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Abstract

As world knowledge continues to evolve, adapt-
ing LLMs to new knowledge is crucial, how-
ever, it poses significant challenges, as naively
fine-tuning the entire model often leads to
catastrophic forgetting and high computational
costs. While RAG and model editing have
been increasingly studied for knowledge adap-
tation, this paper moves beyond the ‘RAG vs.
fine-tuning’ discussion to explore the ‘RAG
vs. model editing’ issue, and propose a “Mas-
sive Mixture of Experts (MMOoE)” approach
for model editing, referred to as MoPE, i.e.,
Massive Mixture of Passage-Level Experts,
which consists of the key components at train-
ing and inference stages: (1) Massive passage-
level editing with MMOoE, where a large set
of passage-level experts is created using auto-
matically generated question-answer pairs for
each passage, and (2) Retrieval-based rout-
ing with MMOoE, which employs dense re-
trieval to select the top-k passage-level experts
without requiring additional training. Exper-
imental results demonstrate that MoPE out-
performs a naively designed variant of RAG,
i.e., direct RAG, and when combined with di-
rect RAG, it surpasses an advanced variant
of RAG, significantly improving over LoRA-
based parameter-efficient tuning methods. Our
data and code will be available at https://
github.com/XXX/XXX.

1 Introduction

Large language models (LLMs) have shown re-
markable performances on various natural lan-
guage processing (NLP) tasks, particularly effec-
tively performing knowledge-intensive tasks by
their enormously large pretrained knowledge (Zhao
et al., 2023; Hadi et al., 2023). Given that world
knowledge is continually updated, adapting LLMs
to new information and knowledge is crucial, how-
ever, naively finetuning the entire model of LLMs
meets the key challenging problems: 1) catas-
trophic forgetting, which may lead to disruption of

Query: Who produced a change is gonna come?

A Change Is Gonna Come" is a song by American
recording artist Sam Cooke. It initially appeared on
Cooke's album "Ain't That Good News", released March
1, 1964 by RCA Victor; a slightly edited version of the
recording was released as a single on December 22,
1964. Produced by Hugo & Luigi and arranged and
conducted by Reneé Hall, ...
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Figure 1: An illustration of context-aware attention:
mitigating content focus limitations in RAG through
paragraph editing, and a brief overview of the main
results of MoPE comparing to the base model with our
without RAG, on the NQ dataset. Left: EM metric,
Right: F1 Score. MoPE outperforms direct RAG, which
relies on a naively designed prompt for retrieval. When
combined with direct RAG, MoPE surpasses prompt-
RAG, which employs a more refined prompt variant.

the old knowledge and performance graduation on
the pre-acquired tasks, and 2) nontrivial updating
costs due to the large scale of parameters, which
requires high computation and memory resource
required for updating new knowledge. Previous
adaptation approaches can be broadly categorized
into two main methods: (1) Retrieval-Augmented
Generation (RAG) (Lewis et al., 2020; Pan et al.,
2024), which leverages the in-context learning
(ICL) capabilities of large language models (LLMs)
by augmenting input prompts with “retrieved” pas-
sages; and (2) Knowledge Injection, which can be
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further divided into parameter-efficient tuning(Hu
et al., 2021) — which adjusts a small set of trainable
parameters while keeping the original ones intact —
and model editing (De Cao et al., 2021; Meng et al.,
2022a), which aims to balance the incorporation of
new knowledge updates while preserving existing
knowledge.

Among these approaches, unlike RAG and
parameter-efficient tuning, which have demon-
strated improvements across various NLP tasks,
Model editing has been explored primarily in stan-
dard *editing’-specific tasks, rather than in practical
knowledge-intensive NLP tasks, leaving its useful-
ness and impact in real-world applications unclear.
Going beyond traditional editing-specific tasks, we
aim to explore model editing within open-domain
QA as a representative knowledge-intensive NLP
task to assess its value and impact in achieving
improvements over RAG, as open-domain QA has
been widely used. Related to this issue, existing
works on fine-tuning methods have explored the de-
bate of ‘RAG vs. fine-tuning’ (Ovadia et al., 2023;
Alghisi et al., 2024; Gupta et al., 2024), showing
that parameter-efficient tuning and fine-tuning gen-
erally underperform compared to RAG, and their
combination with RAG has been found to be advan-
tageous, etc. Advancing beyond previous works,
we extensively explore “model editing,” rather than
fine-tuning or parameter-efficient tuning, so ad-
dressing ‘RAG vs. model editing’, leading to our
key research question: “Are specific model editing
methods effective in achieving improvements over
RAG on standard open-domain QA tasks, compared
to results obtained using fine-tuning or parameter-
efficient tuning ?”

Unlike editing-specific tasks, applying model
editing to open-domain QA involves handling a set
of passage-level edits within a collection, thereby
requiring the editor to effectively inject the required
passages into LLMs, treating each passage as an
edit request. To address this passage-level editing
problem, inspired by the remarkable adaptability
of the mixture of experts (MoE) on knowledge-
intensive and editing tasks (Wang and Li, 2024b,a),
we propose the use of a massive MoE (MMoE) for
model editing to inject all required passages into
a set of experts, referred to as MoPE, i.e., mas-
sive mixture of passage-level experts, by assigning
a dedicated passage-level expert to each individ-
ual passage and integrating these passage-level ex-
perts into LLMs, using the “retrieval ’-based router,
without modifying the original parameters. MoPE

consists of the key components for editing and in-
ference stages, as follows:

1. Massive passage-level editing with MMOoE.
In the editing stage, all target passages are
considered as massive edit requests. Simi-
lar to most MoE approaches that utilize feed-
forward network (FFN) layers (Fedus et al.,
2022; Du et al., 2022), we augment an FFN
layer in the Transformer with an additional ex-
pertized FFN module, referred to as a passage-
level expert, specialized for each individual
passage; Given a passage, we first generate
a set of question-answer pairs using a simple
prompting method, and then train the passage-
level expert based on the loss function used in
the machine reading comprehension (MRC)
task. During the editing stage, it should be
noted that each passage-level expert is trained
individually, i.e., only a single passage-level
expert is augmented with the original FFN
layers in the Transformer, without incorpo-
rating all other experts. As a result, we will
have a massive mixture of [V static passage-
level experts, given N number of passages in
a collection.

2. Retrieval-based Router with MMOoE. In the
inference stage, since we have passage-level
experts, routing mechanism is effectively man-
aged through retrieval. We extensively utilize
dense retrieval to design a router, ensuring that
only the top-k experts corresponding to the
top-k retrieved passages are selected to form a
sparse MoE layer, resulting in consisting &+ 1
FFNss at a specific layer. Thus, no separate ad-
ditional training is required for designing a
router.

Experimental results on standard open-domain
QA datasets — natural question (NQ) (Kwiatkowski
etal., 2019) and Trivia QA (Joshi et al., 2017) show
that MoPE improves the baseline performance of
RAG and the results using the LoRA-based param-
eter efficient tuning, as briefly shown in Figure 1:
MOoPE outperforms “direct-RAG,” which relies on
a naively designed prompt for retrieval; MoPE
combined with direct-RAG surpasses prompt-RAG,
which utilizes a more refined prompt variant. For
details on the input template, see Appendix A.

Our main contributions are as follows: 1) We
investigate the ‘RAG vs. model editing’ paradigm,
expanding beyond previous studies that focused on



‘RAG vs. fine-tuning’ (Alghisi et al., 2024). 2) We
propose MoPE, a novel approach for model editing
in open-domain QA. 3) We offer new experimental
findings, showing that MoPE outperforms LoRA-
based tuning and direct RAG, and the combination
of MoPE and direct RAG surpasses even the more
advanced variant of RAG, i.e., prompt RAG.

2 Related Work

2.1 Retrieval Augmented Generation

In open-domain question answering, Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020)
methods effectively enhance the accuracy of model
responses by incorporating external knowledge.
Recent studies have made significant progress in
retrieval quality control and timing optimization.
Shi et al. (2023) and Dong et al. (2024) emphasized
the importance of enhancing the relevance of re-
trieved content to user query and the role of knowl-
edge alignment in this process. Lin et al. (2023)
proposed an approach that optimizes the query en-
coder by combining supervised and unsupervised
tasks. Additionally, the Fusion-in-Decoder (FiD)
method (Izacard and Grave, 2020; Hofstétter et al.,
2023) significantly improved generation perfor-
mance by integrating information from multiple
documents during the decoding stage.

In structural model optimization, Self-
RAG (Asai et al., 2023) enhances retrieval
accuracy and robustness through fine-grained self-
reflection, while Yan et al. (2024) and Jiang et al.
(2023b) introduced an error-correction strategy to
handle inaccurate information. SAIL (Luo et al.,
2023) improves instruction tracking in complex
contexts by integrating internal and external search
engines.

For post-generation output enhancement, KNN-
LM (Khandelwal et al., 2019) and RETOMA-
TON (Alon et al., 2022) significantly improve gen-
eration quality through nearest-neighbor memory
retrieval and weighted finite-state machines. Fur-
thermore, end-to-end training (Lewis et al., 2020;
Guu et al., 2020) has emerged as a crucial direc-
tion to optimize RAG architectures, allowing more
efficient knowledge integration and response gen-
eration by minimizing manual intervention and it-
eratively refining the model.

2.2 Knowledge Injection

Knowledge injection has emerged as a crucial tech-
nique for enhancing the performance of language

models by efficiently integrating external knowl-
edge. Two primary approaches have gained sig-
nificant attention: parameter-efficient tuning and
model editing.

Parameter-efficient tuning enhances large pre-
trained models by introducing small trainable mod-
ules while keeping most parameters frozen. Key
approaches include adapter (Houlsby et al., 2019),
which adds neural network bottlenecks to trans-
former blocks; Prompt Tuning (Li and Liang,
2021), which optimizes the appended prompts for
task adaptation; and LoRA (Hu et al., 2021), which
updates rank decomposition matrices. Recent ad-
vances, such as DyLoRA (Valipour et al., 2022),
improve efficiency by selectively updating partial
parameters. Building on DyLoRA, MELO (Yu
et al., 2024) introduces a neuron-indexed dynamic
LoRA mechanism.

Model editing focuses on maintaining the re-
liability of edited knowledge, ensuring that the
changes successfully address the target queries.
Additionally, it emphasizes enhancing the gener-
ality, allowing the edited model to generalize the
new knowledge to related queries effectively. Fur-
thermore, it seeks to preserve locality, ensuring
that the modifications do not interfere with the
retention of unrelated original knowledge. It is
categorized into three types: Meta-learning edi-
tors (De Cao et al., 2021; Mitchell et al., 2021; Tan
et al., 2023), which use hyper-networks to adjust
gradients; Locate-then-edit editors (Meng et al.,
2022a,b; Li et al., 2024), which identify and update
relevant parameters; and Memory-based editors,
where (Zheng et al., 2023; Zhong et al., 2023; Gu
et al., 2023; Cheng et al., 2023) update knowledge
from prompts using in-context learning without gra-
dient updates or parameter modifications, where
other approaches like T-Patcher (Huang et al.) and
MEMOoE (Wang and Li, 2024b) store the memory
of edited facts using additional parameters.

2.3 Mixture of Experts

In transformer-based Large Language Models
(LLMSs), Mixture-of-Experts (MoE) layers utilize a
set of expert networks and a gating mechanism to
route inputs to the most suitable experts (Shazeer
etal.,2017; Antoniak et al., 2023). These layers are
strategically positioned after the self-attention sub-
layer to optimize feed-forward network (FFN) se-
lection, significantly reducing computational over-
head in large models like PaLM (Chowdhery et al.,
2023), where FFN layers account for the majority



of parameters.

Dense MoE approaches activate all available ex-
perts simultaneously, which enhances predictive
accuracy but demands substantial computational
resources. Early implementations (Jacobs et al.,
1991; Rasmussen and Ghahramani, 2001; Aljundi
et al., 2017) demonstrated this effectiveness, and
more recent methods like EvoMoE (Nie et al.,
2021), MoLE (Wu et al., 2024), LoORAMOoE (Dou
et al., 2023), and DSMoE (Pan et al., 2024) have
refined the dense MoE structure to balance perfor-
mance and efficiency.

Sparse MoE improves computational efficiency
by selecting only the top-k experts for each input,
thereby maintaining accuracy while reducing pro-
cessing demands (Shazeer et al., 2017). However,
this selective activation can cause load imbalances,
where certain experts are overused while others
are underutilized. To counter this, auxiliary loss
functions are introduced to distribute tokens more
evenly across experts, as seen in (Lepikhin et al.,
2020; Jiang et al., 2024; Du et al., 2022; Fedus et al.,
2022). This strategy allows sparse MoE models to
scale effectively by expanding parameter capacity
without a corresponding increase in computational
cost.

3 Methodology

Figure 2 presents an overview of MoPE, highlight-
ing its training and inference stages: (1) Passage-
level editing with MMoE and (2) Inference using a
retrieval-based router with MMoE. In the passage-
level editing stage, a set of question-answer (QA)
pairs is automatically generated for each passage
using named entity recognition (NER)-based an-
swer extraction and a simple prompting method.
Each passage-level expert is trained individually
using the generated QA pairs, following an MRC-
like objective function. Given N passages, we con-
struct N corresponding passage-level experts. Dur-
ing inference, given these /N passage-level experts
and a test question, we first perform retrieval-based
routing. Specifically, we use dense retrieval with
a reranking method to identify the top-k retrieved
passages. The corresponding k passage-level ex-
perts are then selected from the N experts and inte-
grated with the original FFN layer. This selected
sparse MoOE is used to generate an answer to the
test question.

3.1 Passage-level Editing with MMoE

Suppose that there is N number of passages in a
collection, formulated as C = {p;}.\_, where C is
a collection, and p; is i-th passage '. The passage-
level editing process creates N passage-level ex-
perts, comprising two key steps: (1) the construc-
tion of QA pairs and (2) the training passage-level
experts, as detailed below.

3.1.1 Construction of QA pairs

Given a passage, we create its set of QA pairs by
using the automatic data augmentation method (Yu
et al., 2022). To this end, we first separately train
a question generator Gy based on the T5-x1 model
to learn how to generate questions from textual
segments, based on an additional training dataset
Dqc = {(pyy) 3> aj)}j]vil, where py,(;y is the
1(j)-th passage in the training set?, qj is the j-th
question for py,;, a; is the j-answer for ¢; on
Py(h)- It is important to note that Dy, is separate
from the test dataset in the final evaluation. In our
case, we use only the training samples from the
NQ dataset. We also have the instruction template
function 7 is defined as follows: "Generate a ques-
tion with <answer> as '{a}’ from the <context>:

{p}’.". Thus, T (p,a) indicates the prompted in-

put that takes an answer a for a passage p. The
generator (3¢ is trained by minimizing the negative
log-likelihood (NLL) loss as follows:

LO)=— > logP(qT(p,a);8) (1)

(p7q7a)€DQG

where P(y|z;6) represents the conditional proba-
bility of generating question y given input z.
Once Gy is trained, given a ¢-th passage p; € C,
we first extract named entities in p; an answers us-
ing a NER method, and generate corresponding
questions to the extracted answers. The resulting
set of QA pairs for p; is denoted as D,,. The gen-
eration process please refer to Appendix B.

3.1.2 Training Passage-Level Experts

Once D,, is obtained, the editing step uses D,,, as
training set to create the corresponding passage-
level expert E; under the MoE framework. To

'While we need to create experts for all passages in a
collection, evaluation only requires the experts corresponding
to the top-retrieved passages for test questions. Therefore,
instead of generating a full set of experts, we construct only
the minimum necessary number of experts, ensuring that the
subset is sufficient for evaluation.

*Here, we use v as an existential Skolem-like function that
maps the j-th training example to its corresponding passage
index, for notational convenience.
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Figure 2: An overview of the proposed MoPE framework: 1) Passage-Level Editing with MMoE: For a given
passage, its QA pairs are automatically constructed using the fine-tuned question generator (see Section 3.1.1). The
passage-specific expert is then trained within the MoE layer using these QA pairs. 2) Inference with Retrieval-Based
Router: MMOoE is deployed, where dense retrieval and a fine-tuned reranker are applied to select the top-retrieved
relevant passages (see Section 3.2.1), and the corresponding passage-level experts are then incorporated to form a
sparse MoE. The relevance vector of the router is computed based on either the top-1 or top-k passages, using Eq.
(5) and Eq. (12), respectively.

formally describe the MOE setting, suppose that ~ where \! is the mixing parameter, which is set to 1
at each token position ¢, x; € R% is given input  for a specific layer [ and 0 otherwise depending on
at layer I. The original FNN block, denoted as  tokenindex ¢, and r € R is the “relevance” vector
FEN’(x?), is formulated as follows: to a given query ¢, obtained by the “retrieval-based

. - . router,” which consists of NV relevance values, de-
FFEN"(x;) = relu (XtWK ) Wy (2)  fined as follows:

where Wi, € R¥m*d and W!, € R¥?m represent { 1, if pj in top-k(g, C)
the key and value projection matrices of the original

FNN layer, respectively. For a ¢-th passage, we now
have the passage-level expert, Ef(x}) is formulated,

based on another FNN block, as follows:

rlj] = )

0, else
where top-k(g,C) is the set of the top-k retrieved
passages, in general. During the editing, when
q € Dy, top-k(q,C) = {p;}, because it is clear
Ef (Xf) — relu <XéW§ K) Wé,v (3) that p; is the gold relevant passage for ¢. Thus,
during editing, given D,,, Eq. (4) is simplified
where W! . € R4m*d and W /1 € R¥9m rep-  into:
resent the key and value projection matrices of the
expert FNN layer for ¢-th passage, respectively.
Given N passages, we have NNV passage-level ex-  Under Eq. (6), given D,,, we use an autoregressive

yi = FEN‘(x{) + A\/E(x{) (6)

perts, thereby forming the following MMoE: generative loss function to train the i-th passage-
N level expert E;, independently from other experts.
yi _ FFNE(Xf) + AL Z r[j] - E? (Xf) 4) Furthermore, to effectively maintain parameters

= of F;, instead of using the full parameters of FNN



as in Eq. (3), we perform low-rank matrix factor-
ization on its standard linear transformation layers
to reduce computational overhead and parameter
redundancy, thereby decomposing the fully con-
nected weight matrices into low-rank components.

Ef(x{) =
relu (xiWﬁyKQWLKl) Wimwﬁ,m (7)

l dm <k l kxdm
Where Wi,K? € RémxFE, WLK1 € RFXOm,
WZLV1 € R¥*k and WlLV € RF*dm represent
the corresponding low-rank key and value projec-
tion matrices of the i-th passage-level expert.

3.2 Inference with a Retrieval-Based Router
with MMoE

Once MMOoE is trained during the passage-level
editing stage, inference begins by retrieving rel-
evant passages for a given test query, based on
dense retrieval, followed by a reranking step to re-
fine the results. Then, the retrieval-based router
is applied to determine the relevance vector r in
Eq. (4), based on similarity scores obtained from
retrieval. This process depends on two different
variants of using MMOoE: 1) Single-expert: Uses
only the top-1 expert, where the relevance vector
remains the same as in Eq. (5) with £ = 1 used dur-
ing the editing stage. 2) Multi-expert: Uses the top-
k passage-level experts, where the relevance vector
is a soft version computed using a softmax-based
probability distribution after top-k truncation.

3.2.1 Retrieval-Reranker

Given a query ¢, DPR uses both the query vector
Emd(q) and the passage vector Emd(p); for p;, and
computes inner product similarity between them:

score(q,p;) = Emd(¢) "Emd(p); (8

For the reranking, we incorporate BAAIl/bge-
reranker-v2-gemma® (Xiao et al., 2024) as a
reranker model and fine-tune it to improve pas-
sage relevance. For the finetuning the reranker, we
additionally construct a training dataset passages
retrieved by DPR. To optimize the reranker, we
adopt a contrastive loss function (Sohn, 2016), en-
suring that relevant passages receive higher scores
than irrelevant ones. For a given question ¢ in the
training set, let p4 be a positive passage, and let

(p(_l), . ,p(_L)) be L negative passages for q. The

3https://huggingface.co/BAAl/bge-reranker-v2-gemma

loss function is defined as:

exp (scorereran ,
Lreranger = —log L+1p( k (4,p+)) ©)

Z’izl exp (Scorererank (q, p(z)))

The re-ranker results can be found in Appendix C.

3.2.2 Retrieval-Based Router

The retrieval-based router determines the relevance
vector r in Eq. (4), depending on we use the top-1
and top-k experts.

Single-Expert: In the single-expert case (k =
1), the relevance vector is just one-hot vector, the
router-applied MMOE layer is degenerated into Eq.
(6).

Multi-Expert: In the multi-experts case, the
relevance vector based on the dense retrieval is
computed as follows:

r = softmax (top,, (Emd(q)"W¢)) (10)

where Emd(q) € R%m is the query embedding
vector, de,q is the dimension of embedding vectors
for query and passages, and W € R%ma*N ig the
matrix consisting of all passage embeddings in the
collection C, defined as follows:

We = [Emd(p1),--- ,Emd(pn)]  (11)

When reranking is applied, we then use
reranking-based scores over all passages, result-
ing in the relevance vector, with a slight abuse of
notation, as follows:

r = softmax (topk ([scorere,.ank(q,pi)]i]L))
(12)

4 Experiments

In this part, we explain the experimental setup and
present the key results of our findings.

4.1 Experimental Setup

Dataset: We utilize the Natural Questions (NQ)
dataset (Kwiatkowski et al., 2019) for training
to enhance the model’s performance on open-
domain question answering. To further evaluate
the model’s generalization ability, we also test it
on the TriviaQA (TQA) (Joshi et al., 2017) dataset,
which presents diverse and challenging questions
from trivia domains.

4.2 RAG settings

We explore two variants of RAGs — Direct-RAG,
and Prompt-RAG - using prompting templates to
evaluate the RAG capabilities of the models, with
the input format shown in Table 4.



4.3 MOoPE settings

General: For a given test query qes;, we first
perform retrieval to identify top-k experts and ap-
ply the retrieval-based router by determining rele-
vance vectors depending on single-expert and multi-
expert cases, as in Section 3.2.2. Suppose that
MropE is the model using MMOoE based on Eq.
(4) at A} is 1 only for [ = 12. The final answer a is
determined as follows.
a = arg ngLX MMOPE(a|Qtest) (13)

RAG on MoPE We apply RAG under MoPE but
use a mixed approach that combines the original
pre-edited base model and the MoPE-based model.
More specifically, we use the original model until
the passage knowledge is encoded, and then switch
to MoPE when processing the question part.

Thus, given the specific layer [ where new ex-
perts are additionally located, A} is defined as:

o 0, ift <Lporl# lnoe
b 1, otherwise

where L, is the last token position where pas-
sage knowledge is injected into a prompted RAG,
and /o is the layer into which experts are newly
added.

Backbone Language Models: We select Llama2-
7B (Touvron et al., 2023) as the base model and
integrate expert modules into it to implement our
framework. We also compare our approach with
several advanced models (Yang et al., 2023; Team,
2024; Jiang et al., 2023a) built on Llama2-7B, as
well as the larger Llama2-13B model (Touvron
et al., 2023) with more parameters.

Metric: We use Exact Match (EM) and F1-score
(F1), which are standard metrics (Rajpurkar, 2016)
in question answering for evaluating answer accu-
racy and completeness.

Implementation Details: All experiments, includ-
ing data construction, knowledge injection, and
evaluation, were conducted on workstations with
8xNVIDIA RTX A6000 GPUs. For training the ex-
perts, we used the AdamW optimizer for 10 epochs,
with the learning rate decaying from le-4 to le-6
using cosine annealing.

(14)

4.4 Why /=12 was Chosen?

(Wang et al., 2023) suggests that the information
captured at different layers can vary in its contribu-
tion to the final output, especially for inputs with

NQ TQA

Methods EM F1 EM F1
Without-RAG
Llama2;p 7.80 16.89 49.47 59.38
Llama2,3p 1040 20.62 50.87 61.21
Baichuan27p  8.60 16.84 43.73 53.29
QWen2.5;5 1.20  6.24 31.53 40.19
Mistral; g 327 12,11 52.60 61.71
PEFT-Lora;p 14.87 23.66 51.73 61.37
MoPE~- 3 26.40 3540 56.13 64.08
Direct-RAG
Llama27p 13.60 2346 5440 64.49
Llama2i3p 1520 25.79 55.53 65.77
Baichuan27p 11.67 21.32 50.40 60.11
QWen2.5;5 0.07 747 427 19.09
Mistral; g 11.20 21.76 53.60 63.75
PEFT-Lorayp 20.20 30.86 6221 71.13
MoPE- g 38.87 49.27 68.27 75.64
Prompt-RAG
Llama2;p 29.00 40.61 60.80 69.39
Llama235 29.73 40.57 63.00 71.71
Baichuan27p 28.87 38.14 57.20 65.11
QWen2.5;5 29.80 38.80 5527 61.95
Mistral; g 32.07 4443 59.80 68.71
PEFT-Lora;p 34.26 46.54 65.34 74.28
MoPE; g 39.53 49.86 68.33 75.48

Table 1: Results on the NQ dataset, where inference is
performed with a single expert.

contextual information. We randomly selected a
small subset of sample questions for an expert inser-
tion experiment across different layers. As show in
figure 3, the results indicate that the 12th layer has
the most significant impact on model performance,
outperforming other layers. Although performance
differences across layers are generally minor, the
middle layers, particularly the 12th layer, demon-
strate better performance in integrating injected
knowledge compared to the initial and final layers.

Normalized EM

Figure 3: Normalized EM metric for expert insertion
across different layers.



1 expert 2 expert 3 expert 4 expert

Methods EM F1 EM F1 EM F1 EM F1
W/o-RAG 2640 3540 2820 37.15 2893 3741 29.07 37.65
NQ D-RAG  38.87 49.27 39.87 5036 40.40 50.77 40.53 50.99
P-RAG  39.53 49.86 40.20 50.20 40.40 5044 40.06 50.59
W/o-RAG 56.13 64.08 57.07 6447 5827 6574 57773 65.39
TQA D-RAG 68.27 75.64 69.27 76.12 6947 7625 69.20 7592
P-RAG  68.33 7548 69.53 76.08 69.07 75.69 6847 7538

Table 2: The results of inference with varying numbers of experts.

4.5 Main Results

Table 1 presents a comparison of MoPE with other
baseline methods under the W/0-RAG, D-RAG,
and P-RAG settings. As shown in the table, when
expert modules are injected with paragraph knowl-
edge, the performance of MoPE on the LLaMa2-7B
model significantly surpasses that of the original
model in answering questions. On the other hand,
by injecting question-style knowledge, MoPE’s per-
formance under D-RAG is comparable to the re-
sults obtained from providing prompts in P-RAG,
suggesting that the method can achieve similar out-
comes without explicit prompts. This opens up
new possibilities for tasks such as simplifying or
distilling in-context learning.

We also tested the performance after varying the
number of experts involved in the query, as shown
in the table 2. The results indicate that as the num-
ber of experts increases, the model’s performance,
measured by both EM and F1 scores, gradually im-
proves, particularly under the D-RAG and P-RAG
settings, where the performance boost is more pro-
nounced. This suggests that knowledge injection
through expert modules effectively enhances the
model’s performance, and with the increase in the
number of experts, the model is able to better lever-
age different paragraph of knowledge. Under the
W/0-RAG setting, despite the absence of external
prompts, the model’s performance remains rela-
tively stable, yet still improves as the number of
experts increases, demonstrating the effectiveness
of expert injection.

4.6 Efficiency Analysis of Expert Insertion

Table 3 shows the throughput comparison between
the base LLama2-7B model and the MoPE frame-
work. Despite the additional steps required for
loading expert parameters, and performing infer-
ence, the throughput of MoPE (0.598 samples/s)
remains close to that of the base model (0.628 sam-

ples/s). This indicates that the expert selection
and integration process introduces minimal time
overhead. The marginal reduction in throughput is
compensated by a significant improvement in accu-
racy, demonstrating that MoPE effectively balances
efficiency and performance. This makes it a practi-
cal solution for enhancing model accuracy without
compromising too much on processing speed.

Method | Throughput
Base 0.628
MoPE 0.598

Table 3: Throughput comparison between the base
model and MoPE.

5 Conclusion

In this study, we proposed the MoPE framework,
which applies knowledge injection via MMOoE to
address the issue of LLMs’ insufficient attention to
external prompts in RAG. Given a query, relevant
paragraphs are transformed into edited knowledge
that the model can learn and store in the designed
expert modules. Experiments on NQ and TQA
demonstrated that this expert memory-based ap-
proach mitigates the inadequate attention to exter-
nal prompts, significantly enhancing performance
in both W/o RAG and W/ RAG modes.

In future work, we aim to explore the concept
of 'meta-learning experts,” where trained offline
experts do not require additional storage. Instead,
we propose dynamically storing expert parameters
within a small-scale supernetwork, using it to gen-
erate expert parameters based on the query. This ap-
proach reduces storage costs while enabling more
flexible expert selection and knowledge injection.
Furthermore, we plan to investigate stable contin-
ual learning mechanisms for updating the supernet-
work, allowing it to adapt to new textual data and
improve the model’s long-term adaptability.



Limitations

In the current setup, our framework requires train-
ing an offline expert repository, which necessitates
a certain amount of storage space to maintain these
expert modules. Future research will explore the
use of compact hypernetworks to dynamically gen-
erate expert parameters, potentially reducing the
storage requirements. Additionally, more advanced
expert merging techniques need to be investigated
to better leverage complementary knowledge from
different experts.

Furthermore, the quality of the generated QA
pairs for editing significantly influences the perfor-
mance of the experts. It is crucial to avoid injecting
incorrect knowledge into the experts. However,
as shown in Appendix B, the quality of QA pairs
generated by T5-xI as the question generator is not
always satisfactory and sometimes contains errors.
Future work should explore or propose more ad-
vanced components and methodologies for convert-
ing paragraphs into correct editing facts without
relying on structured data. This approach could
also overcome limitations of existing editing meth-
ods, such as MEMIT (Meng et al., 2022b), which
depend on fixed editing formats like triple-based
data.
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A RAG Template

In this section, we present the input formats for
without-RAG, Direct-RAG, and Prompt-RAG.

Input Format of Without-RAG

Question: {question}
Answer:

(a) Input Format of Without-RAG.

Input Format of Direct-RAG

Knowledge:

{Top-1 paragraph}
Question: {question}
Answer:

(b) Input Format of Direct-RAG.

Input Format of Prompt-RAG

Knowledge:

{Top-1 paragraph }

Base above knowledge, answer the follow-
ing question with a very short phrase, such
as “1998”, “May 16th, 19317, or “James
Bond”, to meet the criteria of exact match
datasets.

Question: {question}

Answer:

(c) Input Format of Prompt-RAG

Table 4: The input format of the LLM.

B Synthetic Q-A pairs
The process consists of the following steps:

1. We leverage the spacy * library to perform
Named Entity Recognition (NER) on the pas-
sage p, obtaining a set of entities:

A = spacy(p) (15)

2. Foreachentity a € A, we use the trained ques-
tion generator Gy to generate a corresponding
question.

Gedited = G@(Q|T(p7 CL))

*https://spacy.io/

(16)
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Table 6 presents an example of synthetic QA
generation using (g, where the passage is the re-
trieved paragraph, followed by several generated
QA pairs. As observed, the quality of the gener-
ated pairs is not perfect, with irrelevant or incor-
rect questions, such as "Where does the story Don
Quixote take place?" with the answer "Western,"
which is factually incorrect, or "Sancho Panza was
the steed of which fictional character?" with the
answer "Don Quixote’s", which is a misleading
formulation. These inaccuracies and mismatches
between questions and answers may significantly
impact the overall system performance. This high-
lights a key factor affecting the results, making it
evident that generating high-quality and factually
accurate edited knowledge is crucial. Therefore,
we are currently exploring methods to improve the
accuracy and relevance of these generated QA pairs,
with a focus on more reliable techniques for editing
and validating the knowledge. The need to generate
high-quality edited knowledge is urgent to ensure
that the knowledge injection process leads to better,
more precise performance in downstream tasks.

C Re-ranker Results

This section presents the performance of apply-
ing a re-ranker to refine the retrieval results of
DPR (Karpukhin et al., 2020), comparing the ac-
curacy before and after re-ranking. In a question-
answering system, the accuracy of the retrieval
source plays a crucial role in the overall result. Ad-
ditionally, the scoring produced by the re-ranker is
important for merging between experts. The im-
provements were evaluated using Top-K accuracy,
which measures the presence of a golden passage,
ensuring a stable document source for responing
answer.

Top-K  Type NQ TQA
@1 Before 44.60 56.53
After 64.67 76.33

@2 Before 55.73 65.27
After 71.73 79.60

@4 Before 64.47 72.07
After 77.87 82.80

@3 Before 72.93 76.73
After 81.47 84.53

Table 5: Comparison of DPR retrieval accuracy results
before and after applying the re-ranker we trained.



Passage: "forced to deceive him at certain points. The novel is considered a satire of
orthodoxy, veracity and even nationalism. In exploring the individualism of his characters,
Cervantes helped move beyond the narrow literary conventions of the chivalric romance
literature that he spoofed, which consists of straightforward retelling of a series of acts that
redound to the knightly virtues of the hero. The character of Don Quixote became so well
known in its time that the word uixoticwas quickly adopted by many languages. Characters
such as Sancho Panza and Don Quixote’s steed, Rocinante, are emblems of Western literary
culture."

"question": "Who wrote the novel don quixote and the adventures of sancho panza?",
"answer": "Cervantes"

"question": "Sancho Panza is a character in which novel?"
"answer": "Don Quixote"

"question": "What was the name of Don Quixote’s faithful companion?"
"answer": "Sancho Panza"

"question": "Sancho Panza was the steed of which fictional character?"
"answer": "Don Quixote’s"

"question": "What was the name of Don Quixote’s horse?"
"answer": "Rocinante"

"question": "Where does the story don quixote take place?"
"answer'": "Western"

Table 6: An example of synthetic QA pairs.
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