
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIVING INTO SELF-EVOLVING TRAINING FOR
MULTIMODAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning ability is essential for Large Multimodal Models (LMMs). In the ab-
sence of multimodal chain-of-thought annotated data, self-evolving training, where
the model learns from its own outputs, has emerged as an effective and scalable
approach for enhancing reasoning abilities. Despite its growing usage, a com-
prehensive understanding of self-evolving training, particularly in the context of
multimodal reasoning, remains limited. In this paper, we delve into the intricacies
of self-evolving training for multimodal reasoning, pinpointing three key factors:
Training Method, Reward Model, and Prompt Variation. We systematically ex-
amine each factor and explore how various configurations affect the training’s
effectiveness. Our analysis leads to a set of best practices for each factor, aimed
at optimizing multimodal reasoning. Furthermore, we explore the Self-Evolution
Dynamics during training and the impact of automatic balancing mechanisms in
boosting performance. After all the investigations, we present a final recipe for self-
evolving training in multimodal reasoning, encapsulating these design choices into
a framework we call M-STAR (Multimodal Self-evolving Training for Reasoning),
built on MiniCPM-V 2.5. M-STAR achieves 59.5% accuracy on MathVista, sur-
passing the pre-evolved model by 6.9% absolutely without using additional human
annotations. We believe this study fills a significant gap in the understanding of
self-evolving training for multimodal reasoning and offers a robust framework for
future research. Our policy and reward models, as well as the collected data, will
be released to facilitate further investigation in multimodal reasoning.

1 INTRODUCTION

With the rapid advancement of Large Language Models, their reasoning abilities have improved
significantly (Shao et al., 2024; Xin et al., 2024; Yang et al., 2024). This progress has been ac-
companied by a growing demand for more realistic and general reasoning capabilities. Multimodal
reasoning, considered a fundamental skill in many real-world applications, such as intelligent agents
(Liu et al., 2024c), robotics (Li et al., 2023; Liu et al., 2024b), and autonomous driving (Yang et al.,
2023), exemplifies this trend. Multimodal reasoning requires Large Multimodal Models (LMMs) to
understand various modalities beyond text. For example, visual mathematical reasoning (Lu et al.,
2023) challenges models to analyze complex figures, diagrams, and charts, leveraging the provided
information to perform reasoning tasks.

Despite these advances, the availability of human-annotated thought processes in multimodal scenar-
ios remains limited, challenging the learning of multimodal reasoning. Consequently, self-evolving
training, which utilizes model’s own generation ability to iteratively tune and improve itself without
external annotated data, has emerged as an appealing candidate to facilitate reasoning abilities. While
research on self-evolving training has primarily focused on the text-only settings (Hosseini et al.,
2024; Sun et al., 2024; Shao et al., 2024), its application in the multimodal domain, especially for
reasoning tasks, has been limited with only a few sporadic examples (Fang et al., 2024; Dubey et al.,
2024; Deng et al., 2024), and a unified framework has yet to be established.

We first identify the three key components of self-evolving training in multimodal reasoning, namely
the training method, the use of reward model and the prompt variation, to build a clear and unified
design space for searching the optimal strategies. Through massive controlled experiments, we find:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Improve
Training Method

Generate

𝜋𝜃
𝑡

𝐷𝐺
𝑡

𝐷𝐺
𝑡′

𝑅
Reward

Model

Prompt Variation Data

What is the value of

the smallest individual

bar in the whole chart?

Answer

20

ABCD is a square.

Inscribed Circle center

is O. Find the angle of

∠AMK. Return the

numeric value.

Self-Evolving Loop

𝐷𝑡

Repeat

G-Step

Monitor Training Dynamics

Exploitation & Exploration
𝑡 ↑

Figure 1: Overview of our self-evolving training framework for multimodal reasoning. We investigate
the three essential design components of it, namely Training method, Reward model, and Prompt
variation. Orthogonal to the static factors, the Dynamics of self-evoloution is also monitered, and
provides control signals to the training process.

1. Optimizing the model from the last checkpoint is superior to retraining from scratch every time,
and inheriting the optimizer states from the previous iteration also leads to performance improvements.
Furthermore, each iteration should maintain an appropriate interval to traverse the queries in training
set, neither too large nor too small (§3.2).

2. Including an extra reward model to re-rank and select the generated responses benefits a lot after
filtering out incorrect responses, even if the reward model itself is not a qualified verifier (§3.3).

3. Adding more unlabeled queries helps only when having perfect reward signals (e.g., the oracle
groundtruth answers), and it hurts the performance if the reward model does not generalize well on
unseen data (§3.4).

Orthogonal to above static factors, we also dive into the dynamic evolving process of the model,
namely the dynamics of self-evolution to see how model’s behavior changes during the training.
We find that although the model performance of greedy decoding increases, its exploration potential
keeps decreasing through the training (§4).

Taking the self-evolving dynamics into account, we design a simple yet effective automatic mech-
anism, as shown in Figure 1, to dynamically adjust the temperature of sampling during training to
balance the exploitation and exploration (§4.2). Experimental results show that this strategy, combined
with the determined static design choices, effectively alleviate the loss of exploration throughout the
training process and further boost the performance on both the in-domain and out-of-domain test sets.

2 OVERVIEW OF SELF-EVOLVING TRAINING FOR MULTIMODAL REASONING

Self-evolving training can be modeled as a general framework of reinforcement learning, where
various algorithms can be formulated as a specific instantiation of RL, such as PPO (Schulman et al.,
2017), STaR (Zelikman et al., 2022), ReST (Gulcehre et al., 2023) and ReSTEM (Singh et al., 2023).
Specifically, given a reward function R, the objective of self-evolving training is to train the policy
model πθ to maximize expectation of reward R:

πθ = argmax
πθ

L∑
i

Ex,o∼D,ŷi∼πθ[·|x,o][R(ŷi)], (1)

where x, o represent the query and image in the given training data D, while ŷi is a response sampled
from the current policy model πθ. This standard RL objective, however, can be unstable to optimize
and difficult to scale up, thus a popular algorithm adopted by recent works is to decouple the response
rollout ŷi ∼ πθ[·|x, o] and policy improvement into separate offline stages (Gulcehre et al., 2023;
Singh et al., 2023): (1) Generate: the current policy model generates new responses ŷi ∼ πθ[·|x, o];
and (2) Improve: using the rewards to selects certain responses from the Generate step, which are
then used to train the policy model with a standard supervised fine-tuning (SFT) loss. This way,
the algorithm resembles Rejection Fine-Tuning (RFT, Yuan et al. (2023)) as it filters out negative

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

responses in a hard manner. Both steps are performed iteratively to strike a tradeoff between offline
and online training. In many tasks such as mathematical problem-solving, there exists a unique,
ground-truth answer a∗ which is utilized in the reward function, for example, Singh et al. (2023)
directly adopts exact match to compute a binary reward by comparing ŷ and a∗. In such an iterative
training procedure, the objective at iteration t is to obtain an improved policy model πt+1

θ :

πt+1
θ = argmax

πt
θ

L∑
i

Ex,o,y∗∼D,ŷi∼πt
θ[·|x,o][R(a∗, ŷi)], (2)

where the ground-truth answer input a∗ to the reward function R can be empty, for example, when
dealing with unlabeled inputs, and then a reward model will be necessary to score ŷi.

The Design Spaces There are different design choices to model and implement Eq. 2, for example,
the design of reward function R and whether to incorporate additional unlabeled inputs without a∗
into training. Additionally, the training algorithms to perform this iterative process vary as well. For
example, while Gulcehre et al. (2023); Xu et al. (2024b) initialize the model from the last checkpoint
at each iteration, Zelikman et al. (2022); Singh et al. (2023) argue that initializing from the beginning
checkpoint reduces overfitting and gives better performance empirically. Moreover, the iteration
interval may matter as well – although the common practice is to process the entire dataset at every
iteration and the performance saturates after few iterations, it may be suboptimal and a more online
fashion with frequent iteration switch could potentially lead to improvements. Theoretically, a short
iteration interval with inherited optimizer and learning rate scheduler from the last iteration will turn
this iterative optimization into a standard online RL learning algorithm. Next, we investigate these
three design spaces, training method, reward model, and prompt variation, aiming to summarize the
best practices for each factor to faciliate multimodal reasoning learning.

3 DIVING INTO SELF-EVOLVING DESIGN COMPONENTS

In this section, we explore the three key components of self-evolving training, examining various
strategies within each. We begin by outlining the general setup (§3.1), followed by a comprehensive
analysis of each component to identify the best practices for multimodal self-evolution (§3.2-§3.4).

3.1 GENERAL SETUP

Model: We base our exploration on MiniCPM-V-2.5 (Yao et al., 2024), a powerful, openly released
LMM. MiniCPM-V-2.5 leverages LLaMA-3-8B (Meta, 2024) for its language model and SigLIP
(Zhai et al., 2023) as its vision encoder, resulting in strong multimodal capabilities. Its performance on
a wide range of multimodal benchmarks significantly surpasses previous openly released LMMs such
as LLaVA (Liu et al., 2023; 2024a) and Qwen-VL (Bai et al., 2023). This superior performance makes
MiniCPM-V-2.5 an ideal model for investigating self-evolving training in multimodal reasoning, with
fewer risks of being constrained by the model’s inherent capacities.

Datasets: We utilize MathV360K (Shi et al., 2024), a high-quality and diverse multimodal
reasoning dataset that includes 40K human-curated examples and 320K synthetic samples generated
by GPT-4V as our seed training dataset. The images and queries in this dataset span various subjects
in multimodal reasoning including algebra, arithmetic, geometry, logic, numeric commonsense and
science. Specifically, we downsample 180K examples from MathV360K to serve as our labeled
training set, while setting aside the remaining data as a unlabeled training set. For the labeled set,
each data sample is composed of (x, o, a) without the intermediate thought process annotation, while
for the unlabeled set we only have access to (x, o). This is a realistic setting as there are many
multimodal SFT datasets with the final answer labels, but annotated thought processes are scarce.
Our investigation will start with the labeled training set only, following existing practices (Singh et al.,
2023; Zelikman et al., 2022), then we will study the impact of the unlabeled training data in §3.4.

Warm-Up Phase to Unlock the Chain-of-Thought (CoT) Capability of LMMs: In our prelim-
inary experiments, we found that open-source LMMs would directly output the answer given the
query, while struggling to produce detailed chain-of-thought (CoT) reasoning processes. This may

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

originate from the the scarcity of high quality rationales in most existing multimodal SFT training
datasets (Masry et al., 2022; Shi et al., 2024), which limits the ability of open-source LMMs to
generate detailed, step-by-step reasoning. Self-evolving training, however, requires responses with
varying intermediate steps to allow models to learn effectively from on-policy data. To address this
issue, we initiate a warm-up phase as the first step before self-evolving training. Instead of prompting
the model to answer questions directly, we prompt it to generate intermediate reasoning steps for a
given triplet (question, image, and answer). For each triplet, we ask models to rollout 16 samples
with temperature = 1.0. We then filter out results where the final answers do not match the ground
truth and sample 100K from the generated dataset to create a warm-up CoT dataset Dw with correct
answers. Finally, we fine-tune our models on this dataset, treating it as a standard RFT process. Our
iterative self-evolving training process will then start from this model checkpoint after the warm-up
training. For the prompt during the warm-up phase, please refer to Appendix A for more details.

Training and Evaluation: We adopt most training settings from Yao et al. (2024)(see Appendix B),
using a constant learning rate of 1e − 6 to train for 10K steps for all experiments. For all rollout
phases in training, we sample 16 responses for each query and set the temperature of sampling as 1.0.

For evaluation, we employ two evaluation settings: an in-domain (ID) testset and an out-of-domain
(OOD) one. For the in-domain test, we split 750 samples from the unlabeled part of MathV360K
(Shi et al., 2024), using regular expression to extract and match the answers. For the OOD test, we
assess our models using the testmini split of MathVista (Lu et al., 2023), a widely recognized
benchmark for multimodal reasoning, using GPT-4 to extract and match the answers. We also keep
an non-overlapping 250 samples from MathV360K as the global validation set in training.

3.2 TRAINING METHODS

As described in §2, there are multiple variants on how we would train to update the policy model. We
decouple the variation dimensions by thinking of the gap between iterative training and online RL –
when the iteration interval is small, the checkpoint at each iteration is initialized from one from the
last iteration, and the optimizer as well as the learning rate scheduler is inherited between iterations,
then iterative training becomes an online RL algorithm. Therefore, we cluster the variations by three
factors: (1) Model initialization: when training is performed at the “Improve” step, the model can
be initialized from either the last checkpoint (Xu et al., 2024b; Pang et al., 2024) or the beginning
checkpoint before the first iteration (Zelikman et al., 2022; Singh et al., 2023); (2) Iteration Interval:
while the common practice is to adopt a long iteration interval to process all the data queries for one
iteration, we study the effect of having a shorter iteration interval, bringing it closer to online learning;
and (3) Continuous Optimization: we propose to inherit the optimizers as well as the learning rate
schedulers from the last iteration besides inheriting the model checkpoint, so that the optimization is
continuous and closer to purely online learning algorithms. This way, we only have a global optimizer
and learning rate scheduler essentially across the entire iterative training process. We note that while
the variation on model initialization has been studied before, the other two factors, iteration interval
and continuous optimization, have been rarely discussed in previous implementations of iterative
self-evolving training, and they turn out to be important empirically as we will show next.

Setup We perform controlled experiments to study the effect of different training methods, thus
in this experiment we use the labeled dataset only and simply adopt the binary exact-match reward
between ground-truth answer a∗ and the generated answer. We compare with the most common
iterative self-evolving algorithms ReSTEM (Singh et al., 2023) and iterative RFT, which are specific
instantiations of our training methods design space. To distinguish from the baselines, the variants
with continuous optimization are named as Continuous Self-Evolving. To study the effect of iteration
interval, we experiment with different percentage of all the queries per iteration, varying from [6.25%,
12.5%, 25%, 50%, 100%].

Results Table 1 presents the experimental results of various training methods. Overall, initializing
training from the last policy model checkpoint πt

θ and maintaining a continuous optimization pro-
cess contribute the most significantly to the effectiveness of self-evolving training, particularly on
MathVista. Continuous self-evolving achieves best performance both on the in-domain MathV360K
test with 43.1% and on the OOD test set, MathVista, with 57.2%. We also see the importance of
maintaining a proper interval to traverse the data queries. With a large interval, the training method

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Accuracy results (%) of self-evolving training using various training methods and iteration
intervals. Iteration Interval (#) stands for the ratio of data we traverse in one iteration, and we also
record the number of corresponding queries. M represents the policy model from which training
is initialized in each iteration. O denotes whether the optimization process is continuous, i.e., the
optimizer states and lr scheduler are inherited from the last checkpoint.

Method M O Iteration Interval (#) MathV360K MathVista

MiniCPM-V-2.5 - - - 13.6 52.4
+warmup - - - 38.8 52.6

SFT - - - 44.3 54.8

Iterative RFT πt
θ × 100%(180K) 42.3 55.7

RestEM π0
θ × 100%(180K) 42.3 55.1

Continous Self-Evolving πt
θ ✓

100%(180K) 42.2 56.7
50%(90K) 43.1 56.2
25%(45K) 43.1 57.2

12.5%(22K) 42.3 56.1
6.25%(11K) 41.0 56.8

becomes more closer to an offline one, and the model cannot get in-time update on data matching its
current output distribution. On the other hand, switching over the Improve and Generate steps too
frequently makes the learning unstable, leading to a lower score especially on the in-domain test set.

3.3 REWARD MODELS

In self-evolving training, the most common approach to reward function design uses a binary reward
R(ŷi) = 1(âi = a∗), where âi is the predicted answer inside ŷi and incorrect responses are filtered
out to maximize rewards. While effective, this sparse binary reward has limitations. It overlooks the
quality of the intermediate reasoning steps within a response. Additionally, reward models trained
from equal or higher capacity models than the policy model (Fried et al., 2022; Wang et al., 2024;
Sun et al., 2024) can provide richer signals to improve the policy model’s learning.

In this section, we introduce a Process Reward Model (PRM) (Lightman et al., 2023; Wang et al.,
2024) for multimodal reasoning—the first of its kind, to our knowledge—and explore how integrating
PRM can enhance reward design and whether it can improve policy model learning in self-evolving
training for multimodal reasoning. To incorporate the reward scores into the objective of self-evolving
training, the reward function is reformulated as:

R(ŷi) = H(1(a∗ = âi)×Rp(ŷi)) (3)

Rp(ŷi) = min(f(s0i), f(s
1
i), ..., f(s

m
i)) (4)

Here, H is an operation that processes responses based on the final reward scores, where we ensure
all responses are correct by matching the ground truths, and Rp(ŷi) represents the process reward
score for each sampled response. The function f(ski) denotes the reward score at each intermediate
step. Following Lightman et al. (2023), we use the min operation to aggregate stepwise rewards.

Setup We conduct controlled experiments to assess the impact of incorporating the Process Reward
Model (PRM) into self-evolving training and explore how best to utilize the reward signals provided
by PRM. Notably, before applying PRM, responses are pre-filtered based on their final answers to
ensure consistency and quality during training. To train our PRM, we use Monte Carlo rollouts
starting from prefixes with partial reasoning steps (Wang et al., 2024) to generate the training data.
Specifically, we sample 16 responses per question and complete each step 8 times to obtain step-level
annotations. For additional details on the training process of our PRM, please refer to Appendix C.
We evaluate two different H operations: (1) Top-K: Pick the top-K correct responses according to
their reward scores, and (2) Filtering by a Threshold α: Filtering out sampled responses with lower
aggregated rewards than α. The optimal value of α is 0.2 which is determined by enumerating it with
an interval of 0.1 on the validation set. Additionally, we investigate how varying the value of K in
Top-K affects training, as it represents a trade-off between the quality and diversity of the samples.
According to §3.2, we fix training methods as continuous self-evolving with 45k interval and set
continuous self-evolving, with or without randomly selected correct responses as our baselines.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: The results of self-evolving training with PRM and different strategies to leverage reward
scores. H stands for the method to further pick out high-quality responses from the correct rollouts:
(1) Top-k is we select K correct responses with highest rewards, and (2) > α is we pick out the
correct responses with reward scores larger than α.

Method H PRM MathV360K MathVista

Continuous Self-Evolving - × 43.1 57.2
+ Random Selection Random-2 × 41.0 55.5

+PRM-based Selection

> α

✓

43.8 57.5
Top-1 43.0 59.0
Top-2 45.3 59.2
Top-4 44.0 58.4

20 21 22 23 24

Rollout (K)

38

40

42

44

Va
l A

cc
ur

ac
y

(%
)

Best-of-N
Weighted Voting
Majority Voting
Greedy

(a)

5 10
Steps

0.00

0.05

0.10

0.15

0.20
Po

rt
io

n
Top 2
Rest

(b)

5 10
Relativity Score

0.00

0.10

0.20

0.30

0.40

0.50

Po
rt

io
n

Top 2
Rest

(c)

Figure 2: (a): Accuracy on the val. set of greedy decoding and three selection strategy across different
numbers of rollouts; (b)/(c): Distribution of average # of steps and average relativity score annotated
by GPT4-o of Top 2 and the rest responses re-ranked by rewards, we only calculate on correct ones.

Results Table 2 presents the results of integrating the PRM into self-evolving training, along
with the impact of different H choices. Continuous Self-Evolving with PRM using Top-2 achieves
the best performance in both the ID and OOD tests, with scores of 45.3% and 59.2%, respectively.
Compared to training without PRM, most instances of self-evolving training with PRM show improved
performance, especially in the OOD test. Interestingly, randomly selecting a subset of correct
responses actually leads to worse performance than continuous self-evolving, suggesting that even
correct answers can be noisy. Random selection may increase the proportion of these noisy samples,
undermining the effectiveness of self-evolving training.

In terms of leveraging PRM, we found that using Top-K with a moderate number of re-
sponses—a re-ranking operation to select K correct responses with the highest-quality intermediate
steps—outperforms filtering by a threshold. The results also highlight the importance of balancing
the quality and diversity of sampled responses in self-evolving training. Selecting K = 2 strikes this
balance well, ensuring both response diversity and high-quality reasoning steps for each question.

What makes PRM work for self-evolving training? To pursue deeper insights into the role
of PRM in self-evolving training, we conduct an analysis presented in Figure 2. Based on the
experimental results from §3.3, we explore PRM’s impact from two key perspectives: (1) Can PRM
help the model to select out correct responses among different numbers of rollouts? (2) How different
are the Top 2 and the rest correct solutions re-ranked by reward scores? We use the first checkpoint
after warmup π0

θ as policy model to sample 16 responses for each question in the validation set with
temperature=1.0 and reveal the behaviors of PRM in these samples.

We evaluate the verification ability of our PRM using two metrics, Best-of-N (BoN) and weighted
voting (Sun et al., 2024), which are commonly employed to assess the performance of reward models.
Surprisingly, as shown in Figure 2a, our PRM underperforms in both metrics. Notably, BoN and
weighted voting yield worse results than vanilla majority voting when N < 16. We speculate that

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

this is due to the lack of high-quality step-level annotations compared to text-only reasoning tasks.
These findings suggest that our PRM is not an effective verifier.

To understand why our PRM can still significantly contributes to self-evolving training despite its
weaker verification abilities, we analyzed the distribution of other metrics for the top-2 selected
responses compared to other correct responses. We approached this from two perspectives: the
average number of reasoning steps, and how much a response is directly relevant to the question
annotated by GPT-4o (see Appendix D), since we do not find incorrect steps but find some irrelevant
steps after randomly checking some examples . As shown in Figures 2b and 2c, the responses
re-ranked by our PRM generally have fewer reasoning steps and more relavant to the query. This
highlights the precision of our PRM in recognizing genuinely high-quality responses. Therefore,
our PRM acts as an effective reranker, precisely identifying top-quality responses. This precision
is especially critical in self-evolving training, where responses are already filtered by ground-truth
answers, and the ability to accurately assess the quality of reasoning steps becomes vital.

In addition to the aforementioned analysis, we also investigate why leveraging α to filter responses
with lower reward scores performs worse than Top-K. The results indicate that, even with the optimal
threshold value determined from the validation set, it tends to either retain or filter out all responses
for each query, which reduces diversity and makes the learning process more challenging. This
further supports the conclusion that our PRM performs better as a Reranker than as a Verifier.

3.4 PROMPT VARIATION

In this section, we explore how prompt variation affects self-evolving training. There are two primary
types of prompts: labeled prompts and unlabeled prompts. Labeled prompts come with annotated
ground truth answers, which can be used to filter out incorrect responses during training. In contrast,
utilizing unlabeled prompts in self-evolving training is more challenging due to the absence of ground
truth annotations. To maintain the quality of unlabeled prompts in training, surrogates like reward
scores or pseudo labels must be employed. Meanwhile, unlike labeled prompts, unlabeled prompts
are not be trained in SFT period, which increases the difficulty of learning for policy models.

Skylines: Unlabeled Prompts with Oracle Reward Signals The coupling of these additional
factors introduces complexity, making the effective use of unlabeled prompts less predictable. To
dissect these factors, we start by establishing a baseline with “skyline” experiments, where both the
unlabeled prompts and their ground truth answers are available but not used during the SFT phase.
These unlabeled prompts with oracle reward signals serve as an intermediate difficulty between fully
unlabeled and labeled prompts, providing insight into the challenges of training with unlabeled data.

Unlabeled Prompts We incorporate unlabeled prompts into self-evolving training. To ensure the
quality of sampled responses for these prompts, we use weighted voting to ensemble the predictions
from different responses, treating the ensembled prediction as a pseudo label ã. This pseudo label is
then used to filter out responses with conflicting predictions, ensuring consistency. Following the
best practices outlined in §3.3, we apply PRM as a reranker to select the top-2 responses among
those with the predicted answer ã. These unlabeled prompts are then mixed with labeled prompts for
self-evolving training. Additionally, since learning from unlabeled prompts is more challenging for
policy models, we investigate the optimal stage to introduce them into training to better understand
their impact on model performance. We maintain a training interval of 45k prompts and adjust when
unlabeled prompts are introduced into the self-evolving training process. Specifically, we introduce
unlabeled prompts after [0%, 25%, 50%, 75%] of the total training process.

A Glimpse at Unlabeled Prompts: Potential Efforts to Make Them Effective Table 3 presents
the results of incorporating unlabeled prompts with and without oracle reward signals.

When training relies solely on oracle reward signals without integrating the PRM, con-
tinuous self-evolving with unlabeled prompts outperforms standard continuous self-evolving
trained only on labeled prompts in the out-of-domain test but underperforms in the in-domain
test. This indicates that additional prompts help the model generalize better to underrep-
resented questions but also increase the risk of forgetting previously learned information.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Results of involving unlabeled data.
Tmixin denotes when to mixin the unlabeled
data. The use of PRM follows §3.3, except
we first get a pesudo “ground truth” through
weighted voting on unlabeled prompts.

Oracle PRM Tmixin MathVista MathV360K

- × - 57.2 43.1
- ✓ - 59.2 45.3
✓ × 0% 58.2 42.5
✓ ✓ 0% 59.1 42.9

× ✓ 0% 58.2 43.3
× ✓ 25% 57.6 42.4
× ✓ 50% 58.2 42.9
× ✓ 75% 58.8 45.0

However, after combining with our PRM, all policy
models perform worse than our best model trained ex-
clusively on labeled prompts in both benchmarks, even
when oracle reward signals are provided.

Based on the analysis in §3.3, this occurs since our
PRM is unable to verify responses without ground-truth
answers, and its generalization remains a concern.

When examining the timing for introducing unlabeled
prompts, we find that adding them from the beginning
helps mitigate the negative impact on model perfor-
mance, compared to introducing them midway through
the process. However, when unlabeled prompts are
introduced later in the training process, they participate
less in the overall training, leading to better results sim-
ply due to their limited involvement. This suggests that,
without sufficient surrogate supervision (e.g., reward
signals), introducing unlabeled prompts during the middle stages of self-evolving training can harm
the process, potentially causing a deviation in the policy model’s distribution.

4 DYNAMICS OF SELF-EVOLUTION AND THE FINAL RECIPE

So far, we have explored the impact of three pivotal factors within our design space, leading to
established best practices for learning multimodal reasoning – we adopt continuous self-evolving
training coupled with a reward model to help data selection as described in §3.3, and we perform the
training process on SFT datasets with final answer annotations. In this section, we delve even deeper
into the current self-evolution strategy to better understand the bottlenecks. Instead of analyzing from
a design space perspective as previously, we now fix the design parameters and focus exclusively on
the training dynamics during the model’s self-evolution. This shift in focus allows us to examine the
process from an orthogonal angle, providing further insights into the underlying mechanisms that
drive or impede progress in multimodal reasoning capabilities.

4.1 MONITORING THE TRAINING DYNAMICS

Intuitively, two critical conditions must be met for the success of self-evolving training: (1) the
presence of high-quality candidate responses generated by the model, otherwise self-evolving will
not work no matter how strong the reward is; and (2) the reward function’s ability to effectively
distinguish and prioritize these high-quality responses. These conditions align with the traditional
reinforcement learning concepts of exploration and exploitation. Apparently, both exploration and
exploitation capabilities are dynamic targets in self-evolving training, as the policy model evolves and
the distribution of rollout responses changes with each iteration. To better understand these training
dynamics, we propose tracking and visualizing four metrics:

• Greedy Accuracy: the model’s accuracy with greedy decoding. We track this metric for reference
to compare with other metrics.

• Pass@K Accuracy: the percentage of samples for which the model produces at least one correct
response when sampling K candidates. This metric measures the model’s exploration ability.

• (Pass@K - Greedy) Accuracy: the difference between Pass@K and Greedy accuracy. Typically,
Pass@K is an upper bound of Greedy Accuracy, and the gap roughly reflects the percentage of
samples where the model, while failing in greedy decoding, can generate a correct response when
sampling more candidates. This gap is crucial for the success of self-evolving training—a zero gap
indicates that the model fails to explore correct responses for the current failure cases, suggesting
that further training is unlikely to yield significant improvement.

• Reward-Pass@2: the percentage of samples for which there exist correct responses among the top
2 responses ranked by the reward model. This metric directly reflects the exploitation efficacy of
the reward model for the current policy. We choose Pass@2 since our training strategy involves
selecting the top 2 responses using the reward model (§3.3).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2500 5000 7500 10000
Training Steps

45

48

51

54

57

60

63

66

Pa
ss

@
K

0.5
0.7
1.0
1.2

1.5
1.7
2.0

(a)

2500 5000 7500 10000
Training Steps

3

6

9

12

15

18

21

24

Pa
ss

@
K

-G
re

ed
y

0.5
0.7
1.0
1.2

1.5
1.7
2.0

(b)

2500 5000 7500 10000
Training Steps

20

25

30

35

40

45

50

55

R
M

 P
as

s@
2

0.5
0.7
1.0
1.2

1.5
1.7
2.0

(c)

Figure 4: (a): Pass@K decreases for all different temperatures; (b): The gap between Pass@K and
Greedy Decoding; (c): The Reward-Pass@2 saturates quickly. All metrics, including the greedy
decoding accuracy, are calculated on validation set.

Specifically, after each training iteration of our current optimal strategy, we sample 16 re-
sponses from the model checkpoint on the validation set, with the temperature range set to
t = [0.5, 0.7, 1.0, 1.2, 1.5, 1.7, 2.0]. We analyze with varying temperatures as temperature is a
key hyperparameter for the generation diversity and model’s exploration.

2500 5000 7500 10000
Training Steps

40

45

50

55

60

Te
st

 S
et

 G
re

ed
y

A
cc

MathV360K
MathVista
Pass@K

60

62

64

66

Va
l S

et
 P

as
s@

K
 A

cc

Figure 3: The opposite trend of
Greedy Decoding Accuracy and
Pass@K.

Results: Figure 3 shows a clear trend where, as training
progresses, the Pass@K metric continuously declines while
greedy accuracy improves. This pattern indicates the loss of
exploration ability, which hampers the model’s potential for
continuous improvement and may lead to performance sat-
uration. These observations are consistent with findings in
text-only settings as reported by Wu et al. (2024). In Figure 4a
we analyze Pass@K accuracy at various temperatures and ob-
serve a significant trend: despite a general decay in exploration
ability, larger temperatures tend to resist this decline more
effectively, allowing the model to maintain a stronger ability
to explore in the mid to late stages of training. This observa-
tion suggests that the optimal temperature for training may
need to be dynamically adjusted throughout the self-evolving
process, rather than being fixed at the outset as is currently
common practice. In Figure 4b we plot the (Pass@K - Greedy)
accuracy, this phenomenon becomes even more pronounced, indicating that the model’s exploration
during training is converging to greedy decoding. Additionally in Figure 4c, we observe that the
Reward-Pass@2 metric initially increases but quickly reaches a plateau, indicating that the reward
model’s capacity to exploit further diminishes as training progresses. This limitation could be due
to both the reduced exploration ability and the inherent constraints of the reward model. Next, we
fix the reward model as a control variable and ask, how can we enhance exploration to allow the
reward model to exploit more effectively?.1

4.2 M-STAR– FINAL RECIPE WITH OPTIMAL DESIGN CHOICES & ADAPTIVE EXPLORATIONS

Reward-Pass@2 closely relates to the effectiveness of our self-evolving training strategy since our
method selects top responses ranked by the reward model, and Reward-Pass@K directly reflects the
quality of these 2 responses.2 While Reward-Pass@2 naturally measures exploitation when the policy

1While improvements to the reward model could also enhance Reward-Pass@2, we reserve it for future work.
2We note that there is a slight mismatch between Reward-Pass@2 and our training strategy, as we pre-filter

responses using the ground-truth answer before the reward model reranks them. Ideally, a more aligned metric
would measure the CoT reasoning quality of the top 2 responses, both containing correct answers. Given that
there is no reliable method to score the quality of the thought processes, we consider Reward-Pass@2 as a
reasonable approximation which turns out to be effective empirically.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Performance of M-STARcompared
with baselines and methods considering only
static components. We highlight the relative
improvement of M-STAR over the pre-evolved
model, i.e., the “+warmup” row.

MathV360K MathVista

Baselines

MiniCPM-V-2.5 13.6 52.4
+ warmup 38.8 52.6

SFT 44.3 54.8
ReSTEM 42.3 55.1
Iterative RFT 42.3 55.7

Static components only

Cont. optim. 43.1 57.2
+ PRM Re-Rank 45.3 59.2

Automatically tuning the temperature T

M-STAR (Pass@K) 42.8 58.0
M-STAR (Reward-Pass@2) 45.9 (+7.1) 59.5 (+6.9)

2500 5000 7500 10000
Training Steps

56

58

60

62

64

66

Pa
ss

@
K

 A
cc

Pass@K
Pass@K-static
RM Pass@2
RM Pass@2-static 44

46

48

50

52

54

56

R
M

 P
as

s@
2

A
cc

Figure 5: Comparing the Pass@K and
Reward-Pass@2 metrics with the optimal
static training progress, which fixes temper-
ature T = 1.0. We use Savitzky-Golay fil-
ter (Savitzky & Golay, 1964) to smooth the
curves.

is fixed, the absolute value of this metric actually encapsulates both exploration and exploitation – its
value would be low if the model fails to explore high-quality candidates.

Therefore, we hypothesize that enhancing the Reward-Pass@K scores for the current iteration through
varied configurations could potentially improve the efficacy of self-evolving training. We fix reward
model as a control variable and focus on modifying the model’s exploration capabilities to achieve
this objective. Analysis in §4.1 suggests that the temperature, which is crucial for exploration,
may require dynamic adjustment. Thus we propose to adjust the temperature automatically at each
iteration based on the validation Reward-Pass@2 scores. This aims to optimize exploration so that
the selected responses are of higher quality, potentially enhancing overall training effectiveness.

Specifically, we adjust the temperature per two iterations, and pick the temperature from 0.3 to 1.6
with interal 0.1 automatically with maximum validation Reward-Pass@2 scores. The optimal design
choices outlined in §3, combined with our adaptive exploration strategy, form our final recipe for
multimodal self-evolving training for reasoning, M-STAR.

Results: Table 4 presents the results of our final approach. By incorporating the dynamics of
Reward-Pass@2, which balances both exploration and exploitation, our final recipe achieves the
highest results, with 59.5% on the OOD test and 45.9% on the in-domain test. In contrast, models that
only monitor Pass@K show diminished performance on both benchmarks. This reinforces the validity
of our training design, demonstrating that an effective self-evolving training process requires a careful
balance of both exploration and exploitation, as facilitated by the reward model. We also plot how
the Pass@K and Reward-Pass@2 changes for M-STAR (Reward-Pass@2). To align with training,
we show the metrics corresponding to the selected temperature in each iteration (see Appendix E
for others). Figure 5 shows that compared with static strategy to choose a fixed temperature over
the whole process, tuning it automatically mitigate the regression of Pass@K to help maintain the
exploration ability. Besides, the Reward-Pass@2 is also generally higher than before. These further
highlight the necessity to monitor the dynamics during training and adjust accordingly.

5 CONCLUSION

We dive into the self-evolving training for multimodal reasoning. Three static components are
identified at first, namely the training method, reward model and the prompt variation. Through
controlled experiments, we conclude a set of optimal design choices. On the other direction, we go
deeper into the dynamics of self-evolving training to analyze the trade-off between exploitation and
exploration. By monitoring the dynamics and adjusting key hyperparameters accordingly, we are
able to further improve the model performance. We hope our work can provide insights and guidance
for future research on self-evolving training for multimodal reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024a.

Qiguang Chen, Libo Qin, Jin Zhang, Zhi Chen, Xiao Xu, and Wanxiang Che. M3CoT: A novel
benchmark for multi-domain multi-step multi-modal chain-of-thought. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8199–8221, Bangkok, Thailand, August
2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.446. URL
https://aclanthology.org/2024.acl-long.446.

Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen, James Zou, Kai-Wei Chang, and Wei Wang.
Enhancing large vision language models with self-training on image comprehension. arXiv preprint
arXiv:2405.19716, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yunhao Fang, Ligeng Zhu, Yao Lu, Yan Wang, Pavlo Molchanov, Jang Hyun Cho, Marco Pavone,
Song Han, and Hongxu Yin. V ILA2: Vila augmented vila. arXiv preprint arXiv:2407.17453,
2024.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, 2022.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
A diagram is worth a dozen images. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 235–251.
Springer, 2016.

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang, Jiaming
Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-centric
robotic manipulation, 2023. URL https://arxiv.org/abs/2312.16217.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 34892–34916. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 26296–26306, 2024a.

11

https://aclanthology.org/2024.acl-long.446
https://arxiv.org/abs/2312.16217
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiaming Liu, Chenxuan Li, Guanqun Wang, Lily Lee, Kaichen Zhou, Sixiang Chen, Chuyan Xiong,
Jiaxin Ge, Renrui Zhang, and Shanghang Zhang. Self-corrected multimodal large language model
for end-to-end robot manipulation, 2024b. URL https://arxiv.org/abs/2405.17418.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
Xinyi Liu, Hanlin Zhao, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao
Sun, Siyi Cheng, Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan,
Xiaotao Gu, Aohan Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang.
Visualagentbench: Towards large multimodal models as visual foundation agents, 2024c. URL
https://arxiv.org/abs/2408.06327.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
In European Conference on Computer Vision, pp. 216–233. Springer, 2025.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A benchmark
for question answering about charts with visual and logical reasoning. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association for Computational
Linguistics: ACL 2022, pp. 2263–2279, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL https://aclanthology.org/
2022.findings-acl.177.

Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by simplified least
squares procedures. Analytical chemistry, 36(8):1627–1639, 1964.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and Roy
Ka-Wei Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large language
models. arXiv preprint arXiv:2406.17294, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–
9439, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.acl-long.510.

Ting Wu, Xuefeng Li, and Pengfei Liu. Progress or regress? self-improvement reversal in post-
training. arXiv preprint arXiv:2407.05013, 2024.

12

https://arxiv.org/abs/2405.17418
https://arxiv.org/abs/2408.06327
https://aclanthology.org/2022.findings-acl.177
https://aclanthology.org/2022.findings-acl.177
https://ai.meta.com/blog/meta-llama-3
https://aclanthology.org/2024.acl-long.510
https://aclanthology.org/2024.acl-long.510

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo,
and Chong Ruan. Deepseek-prover-v1.5: Harnessing proof assistant feedback for reinforcement
learning and monte-carlo tree search, 2024. URL https://arxiv.org/abs/2408.08152.

Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-cot: Let vision language
models reason step-by-step. arXiv preprint arXiv:2411.10440, 2024a.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan Li, Xiaohan Zhang, Zihan Wang, Aohan
Zeng, Zhengxiao Du, Wenyi Zhao, et al. Chatglm-math: Improving math problem-solving in large
language models with a self-critique pipeline. arXiv preprint arXiv:2404.02893, 2024b.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

Senqiao Yang, Jiaming Liu, Ray Zhang, Mingjie Pan, Zoey Guo, Xiaoqi Li, Zehui Chen, Peng Gao,
Yandong Guo, and Shanghang Zhang. Lidar-llm: Exploring the potential of large language models
for 3d lidar understanding, 2023. URL https://arxiv.org/abs/2312.14074.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris,
France, October 1-6, 2023, pp. 11941–11952. IEEE, 2023. doi: 10.1109/ICCV51070.2023.01100.
URL https://doi.org/10.1109/ICCV51070.2023.01100.

13

https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2312.14074
https://doi.org/10.1109/ICCV51070.2023.01100

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A COLLECTING WARMUP TRAINING DATA WITH CHAIN-OF-THOUGHT

Since our base model typically outputs the answer directly when responding to multimodal reasoning
questions, during the warmup phase, we added additional instructions along with the input question,
requiring the model to output the rationale. The instructions used in this process are as follows:

Extra instruction to guide CoT

Offer a comprehensive breakdown of your analytical process, detailing each step, the reasoning behind
your decisions, and how you integrated various pieces of information, and put your answer at the end.

B HYPER PARAMETERS

We follow the training setup from Yao et al. (2024), using a learning rate of 1e-6 and a batch size
of 128. A constant learning rate scheduler with a warmup ratio of 0.1 is applied. Input images are
encoded using SigLIP SoViT-400m/14 (Zhai et al., 2023), and the visual tokens are compressed
through a perceiver resampler structure with a single cross-attention layer. Additionally, each input
image is sliced into a maximum of 9 segments, with each segment compressed into 96 queries.

C TRAINING PROCESS REWARD MODEL (PRM)

To train our PRM, we first train another checkpoint (denoted as π̂0
θ) on our CoT-augmented training

data for a much longer period to make sure it fully converges.

Based on this model, we leverage Monte Carlo Rollut method (Wang et al., 2024) to collect the
training data for PRM. Specially, we randomly pick 50K questions from the full training set, and
sample 16 responses for each of them with π̂0

θ . We de-duplicate these responses, and only keep at
most 4 responses for each question. After that we randomly sample 50K question-response pairs
from all the pairs, where we control the ratio of correct and wrong responses as 1:1, and the ratio of
multi-choice and free-form question as 1:1 as well, to keep a balanced distribution.

To construct the labels of each step, we use π̂0
θ as the completer to complete the solution

from the end of each step in one response. For the kth step, the step label is annotated as
1
N

∑N
j=1 1(Cj(s

≤k) = a∗), where N(= 16) is the number of completion, Cj is the j-th completion.

Based on the stepwise annotations, we train our PRM from π̂0
θ . We initialize the linear reward model

head as the average of the embeddings, and train with MSE loss on all tokens, where the label of
each token is identical to the step end token. In experiments we freeze the visual encoder as we find
it brings a slight improvement.

D MEASURING RESPONSE RELATIVITY

To get a comprehensive understanding of how our PRM works as a re-ranker, we conduct a quantitative
analysis using GPT4-o (gpt-4o-2024-08-06) to see how much a correct response is directly
related to the query, e.g., does not contain irrelvant steps. The prompt we use is as follows:

Prompt for GPT4-o to annotate the relativity score

Given the image and a related question, you need to judge how a candidate solution is directly related to
the question. You need to consider all its steps, and return a final value bewteen 1-10 as a overall score.
Conclude your judgement at the end as ”So the relativity score is X” where X is the score you give.

[Question]
{question}

[Solution]
{solution}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E MORE RESULTS FOR M-STAR

We plot the extra analysis results for M-STAR here. In Figure 6, we plot the changes of Pass@K
and Reward-Pass@2 across different temperatures for M-STAR(Reward-Pass@2) as a compliment
to the adapative adjustion mentioned in §4.2. We can see that acroos all selected temperatures, the
exploration ability reflected by Pass@K does not regress continuously, and the Reward-Pass@2
reaches its peak more quickly, compared with training without the monitor of dynamics.

2500 5000 7500 10000
Training Steps

48

51

54

57

60

63

66

Pa
ss

@
K

0.5
0.7
1.0
1.2

1.5
1.7
2.0

(a)

2500 5000 7500 10000
Training Steps

24

28

32

36

40

44

48

52

56

R
M

 P
as

s@
2

0.5
0.7
1.0
1.2

1.5
1.7
2.0

(b)

Figure 6: (a):Pass@K changes during the training of M-STAR (Reward-Pass@2); (b): :Reward-
Pass@2 changes during the training of M-STAR (Reward-Pass@2). We pick 7 different temperatures.

F FULL RESULTS FOR MATHVISTA

To comprehensively evaluate the impact of different strategies for components in self-evolving
training, we present the full results of MathVista, enabling a more detailed analysis. Instead of
focusing solely on mathematical word problems (as one may be mislead by its name), MathVista
actually encompasses a diverse set of reasoning-related tasks for LMMs, including figure question
answering, visual question answering, science question answering, and more. As shown in Table 5,
the overall performance corroborates our findings in § 3 and § 4, using three different models across
three scales. The results demonstrate that the continuous self-evolving training method outperforms
other self-evolving training approaches and simple SFT. Additionally, employing PRM as a Re-
Ranker further enhances the performance of self-evolving training. Moreover, adjusting training
dynamics provides additional performance gains, underscoring the importance of monitoring the
training dynamics between exploration and exploitation during self-evolving training.

In addition to overall performance, we observe that self-evolving training based on larger models
yields more comprehensive improvements across various sub-tasks. For instance, MiniCPMV-2.5
(8B), utilizing our optimal strategy and final recipe, achieves the best performance in 11 out of 12
sub-tasks, while Phi-3.5-Vision (4B) leads in 8 out of 12 sub-tasks. In contrast, the smaller model,
InternVL2-2B, shows significant improvements primarily in math-related tasks. We speculate that
this is because the training queries contain many math-related problems. Consequently, the smaller
model struggles to generalize its learned abilities across different domains as effectively as the larger
models, such as MiniCPMV-2.5 and Phi-3.5-vision.

G GENERALIZATION OF M-STAR

To further investigate how well M-STAR generalizes to benchmarks other than MathVista along, we
select four extra multi-modal benchmarks focus on reasoning as well: M3CoT (Chen et al., 2024b),
MMStar (Chen et al., 2024a), MMBench (Dev set, v1.1) (Liu et al., 2025), AI2D (Kembhavi et al.,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Full analysis of MathVista. Task types: FQA: figure question answering, GPS: geometry
problem solving, MWP: math word problem, TQA: textbook question answering, VQA: visual
question answering. Mathematical reasoning types: ALG: algebraic reasoning, ARI: arithmetic
reasoning, GEO: geometry reasoning, LOG: logical reasoning, NUM: numeric commonsense, SCI:
scientific reasoning, STA: statistical reasoning.

Model ALL FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA
MiniCPMV-2.5

MiniCPMV-2.5 52.4 59.2 44.7 50.5 53.8 48.0 42.7 46.5 46.0 29.7 36.1 56.7 60.1
+warmup 52.8 58.4 47.1 57.0 53.8 45.8 45.5 49.6 48.5 16.2 31.9 53.3 62.8

SFT 54.7 58.7 50.5 56.5 55.7 50.8 47.0 49.0 51.0 18.9 43.1 58.2 57.5
Iterative RFT 55.7 59.1 49.5 65.6 55.1 48.0 47.3 53.8 50.6 16.2 37.5 55.7 65.1
RestEM 55.1 58.0 49.5 64.5 55.1 47.5 47.7 53.8 50.2 16.2 38.2 56.6 63.5
Cont. optim. 57.2 57.6 56.3 65.1 57.0 49.7 52.0 54.4 56.1 10.8 36.1 60.7 65.5

+PRM Re-Rank 59.2↑ 6.4 59.1↑ 0.7 61.1↑ 14 68.3↑ 11.3 55.1↑ 1.3 51.4↑ 5.6 54.8↑ 9.3 55.2↑ 5.6 60.3↑ 11.8 10.8↓ 5.4 43.1↑ 11.2 59.0↑ 5.7 66.5↑ 3.7

M-STAR 59.5↑ 6.7 59.5↑ 1.1 59.1↑ 12 65.6↑ 8.6 58.9↑ 5.1 54.2↑ 8.4 54.5↑ 9 56.7↑ 7.1 58.2↑ 9.7 10.8↓ 5.4 43.1↑ 11.2 61.5↑ 8.2 69.1↑ 6.3

Phi-3.5-vision

Phi-3.5-vision 46.5 58.7 36.5 36.0 56.3 41.9 39.5 38.8 36.4 16.2 34.0 60.7 62.8
+warmup 49.3 55.8 42.8 53.2 55.1 38.0 43.1 44.8 43.9 8.1 33.3 59.0 62.5
SFT 49.5 53.9 52.9 52.7 49.4 35.8 47.3 41.4 51.5 32.4 33.3 56.6 57.5
Iterative RFT 50.2 58.4 41.4 50.0 55.7 43.0 42.0 43.9 41.8 10.1 41.7 58.2 65.0
RestEM 50.5 56.8 46.6 49.5 58.9 39.7 47.0 43.3 45.6 18.9 34.7 61.5 63.5
Cont. optim. 51.1 56.1 48.6 55.9 52.5 40.2 46.6 45.9 47.7 8.1 34.7 51.6 64.5
+PRM Re-Rank 53.2↑ 3.9 56.9↑ 1.1 51.9↑ 9.1 60.8↑ 7.6 55.10 39.7↑ 1.7 48.8↑ 5.7 46.2↑ 1.4 50.6↑ 6.7 5.4↓ 2.7 41.7↑ 8.4 59.8↑ 0.8 65.1↑ 2.6

M-STAR 54.5↑ 5.2 56.9↑ 1.1 56.7↑ 13.9 57.5↑ 4.3 55.10 44.7↑ 6.7 53.4↑ 10.3 48.4↑ 3.6 55.2↑ 11.3 5.4↓ 2.7 42.4↑ 9.1 56.6↓ 2.4 65.8↑ 3.3

InternVL2-2B

InternVL2-2B 46.4 53.2 45.2 33.3 50.0 48.0 41.6 41.4 43.1 10.8 25.7 55.7 59.8
+warmup 47.6 52.4 54.8 46.2 43.7 36.9 48.8 40.5 52.3 16.2 24.3 50.0 58.8

SFT 41.9 37.5 40.4 49.5 32.3 50.8 36.3 45.9 39.3 16.2 38.9 38.5 38.5
Iterative RFT 47.5 49.8 57.7 52.1 41.8 32.4 50.5 40.8 55.2 2.7 25.0 42.6 57.8
RestEM 47.9 49.4 54.8 51.1 51.3 31.3 51.2 39.4 53.1 10.8 25.7 50.8 57.5
Cont. optim. 48.4 53.2 50.5 56.5 40.5 37.4 44.8 41.6 47.7 5.4 34.7 45.1 60.8

+PRM Re-Rank 48.8↑ 1.2 52.0↓ 0.4 55.8↑ 1 52.1↑ 5.9 45.6↑ 1.9 35.2↓ 1.7 50.2↑ 1.4 39.4↓ 1.1 55.2↑ 2.9 5.4↓ 10.8 33.3↑ 9 45.9↓ 4.1 60.5↑ 1.7

M-STAR 50.3↑ 2.7 49.4↓ 3 57.2↑ 2.4 65.0↑ 18.8 42.4↓ 1.3 35.2↓ 1.7 50.5↑ 1.7 47.0↑ 6.5 56.1↑ 3.8 13.5↓ 2.7 32.6↑ 8.3 45.9↓ 4.1 57.1↓ 1.7

Table 6: Performance of M-STAR compared with baselines and methods considering only static
components. We highlight the relative improvement of M-STAR over the pre-evolved model, i.e.,
the “+warmup” row. For benchmark with suffix “-R”, we follow Xu et al. (2024a) to remove some
perception sub-tasks in them, to get the subsets that focus more on reasoning.

MathVista M3CoT MMStar-R MMBench-R AI2D Average

MiniCPM-V-2.5 52.4 41.2 44.6 72.6 64.4 55.0
+ warmup 52.6 47.8 45.1 76.9 65.9 57.7

M-STAR 59.5↑ 6.9 48.7↑ 0.9 50.7↑ 5.6 79.9↑ 3 69.1↑ 3.2 61.6↑ 3.9

Phi-3.5-vision 46.5 39.4 42.5 56.8 47.5 46.5
+ warmup 49.3 46.5 44.2 70.9 65.5 55.3

M-STAR 54.5↑ 5.2 51.3↑ 4.8 48.8↑ 4.6 73.6↑ 2.7 67.9↑ 2.4 59.2↑ 3.9

InternVL2-2B 46.4 16.7 20.0 14.2 33.5 26.2
+ warmup 47.6 45.6 41.8 68.8 60.0 52.8

M-STAR 50.3↑ 2.7 47.1↑ 1.5 42.0↑ 0.2 67.3↓ 1.5 59.7↓ 0.3 53.3↑ 0.5

2016). For MMStar and MMBench, we remove the perception sub-tasks in them to construct subsets
focus more on reasoning. As shown in Table 6, models self-evolved with M-STARconsistently
outperform both the base models and those trained with warmup across nearly all benchmarks. The
only exception is InternVL2-2B, which underperforms on two benchmarks, aligning with the findings
and speculations discussed in § F. Smaller models face greater challenges in generalizing beyond
their training data, particularly on perception-intensive benchmarks like MMBench-R and AI2D.
In contrast, larger models such as Phi-3.5-vision and MiniCPM-V-2.5 demonstrate significantly
improved generalization, despite being trained with the same query set.

16

	Introduction
	Overview of Self-Evolving Training for Multimodal Reasoning
	Diving into Self-Evolving Design Components
	General Setup
	Training Methods
	Reward Models
	Prompt Variation

	Dynamics of Self-Evolution and the Final Recipe
	Monitoring the Training Dynamics
	M-STaR– Final Recipe with Optimal Design Choices & Adaptive Explorations

	Conclusion
	Collecting Warmup Training Data with Chain-of-Thought
	Hyper Parameters
	Training Process Reward Model (PRM)
	Measuring Response Relativity
	More Results for M-STaR
	Full Results for MathVista
	Generalization of M-STaR

