in order to satisfy positional
representation with parameter g, a must be ranked in the top 10 in σK at least once. However, there’s
no upper bound on how many times a can be ranked in the top 10— it could be possible to satisfy
positional representation for this instance and have a ranked in the top 10 by every metric in K.

In this section, we define a notion of proportionality which prevents both under-representation
and over-representation. This notion, positional proportionality, is especially useful for recovering
summary information such as the fraction of metrics which rank an alternative in the top half. We will
show that if K satisfies positional proportionality for σN , then any positional scoring rule evaluated
on σK is a good approximation for the same scoring rule evaluated on σN .

Informally, positional proportionality guarantees that for every alternative and position cutoff, K
preserves the fraction of times that alternative is ranked above that position cutoff within an additive
error ϵ. From this guarantee, we can also recover the fraction of times that each alternative is ranked
at each specific position within an additive error. The formal definition for positional proportionality
follows below.

5

Definition 4. A subset K satisfies ϵ-positional proportionality for ϵ ≥ 0 if for every alternative a ∈ A
and every r ∈ [m], the fraction of metrics that rank a in the top r in N is within ϵ of the fraction of
metrics that rank a in the top r in K. Formally, for all a ∈ A and r ∈ [m],∣∣∣∣C(N, r, a)

|N |
− C(K, r, a)

|K|

∣∣∣∣ ≤ ϵ. (2)

Note that, unlike positional representation, positional proportionality is not parameterized by a group
size g, but rather by an error ϵ. As in positional representation, the choice of ϵ trades off the accuracy
guarantee for proportionality with the minimum size of K necessary. As ϵ increases, the size |K|
decreases, but the error in how well K captures N for each alternative and position cutoff may
increase. As a concrete example of positional proportionality, suppose that we have n = 100 metrics
and use parameter ϵ = 1

25 . Further suppose that a is ranked first by exactly 20 metrics in N . Then
Definition 4 requires that the fraction of metrics in K that rank a first is between 4

25 and 6
25 . Definition

4 further requires that approximate proportionality holds for every alternative at every position cutoff.

While both positional representation and positional proportionality enforce ways that K must be
representative of N , neither property implies the other, and neither is weakly easier to satisfy. In
particular, positional representation strictly prevents under-representation, while positional propor-
tionality approximately prevents both under-representation and over-representation. In the worst-case
(and, we expect, in the typical case), the minimum number of metrics needed to satisfy positional
representation with parameter g is less than the minimum number of metrics needed to satisfy po-
sitional proportionality with ϵ = g/n. However, this is not always the case. For instance, suppose
that every metric in N has the exact same ranking over alternatives. Then positional proportionality
can be satisfied with |K| = 1 for any ϵ ≥ 0 by choosing an arbitrary metric. However, for any
g ≤ |N |/2, positional representation cannot be satisfied with less than |K| = 2. Intuitively, this is
because positional proportionality gives a fractional guarantee, while positional representation gives
an absolute guarantee, which sometimes allows positional proportionality to be more efficient in its
information aggregation.

3.1 Upper and Lower Bounds
In this section, we present upper and lower bounds on the number of metrics necessary to guarantee
positional proportionality. First, we show that for any preference profile σN , there always exists a set
|K| with size |K| = O

(
1
ϵ2 log(m)

)
that satisfies positional proportionality.

Theorem 5 (Proof in Appendix G). For every preference profile σN and ϵ ≥ 0, there exists K ⊂ N
with |K| ≤ 1

ϵ2 log(2m) that satisfies positional proportionality.

We next show that there exist preference profiles σN for which there is no K with size less than
Ω(1

ϵ2 log(m)) that satisfies positional proportionality. Importantly, this shows that the result of
Theorem 5 is tight up to constant factors.
Theorem 6 (Proof in Appendix H). For any ϵ ≤ 1/24, there exist σN such that no K ⊆ N with
|K| ≤ 1

288ϵ2 log(m) satisfies ϵ-positional proportionality.

Proof sketch. We prove this result by designing a random σN such that with positive probability,
there is no K ⊆ N with |K| ≤ 1

288ϵ2 log(m) that satisfies ϵ-positional proportionality. We construct
the random σN as follows. For every metric i and every j ∈ [m/2], with probability 1/2 we will
have alternative 2j ranked in position 2j and alternative 2j + 1 in alternative 2j + 1, and with
probability 1/2 we will have alternative 2j + 1 ranked in position 2j and alternative 2j ranked in
position 2j + 1. This is done independently for all metrics i and all j. For each fixed K ⊆ N with
|K| ≤ 1

288ϵ2 log(m), we upper bound the probability that K satisfies ϵ-positional proportionality to
be exponentially small. Intuitively, K has an exponentially small probability of satisfying ϵ-positional
proportionality because the randomly assigned rankings must be approximately evenly distributed for
all j ∈ [m2] simultaneously, and independence implies this has small probability. We formally show
this using an inverse version of Hoeffding’s Inequality. After bounding the probability of any fixed
K satisfying ϵ-positional proportionality, a union bound gives that with positive probability, no such
K satisfies ϵ-positional proportionality. This proves there must exist a profile σN such that no K
with |K| ≤ 1

288ϵ2 log(m) satisfies ϵ-positional proportionality.

As with positional representation, we can find the smallest K that satisfies positional proportionality
for a given instance using an integer program (see Equation (4) in Appendix A).

6

3.2 Approximating Scoring Rules
A nice feature of positional proportionality is that it allows us to approximate scoring rules evaluated
on σN using only σK . Informally, a scoring rule such as Borda count aggregates multiple rankings
into a single ranking by assigning scores to each alternative based on its position in each of the
original rankings [Young, 1975]. Because positional proportionality approximates the frequency at
which an alternative a is ranked above a cutoff r up to an ϵ additive error, positional proportionality
also approximates the frequency at which a is ranked at exactly position r up to a 2ϵ additive error.
This information in turn allows us to estimate the result of any scoring rule evaluated on σN , which
is especially helpful when σN is an intermediary of another computation, such as when σN is being
used to decide a single winning alternative or a single meta-ranking.

Formally, a scoring rule has an associated score vector s ∈ Rm, where s1 ≥ ... ≥ sm. It is without
loss of generality to normalize so that s1 = 1 and sm = 0. When using a scoring rule to aggregate
rankings, each metric awards sr points to the alternative that is ranked in position r, which results in
each alternative having an average score of fs(a,σN) := 1

|N |
∑

i∈N sσi(a). In Theorem 7, we show
that given any scoring rule and any K satisfying ϵ-positional proportionality, every alternative has
approximately the same average score in σK as in σN .
Theorem 7 (Proof in Appendix I). If a subset K satisfies ϵ-positional proportionality, then for every
scoring rule with score vector s and every alternative a ∈ A, |fs(a,σN)− fs(a,σK)| ≤ ϵ.

4 Generalizations
In previous sections, our goal has been to choose a subset of metrics that preserves rank information
from the original set. However, there may be other types of information we would like to preserve
instead of or in addition to rank information. For example, perhaps the metrics fall into different
categories, and we want to include sufficiently many metrics of each category. It turns out that we
can generalize both positional representation and positional proportionality to settings like this.

Formally, suppose we have a collection of γ groups of metrics G = {Gi}γi=1 where Gi ⊆ N . Our
goal is to choose a K that represents every Gi ∈ G. In the following two definitions, we generalize
both positional representation and positional proportionality to this setting.
Definition 8. For a given N and collection of groups G, a subset K ⊆ N satisfies generalized
representation for group size g if for every Gi ∈ G, |K ∩Gi| ≥

⌊
|Gi|
g

⌋
.

Definition 9. For a given N and collection of groups G, a subset K ⊆ N satisfies ϵ-generalized
proportionality for ϵ ≥ 0 if for every Gi ∈ G,

∣∣∣ |Gi|
|N | −

|K∩Gi|
|K|

∣∣∣ ≤ ϵ.

Note that positional representation (Definition 1) and positional proportionality (Definition 4) are
special cases of Definitions 8 and 9 for a specific choice of G that depends on σN . Specifically, given
σN , we can construct G as follows. Let γ = m2 and let G = {Gar} where for each a ∈ A and
r ∈ [m] we define Gar := {i ∈ N : σi(a) ≤ r}. In other words, for every a ∈ A and r ∈ [m],
there is one group in G that corresponds to all of the metrics that rank a in the top r positions. By
construction, any subset K that satisfies generalized representation/proportionality for this choice of
G will also satisfy positional representation/proportionality.

While the groups in Definitions 8 and 9 can be based on σN , they need not be. Definitions 8 and 9
give us the freedom to define groups in whatever way is useful, which in turn allows us to specify
which types of information to preserve. Below are some examples of groups we could define:

• Suppose some metrics are in English, some are in Chinese, and some are in Spanish. Then for each
language, we could have a group in G corresponding to all metrics in that language.

• Suppose the metrics have a range of difficulty. Then for each difficulty level (e.g. very easy, easy,
hard, very hard), we could have a group in G corresponding to all metrics of that difficulty level.

• Suppose we have ten experts who each believe a different subset of metrics are important. Then for
each expert, we could have a group in G including all metrics that expert supports.

In Appendix B, we show how the lower and upper bounds of Theorems 2–6 can be generalized to give
bounds for Definitions 8 and 9. In Appendix B, we also discuss the relationship between Definition
8 and set cover. Finally, we show that finding the smallest set that satisfies either Definition 9 or
Definition 8 is NP-hard.

7

5 Empirical Case Studies
We demonstrate our proposed definitions and algorithms on three real-world case studies that involve
selecting a subset of metrics for evaluation and decision making. To illustrate the wide potential
applicability of our approach, we consider two case studies on evaluating LLM capabilities, and one
case study on evaluating hospital quality. Each case study includes a full set of metrics, an existing
subset of metrics currently deployed (e.g., an existing LITE benchmark), and a set of alternatives.
Our experiments focus on two goals: (i) supplementing our theory by comparing the performance of
our algorithms relative to the stated upper and lower bounds on real datasets, and (ii) demonstrating
practical relevance by comparing against existing deployed subsets. An additional consideration is
that a practitioner might want to keep an existing curated subset, so we also show that our algorithms
can also be used to augment an existing subset. We summarize each case study below, and provide
more details and code in the Supplemental Materials.

Case Study 1: BIG-bench [Srivastava et al., 2022]. We consider the problem of selecting a
subset of n = 141 BIG-bench JSON metrics to include in a “lite” version. The existing BIG-bench
Lite includes k = 24 JSON metrics, and was “designed to provide a canonical measure of model
performance, while being far cheaper to evaluate than the full set.” The alternatives consist of
m = 120 LLMs from three model families.

Case Study 2: HELM [Liang et al., 2022]. We next consider the problem of selecting a subset of
n = 34 scenarios available on HELM Classic for a Lite version. For this case study, we compare
against the k = 7 metrics from HELM Lite that are from HELM Classic. The alternatives consist of
m = 67 models that appeared on the HELM Classic leaderboard as of March, 2025.

Case Study 3: Cal Hospital Compare [Cal Hospital Compare, 2025]. Beyond LLMs, we also
demonstrate how our methods can apply more widely through a case study on hospital quality
evaluation. Cal Hospital Compare uses a subset of k = 12 hospital quality metrics selected from
a full set of metrics collected by the Centers for Medicare and Medicaid Services (CMS). For the
purposes of this illustration, we consider the problem of selecting a “representative” set of quality
metrics from the n = 50 existing patient safety metrics available in the CMS Hospital Compare
database. The alternatives consist of m = 282 hospitals in California.

5.1 Results
We now empirically evaluate the performance of the proposed algorithms for achieving positional
representation (PR) and positional proportionality (PP). We evaluate each method by comparing the
subset sizes |K| achieved for each tolerance parameter (group size g for PR, tolerance ϵ for PP).
Smaller subsets are better.

Positional Representation. We first evaluate the performance of Algorithm 1 (Greedy) relative to
our theoretical upper and lower bounds, as well as the optimal integer programming solution.3 Figure
1 shows that in practice, the greedy algorithm performs significantly better than the upper bound, but
a gap remains relative to the optimal integer programming solution for small group sizes.

For all case studies, the greedy algorithm finds a subset smaller than the existing subset, while
guaranteeing positional representation for a smaller group size g than the existing subset guarantees
(marked by the blue points in the bottom left quadrant). This suggests that if positional representation
is important to a practitioner, it is possible to achieve it more efficiently than the existing subset.

In practice, the existing subset is often carefully curated. Thus, we also evaluate the performance
of using our greedy and integer programming algorithms to optimally augment the existing subset
for PR. Figure 1 shows that a subset optimally augmented using an integer program can perform
better than the greedy algorithm for small group sizes. A computational advantage of augmenting
the existing subset is that it reduces the free parameters of the integer programming problem. Thus,
augmenting the existing subset could be a computationally practical approach that can beat the greedy
algorithm in some cases, and is worth considering by practitioners.

Positional Proportionality. For positional proportionality, we compare the integer programming
solutions to the existing subsets. Figure 2 shows that for all datasets, the IP is able to find subsets
of a smaller size than the existing subset that can guarantee PP at a lower ϵ tolerance. This again

3The optimal integer program is computationally feasible as our real instances have n ≤ 141 and m ≤ 282.
Even when the IP is employed, Theorem 3 is directly useful as it upper bounds the size of the optimal solution.

8

BIG-bench HELM Cal Hospital Compare

0 10 20 30 40 50 60 70
Group size g

0

20

40

60

80

100

120

140

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

Greedy
IP
Greedy augmented
IP augmented
Upper bound
Lower bound
Size of existing subset
Min g for
 existing subset

0 5 10 15 20 25 30
Group size g

0

5

10

15

20

25

30

35

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

0 10 20 30 40 50
Group size g

0

10

20

30

40

50

60

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

Figure 1: Results of running greedy and integer programming algorithms to achieve positional
representation. The upper and lower bounds are from Theorems 3 and 2. The dashed red line marks
the smallest g for which the existing subset guarantees PR.

BIG-bench HELM Cal Hospital Compare

0.0 0.2 0.4 0.6 0.8
Tolerance

0

20

40

60

80

100

120

140

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

IP
IP augmented
Upper bound
Lower bound
Size of existing subset
Min for
 existing subset

0.0 0.2 0.4 0.6 0.8
Tolerance

0

5

10

15

20

25

30

35

40
Se

le
ct

ed
 s

ub
se

t s
iz

e
|K

|

0.0 0.2 0.4 0.6 0.8
Tolerance

0

10

20

30

40

50

60

Se
le

ct
ed

 s
ub

se
t s

iz
e

|K
|

Figure 2: Results of running integer programming algorithms to achieve positional proportionality.
The dashed red line marks the smallest ϵ for which the existing subset guarantees PP. The upper and
lower bounds are from Theorems 5 and 6

suggests that there exist more efficient ways to achieve PP. As with PR, it is also possible to augment
the existing subset to achieve PP. This was most apparent with Cal Hospital Compare, where it is
possible to achieve a much smaller ϵ by adding less than five more metrics.

6 Discussion
We conclude by discussing limitations and future directions. In our work, we introduced two desirable
properties that a subset of metrics should have in order to preserve rank information from the original
set of metrics. One limitation is that it is not clear whether the subset chosen is good for evaluating
new alternatives, especially if there is a distribution shift in the nature of alternatives over time
(e.g., major advancements in LLMs). While we expect that the chosen subset of metrics will be
reasonable at evaluating new alternatives in the short term, we recommend occasionally recomputing
the subset as necessary to account for new metrics joining the overall set or paradigm shifts among
the alternatives. As an open question, it would also be interesting to obtain theoretical guarantees
about how well a selected subset of metrics generalizes to evaluating new alternatives.

Throughout our work, we attempt to curate a subset which is reflective of the overall set. However,
if the overall set is biased or some types of metrics are overrepresented, we would expect that bias
to be reflected in our subset as well. The purpose of our work is to select a good subset of metrics
assuming the overall set captures what the user wants. This means our algorithms are agnostic to how
and why the overall set of metrics was selected, which allows for tremendous flexibility, but also puts
some onus on the user to make sure the overall set achieves the desired objective.

There are several other future directions of note. First, while we provide some case studies in Section
5, it would certainly be interesting to study other practical settings and the best choice of parameters
g and ϵ in each. In this work, we largely did not discuss what to do when there is missing data, i.e., if
not all metrics rank all alternatives. While one natural approach is to assume all missing alternatives
are tied for last, this is not the only viable approach, and we leave exploration in this direction to
future work. Finally, certain metrics may have higher costs (e.g., running them may require more
computational resources). It would be interesting to explore how to balance cost and usefulness of
metrics when selecting a representative subset, especially if the user is budget-constrained.

9

References
Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Freeman, and Toby Walsh. Justified

representation in approval-based committee voting. Social Choice and Welfare, 48(2):461–485,
2017.

Rémi Bardenet and Odalric-Ambrym Maillard. Concentration inequalities for sampling without
replacement. Bernoulli, 21(3), 2015.

Cal Hospital Compare. Patient safety honor roll. 2025. URL https://calhospitalcompare.
org/programs/patient-safety-honor-roll/.

Ioannis Caragiannis, Evi Micha, and Nisarg Shah. Proportional fairness in non-centroid clustering.
Advances in Neural Information Processing Systems, 37:19139–19166, 2024.

Chandra Chekuri, Kenneth L Clarkson, and Sariel Har-Peled. On the set multicover problem in
geometric settings. ACM Transactions on Algorithms (TALG), 9(1):1–17, 2012.

Xingyu Chen, Brandon Fain, Liang Lyu, and Kamesh Munagala. Proportionally fair clustering. In
International conference on machine learning, pages 1032–1041. PMLR, 2019.

Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations research,
4(3):233–235, 1979.

Pierre Colombo, Nathan Noiry, Ekhine Irurozki, and Stéphan Clémençon. What are the best systems?
new perspectives on nlp benchmarking. Advances in Neural Information Processing Systems, 35:
26915–26932, 2022a.

Pierre Jean A Colombo, Chloé Clavel, and Pablo Piantanida. Infolm: A new metric to evaluate
summarization & data2text generation. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pages 10554–10562, 2022b.

Anas Himmi, Ekhine Irurozki, Nathan Noiry, Stephan Clemencon, and Pierre Colombo. Towards
more robust nlp system evaluation: Handling missing scores in benchmarks. arXiv preprint
arXiv:2305.10284, 2023.

Qiang-Sheng Hua, Dongxiao Yu, Francis CM Lau, and Yuexuan Wang. Exact algorithms for set
multicover and multiset multicover problems. In Algorithms and Computation: 20th International
Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings 20, pages
34–44. Springer, 2009.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

David S Johnson. Approximation algorithms for combinatorial problems. In Proceedings of the fifth
annual ACM symposium on Theory of computing, pages 38–49, 1973.

Yusuf Hakan Kalayci, Jiasen Liu, and David Kempe. Full proportional justified representation. arXiv
preprint arXiv:2501.12015, 2025.

Yang Li, Jie Ma, Miguel Ballesteros, Yassine Benajiba, and Graham Horwood. Active evaluation
acquisition for efficient llm benchmarking. arXiv preprint arXiv:2410.05952, 2024.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Jiří Matoušek and Jan Vondrák. The probabilistic method: lecture notes. Charles Univ., 2001.

Evi Micha and Nisarg Shah. Proportionally fair clustering revisited. In 47th International Colloquium
on Automata, Languages, and Programming (ICALP 2020), pages 85–1. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020.

10

https://calhospitalcompare.org/programs/patient-safety-honor-roll/
https://calhospitalcompare.org/programs/patient-safety-honor-roll/

Swaroop Mishra and Anjana Arunkumar. How robust are model rankings: A leaderboard cus-
tomization approach for equitable evaluation. In Proceedings of the AAAI conference on Artificial
Intelligence, volume 35, pages 13561–13569, 2021.

Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM journal on computing,
24(2):227–234, 1995.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam Slonim,
Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking of language models.
arXiv preprint arXiv:2308.11696, 2023.

Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory budgeting with
additive utilities. Advances in Neural Information Processing Systems, 34:12726–12737, 2021.

Maxime Peyrard, Teresa Botschen, and Iryna Gurevych. Learning to score system summaries
for better content selection evaluation. In Proceedings of the Workshop on New Frontiers in
Summarization, pages 74–84, 2017.

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
tinybenchmarks: evaluating llms with fewer examples. arXiv preprint arXiv:2402.14992, 2024.

Mark Rofin, Vladislav Mikhailov, Mikhail Florinskiy, Andrey Kravchenko, Elena Tutubalina, Tatiana
Shavrina, Daniel Karabekyan, and Ekaterina Artemova. Vote’n’rank: Revision of benchmarking
with social choice theory. arXiv preprint arXiv:2210.05769, 2022.

Luis Sánchez-Fernández, Edith Elkind, Martin Lackner, Norberto Fernández, Jesús Fisteus, Pablo Bas-
anta Val, and Piotr Skowron. Proportional justified representation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Piotr Skowron and Piotr Faliszewski. Fully proportional representation with approval ballots: Ap-
proximating the maxcover problem with bounded frequencies in fpt time. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29, 2015.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

H. P. Young. Social choice scoring functions. SIAM Journal of Applied Mathematics, 28(4):824–838,
1975.

Guanhua Zhang and Moritz Hardt. Inherent trade-offs between diversity and stability in multi-task
benchmark. arXiv preprint arXiv:2405.01719, 2024.

11

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All of the claims in the abstract and introduction are accurate.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed throughout and in the discussion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

12

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All formal proofs are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed descriptions of experiment setups and parameters are included in the
Appendix. All algorithms are given in detail in both the paper and in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

13

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided in the Supplemental Materials to reproduce all experiments.
All data used is public, and information on downloading data is given in both the paper and
code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All dataset setup details are provided, and all parameters for optimizers are
included in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Discussion of stochasticity and statistical significance was included everywhere
this was relevant.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All details were provided on on computation time and machine.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

15

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive and negative societal impacts in
the experiments and main paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

16

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets were linked and cited. Licenses are referenced and respected. The
date of access was given.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

17

paperswithcode.com/datasets

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

A Integer Programs
In this section, we present integer programs which for a given instance σN give the smallest number
of metrics necessary to guarantee either positional representation or positional proportionality

First, we define Sra to be the set of metrics which rank a at least as high as r, i.e. Sra = {i ∈ N :
σi(a) ≤ r}.

The IP for finding the minimum size set that satisfies positional representation is as follows:

min
∑
i∈N

xi

s.t.
∑
i∈Sra

xi ≥
⌊
C(N, r, a)

g

⌋
∀ r ∈ [m], a ∈ A

xi ∈ {0, 1} ∀ i ∈ [n] (3)

The IP for finding the minimum size subset that satisfies positional proportionality is as follows:

min
∑
i∈N

xi

s.t.
∑
i∈Sra

xi ≥
(
C(N, r, a)

|N |
− ϵ

)(∑
i∈N

xi

)
∀ r ∈ [m], a ∈ A

∑
i∈Sra

xi ≤
(
C(N, r, a)

|N |
+ ϵ

)(∑
i∈N

xi

)
∀ r ∈ [m], a ∈ A

xi ∈ {0, 1} ∀ i ∈ [n] (4)

B General Versions and Set Cover
B.1 Theoretical Results
Our main theoretical results from the previous two sections generalize to this setting. The main
difference is that the log term in the theorem statement will now depend on the size of G. Intuitively,
if G is bigger, then more metrics are needed to guarantee representation for all G ∈ G. We state
the generalizations of the upper bounds in Theorems 10 and 11. Note that in the ranking setting,
|G| = m2, so Theorems 10 and 11 give a worse upper bound than Theorems 3 and 5. This is because
for positional representation and positional proportionality, we have a better upper bound on the total
size over all groups.
Theorem 10. For any σN , collection of groups G, and group size g, the generalized greedy algorithm
(Algorithm 2) terminates in polynomial time and returns a subset K with |K| ≤ n

g log (|G|) which
satisfies generalized representation for group size g .

proof. The proof of this result follows as in the proof of Theorem 3, except that instead of Q0 ≤ mα
we have that Q0 ≤ |G|α. The rest of the recursion proof follows exactly the same to give the desired
bound.

Theorem 11. For any σN , collection of groups G, and ϵ > 0, there exists a subset K with size
|K| ≤ 1

2ϵ2 log (4|G|) that satisfies generalized proportionality.

proof. The proof follows as in the proof of Theorem 5, except we now have a union bound over all
|G| groups rather than all m2 combinations of a and r.

Because positional representation and positional proportionality are special cases of general represen-
tation and general proportionality, the lower bounds of Theorems 2 and 6 also directly generalize to
the general versions of these properties.

19

B.2 Relationship to Set Cover

General representation (Definition 8) is closely related to set cover, but has some key differences. In
set cover, the input is a set of elements U and a collection of subsets C where C ⊆ U for all C ∈ C.
The goal is to find the smallest number of subsets from C whose union is equal to U . Similarly, in
order to satisfy general representation, we need to find a subset of metrics which covers each group
sufficiently many times. However, general representation differs from set cover in that in general
representation, the number of times each G (element) needs to be covered depends on the number
of metrics that are in G. For example, if |G| < g, then G does not need to be covered by K at all.
On the other hand, if |G| = ℓg, then G needs to be covered at least ℓ times in K. Note that general
representation also differs from the set multi-cover problem (where each element has a given number
of times it must be covered) because in that problem, the number of times an element must be covered
is not tied to its frequency [Chekuri et al., 2012, Hua et al., 2009].

More formally, suppose we index G = {G1, ..., Gγ}. Consider the set cover problem with U =
{1, ..., γ} and C = {C1, ..., Cn}, where Ci = {j ∈ [γ] : i ∈ Gj}. The goal of set cover for this choice
of U and C is to find the smallest K ⊆ [N] such that for every u ∈ U , |{i ∈ K : u ∈ Ci}| ≥ 1. Using
the same notation, the goal of finding the smallest K that satisfies general representation is equivalent
to finding the smallest K ⊆ N such that for every u ∈ U , |{i ∈ K : u ∈ Ci}| ≥

⌊
|{i∈N :u∈Ci}|

g

⌋
.

It is well-known that there exists an algorithm which achieves a ln(|C|)-approximation for set cover
[Johnson, 1973, Chvatal, 1979]. We note that Theorem 10 is not subsumed by this result. First,
observe that both these theorems guarantee an absolute bound on the number of benchmarks that are
needed to satisfy general representation, rather than an approximation to the minimum number of
benchmarks needed. In set cover, it is impossible to guarantee an absolute bound better than |C| –
consider, for instance, the set cover instance where ⌋ = {{u} : u ∈ U}. Second, as mentioned earlier,
general representation differs from set cover by requiring representation for an element based on the
frequency that element appears.

We show that it is NP-hard to find the minimum size subset that satisfies either Definition 8 or
Definition 9. The proofs of Theorems 12 and 13 can be found in Appendix K.1 and K.2 respectively.
Theorem 12. The problem of finding the smallest set K that satisfies generalized representation
(Definition 8) is NP-hard.
Theorem 13. The problem of finding the smallest set K that satisfies generalized proportionality
(Definition 9) is NP-hard.

C Additional Related Works

In the setting of JR, there are n voters and m candidates, and each voter indicates whether they
approve of each candidate. Based on this approval information, the goal is to select a committee of
size k from the candidates. JR considers every cohesive coalition of voters, which is a group of size
at least n/k that all approve the same candidate. A committee then satisfies JR if at least one member
of every such cohesive coalition approves of some candidate in the committee. Proportional Justified
Representation (PJR) introduced by Sánchez-Fernández et al. [2017] extends JR by requiring further
that that larger coalitions with more agreement will have more representation in the committee. Many
other variations on justified representation have also been studied, including (but not limited to)
Extended Justified Representation [Aziz et al., 2017], Full Justified Representation [Peters et al., 2021],
Full Proportional Justified Representation [Kalayci et al., 2025]. Like JR, positional representation
guarantees representation for every sufficiently large “coalition” of metrics that all rank an alternative
a above a position r, with proportionally more representation for larger coalitions. Unlike in JR, in
positional representation there are no external voters; rather, the metrics serve as both the voters and
the candidates. Furthermore (and also unlike JR), metrics do not indicate whether they approve of
other metrics – instead, whether representation is deserved is based solely on the rankings.

There is also a line of work on proportionally fair clustering that uses similar notions of coalitions of
size n/k [Chen et al., 2019, Micha and Shah, 2020, Caragiannis et al., 2024]. These works differ from
our setting in that there is no notion of ranking representation. Another major difference between
these works and our setting is that our set of selected metrics must be a subset of all metrics, while
clustering algorithms are generally able to choose any points as the centers of the cluster.

20

D Full Greedy Algorithm
During the algorithm, we assign labels (or “colors”) to metrics. We use the set of natural numbers as
labels, and let c represent the lowest unused natural number. Ci is the set of labels assigned to metric
i. At any point in time, Sj represents the set of metrics that have already approved alternative j but
have not yet been assigned a j-label.

Algorithm 2 Greedy for positional representation
1: Input: Preference profile σN , group size g
2: Initialize Sj ← ∅ for all j ∈ [m], Ci ← ∅ for all i ∈ [n], and c← 1
3: for each r ∈ [m] do
4: for each i ∈ [n] do
5: Let j ← σir

6: Add i to Sj

7: if |Sj | = g then
8: for each i′ ∈ Sj do
9: Add c to Ci′

10: end for
11: c← c+ 1
12: Sj ← ∅
13: end if
14: end for
15: end for
16: Let C ← {1, 2, . . . , c− 1}, K ← ∅
17: while C ̸= ∅ do
18: Select i← argmaxi′ |Ci′ |
19: Add i to K
20: for each x ∈ Ci do
21: for each i′ ∈ [n] do
22: if x ∈ Ci′ then
23: Remove x from Ci′

24: end if
25: end for
26: Remove x from C
27: end for
28: end while
29: Return K

E Proof of Theorem 3
Proof of Theorem 3. First, map each label to a unique color. Greedy adds one metric to the set K in
each iteration of the loop on Line 17 and this loop ends once all colors are covered. To bound the
number of iterations, we analyze how many colors are not yet covered by K at each step.

Let α = n/g, and let Qt be the number of uncovered colors after t iterations of the loop on Line 17
of Algorithm 3. Initially, Q0 = m⌊ng ⌋ ≤ m · α. Each color is covered by exactly g metrics and is
covered at most once by each metric, so if there are strictly more than s · α colors remaining for any
integer s ≥ 1, there must exist a metric covering at least s+ 1 uncovered colors. In other words, if
there are Qt colors remaining after iteration t, then the next metric chosen at iteration t + 1 must
contain at least ⌈Qt/α⌉ distinct colors. This gives the following recurrence:

Qt+1 ≤ Qt − ⌈Qt/α⌉ ≤ Qt · (1− 1/α).

Because Q0 ≤ m · α, this means that

Qt ≤ m · α · (1− 1/α)t. (5)

Once Qt ≤ α, every metric chosen by the algorithm will still contain at least one new uncovered
color, so for Qt ≤ α we have that

Qt+1 ≤ Qt − 1.

This means that once Qt ≤ α, the loop will finish in at most α additional steps.

21

Now, we will upper bound the number of steps until Qt ≤ α. By Equation (5), we have that Qt ≤ α
for any t satisfying

m · α · (1− 1/α)t ≤ α.

Solving and simplifying this equation gives that Qt ≤ α for any t satisfying

t ≥ log(m)/ log(α/(α− 1)).

Note that

log(α/(α− 1)) = log(α)− log(α− 1) =

∫ α

α−1

1/xdx ≥ 1/α.

Combining the previous two equations, we have that Qt ≤ α for any t satisfying

t ≥ α · log(m).

As we argued above, the algorithm will only add at most α more metrics once Qt ≤ α, therefore the
total number of metrics added to K by Greedy is at most

α+ α · log(m) = O

(
n

g
log(m)

)
as desired.

F Proof of Theorem 2

Proof of Theorem 2. Fix any g ≥ 2. Choose any m and n such that n
g ≥ 3 is an integer and such that

m = 2

(
n

g

)
.

Construct σN as follows. First, enumerate all
(
n
g

)
distinct subsets of N of size g as {G1, ..., G(ng)

}.
We will assign 2 distinct alternatives to each of the first

(
n
g

)
ranking places. Let {ar, br} be the

alternatives assigned to rank r for r ∈ [1 :
(
n
g

)
]. Let σir = ar if i ∈ Gr and σir = br if i ̸∈ Gr.

Therefore, alternative ar will be ranked r by exactly g metrics while alternative br will be ranked r
by exactly n− g metrics. This means that only alternatives in {ar, br} will be ranked in position r
for any of the metrics.

Now set the rest of the rankings (for positions
(
n
g

)
+ 1 through m) of the metrics arbitrarily in any

valid way. This will not matter for the rest of the proof.

Define α = n/g. Next, we will show that no set of metrics can satisfy positional representation for
group size g in this example with K having size less than (α − 1)g + 1. Proof by contradiction.
Suppose we have a set K such that |K| ≤ (α − 1)g and K satisfies positional representation for
group size g. Then there must be a set of g metrics not included in K. Denote this set of g metrics
as G. Because we used every possible subset of N for the permutations of ar, br in the first

(
n
g

)
positions, there is some position r̂ and some alternative ar̂ such that ar̂ is ranked exactly r̂ in every
metric in G and such that ar̂ does not appear ranked in the top r̂ in any metric not in G. In order
for K to satisfy positional representation for group size g, at least one of the rankings in G must be
included in K, which is a contradiction.

Therefore, we must have that any K satisfying positional representation for group size g must satisfy
|K| > (α− 1)g.

Furthermore,

log(m) = log

(
2

(
n

g

))
≤ log(2ng) = g log(n) + log(2) ≤ 2g log(n).

22

The previous equation implies that g ≥ log(m)
2 log(n) . Using this on the third line below, we have that for

any K satisfying positional representation,

|K| ≥ (α− 1)g

=

(
n

g
− 1

)
g

≥ (n/g − 1) log(m)

2 log(n)

≥
n
2g log(m)

2 log(n)

=

n
g log(m)

4 log(n)
. (6)

The last step is to upper bound log(n). By construction,

m = 2

(
n

g

)
≥ 2

(
n

g

)g

= 2αn/α.

Taking the log of both sides,

log(m) ≥ log(2) +
n

α
log(α),

which simplifies to

n ≤ α(log(m)− log(2))

log(α)
.

Taking a log of both sides again gives

log(n) ≤ log

(
α(log(m)− log(2))

log(α)

)
≤ log(α log(m)) = log

(
n

g
log(m)

)
.

Combining this with Equation (6), we have the desired result that for any K satisfying positional
representation,

|K| ≥
n
g log(m)

4 log
(

n
g log(m)

) .

G Proof of Theorem 5
We use the probabilistic method. Suppose we select K by choosing exactly 1

ϵ2 log(2m) random
metrics from N one-by-one. Consider any fixed alternative a and position r. Let X1, ..., X|K| be
indicator random variables where Xi is 1 if a is ranked in the top r by the ith chosen metric in K.
Then we have that E[Xi] =

C(N,r,a)
|N | for all i. We will use the following version of Hoeffding’s

inequality for random variables chosen without Replacement
Lemma 14 (Hoeffding’s without replacement Bardenet and Maillard [2015]). Let X = (x1, . . . , xN)
be a finite population of N real numbers, and let X1, . . . , Xn be a random sample drawn without
replacement from X . Define:

a = min
1≤i≤N

xi, b = max
1≤i≤N

xi, µ =
1

N

N∑
i=1

xi.

Then, for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2nε2

(b− a)2

)
.

23

Applying Lemma 14, we have that

Pr

(∣∣∣∣C(N, r, a)

|N |
− C(K, r, a)

|K|

∣∣∣∣ > ϵ

)
= Pr

∣∣∣∣∣∣ 1

|K|

|K|∑
i=1

Xi −
C(N, r, a)

|N |

∣∣∣∣∣∣ > ϵ


≤ 2e−2|K|ϵ2

= 2e−2 log(2m)

=
1

2m2
.

By a union bound over all m2 combinations of a and r, we then have that

Pr

(
∃a, r :

∣∣∣∣C(N, r, a)

|N |
− C(K, r, a)

|K|

∣∣∣∣ > ϵ

)
≤ m2 · 1

2m2
= 1/2.

We can then take the complement of the event above to observe that K satisfies positional pro-
portionality with probability at least 1

2 . This probability is positive, so there must exist a K with
|K| ≤ 1

ϵ2 log(2m) that satisfies positional proportionality.

H Proof of Theorem 6
Proof of Theorem 6. We will prove this using the probabilistic method. We will show that there
exists a random generation process for σN such that with non-0 probability, no K ⊆ N with
|K| ≤ 1

288ϵ2 log(m) satisfies ϵ-positional proportionality.

First, we will choose n and m such that m is even and n and m are sufficiently large so that the
following three equations hold:

log(m) log(n+ 1)

288ϵ2
−
√
m

60
< − log(2) (7)

log(m) log(n+ 1)

288ϵ2
+ log(m)− 2nϵ2 < − log(2) (8)

1/ϵ ≤ log2
(
30
√
m
)
. (9)

Consider the following random generation process for σN . For metric i ∈ [n], the ranking for
metrics i will be generated as follows. With probability 1/2, metric i will rank alternative 1 in the
first position and alternative 2 in the second position, and with probability 1/2 metric i will rank
alternative 2 in the first position and alternative 1 in the second position. Repeat this process for all
subsequent pairs of odd/even positions. So for all j ∈ [m2], with probability 1/2 metric i will rank
alternative 2j in the 2j position and alternative 2j + 1 in the 2j + 1 position, and with probability
1/2 metric i will rank alternative 2j + 1 in the 2j position and alternative 2j in the 2j + 1 position.

We formalize this process as follows. For every j ∈ [m2] and i ∈ [1 : n], let Xij ∼ Bernoulli(0.5).
If Xij = 0, then metric i ranks alternative 2j in the 2j position and alternative 2j + 1 in the 2j + 1
position. If Xij = 1, then metric i ranks alternative 2j +1 in the 2j position and alternative 2j in the
2j + 1 position.

We will now show that with positive probability, no K ⊆ N with |K| ≤ 1
288ϵ2 log(m) will satisfy

ϵ-positional proportionality for the random σN generated as described above.

First, we define an event E, which corresponds to the event that for all j, approximately 1/2 of
the metrics rank alternative 2j above alternative 2j + 1 and approximately 1/2 of the metrics rank
alternative 2j + 1 above alternative 2j. Formally, define

E :=

{
∀j ∈ [m2],

∣∣∣∣∣ 1n
n∑

i=1

(Xij − 0.5)

∣∣∣∣∣ ≤ ϵ

}
.

24

By Hoeffding’s inequality and a union bound,

Pr(¬E) = Pr

(
∃j ∈ [m2],

∣∣∣∣∣ 1n
n∑

i=1

(Xij − 0.5)

∣∣∣∣∣ > ϵ

)

≤
m/2∑
j=1

Pr

(∣∣∣∣∣ 1n
n∑

i=1

(Xij − 0.5)

∣∣∣∣∣ > ϵ

)
[Union Bound]

≤ me−2nϵ2 . [Hoeffding’s Inequality] (10)

Now consider any subset K ⊆ N with |K| ≤ 1
288ϵ2 log(m). We will lower bound the probability

that this K does not satisfy positional proportionality.

Pr(K does not satisfy ϵ-positional proportionality)

= Pr

(
∃a ∈ A, r ∈ [m] :

∣∣∣∣C(N, r, a)

n
− C(K, r, a)

|K|

∣∣∣∣ > ϵ

)
= Pr

(
∃j ∈ [m

2
] :

∣∣∣∣∣ 1

|K|
∑
i∈K

Xij −
1

n

n∑
i=1

Xij

∣∣∣∣∣ > ϵ

)

≥ Pr

({
∀j ∈ [m

2
],

∣∣∣∣∣ 1n
n∑

i=1

Xij − 0.5

∣∣∣∣∣ ≤ ϵ

}⋂{
∃j ∈ [m

2
] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

})
[△-ineq.]

= Pr

(
E
⋂{

∃j ∈ [m
2
] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

})

≥ Pr

(
∃j ∈ [m

2
] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)
− Pr(¬E) [Pr(A ∩B) ≥ Pr(A)− Pr(¬B)]

≥ Pr

(
∃j ∈ [m

2
] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)
−me−2nϵ2 [Equation (10)]

= 1− Pr

(
∀j ∈ [m

2
] :

∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ ≤ 2ϵ

)
−me−2nϵ2

= 1−
m/2∏
j=1

Pr

(∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ ≤ 2ϵ

)
−me−2nϵ2 [Ind. of Xij]

≥ 1−
(
1− 1

30
√
m

)m/2

−me−2nϵ2 [Lemma (15)]

≥ 1−
(
e
− 1

30
√

m

)m/2

−me−2nϵ2 [1 + x ≤ ex]

= 1− e−
√

m
60 − elog(m)−2nϵ2 . (11)

25

Using the above equation, we can bound the probability that there exists a |K| with size less than
1

288ϵ2 log(m) that satisfies positional proportionality as follows:

Pr(∃K ⊆ N s.t. |K| ≤ 1

288ϵ2
log(m) and K satisfies ϵ-positional proportionality)

≤
∑

K⊆N,|K|≤ 1
288ϵ2

log(m)

Pr(K satisfies ϵ-positional proportionality) [Union Bound]

≤
∑

K⊆N,|K|≤ 1
288ϵ2

log(m)

(
e−

√
m

60 + elog(m)−2nϵ2
)

[Eq. (11)]

≤ (n+ 1)
1

288ϵ2
log(m)

(
e−

√
m

60 + elog(m)−2nϵ2
)

= e
log(m) log(n+1)

288ϵ2

(
e−

√
m

60 + elog(m)−2nϵ2
)

= Exp
(
log(m) log(n+ 1)

288ϵ2
−
√
m

60

)
+ Exp

(
log(m) log(n+ 1)

288ϵ2
+ log(m)− 2nϵ2

)
< Exp (− log(2)) + Exp (− log(2)) [Eqs (7) and (8)]
= 1/2 + 1/2

= 1.

Therefore, we have shown that with positive probability, there will be no K with size |K| ≤
1

288ϵ2 log(m) that satisfies ϵ-positional proportionality. Finally, we can conclude that there must exist
some ranking σN such that no K with size |K| ≤ 1

288ϵ2 log(m) satisfies ϵ-positional proportionality.

In the equations above, we used the following inverse of Hoeffding’s inequality.

Lemma 15. Using the notation and setting of the proof of Theorem 6 above, for any K satisfying
|K| ≤ 1

288ϵ2 log(m) and any j ∈ [m2],

Pr

(∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)
≥ 1

30
√
m
.

Proof of Lemma 15. We will prove this separately for small |K| and for large |K|.

If |K| ≤ 1/ϵ, then

Pr

(∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)
≥ Pr

(
1

|K|
∑
i∈K

Xij = 1

)
[ϵ ≤ 1/24]

= 2−|K|

≥ 2−1/ϵ

≥ 1

30
√
m
, Equation (9)

which is the desired result.

To prove the desired result when |K| > 1/ϵ, we will use the following proposition from Matoušek
and Vondrák [2001]:

Proposition 16 (Proposition 7.3.2 of Matoušek and Vondrák [2001]). Let X1, ..., Xn be independent
Bernoulli random variables with probability 1/2 of being 0 or 1. Let X = X1 + ...+Xn. Then for
any integer t ∈ [0, n/8],

Pr(X ≥ n/2 + t] ≥ 1/30e−16t2/n.

26

We can apply this proposition to our problem in the following way. If |K| > 1/ϵ, then

Pr

(∣∣∣∣∣ 1

|K|
∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2ϵ

)

= Pr

(∣∣∣∣∣∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ > 2|K|ϵ

)

≥ Pr

(∣∣∣∣∣∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ ≥ 2|K|ϵ+ 0.5

)

≥ Pr

(∣∣∣∣∣∑
i∈K

(Xij − 0.5)

∣∣∣∣∣ ≥ 3|K|ϵ

)
[|K| > 1/ϵ]

≥ Pr

(∑
i∈K

Xij ≥
|K|
2

+ 3|K|ϵ

)

≥ 1

30
e−16(3|K|ϵ)2/(|K|) [Prop 16 with t = 3|K|ϵ]

=
1

30
e−144|K|ϵ2

≥ 1

30
e−144 1

288ϵ2
log(m)ϵ2

=
1

30
e− log(m)/2

=
1

30
√
m
, (12)

which is the desired result. Note that we could apply Proposition 16 because 3|K|ϵ ≤ |K|/8 for
ϵ ≤ 1/24.

I Proof of Theorem 7

proof. If a subset K satisfies ϵ positional proportionality for set N , then∣∣∣∣C(N, r, a)

n
− C(K, r, a)

|K|

∣∣∣∣ ≤ ϵ ∀r, a.

Consider a scoring rule with scoring vector s, i.e. that gives score sr to an alternative in position r.
Define ∆r = sr − sr+1 (where sm+1 = 0). Then by definition of scoring rule, we have that

fs(a, σN) =
1

n

n∑
i=1

sσi(a) =
1

n

m∑
r=1

C(N, r, a)∆r.

and

fs(a, σK) =
1

|K|
∑
i∈K

sσi(a) =
1

|K|

m∑
r=1

C(K, r, a)∆r.

27

Combining this with the first equation, we have that

|fs(a, σN)− fs(a, σK)| ≤
m∑
r=1

∣∣∣∣C(N, r, a)

n
− C(K, r, a)

|K|

∣∣∣∣∆r

≤
m∑
r=1

ϵ∆r

= ϵ

m∑
r=1

(sr − sr+1)

= ϵ (s1 − sm+1)

= ϵ,

where the last line follows from the fact that WLOG s1 = 1.

J General Greedy Algorithm

Algorithm 3 Greedy for General Representation
1: Input: Preference profile σN , collection of groups G, group size g
2: Initialize S ← ∅, Ci ← ∅ for all i ∈ [n], and c← 1
3: for each G ∈ G do
4: for each i ∈ [n] do
5: if i ∈ G then
6: Add i to S
7: end if
8: if |S| = g then
9: for each i′ ∈ S do

10: Add c to Ci′

11: end for
12: c← c+ 1
13: S ← ∅
14: end if
15: end for
16: end for
17: Let C ← {1, 2, . . . , c− 1}, K ← ∅
18: while C ̸= ∅ do
19: Select i← argmaxi′ |Ci′ |
20: Add i to K
21: for each x ∈ Ci do
22: for each i′ ∈ [n] do
23: if x ∈ Ci′ then
24: Remove x from Ci′

25: end if
26: end for
27: Remove x from C
28: end for
29: end while
30: Return K

28

K NP-Hardness Proofs
K.1 Proof of Theorem 12
proof. Suppose we have an instance of set cover, i.e. a collection of sets C = {C1, ..., Cκ} for which
we want to find the smallest set that contains every distinct element in the sets of C. Let U =

⋃
C∈C C.

We want to map this to an instance of our problem, which consists of an N , G, and g for which we
would like to find the smallest subset K that satisfies general representation.

The key idea of the proof is to construct an instance of our problem where every group in G has the
same size. Every element in u ∈ U will have a corresponding group Gu in G. We start with each
Gu initialized to be the indices of the elements in C that contain u. However, this results in the Gu

having different sizes. We then add new tasks to N that are only contained in a single group Gu until
all groups in G have the same size.

Formally, we construct N , G, and g as follows:

Algorithm 4 Constructing N,G, g
1: Input: U, {Ci}i∈[κ]

2: Gu ← {i : u ∈ Ci} for all u ∈ U
3: g ← maxu |Gu|
4: i← κ
5: for u ∈ U do
6: while |Gu| < g do
7: i← i+ 1
8: Add i to Gu

9: end while
10: end for
11: Return G = {Gu}u∈U , N = [i], and g

By construction, |Gu| = g for all u.

We will now show that the set cover instance (U, C) has a solution of size less than or equal to k if
and only if there exists a solution of size less than or equal to k that satisfies general representation
for N,G, g. Suppose the set cover instance has a solution C̃ with |C̃| ≤ k. Then this C̃ covers every
element in U at least once. By construction, this K = {i ≤ κ : Ci ∈ C̃} is a solution to the general
representation problem, because general representation for group size g where every group in G has
size g requires that |Gu ∩K| ≥ 1 for all groups Gu ∈ G.

For the opposite direction, suppose we have some K ⊆ N with |K| ≤ k that satisfies general
representation. Define K ′ as in Algorithm 5.

Algorithm 5 Constructing K ′

1: Input: K
2: K ′ ← K ∩ [κ]
3: for i ∈ K \ [κ] do
4: u← u such that i ∈ Gu

5: i′ ← any element of [κ] such that u ∈ Ci′

6: if i′ ̸∈ K ′ then
7: K ′ ← K ′ ∪ {i′}
8: end if
9: end for

10: Return K ′

Note that at the end of this algorithm, |K ′| ≤ |K| because we never add an i′ to K ′ unless there is a
corresponding i ∈ K \ [κ] that is not in K ′. Furthermore, K ′ still covers every group Gu, because
the i′ selected in Line 5 covers the Gu that was previously covered by i in K. Note that such an i′

always exists because every u ∈ U is in at least one subset in C.

Therefore, we have that K ′ still covers every group in Gu and |K ′| ≤ |K| ≤ k. This means that
C̃ = {Ci : i ∈ K ′} is a solution to the set cover instance with size less than or equal to k.

29

K.2 Proof of Theorem 13
proof. We will follow a similar proof structure to the proof of Theorem 1 in Natarajan [1995] on the
NP-hardness of sparse approximate solutions to linear equations. As in Natarajan [1995], we will
reduce from the problem of “exact cover by 3 sets”.

Exact Cover by 3-Sets takes as input a set S with |S| = τ and a collection C = {C1, ..., Cκ} of
subsets of S such that |Ci| = 3 for all i ≤ κ, and the goal is to determine whether or not there exists
a subset of C (denoted C̃) such that C̃ covers every element in S exactly once.

We will next describe how to map an instance of Exact Cover by 3-Sets to an instance of a decision
version of our problem. Specifically, we will consider the problem where we are given N , G, and ϵ and
must decide whether there exists a subset K ⊆ N of size τ/3 that satisfies ϵ-general proportionality.

Suppose we have an instance of Exact Cover by 3-Sets (S, C). Let ϵ = 1
τ and let G = {Gs}s∈S for

Gs constructed as follows. We will construct Gs so that |Gs| = 2κ for all s ∈ S. We will further
maintain that for every Ci, we have i ∈ Gs for all s ∈ Ci and that every i > κ appears in at most two
groups Gs.

We formally construct G in Algorithm 6.

Algorithm 6 Constructing G
1: Input: S, C = {Ci}i∈[κ]

2: Gs ← {i : s ∈ Ci} for all s ∈ S
3: i← κ
4: while ∃s ∈ S : |Gs| < 2κ do
5: i← i+ 1
6: if there is exactly one s ∈ S such that |Gs| < 2κ then
7: s← s ∈ S such that |Gs| < 2κ
8: Add i to Gs

9: else
10: s1, s2 ← two distinct values of s such that |Gs| < 2κ
11: Add i to Gs1
12: Add i to Gs2
13: end if
14: end while
15: Return G = {Gs}s∈S

Note that the counter i never exceeds κτ . To see this, observe that the max value of i is equal to

κ+

⌈∑
s∈S (2κ− {i : s ∈ Ci}|)

2

⌉
= κ+

⌈
τκ− 1

2

∑
s∈S

|{i : s ∈ Ci}|

⌉

= τκ+ κ−

⌈
1

2

∑
s∈S

|{i : s ∈ Ci}|

⌉
= τκ+ κ− ⌈1.5κ⌉
≤ τκ.

Therefore, we choose N = [κτ] so that Gs ⊆ N as required.

By construction, we also have that |Gs| = 2κ for all Gs ∈ G, so for all Gs ∈ G,

|Gs|
|N |

=
2κ

κτ
=

2

τ
.

We now show that the Exact Cover by 3-Sets instance has a solution if and only if there exists a K
with |K| ≤ τ/3 which satisfies ϵ-general proportionality for our instance. Suppose the Exact Cover
by 3-Sets has a solution C̃ ∈ C. Then |C̃| = τ/3. Define the set K := {i : Ci ∈ C̃}. This K must
cover every s ∈ S exactly once, which by construction of Gs means this K covers every Gs ∈ G

30

exactly once. Therefore, we have that |K∩Gs|
|K| = 1

|K| =
3
τ for all s. This satisfies∣∣∣∣ |K ∩Gs|

|K|
− |Gs|
|N |

∣∣∣∣ = 1

τ
= ϵ,

so K satisfies 1/τ -general proportionality.

To show the other direction, suppose we have a set K with size |K| ≤ τ/3 that satisfies 1/τ -general
proportionality. Because we chose ϵ = 1

τ and every Gs satisfies |Gs|/N = 2/τ , we must have that
|Gs ∩ K| ≥ 1 for all s. However, we also know that by construction, any i ∈ N covers at most
three groups Gs. This implies that we must have |K| ≥ τ/3. Since by assumption |K| ≤ τ/3, we
therefore must have that |K| = τ/3. Furthermore, the only elements of N that cover 3 groups in G
are the elements i ∈ [κ]. Therefore, if |K| = τ/3 and K includes at least one of every group in G,
we must have that K ⊆ [κ]. Finally, combining the facts that every element of K covers exactly three
groups, |K| = τ/3, the number of groups is τ , and every group is covered at least once by K, we
must have that every group is covered exactly once by K.

Therefore, we can conclude that C̃ = {Ci : i ∈ K} must be a solution to the Exact Cover by 3-Sets
problem as desired.

L More Details on Empirical Case Studies
Table 3 summarizes the parameters for each case study.

Case study n m k for existing subset
BIG-bench 141120 24
HELM 34 67 7
Cal Hospital Compare 50 282 12

Table 3: Summary of case study parameters.

L.1 Case Study Descriptions and Datasets
We describe each case study in more detail below.

Case Study 1: BIG-bench [Srivastava et al., 2022]. We consider the problem of selecting tasks to
include in a “Lite” version of BIG-bench . The BIG-bench repository already includes such a subset
of tasks called BIG-bench LITE, which includes 24 tasks. BIG-bench in general includes both JSON
tasks and programmatic tasks, where JSON tasks are more lightweight to evaluate. Their existing
LITE benchmark includes only JSON tasks for ease of evaluation. Thus, for the purposes of this case
study, we consider the problem of selecting a subset of the JSON tasks to go in a LITE benchmark.
Intuitively, one might want to select the LITE tasks to be representative in some sense of the rest of
the JSON tasks, since all tasks are included in the published leaderboards.

Alternatives: The BIG-bench repository includes evaluations on its JSON tasks for LLMs of different
sizes from three model families: “Big-G”, “Big-G sparse”, and “GPT”. For each individual model,
they also include 0-shot, 1-shot, 2-shot, and 3-shot evaluations. For simplicity, we treat each model
and each shot count as a separate alternative to be ranked. Thus, we end up with m = 120 alternatives.

Full set: The full set of tasks we consider consists of n = 141 JSON tasks, after filtering to include
only the tasks which were evaluated for all alternatives. We consider only JSON tasks in the full
set as the existing BIG-bench LITE only includes JSON tasks for ease of evaluation. The list of
all tasks is included in the code in the Supplementary Materials. The metric used was always the
preferred_score field per task.

Existing subset: We compare to the existing BIG-bench LITE (BBL) set of tasks, which includes
k = 24 JSON tasks as of February, 2025. The list of these tasks is included in the code in the
Supplemenary Materials and also available at https://github.com/google/BIG-bench/blob/
main/bigbench/benchmark_tasks/keywords_to_tasks.md#big-bench-lite.

Dataset: Data was accessed using the Big-bench API available at https://github.com/google/
BIG-bench. Code for processing this data is included with the Supplementary Materials. Usage is in
compliance with the Apache License, Version 2.0.

31

https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md#big-bench-lite
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/keywords_to_tasks.md#big-bench-lite
https://github.com/google/BIG-bench
https://github.com/google/BIG-bench

Case Study 2: HELM [Liang et al., 2022]. HELM Classic is another evaluation platform that
ranks LLMs based on multiple scenarios and metrics. We consider the problem of selecting a subset
of scenarios which is in some sense “representative” of the full set. HELM Lite is an existing variant
which includes significantly fewer scenarios than HELM Classic. Note that it is not directly stated
that HELM Lite is meant to be representative of HELM Classic (which includes both Core scenarios
and other evaluations), but we make this assumption for the purposes of this illustration.

Alternatives: We consider m = 67 models that appeared on the HELM Classic leaderboard as of
February, 2025.

Full set: The full set of tasks we consider consists of the accuracy metrics for n = 34 scenarios, for
which data was posted on the HELM Classic leaderboard. This includes both “Core scenarios” and
“Targeted evaluations.” A full list of these scenarios is included with the code in the Supplementary
Materials.

Existing subset: Not all tasks from HELM Lite were included in the HELM Classic leaderboard, and
not all models on the HELM Classic leaderboard were evaluated on the HELM Lite leaderboard.
Thus, as our existing subset baseline, we selected the subset of HELM Classic scenarios which were
also included as HELM Lite scenarios.

This yielded a set of k = 7 scenarios, which included: NarrativeQA, NaturalQuestions (open-book),
NaturalQuestions (closed-book), OpenbookQA, MMLU (Massive Multitask Language Understand-
ing), MATH, and GSM8K (Grade School Math).

Dataset: Data was downloaded as HTML tables in February, 2025 from the following links:

• https://crfm.stanford.edu/helm/classic/latest/#/leaderboard/core_
scenarios

• //crfm.stanford.edu/helm/classic/latest/#/leaderboard/targeted_
evaluations

• https://crfm.stanford.edu/helm/lite/latest/#/leaderboard/core_
scenarios

Leaderboard data can also be accessed at https://github.com/stanford-crfm/helm. Only
accuracy metrics were considered. Code for processing this data is included with the Supplemental
Materials. Usage is in compliance with the Apache License, Version 2.0.

Case Study 3: Cal Hospital Compare [Cal Hospital Compare, 2025]. Finally, we demonstrate
how our methods can apply in evaluation settings beyond LLMs by considering the problem of
hospital quality evaluation. Cal Hospital Compare is a platform that awards a “patient safety honor
roll” status to hospitals in California that perform particularly well in a set of quality measures
collected from the Centers for Medicare and Medicaid Services (CMS). The honor roll selection
procedure considers 12 hospital quality measures drawn from the CMS Hospital Compare database,
which collects hundreds of measures from hospitals throughout the US. A continuing challenge
is selecting these 12 quality measures, which Cal Hospital Compare identifies as a “an 18-month,
multistakeholder process of rigorously evaluating existing national patient safety measures.”4 For the
purposes of this illustration, we consider the problem of selecting a set of quality measures which is
“representative” of existing patient safety measures available in the CMS Hospital Compare database.
According to the “algorithmic approach,” Cal Hospital Compare awards honor roll status to eligible
hospitals “with two-thirds of their measures above the 50th percentile of good performance (and none
below the 10th percentile).”

Alternatives: We consider m = 282 hospitals in California which were eligible for algorithmic
evaluation according the criteria specified by Cal Hospital Compare. Specifically, they had scores for
at least 6 of the currently selected 12 measures.

Full set: We consider a full set of n = 50 patient safety measures available through CMS Hospital
Compare. These were selected to include only the measures that were directly related to the categories
from which the original 12 measures were selected, so as not to include measures unrelated to patient
safety. A full list of these measures is included in the code submission. It is possible that some

4https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_
Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf

32

https://crfm.stanford.edu/helm/classic/latest/#/leaderboard/core_scenarios
https://crfm.stanford.edu/helm/classic/latest/#/leaderboard/core_scenarios
//crfm.stanford.edu/helm/classic/latest/#/leaderboard/targeted_evaluations
//crfm.stanford.edu/helm/classic/latest/#/leaderboard/targeted_evaluations
https://crfm.stanford.edu/helm/lite/latest/#/leaderboard/core_scenarios
https://crfm.stanford.edu/helm/lite/latest/#/leaderboard/core_scenarios
https://github.com/stanford-crfm/helm
https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf
https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf

important measures were missed in this illustration, and any real practical application should bring in
additional domain expertise to carefully tailor the full set to precise practical goals.

Existing subset: We compare against the existing k = 12 measures currently used by Cal Hospital
Compare for their patient safety honor roll. A full list of these measures is shown in Figure 3.

Figure 3: Table of Patient Safety Honor Roll Measures published by Cal Hospital Com-
pare (https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_
Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf). As our “exist-
ing subset”, we consider the set of k = 12 measures selected from CMS Hospital Compare.

Dataset: Data was downloaded as CSV files in February, 2025 from the CMS Hospital Compare
provider data repository (https://data.cms.gov/provider-data/). A full directory of all avail-
able datasets can be found at https://data.cms.gov/provider-data/dataset/dgmq-aat3#
data-dictionary. The specific datasets used were:

• Healthcare_Associated_Infections-Hospital.csv

• Complications_and_Deaths-Hospital.csv

• Timely_and_Effective_Care-Hospital.csv

• HCAHPS-Hospital.csv

• Maternal_Health-Hospital.csv

• Unplanned_Hospital_Visits-Hospital.csv

This data is part of the public domain. Code to aggregate and process these datasets is included with
the Supplemental Materials.

L.2 Integer program computation
Integer programs were solved using CPLEX. A maximum solve time of 10 minutes was set for each
integer program. Thus, it is possible that the integer programming solutions were suboptimal when
this limit was reached. This limit was only reached on BIG-bench.

All experiments were run on a MacBook Pro with an Intel Core i7.

33

https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf
https://calhospitalcompare.org/wp-content/uploads/2025/04/FactSheet_Patient-Safety-Honor-Roll-List_Cal-Hospital-Compare_2025-1.pdf
https://data.cms.gov/provider-data/
https://data.cms.gov/provider-data/dataset/dgmq-aat3#data-dictionary
https://data.cms.gov/provider-data/dataset/dgmq-aat3#data-dictionary

	Introduction
	Our Contributions
	Related Work
	Model

	Positional Representation
	Lower Bound
	Algorithm

	Positional proportionality
	Upper and Lower Bounds
	Approximating Scoring Rules

	Generalizations
	Empirical Case Studies
	Results

	Discussion
	Integer Programs
	General Versions and Set Cover
	Theoretical Results
	Relationship to Set Cover

	Additional Related Works
	Full Greedy Algorithm
	Proof of Theorem 3
	Proof of Theorem 2
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	General Greedy Algorithm
	NP-Hardness Proofs
	Proof of Theorem 12
	Proof of Theorem 13

	More Details on Empirical Case Studies
	Case Study Descriptions and Datasets
	Integer program computation

