
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARATHINKER: NATIVE PARALLEL THINKING AS A
NEW PARADIGM TO SCALE LLM TEST-TIME COM-
PUTE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs) have been driven by test-
time compute scaling - a strategy that improves reasoning by generating longer,
sequential thought processes. While effective, this approach encounters a signif-
icant bottleneck as computation increases, where further computation offers only
marginal performance gains. We argue that this ceiling is not an inherent limit of
the model’s capability but a flaw in the scaling strategy itself, a phenomenon we
term “Tunnel Vision”, where a model’s imperfect initial steps lock it into a subop-
timal reasoning path. To overcome this, we introduce a new scaling paradigm: na-
tive thought parallelism. We present ParaThinker, an end-to-end framework that
trains an LLM to generate multiple, diverse reasoning paths in parallel and syn-
thesize them into a superior final answer. By exploring different lines of thought
simultaneously, ParaThinker effectively sidesteps the Tunnel Vision issue and un-
locks the model’s latent reasoning potential. Our approach demonstrates that
scaling compute in parallel (width) is a more effective and efficient way to supe-
rior reasoning than simply scaling sequentially (depth). On challenging reasoning
benchmarks, ParaThinker achieves substantial accuracy improvements (e.g. 6.5%-
20.7% on AIME-24 with 1.5B model) over sequential-reasoning LLMs under the
same budget of decoding tokens, without inducing additional computational cost.
The reasoning latency can even be reduced by 38.7%-66.8% via batch decoding
in on-device single-request settings.

1 INTRODUCTION

The remarkable progress of Large Language Models (LLMs) has been largely driven by the prin-
ciple of scaling. This evolution began with pretraining compute scaling and has recently shifted to
post-training or test-time compute scaling. Notable examples of test-time scaling, such as OpenAI
o1 (OpenAI, 2024) and DeepSeek-R1 (DeepSeek-AI, 2025), have demonstrated that training the
models to “think longer” (i.e. decode more tokens before generating the final answer) can unlock
superior reasoning abilities for complex problems (Yang et al., 2025a; Team et al., 2025; Snell et al.,
2024; Wu et al., 2025).

However, extending test-time compute does not lead to constant performance improvement in to-
day’s reasoning LLMs, where accuracy improvements diminish and eventually stagnate after a cer-
tain number of decoding steps. This has fueled discussions around “LLM overthinking” (Ghosal
et al., 2025; Chen et al., 2025b; Fan et al., 2025; Cuadron et al., 2025; Li et al., 2025), where models
expend excessive computation on problems, with the additional reasoning steps yielding minimal or
no benefit to the final answer.

In this paper, we investigate the problem of test-time scaling bottleneck by raising a fundamental
question: Does the test-time scaling bottleneck stem from the inherent limitations of the model’s ca-
pability, or from the imperfect test-time compute strategy? The answer to this question is important
for understanding the bottleneck of test-time scaling. Our findings reveal that, given a fixed decod-
ing token budget, the conventional self-refinement reasoning paradigm (adopted in state-of-the-art
reasoning models like o1 and R1) constantly converges at a low accuracy that can be achieved with
other simple scaling strategies (e.g. majority voting) under the same token budget. This suggests

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

that the model’s underlying capability is not the primary bottleneck; rather, the way we orchestrate
test-time compute can be improved.

Through a closer analysis of the reasoning process in LLMs, we find that the reasoning perfor-
mance is often constrained by the model’s initial thoughts, a phenomenon we refer to as Tunnel
Vision. Specifically, the first few tokens generated in a Chain-of-Thought (CoT) can lock the model
into a suboptimal reasoning path, preventing it from discovering more effective ideas in subsequent
decoding steps.

Based on these insights, we argue that the reasoning process of LLMs should be executed in a
parallel, multi-threaded manner. By ensuring each thinking thread operates independently, we can
mitigate Tunnel Vision and foster a diversity of thought. Furthermore, parallel thinking offers sig-
nificant deployment advantages, as the decoding process can be batched to better utilize memory
bandwidth, which in turn leads to improved arithmetic intensity (Williams et al., 2009) (the ratio of
floating-point operations to total data movement).

To put parallel thinking into practice, we introduce an end-to-end solution, ParaThinker, which
enables native parallel thinking in LLMs by allowing the model to generate diverse thoughts and
aggregate them into a final answer. The major challenges to develop ParaThinker include how to in-
duce thought diversity and how to avoid thought conflict, which we address by introducing trainable
control tokens to trigger distinct reasoning trajectories, thought-specific positional embeddings to
distinguish different paths, and a two-phase attention mask design that enforces independence dur-
ing reasoning and controlled integration during summarization. Specifically, our solution features
three core innovations:

• Specialized Control Tokens: We introduce a set of trainable tokens (e.g. <think i>) to ex-
plicitly guide the model’s generation. Each <think i> token prompts the model to initiate a
distinct reasoning path, which ensures diversity in reasoning.

• Thought-Specific Positional Embedding: To resolve positional ambiguity when merging paral-
lel thoughts, we augment the standard positional encoding with a unique, learnable embedding
for each reasoning path. This allows the model to unambiguously differentiate the origin of each
token during the final summarization stage.

• SFT Training Pipeline: We employ a scalable supervised fine-tuning (SFT) strategy where the
model is trained on reasoning paths sampled from a teacher model. By randomly assigning the
specialized <think i> tokens during this process, the model learns to generalize, enabling it to
generate more parallel paths at inference time than were seen during training.

We evaluate ParaThinker on challenging math and coding benchmarks: AIME 2024, AIME 2025,
AMC 2023, MATH-500 (Hendrycks et al., 2021), and LiveCodeBench v6 (Jain et al., 2024) against
baselines such as standard autoregressive reasoning (DeepSeek-AI, 2025), majority voting (Chen
et al., 2024a), and re-prefilling. Our approach demonstrates a remarkable leap in performance,
achieving significantly improved accuracy with additional benefits of parallel computing. This ef-
ficiency allows smaller LLMs equipped with our native thought parallelism to outperform much
larger, standard reasoning models, charting a new path for scaling test-time compute.

In summary, the contributions of our work are: (1) We characterize the test-time scaling bottleneck
in LLM reasoning and attribute it to a narrow reasoning pathway, termed Tunnel Vision, which
restricts the model’s exploration during generation. (2) We propose and demonstrate that thought
parallelism is a better way to scale LLM test-time compute. (3) We introduce an end-to-end solution
to enable native parallel thinking. The resulting model, ParaThinker, achieves higher accuracy than
sequential LLMs by 12.3% and 7.5% for 1.5B and 7B models, respectively. Compared with majority
voting, ParaThinker further improves accuracy by 4.3% and 2.0%.

2 UNDERSTANDING THE SCALING BOTTLENECK

2.1 IS THE BOTTLENECK DUE TO LLM CAPABILITY OR SCALING STRATEGY?

To empirically ground our approach, we first characterize the limitations of conventional test-time
scaling. We start by evaluating the DeepSeek-R1-distill-Qwen-1.5B model (DeepSeek-AI, 2025)
on the AIME 2024 benchmark under various computational budgets. We control the budget by im-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Scaling Bottleneck (b) Tunnel Vision (c) Parallel Decoding Efficiency

Figure 1: Diagnosing the limitations of sequential reasoning and the potential of parallelism. All
experiments use DeepSeek-R1-Distill-Qwen-1.5B on the AIME 2024 benchmark. (a) Scaling
Bottleneck: Accuracy against the total number of token budget (for majority voting e.g. maj@4, the
total token budget is the sum across all parallel paths). (b) Tunnel Vision: Ability to recover from
its own potential mistakes with different lengths of misleading prefixes. The model generates
solutions starting from flawed prefixes of length n ∈ {0, 100, . . . , 1600}, denoting the first n
tokens of reasoning paths from the same model that previously resulted in a wrong answer. (c)
Parallel Decoding Efficiency: Latency taken to decode P ∈ {1, 2, 4, 8, 16} parallel paths, each of
length n ∈ {1K, . . . , 32K}.

posing a per-response token limit B on the reasoning path. If the model fails to terminate naturally,
we truncate the output and force termination by appending a terminal token (</think>). We also
evaluate majority voting (Chen et al., 2024a; Fu et al., 2025) over P ∈ {4, 8, 16, 32, 64} parallel
samples, with each sample allocated B/P tokens. For clarity, we plot only the results of P = 4 and
P = 8 in the accuracy–budget curves, and report the maximum accuracy obtained with P = 64.
The results, shown in Figure 1a, demonstrate that the performance of a single reasoning path (green
line) quickly reaches the bottleneck, with additional tokens yielding negligible gains.

While some recent works attribute this phenomenon to “LLM overthinking” and attempt to solve
it by compressing the model’s output for more concise reasoning, these compressed models still
encounter a bottleneck (Sun et al., 2025; Chen et al., 2025b; Fan et al., 2025; Cuadron et al., 2025).
Different from these approaches, we investigate the fundamental cause of this bottleneck to deter-
mine how to further bootstrap LLM test-time scaling. And results in Figure 1a shows that majority
voting can break through this bottleneck under the same total token budget, and the majority@64
with 2,048K total token budget (32K for each reasoning path), achieves a final accuracy far higher
than the single-path approach. This significant gap suggests that the bottleneck is not a hard limit of
the model’s reasoning capacity, but rather a symptom of the suboptimal test-time scaling strategy.
Simply allocating more test-time compute to a single-sequence LLM is not as effective as exploring
multiple reasoning paths.

2.2 THE TUNNEL VISION OF SEQUENTIAL TEST-TIME SCALING

We hypothesize the bottleneck arises because an LLM’s early token choices irreversibly commit it
to a specific line of thought, making it difficult to escape initial errors. We call this Tunnel Vision:
flawed initial reasoning locks the model into a suboptimal trajectory from which it cannot recover.
To test this, we investigate the model’s recovery capacity from erroneous starting points: For each
AIME 2024 problem, we use DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI, 2025) to generate
multiple samples. From the samples that produce incorrect answers, we extract prefixes of its flawed
reasoning at lengths of 0, 100, 200, 400, 800, and 1600 tokens. We then prompt the model to
continue generating from these erroneous prefixes and measure its final accuracy by sampling 16
times and calculating the average accuracy. The results, plotted in Figure 1b, show a clear negative
correlation: the longer the erroneous prefix, the lower the final accuracy. This indicates that the
scaling bottleneck is a direct symptom of Tunnel Vision, where flawed initial tokens lock the model
into a suboptimal reasoning path. The longer the flawed prefix, the harder it is for the model to pivot
to a correct solution, even with ample remaining budget.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 WHY NATIVE THOUGHT PARALLELISM?

Given the limitations of sequential reasoning exposed by Tunnel Vision, we are motivated to explore
parallel reasoning as a natural alternative. Diverse independent reasoning paths can potentially
reduce the risk that the model becomes stuck in a single suboptimal trajectory. A commonly used
practical instantiation of this idea is majority voting (Chen et al., 2024a), which aggregates many
independent answers into a final decision.

However, majority voting is a heuristic—it applies the simple, fixed rule of choosing the most fre-
quent answer without learning to evaluate the quality of the reasoning that produced it. This ap-
proach has two important drawbacks: (1) Poor generalization: Voting is only applicable to tasks
with easily quantifiable answers (e.g. , multiple-choice or numeric values), failing on open-ended
domains like complex agentic workflows, coding, or long-form proofs. (2) Information loss: Ma-
jority voting considers only the final answer, instead of the reasoning path, ignoring the valuable
rationale, evidence, and intermediate steps within each reasoning path, making it impossible to syn-
thesize insights from the full reasoning process to arrive at a better conclusion.

To overcome these limitations, we propose native parallel reasoning as an end-to-end solution. In
this approach, we train the LLM to not only generate multiple reasoning paths in parallel but also to
analyze on all the reasoning paths and generate the answer. Instead of relying on a fixed heuristic,
the model learns to directly process and synthesize the full token trajectories of its parallel thoughts
to produce a final, consolidated answer. This method makes the aggregation process itself trainable,
allowing the model to learn optimal strategies for combining evidence, and path-aware, as it pre-
serves the valuable information contained within each reasoning chain. We formalize Why native
parallel reasoning has the potential to outperform majority voting theoretically in Appendix A.10.

Moreover, parallel decoding is highly efficient, as LLM inference is memory-bound (parameter and
KV cache loading) rather than compute-bound (Sadhukhan et al., 2025). Batching P paths amortizes
memory accesses, enhancing arithmetic intensity and GPU utilization. Experiment with DeepSeek-
R1-Distill-Qwen-1.5B using vLLM (Kwon et al., 2023) on an A800 GPU (Figure 1c) confirms:
small P incurs similar latency to a single path, while P = 16 is under 2×. This efficiency makes
parallel exploration scalable for overcoming Tunnel Vision and boosting reasoning performance.

Prior works on parallel computation typically relies on external verifiers for search (Snell et al., 2024;
Ghosal et al., 2025), which introduce a scalability bottleneck. Several concurrent works (Zhao et al.,
2025b; Yang et al., 2025b; Zheng et al., 2025; Fu et al., 2025) have also investigated the parallel rea-
soning mechanism of LLMs, while they struggle to achieve substantial accuracy improvement due
to positional ambiguity, computational inefficiency and/or limited thought diversity. More related
works are discussed in Appendix A.2.

4 MODEL DESIGN

Preliminaries of conventional sequential reasoning. We denote an LLM by πθ, where θ is the
set of model parameters. Given an input prompt of l tokens x = {xi}li=1. The LLM then au-
toregressively generates an output sequence y = (y1, y2, . . . , yL) with the conditional probability:
πθ(y|x) =

∏L
t=1 πθ(yt|x, y<t). For tasks requiring multi-step reasoning, the output y can be de-

composed into a reasoning path r followed by a final answer a: y = (r, a). During decoding, each
new token yt requires attention over the full context x, y<t, which involves computing Key (K) and
Value (V) tensors. To avoid recomputation when generating each yt, LLMs often use a KV-cache to
store K/V tensors.

4.1 PARATHINKER WORKFLOW

As shown in Figure 2, our approach extends the sequential reasoning LLM paradigm by first gener-
ating a set of P distinct reasoning paths {r(1), r(2), . . . , r(P)} for a single input x in parallel. Each
individual reasoning path r(i) is a sequence of tokens representing a unique line of thought, sampled
from the distribution: πθ(r

(i)|x) =
∏Li

t=1 πθ(r
(i)
t |x, s(i), r(i)<t). Here, s(i) is a special control token

that helps initiate a distinct reasoning path, which will be detailed in Section 4.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

�×

Input Query
Please solve: �3 −
7�+ 6 = 0 ...

<think P> Let’s define the function �(�) = ...

<think i> Consider Rational Root Theorem ... </think i>

 First, rewrite the polynomial to ... <think 1> </think 1>

</think P>

...

Final answers: -3, 1, 2 <summary> </summary>

Stage 1: Parallel Reasoning Stage 2: Summarization

⊕

⊕

⊕

Positional Encoding

�/�
�/�

�/�

Transformer Block

⊕

<think i> Consider Rational

kv cache i ...

...

Shared kv
(Please solve:
�3 − 7�+...)

Consider Rational Root

Root

Theorem

Thought
Embedding i

�/�

<summary> Final

answersFinal ...

Positional Encoding

Transformer Block

Shared kv

kv cache i

kv cache P
...

kv cache 1

...

...

Figure 2: ParaThinker architecture. For an input question, ParaThinker processes it in two stages:
(1) Parallel Reasoning: ParaThinker generates P reasoning paths in parallel; (2) Summarization:
ParaThinker merges the reasoning paths by reusing their KV-caches to generate the final answer.

After generating these parallel paths, the model synthesizes them to produce a final answer, a. This
answer is conditioned on both the original prompt x and the complete context of all preceding rea-
soning paths. Let R = (r(1), r(2), . . . , r(P)) be the concatenation of all generated reasoning paths.
The final answer a is then sampled from the model as follows: πθ(a|x) =

∏La
t=1 πθ(at|x,R, a<t).

Crucially, ParaThinker leverages the KV-caches from the parallel reasoning stage, eliminating the
need to re-prefill the context and thereby offering significant computational savings compared to
other methods.

4.2 SPECIAL TOKENS FOR BOOSTING THOUGHT DIVERSITY

ParaThinker needs to ensure diverse reasoning paths to avoid the trap of relying on a single sampled
sequence. To achieve this, we introduce a set of trainable special control tokens: <think i>,
</think i>, <summary>, and </summary> for i ∈ {1, . . . , P} to control the parallelization
and merging operations. The <think i> token (denoted as s(i) in our equations) is placed at the
beginning of each reasoning path, which leads the model to generate a distinct trajectory. Thus, the
distribution of each reasoning path πθ(r

(i)|x) =
∏Li

t=1 πθ(r
(i)
t |x, s(i), r(i)<t) will be conditioned by

s(i). The closing </think i> token marks the end of a specific path, and the generation of the
final answer is then wrapped within <summary> and </summary> tokens. This structured use of
control tokens is a simple yet powerful mechanism to guide the model’s generation process towards
diverse and parallel lines of thought.

4.3 THOUGHT-SPECIFIC POSITIONAL EMBEDDING

Merging multiple reasoning paths poses challenges due to positional ambiguity. LLMs distinguish
tokens based on their content and positional encoding. When multiple reasoning paths are generated
in parallel, tokens at the same relative position (e.g. the t-th token in each reasoning path r(i))
share identical positional encodings. This may cause confusion during summarization, as the model
cannot differentiate which reasoning stream a token originated from.

Flattened Encoding: A naive solution assigns unique absolute positions across all paths: m =
lx + i · lmax + t, where lx is the input length, i indexes the reasoning path, and t indexes the
token position within that path. While this resolves positional collisions, it results in large positional
indices as P increases. Typical positional encoding mechanisms such as Rotary Position Embedding
(RoPE) (Su et al., 2024) encodes relative positions via rotations, and large index differences |m−n|
cause attention scores to decay. As a result, tokens from earlier paths (i.e. lower i of r(i)) contribute
less when generating the final answer, introducing imbalance across paths.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Sequence-Aware Positional Embedding: To address positional ambiguity in multi-response gen-
eration tasks, ParaThinker separates different reasoning paths by augmenting the RoPE mechanism
with learnable thought embeddings {T (j)}Pj=0. Specifically, we add the T (j) to the key and value
embeddings of all tokens within the i-th reasoning path, which distinguishes each reasoning path
at the summarizing phase. The thought embedding is added to the key before the RoPE rotation
is applied. Let k̃(j)t , ṽ

(j)
t denote the cached key and value for token t at path j, respectively, from

which the key and value vectors are formed as:

k̃
(j)
t = Rt(k

(j)
t + T (j)) ṽ

(j)
t = v

(j)
t + T (j) (1)

Here, lmax denotes the maximum token number for each reasoning path, and Rt is the corresponding
RoPE rotation matrix. Using the RoPE property (Rn)

TRm = Rm−n, the dot product attention score
between a query qn from the summary (at local position n) and a key k̃

(j)
t from path j (at position

m) is:

score(n,m) = (Rnq
(i)
n)T k̃(j)m = (Rnq

(i)
n)T [Rm(k(j)m + T (j))] = qTnRm−nk

(j)
m︸ ︷︷ ︸

Content-to-Content

+ qTnRm−nT
(j)︸ ︷︷ ︸

Content-to-Segment
(2)

The Content-to-Content term is the standard RoPE attention score, which calculates the relevance
between the query’s content (qn) and the key’s content (k(j)m). This term is not related to the rea-
soning path number j and thus does not change when scaling parallel reasoning paths. Content-to-
Segment term calculates the relevance between the query’s content (qn) and the learnable identity of
the key’s entire reasoning path (T (j)). This allows the query to directly probe for the origin of the
information. Because each reasoning path has a unique, trainable thought embedding, this term pro-
vides an unambiguous signal for the model to differentiate between parallel streams of text, solving
the positional ambiguity.

5 TRAINING AND DEPLOYMENT OF PARATHINKER

5.1 SCALABLE TRAINING DATA CURATION

ParaThinker models are trained by fine-tuning existing sequential reasoning LLMs with synthetic
parallel thought data. We design a scalable training data curation pipeline that consists of two key
components: multi-path training data scaling and extensible special tokens training.

Multi-Path Training Data Scaling: We develop a simple yet effective high-quality parallel reason-
ing dataset by sampling multiple times from teacher reasoning LLM (e.g. DeepSeek-R1 (DeepSeek-
AI, 2025)). For a query x and groundtruth answer a, let the P̂ sampled answers denoted as
{(r(1), a(1)), (r(2), a(2)), . . . , (r(P̂), a(P̂))}. We then concat each parallel answer into a groundtruth
answer with the format of: ŷ = (<think 1>r(1)</think 1> , ..., <think P̂>r(P̂)</think

P̂> <summary>a</summary>). The resulting DataP̂r=1 = (x, ŷ) pairs are then used for SFT.

Extrapolative Special Tokens Training: Due to the high cost of teacher LLM inference, we
are often faced with the situation where we cannot generate enough reasoning paths when creating
Datasft, i.e. , P̂ < P , where P denotes the maximum number of parallel reasoning paths supported
at inference time. Thus, during SFT stage, LLMs have to learn to extrapolate to (r(P̂+1), . . . , r(P))

with training data DataP̂r=1. We develop a dynamic special token sampling method for extrapola-
tive special tokens training. For each training batch, we randomly sample P̂ special tokens from
<think i>, i ∈ {1, . . . , P} and prepend these sampled tokens to the beginning of each reasoning
sequence. Thus, each <think i> specializes to induce diverse inference-time trajectories, despite
training on only P̂ paths.

5.2 TRAINING AND INFERENCE IMPLEMENTATION

Attention Mask Design. ParaThinker employs a two-phase attention mask design to enable parallel
reasoning. In the reasoning phase, each path is decoded independently, with attention limited to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the input prompt and its own generated tokens, thereby preventing inter-path interference. In the
summarization phase, answer tokens attend to the full prompt, all reasoning paths, and prior answer
tokens, allowing integration across paths while preserving autoregressive consistency. More details
are shown in Appendix A.3.

The inference engine for ParaThinker is built upon the vLLM framework (Kwon et al., 2023) to
leverage its efficient PagedAttention mechanism for parallel decoding. The inference process is
divided into two distinct phases:

Parallel Reasoning Phase: The engine processes the P reasoning paths concurrently as a single
batch. This parallel decoding phase terminates for all paths as soon as the first parallel reasoning
path is completed, namely any of the P paths generates an end-of-sequence (EOS) token. This
termination strategy ensures all reasoning paths maintain an equal length, preventing processing
imbalance. As empirically justified in Section A.8, this strategy yields the highest accuracy.

Summarization Phase: Following the parallel reasoning phase, the engine constructs an atten-
tion context spanning the KV caches of all P reasoning paths, eliminating the need for costly re-
prefilling. Leveraging vLLM’s PagedAttention, this step is performed with zero data copying, as the
summary sequence can directly reference the memory blocks of all preceding paths.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Training Details: Our math reasoning experiments are based on a Qwen-2.5 (Qwen et al., 2025)
1.5B and 7B model distilled from DeepSeek-R1 (DeepSeek-AI, 2025) (which we denote as original
R1-1.5B and R1-7B below), and coding experiments are based on DeepSeek-R1-Distill-Qwen-1.5B.
For math reasoning, we construct a parallel reasoning dataset with 6.2K problem-solution pairs, with
each instance consisting of a query (xi), ground-truth answer (ai), and P̂ = 6 distinct reasoning
paths. During every training step, we randomly choose a path number P from the set {2, 4, 6}
and construct a training sample by concatenating P samples. For code reasoning, we construct a
dataset of 50k problem–solution instances from OpenCodeReasoning (Ahmad et al., 2025), with
questions that include more than 2 solutions. The final dataset includes either 2 or 4 alternative
code-reasoning traces per problem (P̂ ∈ {2, 4} during SFT). More details about training settings
are listed in Appendix A.4.

Baselines: We compare ParaThinker against: (1) Sequential: Direct reasoning with original
1.5B/7B models. (2) Majority Voting: Generate P independent paths and return the majority an-
swer (Chen et al., 2024a). (3) Re-Prefilling: Generate P paths, concatenate them, and feed the full
context into the model for summarization. This mimics ParaThinker ’s summarization but is ineffi-
cient since KV caches are not reused (Section 6.2). We do not include majority-voting for coding
experiments since program correctness is often non-trivial to vote on.

Benchmarks and Evaluation Setup: We evaluate our model on 4 mathematical reasoning bench-
marks: AIME 2024, AIME 2025, AMC 2023, and MATH-500 (Hendrycks et al., 2021), and 1
coding benchmark: LiveCodeBench v6 (Jain et al., 2024). We use a token budget control method
where each reasoning path is limited to a maximum of B tokens (|r(i)| ≤ B). If a model reaches
this budget without naturally stopping, we enforce termination and then initiate the summarization
stage by adding the (<summary>) token. This allows us to examine the utilization of the test-time
scaling budget. More details of evaluation setup is shown in Appendix A.5.

6.2 SCALING PERFORMANCE

Table 1 and Table 2 compare ParaThinker with baseline methods under different token lengths.
Compared with sequential LLMs, ParaThinker improves accuracy by up to 14.5% (1.5B) and 8.3%
(7B) on AIME 2024, and by 3.6% (1.5B) and 8.8% (7B) on AIME 2025 at each token length on
average (e.g. 2×16K vs. 32K), demonstrating the effectiveness of parallel reasoning. This indicates
that the summarization stage captures a richer aggregation strategy than vote counting. For coding
tasks, ParaThinker outperforms original LLM and data ablation LLM (trained on the same dataset
with ParaThinker) with P increases, showing the potential to handle various tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Base model: R1-1.5B Base model: R1-7B

Method AIME 24 AIME 25 AMC 23 MATH AIME 24 AIME 25 AMC 23 MATH

Seq. (16K) 26.1 22.4 67.1 81.2 51.9 37.9 88.4 91.2
Seq. (32K) 28.3 24.5 68.9 81.8 55.5 37.9 89.8 92.0
Seq. (64K) 27.1 25.5 67.7 81.7 56.0 39.6 89.8 92.5
Seq. (128K) 27.4 22.1 68.0 81.8 52.7 40.4 89.8 92.6

Maj. (2×16K) 25.9 23.0 67.0 81.4 52.3 38.3 88.4 91.4
Maj. (4×16K) 32.9 27.5 74.3 86.7 60.6 43.1 92.2 93.5
Maj. (8×16K) 41.0 31.8 79.8 89.0 68.8 49.6 93.1 94.2

Rep. (2×16K) 30.4 26.7 70.6 60.8 42.9 33.8 88.1 63.8
Rep. (4×16K) 24.2 25.8 61.3 58.6 43.3 33.3 86.3 63.2
Rep. (8×16K) 14.2 13.3 60.0 55.3 43.3 31.7 91.9 63.7

Para. (2×16K) 34.8 24.2 73.1 87.5 57.1 46.0 89.5 93.2
Para. (4×16K) 43.3 26.7 80.8 88.7 63.3 46.9 91.7 94.2
Para. (8×16K) 48.1 31.9 83.1 89.7 68.8 51.3 93.3 94.5

Table 1: Accuracy of ParaThinker and baselines (Seq., Maj., Rep. Para. denote Sequential, Majority
Voting, Reprefill, and ParaThinker respectively). We report Pass@1 accuracy (%). Values in brack-
ets indicate the maximum generation length L (e.g. 16K); for parallel generation methods, we use
P × L to denote generating P reasoning paths, each with a maximum length of L.

Model Original Sequential LLM Fine-tuned Sequential LLM ParaThinker-1.5B

Budget 12K 24K 48K 96K 12K 24K 48K 96K 2×12K 4×12K 8×12K

Accuracy 18.3 18.9 18.9 17.7 16.5 16.0 16.0 16.7 18.7 19.4 20.1

Table 2: Pass@1 accuracy of ParaThinker, original sequential LLM, and the sequential LLM fine-
tuned with the same data as ours.

.

We analyze how performance scales with the number of parallel paths in Figure 3 and 4, where
increasing the path count consistently yields higher accuracy at larger generation budget. For se-
quential reasoning LLM (P = 1), expanding the token budget beyond 32K yields no further ac-
curacy gains, whereas ParaThinker continues to improve. These results indicate that ParaThinker
effectively extends the scaling law beyond the point where sequential reasoning models typically
encounter a test-time scaling bottleneck.

We further analyze the relations between ParaThinker and majority voting in detail. The result is
shown in Table 3. We find that ParaThinker does not conflict with the majority voting. Instead, it can
be combined with majority voting to achieve higher accuracy. The highest accuracy of ParaThinker-
1.5B+maj@8 can reach 66.7% and 60.0% on AIME 2024 with P = 4 and P = 8, gaining 23.4%
and 11.9% accuracy improvements against pass@1. (See Table 9 for results on 7B+maj@k)

Inference Efficiency. Figure 5 shows the latency of ParaThinker under different total token budgets.
Under a large budget (e.g. , 128K), the latency of high parallel size (e.g. , 8×16K) is much less than
sequential scaling. This is because the decoding phase is typically bounded by memory bandwidth,
and increasing the number of parallel reasoning paths does not increase data movement operations.
Our experiments show that the reasoning latency on 128K can even be reduced by 66.8% with
8 ∗ 16K. The efficiency of our method gives us the proof that we can achieve greater accuracy
through parallel scaling within acceptable inference latency.

6.3 ABLATION STUDY

Train Data: We test how much the performance gain of ParaThinker attribute to the training data.
Specifically, we use the same data of ParaThinker (6 samples for each question) to finetune the
original LLM, without changing any other setting. Table 5 shows that finetuning does not improve
performance, with results even slightly worse than the original LLM. ParaThinker, on the other
hand, outperforms the fine-tuned variant across all budgets, confirming its effectiveness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

P=1 P=2 P=4 P=8

pass@1 26.1 34.8 43.3 48.1
maj@4 32.9 42.5 53.0 56.3
maj@8 41.0 50.1 61.7 59.9
maj@16 47.8 56.7 66.7 60.0

Table 3: Performance comparison of
ParaThinker-1.5B with majority voting on
AIME 2024. P : number of parallel reasoning
paths; maj@k: majority voting with k samples.

Strategy Pass Rate

P Maj SoN M+S Para. pass@1 pass@P

2 26.7 33.3 33.3 34.8 26.3 35.8
4 30.0 38.4 39.2 43.3 24.6 49.2
8 35.8 40.8 40.0 48.1 22.8 56.7

Table 4: Ablation study for aggregation strate-
gies on AIME 2024. SoN : Shortest-of-N;
M + S: SoN if no majority identified; Para.:
ParaThinker-1.5B

A24 A25 AMC MATH Avg.

R1-1.5B-SFT (Same dataset with ParaThinker)

Seq. (16K) 26.3 18.5 66.0 81.1 48.0
Seq. (32K) 22.9 22.1 64.1 77.6 46.7
Seq. (64K) 25.8 17.3 62.2 77.6 45.7
Seq. (128K) 24.8 21.9 63.6 78.6 47.2

Maj. (2×16K) 26.0 18.1 66.3 81.0 47.9
Maj. (4×16K) 32.2 23.4 72.1 86.5 53.6
Maj. (8×16K) 42.5 27.1 79.8 89.2 59.7

Rep. (2×16K) 23.3 16.3 65.6 76.8 45.5
Rep. (4×16K) 15.0 11.7 55.6 70.6 38.2
Rep. (8×16K) 15.8 9.2 58.8 66.6 37.6

ParaThinker-1.5B

Para. (2×16K) 34.8 24.2 73.1 87.5 54.9
Para. (4×16K) 43.3 26.7 80.8 88.7 59.9
Para. (8×16K) 48.1 31.9 83.1 89.7 63.2

Table 5: Train data ablation result: Pass@1 ac-
curacy (%) of the 1.5B sequential LLM fine-
tuned with the same dataset as ParaThinker.

Figure 3: ParaThinker-1.5B
Math-500 Scaling.

Figure 4: ParaThinker-7B
AIME-24 Scaling.

Figure 5: ParaThinker Latency
under different budgets.

Summarization Mechanism: We compare our trainable summarization mechanism against alter-
native aggregation strategies like majority voting and a heuristic Shortest-of-N, which selects the
final answer from the shortest reasoning path among the N generated paths (motivated by the first
termination strategy in ParaThinker). We also report the pass@P metric, which measures the frac-
tion of problems solved correctly by at least one of the P generated reasoning paths. We apply these
strategies to the same set of reasoning paths generated by ParaThinker under a fixed budget of 16K
tokens per path. As shown in Table 4, our end-to-end summarization outperforms all alternatives.

Thought Embedding and Special Tokens: We conduct ablation studies of thought embedding
(by removing the thought embeddings) and special tokens (by replacing every <think i>,
</think i> with <think>, </think>). We find that without special tokens and thought
embeddings, the accuracy of ParaThinker drops 0.6%-3.1%, 1.4%-4.3% respectively, demonstrat-
ing the necessity of these designs, where detailed analysis are stated in Appendix A.9.

7 CONCLUSION

Our work identifies a limitation of conventional sequential test-time compute scaling of LLMs
named “Tunnel Vision”. We then introduce ParaThinker, a framework for native parallel reasoning
that sidesteps the limitation by generating and aggregating multiple thought paths simultaneously.
While our method presents a significant first step, future work could explore the interpretation of the
learned aggregation strategy and end-to-end training with reinforcement learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

For reproducibility, we provide detailed descriptions of our model architecture, training pipeline,
and evaluation setup in Sections 4–6. Specifically, we describe the design of specialized control
tokens, thought-specific positional embeddings, and the two-phase attention mask mechanism that
enable native parallel reasoning. The training data curation process, including multi-path sampling
from teacher models, extrapolative special token training, and dataset construction, is explained in
Appendix A.4-A.6. Hyperparameters, optimization settings, and hardware configurations are also
listed in Appendix A.4. All experiments are conducted with both 1.5B and 7B backbone models,
and repeated across multiple reasoning budgets and path numbers to validate robustness. We further
include ablation studies on positional embeddings, special tokens, termination strategies, and sum-
marization methods to ensure the soundness of our conclusions. The implementation, datasets, and
evaluation code will be released to the community to facilitate independent verification and further
research.

9 ETHICS STATEMENT

Our study investigates methods to improve the reasoning efficiency and robustness of LLMs through
parallel generation and aggregation of multiple reasoning paths. All benchmarks used in this work
(AIME 2024, AIME 2025, AMC 2023, MATH-500, and LiveCodeBench v6) are publicly available,
and no private or sensitive user data was involved. The proposed ParaThinker framework focuses
on improving computational utilization and reasoning accuracy without altering semantic content in
ways that could create additional risks of harmful or biased generation. While parallel reasoning
may, in principle, be misused to amplify outputs, our design centers on controlled aggregation and
transparent evaluation to mitigate such concerns. We adhere to the licensing requirements of all
datasets and models used, and all data handling follows applicable privacy and legal standards. The
authors declare no conflicts of interest or external sponsorship that could improperly influence this
work. We encourage reviewer and community feedback on additional ethical considerations relevant
to the deployment of parallel reasoning frameworks.

REFERENCES

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain,
Jocelyn Huang, Vahid Noroozi, and Boris Ginsburg. Opencodereasoning: Advancing data distil-
lation for competitive coding. arXiv preprint arXiv:2504.01943, 2025.

Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive
and diffusion language models. In The Thirteenth International Conference on Learning Repre-
sentations, 2025. URL https://openreview.net/forum?id=tyEyYT267x.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Lingjiao Chen, Jared Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. Are more llm calls all you need? towards the scaling properties of
compound ai systems. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Process-
ing Systems, volume 37, pp. 45767–45790. Curran Associates, Inc., 2024a. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
51173cf34c5faac9796a47dc2fdd3a71-Paper-Conference.pdf.

Mouxiang Chen, Binyuan Hui, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Jianling Sun, Junyang Lin, and
Zhongxin Liu. Parallel scaling law for language models, 2025a. URL https://arxiv.org/
abs/2505.10475.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not

10

https://openreview.net/forum?id=tyEyYT267x
https://proceedings.neurips.cc/paper_files/paper/2024/file/51173cf34c5faac9796a47dc2fdd3a71-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/51173cf34c5faac9796a47dc2fdd3a71-Paper-Conference.pdf
https://arxiv.org/abs/2505.10475
https://arxiv.org/abs/2505.10475

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

think that much for 2+3=? on the overthinking of o1-like llms, 2025b. URL https://arxiv.
org/abs/2412.21187.

Xinyun Chen, Ryan Andrew Chi, Xuezhi Wang, and Denny Zhou. Premise order matters in reason-
ing with large language models. In Forty-first International Conference on Machine Learning,
2024b. URL https://openreview.net/forum?id=4zAHgkiCQg.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, Nicholas Thumiger, Aditya Desai, Ion
Stoica, Ana Klimovic, Graham Neubig, and Joseph E. Gonzalez. The danger of overthinking:
Examining the reasoning-action dilemma in agentic tasks, 2025. URL https://arxiv.org/
abs/2502.08235.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Chenrui Fan, Ming Li, Lichao Sun, and Tianyi Zhou. Missing premise exacerbates overthinking:
Are reasoning models losing critical thinking skill?, 2025. URL https://arxiv.org/abs/
2504.06514.

Guhao Feng, Yihan Geng, Jian Guan, Wei Wu, Liwei Wang, and Di He. Theoretical benefit and lim-
itation of diffusion language model, 2025. URL https://arxiv.org/abs/2502.09622.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. CoRR, abs/2502.05171, February 2025. URL
https://doi.org/10.48550/arXiv.2502.05171.

Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh
Manocha, Furong Huang, Mohammad Ghavamzadeh, and Amrit Singh Bedi. Does thinking
more always help? understanding test-time scaling in reasoning models, 2025. URL https:
//arxiv.org/abs/2506.04210.

Google. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/
google-deepmind/gemini-model-thinking-updates-march-2025/
#gemini-2-5-thinking, March 2025.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025. URL
https://arxiv.org/abs/2501.04519.

Nathan Habib, Clémentine Fourrier, Hynek Kydlı́ček, Thomas Wolf, and Lewis Tunstall. Lighte-
val: A lightweight framework for llm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Dif-
fusionBERT: Improving generative masked language models with diffusion models. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4521–4534,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.248. URL https://aclanthology.org/2023.acl-long.248/.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

11

https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://openreview.net/forum?id=4zAHgkiCQg
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2504.06514
https://arxiv.org/abs/2504.06514
https://arxiv.org/abs/2502.09622
https://doi.org/10.48550/arXiv.2502.05171
https://arxiv.org/abs/2506.04210
https://arxiv.org/abs/2506.04210
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://arxiv.org/abs/2501.04519
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://aclanthology.org/2023.acl-long.248/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Tian Jin, Ellie Y. Cheng, Zack Ankner, Nikunj Saunshi, Blake M. Elias, Amir Yazdanbakhsh,
Jonathan Ragan-Kelley, Suvinay Subramanian, and Michael Carbin. Learning to keep a promise:
Scaling language model decoding parallelism with learned asynchronous decoding, 2025. URL
https://arxiv.org/abs/2502.11517.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distilla-
tion. www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-
distillation, 2025. Accessed: 2025-01-22.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, and Zhifang Sui. Selfbudgeter: Adaptive token
allocation for efficient llm reasoning. arXiv preprint arXiv:2505.11274, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAI. Openai o1 system card. 2024. URL https://arxiv.org/abs/2412.16720.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer,
and Alane Suhr. Learning adaptive parallel reasoning with language models, 2025. URL https:
//arxiv.org/abs/2504.15466.

Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek
Mittal, and Peter Henderson. Safety alignment should be made more than just a few tokens
deep. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=6Mxhg9PtDE.

Yuxiao Qu, Matthew Y. R. Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning, 2025. URL https://arxiv.org/abs/2503.07572.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Gleb Rodionov, Roman Garipov, Alina Shutova, George Yakushev, Erik Schultheis, Vage Egiazar-
ian, Anton Sinitsin, Denis Kuznedelev, and Dan Alistarh. Hogwild! inference: Parallel llm
generation via concurrent attention, 2025. URL https://arxiv.org/abs/2504.06261.

12

https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2502.11517
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2504.15466
https://arxiv.org/abs/2504.15466
https://openreview.net/forum?id=6Mxhg9PtDE
https://arxiv.org/abs/2503.07572
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2504.06261

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen, Vashisth Tiwari, Ruihang Lai, Jinyuan Shi, Ian
Yen, Avner May, Tianqi Chen, and Beidi Chen. Magicdec: Breaking the latency-throughput
tradeoff for long context generation with speculative decoding. In Y. Yue, A. Garg, N. Peng,
F. Sha, and R. Yu (eds.), International Conference on Representation Learning, volume 2025,
pp. 6835–6850, 2025. URL https://proceedings.iclr.cc/paper_files/paper/
2025/file/13f972adf12bdf886583d48cd528002f-Paper-Conference.pdf.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yi Sun, Han Wang, Jiaqiang Li, Jiacheng Liu, Xiangyu Li, Hao Wen, Yizhen Yuan, Huiwen Zheng,
Yan Liang, Yuanchun Li, and Yunxin Liu. An empirical study of llm reasoning ability under strict
output length constraint. arXiv preprint arXiv:2504.14350, April 2025. doi: 10.48550/arXiv.
2504.14350.

Kimi Team et al. Kimi k1.5: Scaling reinforcement learning with llms, 2025. URL https:
//arxiv.org/abs/2501.12599.

Guanghan Wang, Yair Schiff, Subham Sahoo, and Volodymyr Kuleshov. Remasking discrete diffu-
sion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Hao Wen, Xinrui Wu, Yi Sun, Feifei Zhang, Liye Chen, Jie Wang, Yunxin Liu, Ya-Qin Zhang,
and Yuanchun Li. Budgetthinker: Empowering budget-aware llm reasoning with control tokens.
arXiv preprint arXiv:2508.17196, 2025.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009. ISSN 0001-
0782. doi: 10.1145/1498765.1498785. URL https://doi.org/10.1145/1498765.
1498785.

Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search optimiza-
tion. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 1296–1306, Austin, Texas,
November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1137. URL
https://aclanthology.org/D16-1137/.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models,
2025. URL https://arxiv.org/abs/2408.00724.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia Kang,
Jiaming Ji, Yingying Zhang, Zhijiang Guo, Yaodong Yang, Muhan Zhang, and Debing Zhang.
Redstar: Does scaling long-cot data unlock better slow-reasoning systems?, 2025. URL https:
//arxiv.org/abs/2501.11284.

Rongwu Xu, Zehan Qi, and Wei Xu. Preemptive answer “attacks” on chain-of-thought reason-
ing. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pp. 14708–14726, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.876. URL
https://aclanthology.org/2024.findings-acl.876/.

13

https://proceedings.iclr.cc/paper_files/paper/2025/file/13f972adf12bdf886583d48cd528002f-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/13f972adf12bdf886583d48cd528002f-Paper-Conference.pdf
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://aclanthology.org/D16-1137/
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2501.11284
https://arxiv.org/abs/2501.11284
https://aclanthology.org/2024.findings-acl.876/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, et al. Qwen3 technical report, 2025a. URL https://
arxiv.org/abs/2505.09388.

Xinyu Yang, Yuwei An, Hongyi Liu, Tianqi Chen, and Beidi Chen. Multiverse: Your language mod-
els secretly decide how to parallelize and merge generation. arXiv preprint arXiv:2506.09991,
2025b.

Shinn Yao, Jeffrey Zhao, Shixiang Yu, and et al. Tree of thoughts: Deliberate problem solving with
large language models. arXiv preprint arXiv:2305.10601, 2023.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Quanquan Gu. Diffusion language models
can perform many tasks with scaling and instruction-finetuning. arXiv preprint arXiv:2308.12219,
2023.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, et al. Dapo: An open-source llm reinforcement learning
system at scale, 2025. URL https://arxiv.org/abs/2503.14476.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025a.

Wenting Zhao, Pranjal Aggarwal, Swarnadeep Saha, Asli Celikyilmaz, Jason Weston, and Ilia Ku-
likov. The majority is not always right: Rl training for solution aggregation. arXiv preprint
arXiv:2509.06870, 2025b.

Tong Zheng, Hongming Zhang, Wenhao Yu, Xiaoyang Wang, Xinyu Yang, Runpeng Dai, Rui Liu,
Huiwen Bao, Chengsong Huang, Heng Huang, et al. Parallel-r1: Towards parallel thinking via
reinforcement learning. arXiv preprint arXiv:2509.07980, 2025.

Jason Zhu and Hongyu Li. Towards concise and adaptive thinking in large reasoning models: A
survey, 2025. URL https://arxiv.org/abs/2507.09662.

A APPENDIX

A.1 LLM USAGE STATEMENT

Large language models (e.g. , ChatGPT) were used only for minor language polishing and grammar
correction. All ideas, experimental design, data analysis, and writing were conducted by the authors.

A.2 RELATED WORKS

A.2.1 SEQUENTIAL TEST-TIME SCALING

Recent advances in test-time scaling seek to improve LLM reasoning by increasing computational
depth during decoding, primarily through reinforcement learning (RL) (OpenAI, 2024; DeepSeek-
AI, 2025; Google, 2025; Yang et al., 2025a; Team et al., 2025; Zhao et al., 2025a; Yu et al., 2025) and
supervised fine-tuning (SFT) (Muennighoff et al., 2025; Ye et al., 2025). RL-based methods (Ope-
nAI, 2024; Shao et al., 2024) encourage LLMs to allocate more computation to promising reasoning
paths by encouraging self-reflection and iterative trial. Other approaches distill long-form rationales
from larger teacher models into smaller student models, enabling deeper internal reasoning through
fine-tuned CoT supervision (Labs, 2025; Ye et al., 2025; Xu et al., 2025; Geiping et al., 2025). While
these methods significantly enhance LLM performance on complex tasks, they often suffer from in-
creased inference latency and compute consumption due to long output sequences (Sun et al., 2025;
Zhu & Li, 2025; Qu et al., 2025; Wen et al., 2025). Moreover, excessively long reasoning traces
may introduce “overthinking” effects such as repetition or hallucination (Chen et al., 2025b; Ghosal

14

https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2507.09662

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

et al., 2025). Besides, recent works have also shown that sequential reasoning LLMs are brittle
to reasoning order (Chen et al., 2024b) or shallow token attacks (Xu et al., 2024; Qi et al., 2025).
In contrast, our method introduces a new dimension of inference-time scaling—width—by execut-
ing multiple reasoning paths in parallel and summarizing them. This approach preserves reasoning
efficiency while avoiding long single-path decoding.

A.2.2 SEARCH-BASED METHODS FOR PARALLEL REASONING

Parallel Decoding LLMs improve reasoning by sampling multiple tokens at each step to accelerate
LLM inference and/or improving LLM performance. Early techniques include beam search (Wise-
man & Rush, 2016), self-consistency (Wang et al., 2023), speculative decoding (Leviathan et al.,
2023; Chen et al., 2023) and majority voting (Chen et al., 2024a). Recent advancements include
Best-of-N (Lightman et al., 2023), Tree of Thoughts (ToT) (Yao et al., 2023), and Monte Carlo
Tree Search (MCTS) (Snell et al., 2024; Guan et al., 2025). These approaches typically require
an external verifier to evaluate and rank candidate completions, increasing computational cost and
often relying on domain-specific or manually constructed reward signals. Our method departs from
these paradigms by generating multiple reasoning trajectories internally and merging them using a
lightweight summarization step, without requiring external verifiers or retraining.

A.2.3 NATIVELY PARALLEL GENERATION METHODS

Another line of work focuses on empowering LLMs to generate multiple tokens at each decoding
iteration to accelerate LLMs theoretically. Diffusion-based language models (He et al., 2023; Ye
et al., 2023; Zhao et al., 2025a; Wang et al., 2025; Arriola et al., 2025) sample multiple tokens in
parallel during each diffusion step. While these methods can theoretically enable parallel generation,
recent theoretical analyses (Feng et al., 2025) shows that for tasks involving sequential dependen-
cies (e.g. reasoning), the number of required diffusion steps can scale linearly with sequence length,
undermining their efficiency. PARSCALE (Chen et al., 2025a) investigates architectural parallelism
by duplicating the input multiple times, applying distinct transformations, and aggregating outputs
token-wise. However, this approach still requires architectural changes and specialized continual
pretraining. In contrast, our approach retains the standard LLM architecture and introduces paral-
lelism at the reasoning level by generating and caching multiple distinct chains of thought, which are
later summarized into a final answer. Other works (Yang et al., 2025b; Pan et al., 2025; Rodionov
et al., 2025; Jin et al., 2025) propose to automatically identify subtasks that can be solved in parallel.
While effective for compositional tasks, it relies on explicit subtask decomposition, and these works
focus on efficiency rather than accuracy improvement. ParaThinker, on the other hand, does not
assume any subtask structure and improves both efficiency and accuracy by mitigating single-path
failure cases (e.g. hallucinations or local optima) via diversity in reasoning. By integrating multiple
KV caches in a summarization stage, our method scales inference without sacrificing correctness or
requiring verifier models.

A.3 ATTENTION MASK DESIGN

To enable efficient parallel reasoning in existing LLM infrastructures during both training and in-
ference, ParaThinker adopts a two-phase attention mask design. During the reasoning phase, each
reasoning path is decoded independently, with attention restricted to the input prompt and its own
token history. Let Mi,j denote the attention mask between the index i and index j, where attention

score can be calculated as: Ai,j = Softmax
(

qi·kj+Mi,j√
dk

)
. The attention mask for the i-th reasoning

path (r(i)) is defined as:

Mr(i)

t,j =

{
0, if j ≤ t and j ∈ {1, . . . , lx} ∪ Indi
−∞, otherwise

(3)

where lx is the length of the input prompt and Indi is the index range for tokens in the i-th reasoning
path. This enforces independence across reasoning paths by blocking inter-path attention.

During the summarization phase, where each answer token attends to the entire prompt, all reasoning
paths, and previously generated answer tokens. The summarization attention mask is defined as:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

MA
t,j =

{
0, if j ≤ t and j ∈ {1, . . . , lx} ∪

⋃P
i=1 Indi ∪ Inda

−∞, otherwise
(4)

where Inda denotes the index range of the answer tokens. This mask allows the final answer to
integrate all parallel thoughts without violating autoregressive constraints.

A.4 TRAINING DETAILS

This section details the configuration used for supervised fine-tuning (SFT) of the large language
model.

Dataset. For math reasoning, 3.5K of the problems are sampled from the Open-R1 (Hugging Face,
2025) filtered to include only those with more than 4 existing answer variations. We also randomly
sample 1.5K from and DeepMath (He et al., 2025) dataset, which provides 3 answers per question,
and 1.2K from s1k (Muennighoff et al., 2025) (0.4K filtered for clear answers) and limo (Ye et al.,
2025) (0.8K full dataset). To enrich diversity, we use gpt-oss-20b (OpenAI, 2025) as a teacher
model, generating additional solutions at temperature 0.8, yielding six reasoning paths per problem.

Parameter Value
Batch Size 1
Gradient Accumulation Steps 8
Learning Rate 1× 10−5

Training Epochs 3
Context Length 28,672
Hardware 4 GPUs
Learning Rate Scheduler Constant
Warmup Ratio 0.1
Weight Decay 0.05
Max Gradient Norm 0.5
Max Context Length 28K

Table 6: SFT Training Configuration for DeepSeek-R1-Distill-Qwen-1.5B

Parameter Value
Batch Size 1
Gradient Accumulation Steps 4
Learning Rate 2× 10−5

Training Epochs 2
Context Length 28,672
Hardware 8 GPUs
Learning Rate Scheduler Cosine with Minimum LR
Warmup Ratio 0.1
Weight Decay 0.05
Max Gradient Norm 0.5
Max Context Length 28K

Table 7: SFT Training Configuration for DeepSeek-R1-Distill-Qwen-7B

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 EVALUATION SETTINGS

Our system is implemented using the vLLM inference framework (Kwon et al., 2023), integrated
with our custom parallel generation engine. We employ Qwen-2.5-math (Yang et al., 2024) and
lighteval framework (Habib et al., 2023) for evaluation of math and code reasoning tasks respec-
tively. For the 1.5B parameter model, we employ a sampling temperature of 0.5 and a top-p value
of 1.0, while for the 7B parameter model, we use a temperature of 0.6 and a top-p value of 1.0. To
account for output randomness, we report pass@1 accuracy, calculated as pass@1 = 1

k

∑k
i=0 pi,

where pi is a binary indicator of correctness for the i-th response. Following DeepSeek-R1, we set k
depending on the size of test dataset, thus we set k = 16 for AIME 2024, AIME 2025, AMC 2023,
and k = 4 for MATH-500. For coding tasks, we use k = 8 samples per test input when computing
pass@1.

A.6 EXAMPLES OF TRAINING DATA

After sampling multiple answers from the teacher model, we construct the SFT training data as
follows: (1) concatenate all sampled answers as separate reasoning paths; (2) insert special tokens
to delineate the parallel reasoning paths; (3) append the ground-truth final answer. An example is
shown below:

SFT Data Example

<User>Determine the number of solutions to the equation z100 = 1 + i that lie in the
third quadrant of the complex plane. You FIRST think about the reasoning process as an
internal monologue and then summarize the reasoning process to get the final answer. The
summary process MUST BE enclosed within <summary> </summary> tags. The final
answer MUST BE put in \boxed{}.<Assistant><think><vllm pad>

<think1>
I need to solve z100 = 1 + i and find how many solutions are in the third quadrant of the
complex plane. First, I recall that complex numbers can be represented in polar form. So,
I’ll start by writing 1 + i in polar form ...

<think2>
Okay, so I need to find how many solutions of the equation z100 = 1 + i are in the third
quadrant. Hmm, let’s start by recalling that complex equations like this one can often be
solved using polar form and De Moivre’s theorem. Let me jot down what I remember ...
</think2>

<think3>
Okay, so I need to figure out how many solutions of the equation z100 = 1 + i lie in the
third quadrant of the complex plane. Hmm, let’s start by recalling that in the complex plane,
the third quadrant is where both the real and imaginary parts of the complex number are
negative. So any solution z must satisfy Re(z) < 0 and Im(z) < 0 ...

<think4>
I need to solve the equation z100 = 1 + i and find how many solutions are in the third
quadrant of the complex plane. First, I recall that complex numbers can be expressed in
polar form, which might help with exponents. So, let z = reiθ, where r is the modulus and
θ is the argument. Then z100 = r100ei100θ ...
</think4>

<summary>
By analyzing multiple reasoning processes above, I concluded that: The final answer is 25 .
</summary>

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.7 EXAMPLES OF PARALLEL ANSWERS

We illustrate the effectiveness of ParaThinker through an example. Question: “Jen enters a lottery
by picking 4 distinct numbers from S = {1, 2, 3, · · · , 9, 10}. 4 numbers are randomly chosen from
S. She wins a prize if at least two of her numbers were 2 of the randomly chosen numbers, and wins
the grand prize if all four of her numbers were the randomly chosen numbers. The probability of her
winning the grand prize given that she won a prize is m

n where m and n are relatively prime positive
integers. Find m+ n. ” ParaThinker produces the following output (shortened for brevity):

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Answer Example

<think1>
Use the conditional probability formula

P (A|B) =
P (A ∩B)

P (B)
,

where A is winning the grand prize (all four numbers correct), and B is winning a prize (at
least two numbers correct). Calculate

P (A) =
1(
10
4

) =
1

210
.

Then calculate P (B) as the probability of having at least two numbers correct, using the
complement method:

P (B) = 1− P (0)− P (1) = 1−
(
6
4

)
210

−
(
4
1

)(
6
3

)
210

=
115

210
=

23

42
.

The final conditional probability is
1

210
23
42

=
1

115
,

hence m+ n = 116.
</think1>

<think2>
calculate P (B) directly as the probability of having at least two numbers correct:(

4

2

)(
6

2

)
+

(
4

3

)(
6

1

)
+

(
4

4

)(
6

0

)
= 115.

The conditional probability is 1
115

<think3>
Directly compute the intersection to confirm:

P (A|B) =
1

115
.

<think4>
Use the hypergeometric distribution formula to calculate P (B):

P (B) =

4∑
k=2

(
4
k

)(
6

4−k

)(
10
4

) =
115

210
,

<summary>
By analyzing multiple reasoning processes above, I concluded that: The final answer is
116 .
</summary>

This example demonstrates that the generated parallel answers employ diverse reasoning strategies
that complement each other. By considering multiple reasoning paths, ParaThinker can mitigate the
risk of being misled by a flawed initial line of thought.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

P=2 P=4 P=8

Last-Finish 32.1 37.1 42.5
Half-Finish 34.8 38.3 42.5
First-Finish (Default) 34.8 43.3 48.1

Table 8: Accuracy of ParaThinker-1.5B on AIME 2024 under budget B for each reasoning path
based on different strategies for terminating the parallel reasoning stage before proceeding to sum-
marization.

P=1 P=2 P=4 P=8

pass@1 51.9 57.1 63.3 68.8
maj@4 60.6 64.9 70.3 74.7
maj@8 68.8 68.9 72.1 77.6
maj@16 73.3 70.0 73.3 76.7

Table 9: ParaThinker-7B together with majority voting on AIME 2024. P : number of parallel
reasoning paths; maj@k: majority voting with k samples.

A.8 TERMINATION STRATEGIES FOR THE PARALLEL REASONING STAGE

We compare three strategies for terminating the parallel reasoning stage before proceeding to sum-
marization: (1) Last-Finish: Wait for all P paths to complete. (2) Half-Finish: Terminate when
P/2 paths have completed. (3) First-Finish: Terminate when the first path completes (our default
strategy).

As shown in Table 8, the First-Finish strategy yields the best performance. We attribute this to
the fact that it maintains equal reasoning lengths across all paths, preventing any single path from
dominating the context and ensuring a balanced contribution to the summarization stage. It is also,
by definition, the most computationally efficient strategy.

A.9 ABLATION

A.9.1 TERMINATION STRATEGY ABLATION

We ablate the special control tokens (e.g. <think i>) and thought-specific positional embeddings
in ParaThinker on the AIME 2024 benchmark using the 1.5B model with P = 4 parallel paths.
Table 10 presents the results. We find that without special tokens and thought embeddings, the ac-
curacy of ParaThinker drops 0.6%–3.1%, 1.4%–4.3% respectively, demonstrating the necessity of
these designs for inducing thought diversity and resolving positional ambiguity during summariza-
tion

A.9.2 FLATTENED POSITIONAL ENCODING ABLATION

We further ablate the use of flattened positional encoding (PE) as an alternative to our sequence-
aware thought-specific PE, where unique absolute positions are assigned across all paths: m = lx +
i · lmax+ t, with lx as the input length, i indexing the reasoning path, and t the token position within
that path. Figure 6 shows the performance degradation as P increases on AIME 2024. As illustrated,
the Flatten-PE ParaThinker achieves high accuracy under low token budgets (e.g., approximately
70% at 1K tokens) but experiences a rapid decrease as the budget increases to 4K tokens, dropping
to around 30%. In contrast, the original sequential approach (P=1) shows steady improvement over
the same budget range. While this resolves positional collisions, it results in large positional indices
as P increases. Typical positional encoding mechanisms such as Rotary Position Embedding (RoPE)
encodes relative positions via rotations, and large index differences |m−n| cause attention scores to
decay. As a result, tokens from earlier paths (i.e. lower i of r(i)) contribute less when generating the
final answer, introducing imbalance across paths. Our thought-specific PE, by contrast, maintains
balanced attention through learnable segment identities, yielding consistent gains.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

P=2 P=4 P=8

ParaThinker-1.5B 34.8 43.3 48.1

Thought Embedding Ablation 33.3 39.0 46.7
Special Token Ablation 34.2 40.2 45.2

Table 10: Ablation study on the effect of thought embedding (AIME 2024, avg@16, t = 0.5,
B = 16K).

Figure 6: Flattened PE Ablation: Comparison on R1-1.5B trained with Flattened PE and original
model (sequential) under Math-500 dataset.

A.10 WHY PARATHINKER OUTPERFORMS MAJORITY VOTING

Setup and notation. Let (q,R, a) ∼ D, where q is the input query, R = (r(1), . . . , r(P)) are P
reasoning paths (token trajectories), and a is the true answer taking values in a finite set A. Denote
the data posterior by pdata(a | q,R). Let A = f(R) = (a(1), . . . , a(P)) be the per-path answers
extracted deterministically from R. An aggregator is any conditional distribution p(a | q,R); we
focus on two classes:

• Voting-only aggregators: p(a | q,R) that depend on R only through A, i.e. p(a | q,R) =
p(a | q,A).

• Path-aware aggregators: p(a | q,R) that may use the full R.

Markov chain view. The dependencies among these variables can be expressed as the Markov
chain

q −→ R −→ A −→ a.

Since A is a deterministic function of R, and a depends on the reasoning process through R, this
chain emphasizes that conditioning on A discards part of the information about a contained in R.
By the data-processing inequality,

I(a;R | q) ≥ I(a;A | q),

with strict inequality whenever reasoning paths carry extra signal about a beyond the final extracted
answers.

Information gap identity. The conditional mutual informations satisfy the chain rule

I(a;R | q) = I(a;A | q) + I(a;R | A, q).

Since A = f(R) is deterministic, I(a;R | A, q) ≥ 0. Moreover, the conditional mutual information
I(a;R | A, q) admits the following exact representation as an expected KL:

I(a;R | A, q) = E(q,A) ER|q,A

[
DKL

(
pdata(· | q,R) ∥ pdata(· | q, A)

)]
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Equivalently (taken as expectation over (q,R)),

I(a;R | q)− I(a;A | q) = E(q,R)

[
DKL

(
pdata(· | q,R) ∥ pdata(· | q, A)

)]
.

We will call the left-hand side the information gap.

Optimal KL for voting-only aggregators. For any voting-only aggregator p(a | q, A), the ex-
pected forward KL to the data posterior is

E(q,R)

[
DKL

(
pdata(· | q,R) ∥ p(· | q, A)

)]
.

For each (q, A), the choice of p(· | q, A) minimizing the inner expectation over R | q, A is precisely
pdata(· | q, A). Therefore the minimal achievable expected KL over all voting-only aggregators
equals the information gap:

inf
p(·|q,A)

E(q,R)

[
DKL

(
pdata(· | q,R) ∥ p(· | q, A)

)]
= E(q,R)

[
DKL

(
pdata(· | q,R) ∥ pdata(· | q, A)

)]
= I(a;R | q)− I(a;A | q).

Thus the information gap is an exact lower bound on the expected KL that any voting-only aggre-
gator must incur. In fact, this bound is only attained by the Bayes-optimal choice p(a | q, A) =
pdata(a | q, A), which requires full knowledge of the data distribution. Heuristic rules such as
majority voting are far more restrictive and generally achieve strictly larger expected KL.

ParaThinker (KL minimizer) vs. voting. Let F = {pθ(a | q,R) : θ ∈ Θ} be a family of
path-aware aggregators (e.g., parameterized models trained with SFT on full paths). Define

θ⋆ = argmin
θ∈Θ

E(q,R)

[
DKL

(
pdata(· | q,R) ∥ pθ(· | q,R)

)]
.

Two observations follow immediately:

1. If F contains the Bayes-optimal voting aggregator pdata(· | q,A) as a special case (i.e.,
some pθ(· | q,R) = pdata(· | q, A) for all (q,R)), then by minimality of θ⋆,

E
[
DKL(pdata∥pθ⋆)

]
≤ inf

p(·|q,A)
E
[
DKL(pdata∥p(· | q, A))

]
= I(a;R | q)− I(a;A | q).

2. If F is sufficiently expressive to approximate pdata(· | q,R) well, then the left-hand side
above can be made small (approaching zero), whereas the right-hand side equals the infor-
mation gap and is strictly positive whenever I(a;R | A, q) > 0.

Consequently, in any non-degenerate situation where intermediate reasoning tokens in R carry in-
formation about a beyond A, path-aware SFT (ParaThinker) can attain strictly lower expected KL
than any voting-only aggregator.

From KL to 0–1 risk. Define the expected classification error (0–1 risk) of an aggregator p by

R(p) := Pr
(q,R,a)∼D

[
â ∼ p(· | q,R) s.t. â ̸= a

]
.

Pinsker’s inequality implies, for each (q,R),

TV
(
pdata(· | q,R), pθ⋆(· | q,R)

)
≤

√
1
2 DKL

(
pdata(· | q,R) ∥ pθ⋆(· | q,R)

)
.

Using the fact that the per-context increase in 0–1 risk is bounded by this TV distance, and taking
expectation, we obtain

R(pθ⋆) ≤ R(pdata) +

√
1
2 E(q,R)

[
DKL

(
pdata(· | q,R) ∥ pθ⋆(· | q,R)

)]
.

Combining this with the KL comparison above gives the desired qualitative statement: when the
information gap is positive, a path-aware aggregator that closely fits the data posterior will achieve
lower 0–1 risk than any voting-only aggregator.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Remarks and caveats.

• The main identity linking mutual information and expected KL is exact and does not rely
on asymptotics; it follows from the conditional mutual information representation I(X;Y |
Z) = EZEY |ZDKL(PX|Y,Z∥PX|Z).

• Assumptions: we assumed a finite label alphabet for clarity (so KL and TV are finite);
the same arguments extend to standard measurable settings with appropriate integrability
conditions.

• Practical caveats: the inequalities above compare best-possible elements of model families.
In practice, finite training data, limited model capacity, and optimization error mean θ⋆ may
not reach the theoretical minimum. Nonetheless, the direction of the inequality indicates
when and why Path-aware SFT (ParaThinker) should outperform majority voting.

• Pinsker’s inequality is loose; for numerical guarantees one may replace it with bounds
tailored to the label loss or use calibrated surrogate-loss analyses.

Connection to ParaThinker design. ParaThinker explicitly trains an aggregator to condition on
full paths R, thereby directly targeting the KL objective minimized by θ⋆ above. The identity and
minimax reasoning explain why conditioning on full reasoning paths recovers information that vot-
ing discards.

23

	Introduction
	Understanding the Scaling Bottleneck
	Is the Bottleneck Due to LLM Capability or Scaling Strategy?
	The Tunnel Vision of Sequential Test-Time Scaling

	Why Native Thought Parallelism?
	Model Design
	ParaThinker Workflow
	Special Tokens for Boosting Thought Diversity
	Thought-Specific Positional Embedding

	Training and Deployment of ParaThinker
	Scalable Training Data Curation
	Training and Inference Implementation

	Experiments
	Experimental Setup
	Scaling Performance
	Ablation Study

	Conclusion
	Reproducibility Statement
	Ethics Statement
	Appendix
	LLM Usage Statement
	Related Works
	Sequential Test-Time Scaling
	Search-Based Methods for Parallel Reasoning
	Natively Parallel Generation Methods

	Attention Mask Design
	Training Details
	Evaluation settings
	Examples of training data
	Examples of parallel answers
	Termination Strategies for the Parallel Reasoning Stage
	Ablation
	Termination Strategy Ablation
	Flattened Positional Encoding Ablation

	Why ParaThinker Outperforms Majority Voting

