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Abstract001

As world knowledge continues to evolve, adapt-002
ing LLMs to new knowledge is crucial, how-003
ever, it poses significant challenges, as naively004
fine-tuning the entire model often leads to005
catastrophic forgetting and high computational006
costs. While RAG and model editing have007
been increasingly studied for knowledge adap-008
tation, this paper moves beyond the ‘RAG vs.009
fine-tuning’ discussion to explore the ‘RAG010
vs. model editing’ issue, and propose a “Mas-011
sive Mixture of Experts (MMoE)” approach012
for model editing, referred to as MoPE, i.e.,013
Massive Mixture of Passage-Level Experts,014
which consists of the key components at train-015
ing and inference stages: (1) Massive passage-016
level editing with MMoE, where a large set017
of passage-level experts is created using auto-018
matically generated question-answer pairs for019
each passage, and (2) Retrieval-based rout-020
ing with MMoE, which employs dense re-021
trieval to select the top-k passage-level experts022
without requiring additional training. Exper-023
imental results demonstrate that MoPE out-024
performs a naively designed variant of RAG,025
i.e., direct RAG, and when combined with di-026
rect RAG, it surpasses an advanced variant027
of RAG, significantly improving over LoRA-028
based parameter-efficient tuning methods. Our029
data and code will be available at https://030
github.com/XXX/XXX.031

1 Introduction032

Large language models (LLMs) have shown re-033

markable performances on various natural lan-034

guage processing (NLP) tasks, particularly effec-035

tively performing knowledge-intensive tasks by036

their enormously large pretrained knowledge (Zhao037

et al., 2023; Hadi et al., 2023). Given that world038

knowledge is continually updated, adapting LLMs039

to new information and knowledge is crucial, how-040

ever, naively finetuning the entire model of LLMs041

meets the key challenging problems: 1) catas-042

trophic forgetting, which may lead to disruption of043

Figure 1: An illustration of context-aware attention:
mitigating content focus limitations in RAG through
paragraph editing, and a brief overview of the main
results of MoPE comparing to the base model with our
without RAG, on the NQ dataset. Left: EM metric,
Right: F1 Score. MoPE outperforms direct RAG, which
relies on a naively designed prompt for retrieval. When
combined with direct RAG, MoPE surpasses prompt-
RAG, which employs a more refined prompt variant.

the old knowledge and performance graduation on 044

the pre-acquired tasks, and 2) nontrivial updating 045

costs due to the large scale of parameters, which 046

requires high computation and memory resource 047

required for updating new knowledge. Previous 048

adaptation approaches can be broadly categorized 049

into two main methods: (1) Retrieval-Augmented 050

Generation (RAG) (Lewis et al., 2020; Pan et al., 051

2024), which leverages the in-context learning 052

(ICL) capabilities of large language models (LLMs) 053

by augmenting input prompts with “retrieved” pas- 054

sages; and (2) Knowledge Injection, which can be 055
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further divided into parameter-efficient tuning(Hu056

et al., 2021) – which adjusts a small set of trainable057

parameters while keeping the original ones intact –058

and model editing (De Cao et al., 2021; Meng et al.,059

2022a), which aims to balance the incorporation of060

new knowledge updates while preserving existing061

knowledge.062

Among these approaches, unlike RAG and063

parameter-efficient tuning, which have demon-064

strated improvements across various NLP tasks,065

Model editing has been explored primarily in stan-066

dard ’editing’-specific tasks, rather than in practical067

knowledge-intensive NLP tasks, leaving its useful-068

ness and impact in real-world applications unclear.069

Going beyond traditional editing-specific tasks, we070

aim to explore model editing within open-domain071

QA as a representative knowledge-intensive NLP072

task to assess its value and impact in achieving073

improvements over RAG, as open-domain QA has074

been widely used. Related to this issue, existing075

works on fine-tuning methods have explored the de-076

bate of ‘RAG vs. fine-tuning’ (Ovadia et al., 2023;077

Alghisi et al., 2024; Gupta et al., 2024), showing078

that parameter-efficient tuning and fine-tuning gen-079

erally underperform compared to RAG, and their080

combination with RAG has been found to be advan-081

tageous, etc. Advancing beyond previous works,082

we extensively explore “model editing,” rather than083

fine-tuning or parameter-efficient tuning, so ad-084

dressing ‘RAG vs. model editing’, leading to our085

key research question: “Are specific model editing086

methods effective in achieving improvements over087

RAG on standard open-domain QA tasks, compared088

to results obtained using fine-tuning or parameter-089

efficient tuning?”090

Unlike editing-specific tasks, applying model091

editing to open-domain QA involves handling a set092

of passage-level edits within a collection, thereby093

requiring the editor to effectively inject the required094

passages into LLMs, treating each passage as an095

edit request. To address this passage-level editing096

problem, inspired by the remarkable adaptability097

of the mixture of experts (MoE) on knowledge-098

intensive and editing tasks (Wang and Li, 2024b,a),099

we propose the use of a massive MoE (MMoE) for100

model editing to inject all required passages into101

a set of experts, referred to as MoPE, i.e., mas-102

sive mixture of passage-level experts, by assigning103

a dedicated passage-level expert to each individ-104

ual passage and integrating these passage-level ex-105

perts into LLMs, using the “retrieval”-based router,106

without modifying the original parameters. MoPE107

consists of the key components for editing and in- 108

ference stages, as follows: 109

1. Massive passage-level editing with MMoE. 110

In the editing stage, all target passages are 111

considered as massive edit requests. Simi- 112

lar to most MoE approaches that utilize feed- 113

forward network (FFN) layers (Fedus et al., 114

2022; Du et al., 2022), we augment an FFN 115

layer in the Transformer with an additional ex- 116

pertized FFN module, referred to as a passage- 117

level expert, specialized for each individual 118

passage; Given a passage, we first generate 119

a set of question-answer pairs using a simple 120

prompting method, and then train the passage- 121

level expert based on the loss function used in 122

the machine reading comprehension (MRC) 123

task. During the editing stage, it should be 124

noted that each passage-level expert is trained 125

individually, i.e., only a single passage-level 126

expert is augmented with the original FFN 127

layers in the Transformer, without incorpo- 128

rating all other experts. As a result, we will 129

have a massive mixture of N static passage- 130

level experts, given N number of passages in 131

a collection. 132

2. Retrieval-based Router with MMoE. In the 133

inference stage, since we have passage-level 134

experts, routing mechanism is effectively man- 135

aged through retrieval. We extensively utilize 136

dense retrieval to design a router, ensuring that 137

only the top-k experts corresponding to the 138

top-k retrieved passages are selected to form a 139

sparse MoE layer, resulting in consisting k+1 140

FFNs at a specific layer. Thus, no separate ad- 141

ditional training is required for designing a 142

router. 143

Experimental results on standard open-domain 144

QA datasets – natural question (NQ) (Kwiatkowski 145

et al., 2019) and Trivia QA (Joshi et al., 2017) show 146

that MoPE improves the baseline performance of 147

RAG and the results using the LoRA-based param- 148

eter efficient tuning, as briefly shown in Figure 1: 149

MoPE outperforms “direct-RAG,” which relies on 150

a naively designed prompt for retrieval; MoPE 151

combined with direct-RAG surpasses prompt-RAG, 152

which utilizes a more refined prompt variant. For 153

details on the input template, see Appendix A. 154

Our main contributions are as follows: 1) We 155

investigate the ‘RAG vs. model editing’ paradigm, 156

expanding beyond previous studies that focused on 157
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‘RAG vs. fine-tuning’ (Alghisi et al., 2024). 2) We158

propose MoPE, a novel approach for model editing159

in open-domain QA. 3) We offer new experimental160

findings, showing that MoPE outperforms LoRA-161

based tuning and direct RAG, and the combination162

of MoPE and direct RAG surpasses even the more163

advanced variant of RAG, i.e., prompt RAG.164

2 Related Work165

2.1 Retrieval Augmented Generation166

In open-domain question answering, Retrieval-167

Augmented Generation (RAG) (Lewis et al., 2020)168

methods effectively enhance the accuracy of model169

responses by incorporating external knowledge.170

Recent studies have made significant progress in171

retrieval quality control and timing optimization.172

Shi et al. (2023) and Dong et al. (2024) emphasized173

the importance of enhancing the relevance of re-174

trieved content to user query and the role of knowl-175

edge alignment in this process. Lin et al. (2023)176

proposed an approach that optimizes the query en-177

coder by combining supervised and unsupervised178

tasks. Additionally, the Fusion-in-Decoder (FiD)179

method (Izacard and Grave, 2020; Hofstätter et al.,180

2023) significantly improved generation perfor-181

mance by integrating information from multiple182

documents during the decoding stage.183

In structural model optimization, Self-184

RAG (Asai et al., 2023) enhances retrieval185

accuracy and robustness through fine-grained self-186

reflection, while Yan et al. (2024) and Jiang et al.187

(2023b) introduced an error-correction strategy to188

handle inaccurate information. SAIL (Luo et al.,189

2023) improves instruction tracking in complex190

contexts by integrating internal and external search191

engines.192

For post-generation output enhancement, KNN-193

LM (Khandelwal et al., 2019) and RETOMA-194

TON (Alon et al., 2022) significantly improve gen-195

eration quality through nearest-neighbor memory196

retrieval and weighted finite-state machines. Fur-197

thermore, end-to-end training (Lewis et al., 2020;198

Guu et al., 2020) has emerged as a crucial direc-199

tion to optimize RAG architectures, allowing more200

efficient knowledge integration and response gen-201

eration by minimizing manual intervention and it-202

eratively refining the model.203

2.2 Knowledge Injection204

Knowledge injection has emerged as a crucial tech-205

nique for enhancing the performance of language206

models by efficiently integrating external knowl- 207

edge. Two primary approaches have gained sig- 208

nificant attention: parameter-efficient tuning and 209

model editing. 210

Parameter-efficient tuning enhances large pre- 211

trained models by introducing small trainable mod- 212

ules while keeping most parameters frozen. Key 213

approaches include adapter (Houlsby et al., 2019), 214

which adds neural network bottlenecks to trans- 215

former blocks; Prompt Tuning (Li and Liang, 216

2021), which optimizes the appended prompts for 217

task adaptation; and LoRA (Hu et al., 2021), which 218

updates rank decomposition matrices. Recent ad- 219

vances, such as DyLoRA (Valipour et al., 2022), 220

improve efficiency by selectively updating partial 221

parameters. Building on DyLoRA, MELO (Yu 222

et al., 2024) introduces a neuron-indexed dynamic 223

LoRA mechanism. 224

Model editing focuses on maintaining the re- 225

liability of edited knowledge, ensuring that the 226

changes successfully address the target queries. 227

Additionally, it emphasizes enhancing the gener- 228

ality, allowing the edited model to generalize the 229

new knowledge to related queries effectively. Fur- 230

thermore, it seeks to preserve locality, ensuring 231

that the modifications do not interfere with the 232

retention of unrelated original knowledge. It is 233

categorized into three types: Meta-learning edi- 234

tors (De Cao et al., 2021; Mitchell et al., 2021; Tan 235

et al., 2023), which use hyper-networks to adjust 236

gradients; Locate-then-edit editors (Meng et al., 237

2022a,b; Li et al., 2024), which identify and update 238

relevant parameters; and Memory-based editors, 239

where (Zheng et al., 2023; Zhong et al., 2023; Gu 240

et al., 2023; Cheng et al., 2023) update knowledge 241

from prompts using in-context learning without gra- 242

dient updates or parameter modifications, where 243

other approaches like T-Patcher (Huang et al.) and 244

MEMoE (Wang and Li, 2024b) store the memory 245

of edited facts using additional parameters. 246

2.3 Mixture of Experts 247

In transformer-based Large Language Models 248

(LLMs), Mixture-of-Experts (MoE) layers utilize a 249

set of expert networks and a gating mechanism to 250

route inputs to the most suitable experts (Shazeer 251

et al., 2017; Antoniak et al., 2023). These layers are 252

strategically positioned after the self-attention sub- 253

layer to optimize feed-forward network (FFN) se- 254

lection, significantly reducing computational over- 255

head in large models like PaLM (Chowdhery et al., 256

2023), where FFN layers account for the majority 257
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of parameters.258

Dense MoE approaches activate all available ex-259

perts simultaneously, which enhances predictive260

accuracy but demands substantial computational261

resources. Early implementations (Jacobs et al.,262

1991; Rasmussen and Ghahramani, 2001; Aljundi263

et al., 2017) demonstrated this effectiveness, and264

more recent methods like EvoMoE (Nie et al.,265

2021), MoLE (Wu et al., 2024), LoRAMoE (Dou266

et al., 2023), and DSMoE (Pan et al., 2024) have267

refined the dense MoE structure to balance perfor-268

mance and efficiency.269

Sparse MoE improves computational efficiency270

by selecting only the top-k experts for each input,271

thereby maintaining accuracy while reducing pro-272

cessing demands (Shazeer et al., 2017). However,273

this selective activation can cause load imbalances,274

where certain experts are overused while others275

are underutilized. To counter this, auxiliary loss276

functions are introduced to distribute tokens more277

evenly across experts, as seen in (Lepikhin et al.,278

2020; Jiang et al., 2024; Du et al., 2022; Fedus et al.,279

2022). This strategy allows sparse MoE models to280

scale effectively by expanding parameter capacity281

without a corresponding increase in computational282

cost.283

3 Methodology284

Figure 2 presents an overview of MoPE, highlight-285

ing its training and inference stages: (1) Passage-286

level editing with MMoE and (2) Inference using a287

retrieval-based router with MMoE. In the passage-288

level editing stage, a set of question-answer (QA)289

pairs is automatically generated for each passage290

using named entity recognition (NER)-based an-291

swer extraction and a simple prompting method.292

Each passage-level expert is trained individually293

using the generated QA pairs, following an MRC-294

like objective function. Given N passages, we con-295

struct N corresponding passage-level experts. Dur-296

ing inference, given these N passage-level experts297

and a test question, we first perform retrieval-based298

routing. Specifically, we use dense retrieval with299

a reranking method to identify the top-k retrieved300

passages. The corresponding k passage-level ex-301

perts are then selected from the N experts and inte-302

grated with the original FFN layer. This selected303

sparse MoE is used to generate an answer to the304

test question.305

3.1 Passage-level Editing with MMoE 306

Suppose that there is N number of passages in a 307

collection, formulated as C = {pi}Ni=1 where C is 308

a collection, and pi is i-th passage 1. The passage- 309

level editing process creates N passage-level ex- 310

perts, comprising two key steps: (1) the construc- 311

tion of QA pairs and (2) the training passage-level 312

experts, as detailed below. 313

3.1.1 Construction of QA pairs 314

Given a passage, we create its set of QA pairs by 315

using the automatic data augmentation method (Yu 316

et al., 2022). To this end, we first separately train 317

a question generator Gθ based on the T5-xl model 318

to learn how to generate questions from textual 319

segments, based on an additional training dataset 320

DQG = {(pψ(j), qj , aj)}Mj=1, where pψ(j) is the 321

ψ(j)-th passage in the training set2, qj is the j-th 322

question for pψ(j), aj is the j-answer for qj on 323

pψ(j). It is important to note that Dtrain is separate 324

from the test dataset in the final evaluation. In our 325

case, we use only the training samples from the 326

NQ dataset. We also have the instruction template 327

function T is defined as follows: "Generate a ques- 328

tion with <answer> as ’{a}’ from the <context>: 329

’{p}’.". Thus, T (p, a) indicates the prompted in- 330

put that takes an answer a for a passage p. The 331

generator Gθ is trained by minimizing the negative 332

log-likelihood (NLL) loss as follows: 333

L(θ) = −
∑

(p,q,a)∈DQG

logP (q|T (p, a); θ) (1) 334

where P (y|x; θ) represents the conditional proba- 335

bility of generating question y given input x. 336

Once Gθ is trained, given a i-th passage pi ∈ C, 337

we first extract named entities in pi an answers us- 338

ing a NER method, and generate corresponding 339

questions to the extracted answers. The resulting 340

set of QA pairs for pi is denoted as Dpi . The gen- 341

eration process please refer to Appendix B. 342

3.1.2 Training Passage-Level Experts 343

Once Dpi is obtained, the editing step uses Dpi as 344

training set to create the corresponding passage- 345

level expert Ei under the MoE framework. To 346

1While we need to create experts for all passages in a
collection, evaluation only requires the experts corresponding
to the top-retrieved passages for test questions. Therefore,
instead of generating a full set of experts, we construct only
the minimum necessary number of experts, ensuring that the
subset is sufficient for evaluation.

2Here, we use ψ as an existential Skolem-like function that
maps the j-th training example to its corresponding passage
index, for notational convenience.
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Figure 2: An overview of the proposed MoPE framework: 1) Passage-Level Editing with MMoE: For a given
passage, its QA pairs are automatically constructed using the fine-tuned question generator (see Section 3.1.1). The
passage-specific expert is then trained within the MoE layer using these QA pairs. 2) Inference with Retrieval-Based
Router: MMoE is deployed, where dense retrieval and a fine-tuned reranker are applied to select the top-retrieved
relevant passages (see Section 3.2.1), and the corresponding passage-level experts are then incorporated to form a
sparse MoE. The relevance vector of the router is computed based on either the top-1 or top-k passages, using Eq.
(5) and Eq. (12), respectively.

formally describe the MoE setting, suppose that347

at each token position t, xlt ∈ Rdm is given input348

at layer l. The original FNN block, denoted as349

FFNℓ(xℓt), is formulated as follows:350

FFNℓ(xℓt) = relu
(
xltW

l
K

)
Wl

V (2)351

where Wl
K ∈ Rdm×d and Wl

V ∈ Rd×dm represent352

the key and value projection matrices of the original353

FNN layer, respectively. For a i-th passage, we now354

have the passage-level expert, Eℓi(x
ℓ
t) is formulated,355

based on another FNN block, as follows:356

Eℓi(x
ℓ
t) = relu

(
xltW

l
i,K

)
Wl

i,V (3)357

where Wl
i,K ∈ Rdm×d and WI,V l ∈ Rd×dm rep-358

resent the key and value projection matrices of the359

expert FNN layer for i-th passage, respectively.360

Given N passages, we have N passage-level ex-361

perts, thereby forming the following MMoE:362

ylt = FFNℓ(xℓt) + λtl

N∑
j=1

r[j] · Eℓj(x
ℓ
t) (4)363

where λtl is the mixing parameter, which is set to 1 364

for a specific layer l and 0 otherwise depending on 365

token index t, and r ∈ RN is the “relevance” vector 366

to a given query q, obtained by the “retrieval-based 367

router,” which consists of N relevance values, de- 368

fined as follows: 369

r[j] =

{
1, if pj in top-k(q, C)
0, else

(5) 370

where top-k(q, C) is the set of the top-k retrieved 371

passages, in general. During the editing, when 372

q ∈ Dpi , top-k(q, C) = {pi}, because it is clear 373

that pi is the gold relevant passage for q. Thus, 374

during editing, given Dpi , Eq. (4) is simplified 375

into: 376

ylt = FFNℓ(xℓt) + λtlE
ℓ
i(x

ℓ
t) (6) 377

Under Eq. (6), given Dpi , we use an autoregressive 378

generative loss function to train the i-th passage- 379

level expert Ei, independently from other experts. 380

Furthermore, to effectively maintain parameters 381

of Ei, instead of using the full parameters of FNN 382
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as in Eq. (3), we perform low-rank matrix factor-383

ization on its standard linear transformation layers384

to reduce computational overhead and parameter385

redundancy, thereby decomposing the fully con-386

nected weight matrices into low-rank components.387

Eℓi(x
ℓ
t) =388

relu
(
xltW

l
i,K2W

l
i,K1

)
Wl

i,V 1W
l
i,V 2 (7)389

Where Wl
i,K2 ∈ Rdm×k, Wl

i,K1 ∈ Rk×dm ,390

Wl
I,V 1 ∈ Rdm×k and Wl

I,V ∈ Rk×dm represent391

the corresponding low-rank key and value projec-392

tion matrices of the i-th passage-level expert.393

3.2 Inference with a Retrieval-Based Router394

with MMoE395

Once MMoE is trained during the passage-level396

editing stage, inference begins by retrieving rel-397

evant passages for a given test query, based on398

dense retrieval, followed by a reranking step to re-399

fine the results. Then, the retrieval-based router400

is applied to determine the relevance vector r in401

Eq. (4), based on similarity scores obtained from402

retrieval. This process depends on two different403

variants of using MMoE: 1) Single-expert: Uses404

only the top-1 expert, where the relevance vector405

remains the same as in Eq. (5) with k = 1 used dur-406

ing the editing stage. 2) Multi-expert: Uses the top-407

k passage-level experts, where the relevance vector408

is a soft version computed using a softmax-based409

probability distribution after top-k truncation.410

3.2.1 Retrieval-Reranker411

Given a query q, DPR uses both the query vector412

Emd(q) and the passage vector Emd(p)i for pi, and413

computes inner product similarity between them:414

score(q, pi) = Emd(q)⊤Emd(p)i (8)415

For the reranking, we incorporate BAAI/bge-416

reranker-v2-gemma3 (Xiao et al., 2024) as a417

reranker model and fine-tune it to improve pas-418

sage relevance. For the finetuning the reranker, we419

additionally construct a training dataset passages420

retrieved by DPR. To optimize the reranker, we421

adopt a contrastive loss function (Sohn, 2016), en-422

suring that relevant passages receive higher scores423

than irrelevant ones. For a given question q in the424

training set, let p+ be a positive passage, and let425

(p
(1)
− , . . . , p

(L)
− ) be L negative passages for q. The426

3https://huggingface.co/BAAI/bge-reranker-v2-gemma

loss function is defined as: 427

Lreranker = −log exp (scorererank (q, p+))∑L+1
i=1 exp (scorererank(q, p(i)))

(9) 428

The re-ranker results can be found in Appendix C. 429

3.2.2 Retrieval-Based Router 430

The retrieval-based router determines the relevance 431

vector r in Eq. (4), depending on we use the top-1 432

and top-k experts. 433

Single-Expert: In the single-expert case (k = 434

1), the relevance vector is just one-hot vector, the 435

router-applied MMoE layer is degenerated into Eq. 436

(6). 437

Multi-Expert: In the multi-experts case, the 438

relevance vector based on the dense retrieval is 439

computed as follows: 440

r = softmax
(
topk

(
Emd(q)TWC

))
(10) 441

where Emd(q) ∈ Rdemd is the query embedding 442

vector, demd is the dimension of embedding vectors 443

for query and passages, and WC ∈ Rdemd×N is the 444

matrix consisting of all passage embeddings in the 445

collection C, defined as follows: 446

WC = [Emd(p1), · · · ,Emd(pN )] (11) 447

When reranking is applied, we then use 448

reranking-based scores over all passages, result- 449

ing in the relevance vector, with a slight abuse of 450

notation, as follows: 451

r = softmax
(

topk
(
[scorererank(q, pi)]

N
i=1

))
(12) 452

4 Experiments 453

In this part, we explain the experimental setup and 454

present the key results of our findings. 455

4.1 Experimental Setup 456

Dataset: We utilize the Natural Questions (NQ) 457

dataset (Kwiatkowski et al., 2019) for training 458

to enhance the model’s performance on open- 459

domain question answering. To further evaluate 460

the model’s generalization ability, we also test it 461

on the TriviaQA (TQA) (Joshi et al., 2017) dataset, 462

which presents diverse and challenging questions 463

from trivia domains. 464

4.2 RAG settings 465

We explore two variants of RAGs – Direct-RAG, 466

and Prompt-RAG – using prompting templates to 467

evaluate the RAG capabilities of the models, with 468

the input format shown in Table 4. 469
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4.3 MoPE settings470

General: For a given test query qtest, we first471

perform retrieval to identify top-k experts and ap-472

ply the retrieval-based router by determining rele-473

vance vectors depending on single-expert and multi-474

expert cases, as in Section 3.2.2. Suppose that475

MMoPE is the model using MMoE based on Eq.476

(4) at λtl is 1 only for l = 12. The final answer a is477

determined as follows.478

a = argmax
a

MMoPE(a|qtest) (13)479

RAG on MoPE We apply RAG under MoPE but480

use a mixed approach that combines the original481

pre-edited base model and the MoPE-based model.482

More specifically, we use the original model until483

the passage knowledge is encoded, and then switch484

to MoPE when processing the question part.485

Thus, given the specific layer l where new ex-486

perts are additionally located, λlt is defined as:487

λlt =

{
0, if t ≤ Lp or l ̸= lmoe

1, otherwise
(14)488

where Lp is the last token position where pas-489

sage knowledge is injected into a prompted RAG,490

and lmoe is the layer into which experts are newly491

added.492

Backbone Language Models: We select Llama2-493

7B (Touvron et al., 2023) as the base model and494

integrate expert modules into it to implement our495

framework. We also compare our approach with496

several advanced models (Yang et al., 2023; Team,497

2024; Jiang et al., 2023a) built on Llama2-7B, as498

well as the larger Llama2-13B model (Touvron499

et al., 2023) with more parameters.500

Metric: We use Exact Match (EM) and F1-score501

(F1), which are standard metrics (Rajpurkar, 2016)502

in question answering for evaluating answer accu-503

racy and completeness.504

Implementation Details: All experiments, includ-505

ing data construction, knowledge injection, and506

evaluation, were conducted on workstations with507

8×NVIDIA RTX A6000 GPUs. For training the ex-508

perts, we used the AdamW optimizer for 10 epochs,509

with the learning rate decaying from 1e-4 to 1e-6510

using cosine annealing.511

4.4 Why l=12 was Chosen?512

(Wang et al., 2023) suggests that the information513

captured at different layers can vary in its contribu-514

tion to the final output, especially for inputs with515

NQ TQA
Methods EM F1 EM F1

Without-RAG
Llama27B 7.80 16.89 49.47 59.38
Llama213B 10.40 20.62 50.87 61.21

Baichuan27B 8.60 16.84 43.73 53.29
QWen2.57B 1.20 6.24 31.53 40.19
Mistral7B 3.27 12.11 52.60 61.71

PEFT-Lora7B 14.87 23.66 51.73 61.37
MoPE7B 26.40 35.40 56.13 64.08

Direct-RAG
Llama27B 13.60 23.46 54.40 64.49
Llama213B 15.20 25.79 55.53 65.77

Baichuan27B 11.67 21.32 50.40 60.11
QWen2.57B 0.07 7.47 4.27 19.09
Mistral7B 11.20 21.76 53.60 63.75

PEFT-Lora7B 20.20 30.86 62.21 71.13
MoPE7B 38.87 49.27 68.27 75.64

Prompt-RAG
Llama27B 29.00 40.61 60.80 69.39
Llama213B 29.73 40.57 63.00 71.71

Baichuan27B 28.87 38.14 57.20 65.11
QWen2.57B 29.80 38.80 55.27 61.95
Mistral7B 32.07 44.43 59.80 68.71

PEFT-Lora7B 34.26 46.54 65.34 74.28
MoPE7B 39.53 49.86 68.33 75.48

Table 1: Results on the NQ dataset, where inference is
performed with a single expert.

contextual information. We randomly selected a 516

small subset of sample questions for an expert inser- 517

tion experiment across different layers. As show in 518

figure 3, the results indicate that the 12th layer has 519

the most significant impact on model performance, 520

outperforming other layers. Although performance 521

differences across layers are generally minor, the 522

middle layers, particularly the 12th layer, demon- 523

strate better performance in integrating injected 524

knowledge compared to the initial and final layers. 525

Figure 3: Normalized EM metric for expert insertion
across different layers.

7



1 expert 2 expert 3 expert 4 expert
Methods EM F1 EM F1 EM F1 EM F1

W/o-RAG 26.40 35.40 28.20 37.15 28.93 37.41 29.07 37.65
NQ D-RAG 38.87 49.27 39.87 50.36 40.40 50.77 40.53 50.99

P-RAG 39.53 49.86 40.20 50.20 40.40 50.44 40.06 50.59
W/o-RAG 56.13 64.08 57.07 64.47 58.27 65.74 57.73 65.39

TQA D-RAG 68.27 75.64 69.27 76.12 69.47 76.25 69.20 75.92
P-RAG 68.33 75.48 69.53 76.08 69.07 75.69 68.47 75.38

Table 2: The results of inference with varying numbers of experts.

4.5 Main Results526

Table 1 presents a comparison of MoPE with other527

baseline methods under the W/o-RAG, D-RAG,528

and P-RAG settings. As shown in the table, when529

expert modules are injected with paragraph knowl-530

edge, the performance of MoPE on the LLaMa2-7B531

model significantly surpasses that of the original532

model in answering questions. On the other hand,533

by injecting question-style knowledge, MoPE’s per-534

formance under D-RAG is comparable to the re-535

sults obtained from providing prompts in P-RAG,536

suggesting that the method can achieve similar out-537

comes without explicit prompts. This opens up538

new possibilities for tasks such as simplifying or539

distilling in-context learning.540

We also tested the performance after varying the541

number of experts involved in the query, as shown542

in the table 2. The results indicate that as the num-543

ber of experts increases, the model’s performance,544

measured by both EM and F1 scores, gradually im-545

proves, particularly under the D-RAG and P-RAG546

settings, where the performance boost is more pro-547

nounced. This suggests that knowledge injection548

through expert modules effectively enhances the549

model’s performance, and with the increase in the550

number of experts, the model is able to better lever-551

age different paragraph of knowledge. Under the552

W/o-RAG setting, despite the absence of external553

prompts, the model’s performance remains rela-554

tively stable, yet still improves as the number of555

experts increases, demonstrating the effectiveness556

of expert injection.557

4.6 Efficiency Analysis of Expert Insertion558

Table 3 shows the throughput comparison between559

the base LLama2-7B model and the MoPE frame-560

work. Despite the additional steps required for561

loading expert parameters, and performing infer-562

ence, the throughput of MoPE (0.598 samples/s)563

remains close to that of the base model (0.628 sam-564

ples/s). This indicates that the expert selection 565

and integration process introduces minimal time 566

overhead. The marginal reduction in throughput is 567

compensated by a significant improvement in accu- 568

racy, demonstrating that MoPE effectively balances 569

efficiency and performance. This makes it a practi- 570

cal solution for enhancing model accuracy without 571

compromising too much on processing speed. 572

Method Throughput
Base 0.628

MoPE 0.598

Table 3: Throughput comparison between the base
model and MoPE.

5 Conclusion 573

In this study, we proposed the MoPE framework, 574

which applies knowledge injection via MMoE to 575

address the issue of LLMs’ insufficient attention to 576

external prompts in RAG. Given a query, relevant 577

paragraphs are transformed into edited knowledge 578

that the model can learn and store in the designed 579

expert modules. Experiments on NQ and TQA 580

demonstrated that this expert memory-based ap- 581

proach mitigates the inadequate attention to exter- 582

nal prompts, significantly enhancing performance 583

in both W/o RAG and W/ RAG modes. 584

In future work, we aim to explore the concept 585

of ’meta-learning experts,’ where trained offline 586

experts do not require additional storage. Instead, 587

we propose dynamically storing expert parameters 588

within a small-scale supernetwork, using it to gen- 589

erate expert parameters based on the query. This ap- 590

proach reduces storage costs while enabling more 591

flexible expert selection and knowledge injection. 592

Furthermore, we plan to investigate stable contin- 593

ual learning mechanisms for updating the supernet- 594

work, allowing it to adapt to new textual data and 595

improve the model’s long-term adaptability. 596
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Limitations597

In the current setup, our framework requires train-598

ing an offline expert repository, which necessitates599

a certain amount of storage space to maintain these600

expert modules. Future research will explore the601

use of compact hypernetworks to dynamically gen-602

erate expert parameters, potentially reducing the603

storage requirements. Additionally, more advanced604

expert merging techniques need to be investigated605

to better leverage complementary knowledge from606

different experts.607

Furthermore, the quality of the generated QA608

pairs for editing significantly influences the perfor-609

mance of the experts. It is crucial to avoid injecting610

incorrect knowledge into the experts. However,611

as shown in Appendix B, the quality of QA pairs612

generated by T5-xl as the question generator is not613

always satisfactory and sometimes contains errors.614

Future work should explore or propose more ad-615

vanced components and methodologies for convert-616

ing paragraphs into correct editing facts without617

relying on structured data. This approach could618

also overcome limitations of existing editing meth-619

ods, such as MEMIT (Meng et al., 2022b), which620

depend on fixed editing formats like triple-based621

data.622
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A RAG Template920

In this section, we present the input formats for921

without-RAG, Direct-RAG, and Prompt-RAG.922

Input Format of Without-RAG

Question: {question}
Answer:

(a) Input Format of Without-RAG.

Input Format of Direct-RAG

Knowledge:
{Top-1 paragraph}
Question: {question}
Answer:

(b) Input Format of Direct-RAG.

Input Format of Prompt-RAG

Knowledge:
{Top-1 paragraph}
Base above knowledge, answer the follow-
ing question with a very short phrase, such
as “1998”, “May 16th, 1931”, or “James
Bond”, to meet the criteria of exact match
datasets.
Question: {question}
Answer:

(c) Input Format of Prompt-RAG

Table 4: The input format of the LLM.

B Synthetic Q-A pairs923

The process consists of the following steps:924

1. We leverage the spacy 4 library to perform925

Named Entity Recognition (NER) on the pas-926

sage p, obtaining a set of entities:927

A = spacy(p) (15)928

2. For each entity a ∈ A, we use the trained ques-929

tion generator Gθ to generate a corresponding930

question.931

qedited = Gθ(q|T (p, a)) (16)932

4https://spacy.io/

Table 6 presents an example of synthetic QA 933

generation using Gθ, where the passage is the re- 934

trieved paragraph, followed by several generated 935

QA pairs. As observed, the quality of the gener- 936

ated pairs is not perfect, with irrelevant or incor- 937

rect questions, such as "Where does the story Don 938

Quixote take place?" with the answer "Western," 939

which is factually incorrect, or "Sancho Panza was 940

the steed of which fictional character?" with the 941

answer "Don Quixote’s", which is a misleading 942

formulation. These inaccuracies and mismatches 943

between questions and answers may significantly 944

impact the overall system performance. This high- 945

lights a key factor affecting the results, making it 946

evident that generating high-quality and factually 947

accurate edited knowledge is crucial. Therefore, 948

we are currently exploring methods to improve the 949

accuracy and relevance of these generated QA pairs, 950

with a focus on more reliable techniques for editing 951

and validating the knowledge. The need to generate 952

high-quality edited knowledge is urgent to ensure 953

that the knowledge injection process leads to better, 954

more precise performance in downstream tasks. 955

C Re-ranker Results 956

This section presents the performance of apply- 957

ing a re-ranker to refine the retrieval results of 958

DPR (Karpukhin et al., 2020), comparing the ac- 959

curacy before and after re-ranking. In a question- 960

answering system, the accuracy of the retrieval 961

source plays a crucial role in the overall result. Ad- 962

ditionally, the scoring produced by the re-ranker is 963

important for merging between experts. The im- 964

provements were evaluated using Top-K accuracy, 965

which measures the presence of a golden passage, 966

ensuring a stable document source for responing 967

answer. 968

Top-K Type NQ TQA

@1
Before 44.60 56.53
After 64.67 76.33

@2
Before 55.73 65.27
After 71.73 79.60

@4
Before 64.47 72.07
After 77.87 82.80

@8
Before 72.93 76.73
After 81.47 84.53

Table 5: Comparison of DPR retrieval accuracy results
before and after applying the re-ranker we trained.
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Passage: "forced to deceive him at certain points. The novel is considered a satire of
orthodoxy, veracity and even nationalism. In exploring the individualism of his characters,
Cervantes helped move beyond the narrow literary conventions of the chivalric romance
literature that he spoofed, which consists of straightforward retelling of a series of acts that
redound to the knightly virtues of the hero. The character of Don Quixote became so well
known in its time that the word q̈uixoticẅas quickly adopted by many languages. Characters
such as Sancho Panza and Don Quixote’s steed, Rocinante, are emblems of Western literary
culture."

"question": "Who wrote the novel don quixote and the adventures of sancho panza?",
"answer": "Cervantes"

"question": "Sancho Panza is a character in which novel?"
"answer": "Don Quixote"

"question": "What was the name of Don Quixote’s faithful companion?"
"answer": "Sancho Panza"

"question": "Sancho Panza was the steed of which fictional character?"
"answer": "Don Quixote’s"

"question": "What was the name of Don Quixote’s horse?"
"answer": "Rocinante"

"question": "Where does the story don quixote take place?"
"answer": "Western"

Table 6: An example of synthetic QA pairs.
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