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ABSTRACT

Reasoning ability is essential for Large Multimodal Models (LMMs). In the ab-
sence of multimodal chain-of-thought annotated data, self-evolving training, where
the model learns from its own outputs, has emerged as an effective and scalable
approach for enhancing reasoning abilities. Despite its growing usage, a com-
prehensive understanding of self-evolving training, particularly in the context of
multimodal reasoning, remains limited. In this paper, we delve into the intricacies
of self-evolving training for multimodal reasoning, pinpointing three key factors:
Training Method, Reward Model, and Prompt Variation. We systematically ex-
amine each factor and explore how various configurations affect the training’s
effectiveness. Our analysis leads to a set of best practices for each factor, aimed
at optimizing multimodal reasoning. Furthermore, we explore the Self-Evolution
Dynamics during training and the impact of automatic balancing mechanisms in
boosting performance. After all the investigations, we present a final recipe for self-
evolving training in multimodal reasoning, encapsulating these design choices into
a framework we call M-STAR (Multimodal Self-evolving Training for Reasoning),
built on MiniCPM-V 2.5. M-STAR achieves 59.5% accuracy on MathVista, sur-
passing the pre-evolved model by 6.9% absolutely without using additional human
annotations. We believe this study fills a significant gap in the understanding of
self-evolving training for multimodal reasoning and offers a robust framework for
future research. Our policy and reward models, as well as the collected data, will
be released to facilitate further investigation in multimodal reasoning.

1 INTRODUCTION

With the rapid advancement of Large Language Models, their reasoning abilities have improved
significantly (Shao et al., 2024; Xin et al., 2024; Yang et al., 2024). This progress has been ac-
companied by a growing demand for more realistic and general reasoning capabilities. Multimodal
reasoning, considered a fundamental skill in many real-world applications, such as intelligent agents
(Liu et al., 2024c), robotics (Li et al., 2023; Liu et al., 2024b), and autonomous driving (Yang et al.,
2023), exemplifies this trend. Multimodal reasoning requires Large Multimodal Models (LMMs) to
understand various modalities beyond text. For example, visual mathematical reasoning (Lu et al.,
2023) challenges models to analyze complex figures, diagrams, and charts, leveraging the provided
information to perform reasoning tasks.

Despite these advances, the availability of human-annotated thought processes in multimodal scenar-
ios remains limited, challenging the learning of multimodal reasoning. Consequently, self-evolving
training, which utilizes model’s own generation ability to iteratively tune and improve itself without
external annotated data, has emerged as an appealing candidate to facilitate reasoning abilities. While
research on self-evolving training has primarily focused on the text-only settings (Hosseini et al.,
2024; Sun et al., 2024; Shao et al., 2024), its application in the multimodal domain, especially for
reasoning tasks, has been limited with only a few sporadic examples (Fang et al., 2024; Dubey et al.,
2024; Deng et al., 2024), and a unified framework has yet to be established.

We first identify the three key components of self-evolving training in multimodal reasoning, namely
the training method, the use of reward model and the prompt variation, to build a clear and unified
design space for searching the optimal strategies. Through massive controlled experiments, we find:
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Figure 1: Overview of our self-evolving training framework for multimodal reasoning. We investigate
the three essential design components of it, namely Training method, Reward model, and Prompt
variation. Orthogonal to the static factors, the Dynamics of self-evoloution is also monitered, and
provides control signals to the training process.

1. Optimizing the model from the last checkpoint is superior to retraining from scratch every time,
and inheriting the optimizer states from the previous iteration also leads to performance improvements.
Furthermore, each iteration should maintain an appropriate interval to traverse the queries in training
set, neither too large nor too small (§3.2).

2. Including an extra reward model to re-rank and select the generated responses benefits a lot after
filtering out incorrect responses, even if the reward model itself is not a qualified verifier (§3.3).

3. Adding more unlabeled queries helps only when having perfect reward signals (e.g., the oracle
groundtruth answers), and it hurts the performance if the reward model does not generalize well on
unseen data (§3.4).

Orthogonal to above static factors, we also dive into the dynamic evolving process of the model,
namely the dynamics of self-evolution to see how model’s behavior changes during the training.
We find that although the model performance of greedy decoding increases, its exploration potential
keeps decreasing through the training (§4).

Taking the self-evolving dynamics into account, we design a simple yet effective automatic mech-
anism, as shown in Figure 1, to dynamically adjust the temperature of sampling during training to
balance the exploitation and exploration (§4.2). Experimental results show that this strategy, combined
with the determined static design choices, effectively alleviate the loss of exploration throughout the
training process and further boost the performance on both the in-domain and out-of-domain test sets.

2 OVERVIEW OF SELF-EVOLVING TRAINING FOR MULTIMODAL REASONING

Self-evolving training can be modeled as a general framework of reinforcement learning, where
various algorithms can be formulated as a specific instantiation of RL, such as PPO (Schulman et al.,
2017), STaR (Zelikman et al., 2022), ReST (Gulcehre et al., 2023) and ReSTEM (Singh et al., 2023).
Specifically, given a reward function R, the objective of self-evolving training is to train the policy
model πθ to maximize expectation of reward R:

πθ = argmax
πθ

L∑
i

Ex,o∼D,ŷi∼πθ[·|x,o][R(ŷi)], (1)

where x, o represent the query and image in the given training data D, while ŷi is a response sampled
from the current policy model πθ. This standard RL objective, however, can be unstable to optimize
and difficult to scale up, thus a popular algorithm adopted by recent works is to decouple the response
rollout ŷi ∼ πθ[·|x, o] and policy improvement into separate offline stages (Gulcehre et al., 2023;
Singh et al., 2023): (1) Generate: the current policy model generates new responses ŷi ∼ πθ[·|x, o];
and (2) Improve: using the rewards to selects certain responses from the Generate step, which are
then used to train the policy model with a standard supervised fine-tuning (SFT) loss. This way,
the algorithm resembles Rejection Fine-Tuning (RFT, Yuan et al. (2023)) as it filters out negative
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responses in a hard manner. Both steps are performed iteratively to strike a tradeoff between offline
and online training. In many tasks such as mathematical problem-solving, there exists a unique,
ground-truth answer a∗ which is utilized in the reward function, for example, Singh et al. (2023)
directly adopts exact match to compute a binary reward by comparing ŷ and a∗. In such an iterative
training procedure, the objective at iteration t is to obtain an improved policy model πt+1

θ :

πt+1
θ = argmax

πt
θ

L∑
i

Ex,o,y∗∼D,ŷi∼πt
θ[·|x,o][R(a∗, ŷi)], (2)

where the ground-truth answer input a∗ to the reward function R can be empty, for example, when
dealing with unlabeled inputs, and then a reward model will be necessary to score ŷi.

The Design Spaces There are different design choices to model and implement Eq. 2, for example,
the design of reward function R and whether to incorporate additional unlabeled inputs without a∗
into training. Additionally, the training algorithms to perform this iterative process vary as well. For
example, while Gulcehre et al. (2023); Xu et al. (2024b) initialize the model from the last checkpoint
at each iteration, Zelikman et al. (2022); Singh et al. (2023) argue that initializing from the beginning
checkpoint reduces overfitting and gives better performance empirically. Moreover, the iteration
interval may matter as well – although the common practice is to process the entire dataset at every
iteration and the performance saturates after few iterations, it may be suboptimal and a more online
fashion with frequent iteration switch could potentially lead to improvements. Theoretically, a short
iteration interval with inherited optimizer and learning rate scheduler from the last iteration will turn
this iterative optimization into a standard online RL learning algorithm. Next, we investigate these
three design spaces, training method, reward model, and prompt variation, aiming to summarize the
best practices for each factor to faciliate multimodal reasoning learning.

3 DIVING INTO SELF-EVOLVING DESIGN COMPONENTS

In this section, we explore the three key components of self-evolving training, examining various
strategies within each. We begin by outlining the general setup (§3.1 ), followed by a comprehensive
analysis of each component to identify the best practices for multimodal self-evolution (§3.2-§3.4).

3.1 GENERAL SETUP

Model: We base our exploration on MiniCPM-V-2.5 (Yao et al., 2024), a powerful, openly released
LMM. MiniCPM-V-2.5 leverages LLaMA-3-8B (Meta, 2024) for its language model and SigLIP
(Zhai et al., 2023) as its vision encoder, resulting in strong multimodal capabilities. Its performance on
a wide range of multimodal benchmarks significantly surpasses previous openly released LMMs such
as LLaVA (Liu et al., 2023; 2024a) and Qwen-VL (Bai et al., 2023). This superior performance makes
MiniCPM-V-2.5 an ideal model for investigating self-evolving training in multimodal reasoning, with
fewer risks of being constrained by the model’s inherent capacities.

Datasets: We utilize MathV360K (Shi et al., 2024), a high-quality and diverse multimodal
reasoning dataset that includes 40K human-curated examples and 320K synthetic samples generated
by GPT-4V as our seed training dataset. The images and queries in this dataset span various subjects
in multimodal reasoning including algebra, arithmetic, geometry, logic, numeric commonsense and
science. Specifically, we downsample 180K examples from MathV360K to serve as our labeled
training set, while setting aside the remaining data as a unlabeled training set. For the labeled set,
each data sample is composed of (x, o, a) without the intermediate thought process annotation, while
for the unlabeled set we only have access to (x, o). This is a realistic setting as there are many
multimodal SFT datasets with the final answer labels, but annotated thought processes are scarce.
Our investigation will start with the labeled training set only, following existing practices (Singh et al.,
2023; Zelikman et al., 2022), then we will study the impact of the unlabeled training data in §3.4.

Warm-Up Phase to Unlock the Chain-of-Thought (CoT) Capability of LMMs: In our prelim-
inary experiments, we found that open-source LMMs would directly output the answer given the
query, while struggling to produce detailed chain-of-thought (CoT) reasoning processes. This may
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originate from the the scarcity of high quality rationales in most existing multimodal SFT training
datasets (Masry et al., 2022; Shi et al., 2024), which limits the ability of open-source LMMs to
generate detailed, step-by-step reasoning. Self-evolving training, however, requires responses with
varying intermediate steps to allow models to learn effectively from on-policy data. To address this
issue, we initiate a warm-up phase as the first step before self-evolving training. Instead of prompting
the model to answer questions directly, we prompt it to generate intermediate reasoning steps for a
given triplet (question, image, and answer). For each triplet, we ask models to rollout 16 samples
with temperature = 1.0. We then filter out results where the final answers do not match the ground
truth and sample 100K from the generated dataset to create a warm-up CoT dataset Dw with correct
answers. Finally, we fine-tune our models on this dataset, treating it as a standard RFT process. Our
iterative self-evolving training process will then start from this model checkpoint after the warm-up
training. For the prompt during the warm-up phase, please refer to Appendix A for more details.

Training and Evaluation: We adopt most training settings from Yao et al. (2024)(see Appendix B),
using a constant learning rate of 1e − 6 to train for 10K steps for all experiments. For all rollout
phases in training, we sample 16 responses for each query and set the temperature of sampling as 1.0.

For evaluation, we employ two evaluation settings: an in-domain (ID) testset and an out-of-domain
(OOD) one. For the in-domain test, we split 750 samples from the unlabeled part of MathV360K
(Shi et al., 2024), using regular expression to extract and match the answers. For the OOD test, we
assess our models using the testmini split of MathVista (Lu et al., 2023), a widely recognized
benchmark for multimodal reasoning, using GPT-4 to extract and match the answers. We also keep
an non-overlapping 250 samples from MathV360K as the global validation set in training.

3.2 TRAINING METHODS

As described in §2, there are multiple variants on how we would train to update the policy model. We
decouple the variation dimensions by thinking of the gap between iterative training and online RL –
when the iteration interval is small, the checkpoint at each iteration is initialized from one from the
last iteration, and the optimizer as well as the learning rate scheduler is inherited between iterations,
then iterative training becomes an online RL algorithm. Therefore, we cluster the variations by three
factors: (1) Model initialization: when training is performed at the “Improve” step, the model can
be initialized from either the last checkpoint (Xu et al., 2024b; Pang et al., 2024) or the beginning
checkpoint before the first iteration (Zelikman et al., 2022; Singh et al., 2023); (2) Iteration Interval:
while the common practice is to adopt a long iteration interval to process all the data queries for one
iteration, we study the effect of having a shorter iteration interval, bringing it closer to online learning;
and (3) Continuous Optimization: we propose to inherit the optimizers as well as the learning rate
schedulers from the last iteration besides inheriting the model checkpoint, so that the optimization is
continuous and closer to purely online learning algorithms. This way, we only have a global optimizer
and learning rate scheduler essentially across the entire iterative training process. We note that while
the variation on model initialization has been studied before, the other two factors, iteration interval
and continuous optimization, have been rarely discussed in previous implementations of iterative
self-evolving training, and they turn out to be important empirically as we will show next.

Setup We perform controlled experiments to study the effect of different training methods, thus
in this experiment we use the labeled dataset only and simply adopt the binary exact-match reward
between ground-truth answer a∗ and the generated answer. We compare with the most common
iterative self-evolving algorithms ReSTEM (Singh et al., 2023) and iterative RFT, which are specific
instantiations of our training methods design space. To distinguish from the baselines, the variants
with continuous optimization are named as Continuous Self-Evolving. To study the effect of iteration
interval, we experiment with different percentage of all the queries per iteration, varying from [6.25%,
12.5%, 25%, 50%, 100%].

Results Table 1 presents the experimental results of various training methods. Overall, initializing
training from the last policy model checkpoint πt

θ and maintaining a continuous optimization pro-
cess contribute the most significantly to the effectiveness of self-evolving training, particularly on
MathVista. Continuous self-evolving achieves best performance both on the in-domain MathV360K
test with 43.1% and on the OOD test set, MathVista, with 57.2%. We also see the importance of
maintaining a proper interval to traverse the data queries. With a large interval, the training method
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Table 1: Accuracy results (%) of self-evolving training using various training methods and iteration
intervals. Iteration Interval (#) stands for the ratio of data we traverse in one iteration, and we also
record the number of corresponding queries. M represents the policy model from which training
is initialized in each iteration. O denotes whether the optimization process is continuous, i.e., the
optimizer states and lr scheduler are inherited from the last checkpoint.

Method M O Iteration Interval (#) MathV360K MathVista

MiniCPM-V-2.5 - - - 13.6 52.4
+warmup - - - 38.8 52.6

SFT - - - 44.3 54.8

Iterative RFT πt
θ × 100%(180K) 42.3 55.7

RestEM π0
θ × 100%(180K) 42.3 55.1

Continous Self-Evolving πt
θ ✓

100%(180K) 42.2 56.7
50%(90K) 43.1 56.2
25%(45K) 43.1 57.2

12.5%(22K) 42.3 56.1
6.25%(11K) 41.0 56.8

becomes more closer to an offline one, and the model cannot get in-time update on data matching its
current output distribution. On the other hand, switching over the Improve and Generate steps too
frequently makes the learning unstable, leading to a lower score especially on the in-domain test set.

3.3 REWARD MODELS

In self-evolving training, the most common approach to reward function design uses a binary reward
R(ŷi) = 1(âi = a∗), where âi is the predicted answer inside ŷi and incorrect responses are filtered
out to maximize rewards. While effective, this sparse binary reward has limitations. It overlooks the
quality of the intermediate reasoning steps within a response. Additionally, reward models trained
from equal or higher capacity models than the policy model (Fried et al., 2022; Wang et al., 2024;
Sun et al., 2024) can provide richer signals to improve the policy model’s learning.

In this section, we introduce a Process Reward Model (PRM) (Lightman et al., 2023; Wang et al.,
2024) for multimodal reasoning—the first of its kind, to our knowledge—and explore how integrating
PRM can enhance reward design and whether it can improve policy model learning in self-evolving
training for multimodal reasoning. To incorporate the reward scores into the objective of self-evolving
training, the reward function is reformulated as:

R(ŷi) = H(1(a∗ = âi)×Rp(ŷi)) (3)

Rp(ŷi) = min(f(s0i ), f(s
1
i ), ..., f(s

m
i )) (4)

Here, H is an operation that processes responses based on the final reward scores, where we ensure
all responses are correct by matching the ground truths, and Rp(ŷi) represents the process reward
score for each sampled response. The function f(ski ) denotes the reward score at each intermediate
step. Following Lightman et al. (2023), we use the min operation to aggregate stepwise rewards.

Setup We conduct controlled experiments to assess the impact of incorporating the Process Reward
Model (PRM) into self-evolving training and explore how best to utilize the reward signals provided
by PRM. Notably, before applying PRM, responses are pre-filtered based on their final answers to
ensure consistency and quality during training. To train our PRM, we use Monte Carlo rollouts
starting from prefixes with partial reasoning steps (Wang et al., 2024) to generate the training data.
Specifically, we sample 16 responses per question and complete each step 8 times to obtain step-level
annotations. For additional details on the training process of our PRM, please refer to Appendix C.
We evaluate two different H operations: (1) Top-K: Pick the top-K correct responses according to
their reward scores, and (2) Filtering by a Threshold α: Filtering out sampled responses with lower
aggregated rewards than α. The optimal value of α is 0.2 which is determined by enumerating it with
an interval of 0.1 on the validation set. Additionally, we investigate how varying the value of K in
Top-K affects training, as it represents a trade-off between the quality and diversity of the samples.
According to §3.2, we fix training methods as continuous self-evolving with 45k interval and set
continuous self-evolving, with or without randomly selected correct responses as our baselines.
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Table 2: The results of self-evolving training with PRM and different strategies to leverage reward
scores. H stands for the method to further pick out high-quality responses from the correct rollouts:
(1) Top-k is we select K correct responses with highest rewards, and (2) > α is we pick out the
correct responses with reward scores larger than α.

Method H PRM MathV360K MathVista

Continuous Self-Evolving - × 43.1 57.2
+ Random Selection Random-2 × 41.0 55.5

+PRM-based Selection

> α

✓

43.8 57.5
Top-1 43.0 59.0
Top-2 45.3 59.2
Top-4 44.0 58.4
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Figure 2: (a): Accuracy on the val. set of greedy decoding and three selection strategy across different
numbers of rollouts; (b)/(c): Distribution of average # of steps and average relativity score annotated
by GPT4-o of Top 2 and the rest responses re-ranked by rewards, we only calculate on correct ones.

Results Table 2 presents the results of integrating the PRM into self-evolving training, along
with the impact of different H choices. Continuous Self-Evolving with PRM using Top-2 achieves
the best performance in both the ID and OOD tests, with scores of 45.3% and 59.2%, respectively.
Compared to training without PRM, most instances of self-evolving training with PRM show improved
performance, especially in the OOD test. Interestingly, randomly selecting a subset of correct
responses actually leads to worse performance than continuous self-evolving, suggesting that even
correct answers can be noisy. Random selection may increase the proportion of these noisy samples,
undermining the effectiveness of self-evolving training.

In terms of leveraging PRM, we found that using Top-K with a moderate number of re-
sponses—a re-ranking operation to select K correct responses with the highest-quality intermediate
steps—outperforms filtering by a threshold. The results also highlight the importance of balancing
the quality and diversity of sampled responses in self-evolving training. Selecting K = 2 strikes this
balance well, ensuring both response diversity and high-quality reasoning steps for each question.

What makes PRM work for self-evolving training? To pursue deeper insights into the role
of PRM in self-evolving training, we conduct an analysis presented in Figure 2. Based on the
experimental results from §3.3, we explore PRM’s impact from two key perspectives: (1) Can PRM
help the model to select out correct responses among different numbers of rollouts? (2) How different
are the Top 2 and the rest correct solutions re-ranked by reward scores? We use the first checkpoint
after warmup π0

θ as policy model to sample 16 responses for each question in the validation set with
temperature=1.0 and reveal the behaviors of PRM in these samples.

We evaluate the verification ability of our PRM using two metrics, Best-of-N (BoN) and weighted
voting (Sun et al., 2024), which are commonly employed to assess the performance of reward models.
Surprisingly, as shown in Figure 2a, our PRM underperforms in both metrics. Notably, BoN and
weighted voting yield worse results than vanilla majority voting when N < 16. We speculate that
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this is due to the lack of high-quality step-level annotations compared to text-only reasoning tasks.
These findings suggest that our PRM is not an effective verifier.

To understand why our PRM can still significantly contributes to self-evolving training despite its
weaker verification abilities, we analyzed the distribution of other metrics for the top-2 selected
responses compared to other correct responses. We approached this from two perspectives: the
average number of reasoning steps, and how much a response is directly relevant to the question
annotated by GPT-4o (see Appendix D), since we do not find incorrect steps but find some irrelevant
steps after randomly checking some examples . As shown in Figures 2b and 2c, the responses
re-ranked by our PRM generally have fewer reasoning steps and more relavant to the query. This
highlights the precision of our PRM in recognizing genuinely high-quality responses. Therefore,
our PRM acts as an effective reranker, precisely identifying top-quality responses. This precision
is especially critical in self-evolving training, where responses are already filtered by ground-truth
answers, and the ability to accurately assess the quality of reasoning steps becomes vital.

In addition to the aforementioned analysis, we also investigate why leveraging α to filter responses
with lower reward scores performs worse than Top-K. The results indicate that, even with the optimal
threshold value determined from the validation set, it tends to either retain or filter out all responses
for each query, which reduces diversity and makes the learning process more challenging. This
further supports the conclusion that our PRM performs better as a Reranker than as a Verifier.

3.4 PROMPT VARIATION

In this section, we explore how prompt variation affects self-evolving training. There are two primary
types of prompts: labeled prompts and unlabeled prompts. Labeled prompts come with annotated
ground truth answers, which can be used to filter out incorrect responses during training. In contrast,
utilizing unlabeled prompts in self-evolving training is more challenging due to the absence of ground
truth annotations. To maintain the quality of unlabeled prompts in training, surrogates like reward
scores or pseudo labels must be employed. Meanwhile, unlike labeled prompts, unlabeled prompts
are not be trained in SFT period, which increases the difficulty of learning for policy models.

Skylines: Unlabeled Prompts with Oracle Reward Signals The coupling of these additional
factors introduces complexity, making the effective use of unlabeled prompts less predictable. To
dissect these factors, we start by establishing a baseline with “skyline” experiments, where both the
unlabeled prompts and their ground truth answers are available but not used during the SFT phase.
These unlabeled prompts with oracle reward signals serve as an intermediate difficulty between fully
unlabeled and labeled prompts, providing insight into the challenges of training with unlabeled data.

Unlabeled Prompts We incorporate unlabeled prompts into self-evolving training. To ensure the
quality of sampled responses for these prompts, we use weighted voting to ensemble the predictions
from different responses, treating the ensembled prediction as a pseudo label ã. This pseudo label is
then used to filter out responses with conflicting predictions, ensuring consistency. Following the
best practices outlined in §3.3, we apply PRM as a reranker to select the top-2 responses among
those with the predicted answer ã. These unlabeled prompts are then mixed with labeled prompts for
self-evolving training. Additionally, since learning from unlabeled prompts is more challenging for
policy models, we investigate the optimal stage to introduce them into training to better understand
their impact on model performance. We maintain a training interval of 45k prompts and adjust when
unlabeled prompts are introduced into the self-evolving training process. Specifically, we introduce
unlabeled prompts after [0%, 25%, 50%, 75%] of the total training process.

A Glimpse at Unlabeled Prompts: Potential Efforts to Make Them Effective Table 3 presents
the results of incorporating unlabeled prompts with and without oracle reward signals.

When training relies solely on oracle reward signals without integrating the PRM, con-
tinuous self-evolving with unlabeled prompts outperforms standard continuous self-evolving
trained only on labeled prompts in the out-of-domain test but underperforms in the in-domain
test. This indicates that additional prompts help the model generalize better to underrep-
resented questions but also increase the risk of forgetting previously learned information.
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Table 3: Results of involving unlabeled data.
Tmixin denotes when to mixin the unlabeled
data. The use of PRM follows §3.3, except
we first get a pesudo “ground truth” through
weighted voting on unlabeled prompts.

Oracle PRM Tmixin MathVista MathV360K

- × - 57.2 43.1
- ✓ - 59.2 45.3
✓ × 0% 58.2 42.5
✓ ✓ 0% 59.1 42.9

× ✓ 0% 58.2 43.3
× ✓ 25% 57.6 42.4
× ✓ 50% 58.2 42.9
× ✓ 75% 58.8 45.0

However, after combining with our PRM, all policy
models perform worse than our best model trained ex-
clusively on labeled prompts in both benchmarks, even
when oracle reward signals are provided.

Based on the analysis in §3.3, this occurs since our
PRM is unable to verify responses without ground-truth
answers, and its generalization remains a concern.

When examining the timing for introducing unlabeled
prompts, we find that adding them from the beginning
helps mitigate the negative impact on model perfor-
mance, compared to introducing them midway through
the process. However, when unlabeled prompts are
introduced later in the training process, they participate
less in the overall training, leading to better results sim-
ply due to their limited involvement. This suggests that,
without sufficient surrogate supervision (e.g., reward
signals), introducing unlabeled prompts during the middle stages of self-evolving training can harm
the process, potentially causing a deviation in the policy model’s distribution.

4 DYNAMICS OF SELF-EVOLUTION AND THE FINAL RECIPE

So far, we have explored the impact of three pivotal factors within our design space, leading to
established best practices for learning multimodal reasoning – we adopt continuous self-evolving
training coupled with a reward model to help data selection as described in §3.3, and we perform the
training process on SFT datasets with final answer annotations. In this section, we delve even deeper
into the current self-evolution strategy to better understand the bottlenecks. Instead of analyzing from
a design space perspective as previously, we now fix the design parameters and focus exclusively on
the training dynamics during the model’s self-evolution. This shift in focus allows us to examine the
process from an orthogonal angle, providing further insights into the underlying mechanisms that
drive or impede progress in multimodal reasoning capabilities.

4.1 MONITORING THE TRAINING DYNAMICS

Intuitively, two critical conditions must be met for the success of self-evolving training: (1) the
presence of high-quality candidate responses generated by the model, otherwise self-evolving will
not work no matter how strong the reward is; and (2) the reward function’s ability to effectively
distinguish and prioritize these high-quality responses. These conditions align with the traditional
reinforcement learning concepts of exploration and exploitation. Apparently, both exploration and
exploitation capabilities are dynamic targets in self-evolving training, as the policy model evolves and
the distribution of rollout responses changes with each iteration. To better understand these training
dynamics, we propose tracking and visualizing four metrics:

• Greedy Accuracy: the model’s accuracy with greedy decoding. We track this metric for reference
to compare with other metrics.

• Pass@K Accuracy: the percentage of samples for which the model produces at least one correct
response when sampling K candidates. This metric measures the model’s exploration ability.

• (Pass@K - Greedy) Accuracy: the difference between Pass@K and Greedy accuracy. Typically,
Pass@K is an upper bound of Greedy Accuracy, and the gap roughly reflects the percentage of
samples where the model, while failing in greedy decoding, can generate a correct response when
sampling more candidates. This gap is crucial for the success of self-evolving training—a zero gap
indicates that the model fails to explore correct responses for the current failure cases, suggesting
that further training is unlikely to yield significant improvement.

• Reward-Pass@2: the percentage of samples for which there exist correct responses among the top
2 responses ranked by the reward model. This metric directly reflects the exploitation efficacy of
the reward model for the current policy. We choose Pass@2 since our training strategy involves
selecting the top 2 responses using the reward model (§3.3).
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Figure 4: (a): Pass@K decreases for all different temperatures; (b): The gap between Pass@K and
Greedy Decoding; (c): The Reward-Pass@2 saturates quickly. All metrics, including the greedy
decoding accuracy, are calculated on validation set.

Specifically, after each training iteration of our current optimal strategy, we sample 16 re-
sponses from the model checkpoint on the validation set, with the temperature range set to
t = [0.5, 0.7, 1.0, 1.2, 1.5, 1.7, 2.0]. We analyze with varying temperatures as temperature is a
key hyperparameter for the generation diversity and model’s exploration.
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Figure 3: The opposite trend of
Greedy Decoding Accuracy and
Pass@K.

Results: Figure 3 shows a clear trend where, as training
progresses, the Pass@K metric continuously declines while
greedy accuracy improves. This pattern indicates the loss of
exploration ability, which hampers the model’s potential for
continuous improvement and may lead to performance sat-
uration. These observations are consistent with findings in
text-only settings as reported by Wu et al. (2024). In Figure 4a
we analyze Pass@K accuracy at various temperatures and ob-
serve a significant trend: despite a general decay in exploration
ability, larger temperatures tend to resist this decline more
effectively, allowing the model to maintain a stronger ability
to explore in the mid to late stages of training. This observa-
tion suggests that the optimal temperature for training may
need to be dynamically adjusted throughout the self-evolving
process, rather than being fixed at the outset as is currently
common practice. In Figure 4b we plot the (Pass@K - Greedy)
accuracy, this phenomenon becomes even more pronounced, indicating that the model’s exploration
during training is converging to greedy decoding. Additionally in Figure 4c, we observe that the
Reward-Pass@2 metric initially increases but quickly reaches a plateau, indicating that the reward
model’s capacity to exploit further diminishes as training progresses. This limitation could be due
to both the reduced exploration ability and the inherent constraints of the reward model. Next, we
fix the reward model as a control variable and ask, how can we enhance exploration to allow the
reward model to exploit more effectively?.1

4.2 M-STAR– FINAL RECIPE WITH OPTIMAL DESIGN CHOICES & ADAPTIVE EXPLORATIONS

Reward-Pass@2 closely relates to the effectiveness of our self-evolving training strategy since our
method selects top responses ranked by the reward model, and Reward-Pass@K directly reflects the
quality of these 2 responses.2 While Reward-Pass@2 naturally measures exploitation when the policy

1While improvements to the reward model could also enhance Reward-Pass@2, we reserve it for future work.
2We note that there is a slight mismatch between Reward-Pass@2 and our training strategy, as we pre-filter

responses using the ground-truth answer before the reward model reranks them. Ideally, a more aligned metric
would measure the CoT reasoning quality of the top 2 responses, both containing correct answers. Given that
there is no reliable method to score the quality of the thought processes, we consider Reward-Pass@2 as a
reasonable approximation which turns out to be effective empirically.
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Table 4: Performance of M-STARcompared
with baselines and methods considering only
static components. We highlight the relative
improvement of M-STAR over the pre-evolved
model, i.e., the “+warmup” row.

MathV360K MathVista

Baselines

MiniCPM-V-2.5 13.6 52.4
+ warmup 38.8 52.6

SFT 44.3 54.8
ReSTEM 42.3 55.1
Iterative RFT 42.3 55.7

Static components only

Cont. optim. 43.1 57.2
+ PRM Re-Rank 45.3 59.2

Automatically tuning the temperature T

M-STAR (Pass@K) 42.8 58.0
M-STAR (Reward-Pass@2) 45.9 (+7.1) 59.5 (+6.9)
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Figure 5: Comparing the Pass@K and
Reward-Pass@2 metrics with the optimal
static training progress, which fixes temper-
ature T = 1.0. We use Savitzky-Golay fil-
ter (Savitzky & Golay, 1964) to smooth the
curves.

is fixed, the absolute value of this metric actually encapsulates both exploration and exploitation – its
value would be low if the model fails to explore high-quality candidates.

Therefore, we hypothesize that enhancing the Reward-Pass@K scores for the current iteration through
varied configurations could potentially improve the efficacy of self-evolving training. We fix reward
model as a control variable and focus on modifying the model’s exploration capabilities to achieve
this objective. Analysis in §4.1 suggests that the temperature, which is crucial for exploration,
may require dynamic adjustment. Thus we propose to adjust the temperature automatically at each
iteration based on the validation Reward-Pass@2 scores. This aims to optimize exploration so that
the selected responses are of higher quality, potentially enhancing overall training effectiveness.

Specifically, we adjust the temperature per two iterations, and pick the temperature from 0.3 to 1.6
with interal 0.1 automatically with maximum validation Reward-Pass@2 scores. The optimal design
choices outlined in §3, combined with our adaptive exploration strategy, form our final recipe for
multimodal self-evolving training for reasoning, M-STAR.

Results: Table 4 presents the results of our final approach. By incorporating the dynamics of
Reward-Pass@2, which balances both exploration and exploitation, our final recipe achieves the
highest results, with 59.5% on the OOD test and 45.9% on the in-domain test. In contrast, models that
only monitor Pass@K show diminished performance on both benchmarks. This reinforces the validity
of our training design, demonstrating that an effective self-evolving training process requires a careful
balance of both exploration and exploitation, as facilitated by the reward model. We also plot how
the Pass@K and Reward-Pass@2 changes for M-STAR (Reward-Pass@2). To align with training,
we show the metrics corresponding to the selected temperature in each iteration (see Appendix E
for others). Figure 5 shows that compared with static strategy to choose a fixed temperature over
the whole process, tuning it automatically mitigate the regression of Pass@K to help maintain the
exploration ability. Besides, the Reward-Pass@2 is also generally higher than before. These further
highlight the necessity to monitor the dynamics during training and adjust accordingly.

5 CONCLUSION

We dive into the self-evolving training for multimodal reasoning. Three static components are
identified at first, namely the training method, reward model and the prompt variation. Through
controlled experiments, we conclude a set of optimal design choices. On the other direction, we go
deeper into the dynamics of self-evolving training to analyze the trade-off between exploitation and
exploration. By monitoring the dynamics and adjusting key hyperparameters accordingly, we are
able to further improve the model performance. We hope our work can provide insights and guidance
for future research on self-evolving training for multimodal reasoning.
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A COLLECTING WARMUP TRAINING DATA WITH CHAIN-OF-THOUGHT

Since our base model typically outputs the answer directly when responding to multimodal reasoning
questions, during the warmup phase, we added additional instructions along with the input question,
requiring the model to output the rationale. The instructions used in this process are as follows:

Extra instruction to guide CoT

Offer a comprehensive breakdown of your analytical process, detailing each step, the reasoning behind
your decisions, and how you integrated various pieces of information, and put your answer at the end.

B HYPER PARAMETERS

We follow the training setup from Yao et al. (2024), using a learning rate of 1e-6 and a batch size
of 128. A constant learning rate scheduler with a warmup ratio of 0.1 is applied. Input images are
encoded using SigLIP SoViT-400m/14 (Zhai et al., 2023), and the visual tokens are compressed
through a perceiver resampler structure with a single cross-attention layer. Additionally, each input
image is sliced into a maximum of 9 segments, with each segment compressed into 96 queries.

C TRAINING PROCESS REWARD MODEL (PRM)

To train our PRM, we first train another checkpoint (denoted as π̂0
θ ) on our CoT-augmented training

data for a much longer period to make sure it fully converges.

Based on this model, we leverage Monte Carlo Rollut method (Wang et al., 2024) to collect the
training data for PRM. Specially, we randomly pick 50K questions from the full training set, and
sample 16 responses for each of them with π̂0

θ . We de-duplicate these responses, and only keep at
most 4 responses for each question. After that we randomly sample 50K question-response pairs
from all the pairs, where we control the ratio of correct and wrong responses as 1:1, and the ratio of
multi-choice and free-form question as 1:1 as well, to keep a balanced distribution.

To construct the labels of each step, we use π̂0
θ as the completer to complete the solution

from the end of each step in one response. For the kth step, the step label is annotated as
1
N

∑N
j=1 1(Cj(s

≤k) = a∗), where N(= 16) is the number of completion, Cj is the j-th completion.

Based on the stepwise annotations, we train our PRM from π̂0
θ . We initialize the linear reward model

head as the average of the embeddings, and train with MSE loss on all tokens, where the label of
each token is identical to the step end token. In experiments we freeze the visual encoder as we find
it brings a slight improvement.

D MEASURING RESPONSE RELATIVITY

To get a comprehensive understanding of how our PRM works as a re-ranker, we conduct a quantitative
analysis using GPT4-o (gpt-4o-2024-08-06) to see how much a correct response is directly
related to the query, e.g., does not contain irrelvant steps. The prompt we use is as follows:

Prompt for GPT4-o to annotate the relativity score

Given the image and a related question, you need to judge how a candidate solution is directly related to
the question. You need to consider all its steps, and return a final value bewteen 1-10 as a overall score.
Conclude your judgement at the end as ”So the relativity score is X” where X is the score you give.

[Question]
{question}

[Solution]
{solution}
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E MORE RESULTS FOR M-STAR

We plot the extra analysis results for M-STAR here. In Figure 6, we plot the changes of Pass@K
and Reward-Pass@2 across different temperatures for M-STAR(Reward-Pass@2) as a compliment
to the adapative adjustion mentioned in §4.2. We can see that acroos all selected temperatures, the
exploration ability reflected by Pass@K does not regress continuously, and the Reward-Pass@2
reaches its peak more quickly, compared with training without the monitor of dynamics.
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Figure 6: (a):Pass@K changes during the training of M-STAR (Reward-Pass@2); (b): :Reward-
Pass@2 changes during the training of M-STAR (Reward-Pass@2). We pick 7 different temperatures.

F FULL RESULTS FOR MATHVISTA

To comprehensively evaluate the impact of different strategies for components in self-evolving
training, we present the full results of MathVista, enabling a more detailed analysis. Instead of
focusing solely on mathematical word problems (as one may be mislead by its name), MathVista
actually encompasses a diverse set of reasoning-related tasks for LMMs, including figure question
answering, visual question answering, science question answering, and more. As shown in Table 5,
the overall performance corroborates our findings in § 3 and § 4, using three different models across
three scales. The results demonstrate that the continuous self-evolving training method outperforms
other self-evolving training approaches and simple SFT. Additionally, employing PRM as a Re-
Ranker further enhances the performance of self-evolving training. Moreover, adjusting training
dynamics provides additional performance gains, underscoring the importance of monitoring the
training dynamics between exploration and exploitation during self-evolving training.

In addition to overall performance, we observe that self-evolving training based on larger models
yields more comprehensive improvements across various sub-tasks. For instance, MiniCPMV-2.5
(8B), utilizing our optimal strategy and final recipe, achieves the best performance in 11 out of 12
sub-tasks, while Phi-3.5-Vision (4B) leads in 8 out of 12 sub-tasks. In contrast, the smaller model,
InternVL2-2B, shows significant improvements primarily in math-related tasks. We speculate that
this is because the training queries contain many math-related problems. Consequently, the smaller
model struggles to generalize its learned abilities across different domains as effectively as the larger
models, such as MiniCPMV-2.5 and Phi-3.5-vision.

G GENERALIZATION OF M-STAR

To further investigate how well M-STAR generalizes to benchmarks other than MathVista along, we
select four extra multi-modal benchmarks focus on reasoning as well: M3CoT (Chen et al., 2024b),
MMStar (Chen et al., 2024a), MMBench (Dev set, v1.1) (Liu et al., 2025), AI2D (Kembhavi et al.,
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Table 5: Full analysis of MathVista. Task types: FQA: figure question answering, GPS: geometry
problem solving, MWP: math word problem, TQA: textbook question answering, VQA: visual
question answering. Mathematical reasoning types: ALG: algebraic reasoning, ARI: arithmetic
reasoning, GEO: geometry reasoning, LOG: logical reasoning, NUM: numeric commonsense, SCI:
scientific reasoning, STA: statistical reasoning.

Model ALL FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA
MiniCPMV-2.5

MiniCPMV-2.5 52.4 59.2 44.7 50.5 53.8 48.0 42.7 46.5 46.0 29.7 36.1 56.7 60.1
+warmup 52.8 58.4 47.1 57.0 53.8 45.8 45.5 49.6 48.5 16.2 31.9 53.3 62.8

SFT 54.7 58.7 50.5 56.5 55.7 50.8 47.0 49.0 51.0 18.9 43.1 58.2 57.5
Iterative RFT 55.7 59.1 49.5 65.6 55.1 48.0 47.3 53.8 50.6 16.2 37.5 55.7 65.1
RestEM 55.1 58.0 49.5 64.5 55.1 47.5 47.7 53.8 50.2 16.2 38.2 56.6 63.5
Cont. optim. 57.2 57.6 56.3 65.1 57.0 49.7 52.0 54.4 56.1 10.8 36.1 60.7 65.5

+PRM Re-Rank 59.2↑ 6.4 59.1↑ 0.7 61.1↑ 14 68.3↑ 11.3 55.1↑ 1.3 51.4↑ 5.6 54.8↑ 9.3 55.2↑ 5.6 60.3↑ 11.8 10.8↓ 5.4 43.1↑ 11.2 59.0↑ 5.7 66.5↑ 3.7

M-STAR 59.5↑ 6.7 59.5↑ 1.1 59.1↑ 12 65.6↑ 8.6 58.9↑ 5.1 54.2↑ 8.4 54.5↑ 9 56.7↑ 7.1 58.2↑ 9.7 10.8↓ 5.4 43.1↑ 11.2 61.5↑ 8.2 69.1↑ 6.3

Phi-3.5-vision

Phi-3.5-vision 46.5 58.7 36.5 36.0 56.3 41.9 39.5 38.8 36.4 16.2 34.0 60.7 62.8
+warmup 49.3 55.8 42.8 53.2 55.1 38.0 43.1 44.8 43.9 8.1 33.3 59.0 62.5
SFT 49.5 53.9 52.9 52.7 49.4 35.8 47.3 41.4 51.5 32.4 33.3 56.6 57.5
Iterative RFT 50.2 58.4 41.4 50.0 55.7 43.0 42.0 43.9 41.8 10.1 41.7 58.2 65.0
RestEM 50.5 56.8 46.6 49.5 58.9 39.7 47.0 43.3 45.6 18.9 34.7 61.5 63.5
Cont. optim. 51.1 56.1 48.6 55.9 52.5 40.2 46.6 45.9 47.7 8.1 34.7 51.6 64.5
+PRM Re-Rank 53.2↑ 3.9 56.9↑ 1.1 51.9↑ 9.1 60.8↑ 7.6 55.10 39.7↑ 1.7 48.8↑ 5.7 46.2↑ 1.4 50.6↑ 6.7 5.4↓ 2.7 41.7↑ 8.4 59.8↑ 0.8 65.1↑ 2.6

M-STAR 54.5↑ 5.2 56.9↑ 1.1 56.7↑ 13.9 57.5↑ 4.3 55.10 44.7↑ 6.7 53.4↑ 10.3 48.4↑ 3.6 55.2↑ 11.3 5.4↓ 2.7 42.4↑ 9.1 56.6↓ 2.4 65.8↑ 3.3

InternVL2-2B

InternVL2-2B 46.4 53.2 45.2 33.3 50.0 48.0 41.6 41.4 43.1 10.8 25.7 55.7 59.8
+warmup 47.6 52.4 54.8 46.2 43.7 36.9 48.8 40.5 52.3 16.2 24.3 50.0 58.8

SFT 41.9 37.5 40.4 49.5 32.3 50.8 36.3 45.9 39.3 16.2 38.9 38.5 38.5
Iterative RFT 47.5 49.8 57.7 52.1 41.8 32.4 50.5 40.8 55.2 2.7 25.0 42.6 57.8
RestEM 47.9 49.4 54.8 51.1 51.3 31.3 51.2 39.4 53.1 10.8 25.7 50.8 57.5
Cont. optim. 48.4 53.2 50.5 56.5 40.5 37.4 44.8 41.6 47.7 5.4 34.7 45.1 60.8

+PRM Re-Rank 48.8↑ 1.2 52.0↓ 0.4 55.8↑ 1 52.1↑ 5.9 45.6↑ 1.9 35.2↓ 1.7 50.2↑ 1.4 39.4↓ 1.1 55.2↑ 2.9 5.4↓ 10.8 33.3↑ 9 45.9↓ 4.1 60.5↑ 1.7

M-STAR 50.3↑ 2.7 49.4↓ 3 57.2↑ 2.4 65.0↑ 18.8 42.4↓ 1.3 35.2↓ 1.7 50.5↑ 1.7 47.0↑ 6.5 56.1↑ 3.8 13.5↓ 2.7 32.6↑ 8.3 45.9↓ 4.1 57.1↓ 1.7

Table 6: Performance of M-STAR compared with baselines and methods considering only static
components. We highlight the relative improvement of M-STAR over the pre-evolved model, i.e.,
the “+warmup” row. For benchmark with suffix “-R”, we follow Xu et al. (2024a) to remove some
perception sub-tasks in them, to get the subsets that focus more on reasoning.

MathVista M3CoT MMStar-R MMBench-R AI2D Average

MiniCPM-V-2.5 52.4 41.2 44.6 72.6 64.4 55.0
+ warmup 52.6 47.8 45.1 76.9 65.9 57.7

M-STAR 59.5↑ 6.9 48.7↑ 0.9 50.7↑ 5.6 79.9↑ 3 69.1↑ 3.2 61.6↑ 3.9

Phi-3.5-vision 46.5 39.4 42.5 56.8 47.5 46.5
+ warmup 49.3 46.5 44.2 70.9 65.5 55.3

M-STAR 54.5↑ 5.2 51.3↑ 4.8 48.8↑ 4.6 73.6↑ 2.7 67.9↑ 2.4 59.2↑ 3.9

InternVL2-2B 46.4 16.7 20.0 14.2 33.5 26.2
+ warmup 47.6 45.6 41.8 68.8 60.0 52.8

M-STAR 50.3↑ 2.7 47.1↑ 1.5 42.0↑ 0.2 67.3↓ 1.5 59.7↓ 0.3 53.3↑ 0.5

2016). For MMStar and MMBench, we remove the perception sub-tasks in them to construct subsets
focus more on reasoning. As shown in Table 6, models self-evolved with M-STARconsistently
outperform both the base models and those trained with warmup across nearly all benchmarks. The
only exception is InternVL2-2B, which underperforms on two benchmarks, aligning with the findings
and speculations discussed in § F. Smaller models face greater challenges in generalizing beyond
their training data, particularly on perception-intensive benchmarks like MMBench-R and AI2D.
In contrast, larger models such as Phi-3.5-vision and MiniCPM-V-2.5 demonstrate significantly
improved generalization, despite being trained with the same query set.
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