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ABSTRACT

We introduce a notion of usable information contained in the representation
learned by a deep network, and use it to study how optimal representations for
the task emerge during training. We show that the implicit regularization com-
ing from training with Stochastic Gradient Descent with a high learning-rate and
small batch size plays an important role in learning minimal sufficient representa-
tions for the task. In the process of arriving at a minimal sufficient representation,
we find that the content of the representation changes dynamically during train-
ing. In particular, we find that semantically meaningful but ultimately irrelevant
information is encoded in the early transient dynamics of training, before being
later discarded. In addition, we evaluate how perturbing the initial part of train-
ing impacts the learning dynamics and the resulting representations. We show
these effects on both perceptual decision-making tasks inspired by neuroscience
literature, as well as on standard image classification tasks.

1 INTRODUCTION

An important open question for the theory of deep learning is why highly over-parametrized neu-
ral networks learn solutions that generalize well even though the model can in principle memorize
the entire training set. Some have speculated that neural networks learn minimal but sufficient
representations of the input through implicit regularization of Stochastic Gradient Descent (SGD)
(Shwartz-Ziv & Tishby, 2017; Achille & Soatto, 2018), and that the minimality of the representa-
tions relates to generalizability. Follow-up work has disputed the validity of some of these claims
when using deterministic deep networks (Saxe et al., 2018), leading to an ongoing debate on the
notion of optimality of representations and how they are learned during training.

Part of the disagreement stems from the use of information-theoretic quantities: most previous stud-
ies in deep learning have analyzed the amount of information that the learned representation contains
about the inputs using Shannon’s mutual information. However, when the mapping from input to
representation is deterministic, the mutual information between the representation and input is de-
generate (Saxe et al., 2018; Goldfeld et al., 2018). Rather than study the mutual information in a
neural network, here we instead define and study the “usable information” in the network, which
measures the amount of information that can be extracted from the representation by a learned de-
coder, and is scalable to high dimensional realistic tasks. We use this notion to quantify how relevant
and irrelevant information is represented across layers of the network throughout the training pro-
cess, and how this is affected by the optimization algorithms and the network pretraining.

In particular, we propose to study a simple task inspired by decision-making tasks in neuroscience,
where inputs and outputs are carefully designed to probe specific information processing phenom-
ena. We then extend our findings to standard image classification tasks trained with state-of-the-art
models. Our neuroscience-inspired task is the checkerboard (CB) task (Chandrasekaran et al., 2017;
Kleinman et al., 2019). In the CB task, one discerns the dominant color of a checkerboard filled with
red and green squares. The subject then makes a reach to a left or right target whose color matches
the dominant color in the checkerboard (Fig 1a). This task therefore involves making two binary
choices: a color decision (i.e., reach to the red or green target) and a direction decision (i.e., reach
to left or right). Critically, the color of the targets (red left, green right; or green left, red right) is
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random on every trial. The direction decision output is conditionally independent of the color de-
cision, as detailed further in Fig 1b and Section B.6, even though the color information needs to be
used to solve the task. This task allows us to evaluate how both of these components of information
are represented through training and across layers.

We used this task and extensions to study the evolution of minimal representations during training.
If a representation is sufficient and minimal, we refer to this representation as optimal (Achille &
Soatto, 2018). Our contributions are the following. (1) We introduce a notion of usable information
for studying representations and training dynamics in deep networks (Section 3). (2) We used this
notion to characterize the transient training dynamics in deep networks by studying the amount of
usable relevant and irrelevant information in deep network layers and across training epochs. We
first use the CB task to gain intuition of the training dynamics in a simplified setting. We find
that training with SGD is critical to bias the network toward learning minimal representations in
intermediate layers (Section 4.1). This adds to the literature suggesting that SGD results in minimal
representations of input information (Achille & Soatto, 2018; Shwartz-Ziv & Tishby, 2017) while
avoiding some of the pitfalls. (3) We used the intuition gained from the simple task, evaluating our
findings on CIFAR-10 and CIFAR-100 task using modern architectures. Remarkably, we find that
the networks increased usable information about an irrelevant component of information early in
training and discarded it later on in training to arrive at a minimal sufficient solution, consistent with
a proposed (Shwartz-Ziv & Tishby, 2017) though controversial theory (Saxe et al., 2018).

2 RELATED WORK

Some efforts to understand why neural networks generalize focus on representation learning, that
is, how deep networks learn optimal (i.e., minimal and sufficient) representations of inputs in or-
der to solve a task. Typically, representation learning is focused on studying the properties of the
asymptotic representations after training (Achille & Soatto, 2018). Recent work suggests that these
asymptotic representations contain minimal but sufficient input information for performing a task
(Achille & Soatto, 2018; Shwartz-Ziv & Tishby, 2017). Implicit regularization coming from SGD,
and in particular from the use of large learning rates and small batch sizes, is believed to play an
important role in forming these minimal sufficient representations.

How does the training process lead to these minimal but sufficient asymptotic representations?
Shwartz-Ziv & Tishby (2017) propose that there are two distinct phases of training: an empirical
risk minimization phase where the network minimizes the loss on the training set, and a “com-
pression” phase where the network discards information about the inputs that do not need to be
represented to solve the task. Recently, Saxe et al. (2018) challenged this view, arguing that the ob-
served compression was dependent on the activation function and the mutual information estimator
used in Shwartz-Ziv & Tishby (2017). These works highlight the challenges of estimating mutual
information to study how representations emerge through training.

In general, estimating mutual information from samples is challenging for high-dimensional random
variables (Paninski, 2003). The primary difficulty in estimating mutual information is estimating a
high-dimensional probability distribution from the samples, since generally the number of samples
required scales exponentially with the dimension. This is impractical for realistic deep learning tasks
where the representations are high dimensional. To estimate the mutual information, Shwartz-Ziv
& Tishby (2017) used a binning approach, discretizing the activations into a finite number of bins.
While this approximation is exact in the limit of infinitesimally small bins, in practice, the size of
the bin affects the estimator (Saxe et al., 2018; Goldfeld et al., 2018). In contrast to binning, other
approaches to estimate mutual information include entropic-based estimators (e.g., Goldfeld et al.
(2018)) and a nearest neighbours approach (Kraskov et al., 2004). Although mutual information is
difficult to estimate, it is an appealing quantity to summarily characterize key aspects of the transient
neural network training behavior because of its invariance to smooth and invertible transformations.
In this work, rather than estimate the mutual information directly, we instead define and study the
“usable information” in the network, which corresponds to a variational approximation of the mutual
information (Barber & Agakov, 2003; Poole et al., 2019) (see Sections 3 and A.1). Recently, such
variational approximations to mutual information have been viewed as a meaningful characterization
of representations in deep networks, and the theoretical underpinnings of this approach are beginning
to be investigated (Xu et al., 2020; Dubois et al., 2020).
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Figure 1: (a) Checkerboard task. Given two binary target locations (left or right) with randomly
selected binary colors (red or green), one has to discern the dominant color in the checkerboard and
reach to the target of the dominant color. On every trial, there is a correct color and direction choice.
However, the identities of the left and right targets are random every trial, decoupling the direction
and color decision. (b) We trained a deep neural network to perform the task by specifying the
proportion of green and red squares on the checkerboard, as well as two scalars denoting the colors
of the left and right target. The network was trained to output the correct direction choice. As only
the direction, but not the color choice, was reported, given a representation of the correct direction
choice Zd, the network does not need to represent the color choice Zc in deeper layers. Zt is the
representation of the target orientation.

Research into the training dynamics of deep networks, and how they represent relevant and irrelevant
task information, is nascent. A related study by Achille et al. (2019) found that early periods of
training were critical for determining the asymptotic network behavior. Additionally, it was found
that the timing of regularization was important for determining asymptotic performance (Golatkar
et al., 2019), with regularization during this “critical period” having the most influential effect.
Notably, both of these studies found an initial increase in the amount of information that weights
encode about the dataset (as measured by the Fisher information), that coincides with the critical
period of learning. This phase is followed later in training by a “forgetting” phase where the network
discards unnecessary information. This suggests that a similar dynamic to the one we study can be
observed in weight space instead of representation space.

3 USABLE INFORMATION IN A REPRESENTATION

A deep neural network consists of a set of ` layers, with each layer forming a successive represen-
tation of the input. A representation Z` may store information in a variety of ways. It may be that
a complex transformation is required to read out the information, or it may be that a simple linear
decoder could read out the information. In both cases, from an information-theoretic perspective,
the same information is contained in the representation, however, there is an important distinction
regarding how “usable” this information is. Information is usable if later layers, which comprise
affine transformations and element-wise nonlinearities, can easily extract it to solve the task. Equiv-
alently, usable information should be decodable by a separate neural network also employing affine
transformations and element-wise nonlinearities.

Formally, we define the usable information that a representation Z contains about a quantity Y ,
which may refer to the output or a component of the input, as:

Iu(Z;Y ) = H(Y )− LCE(p(y|z), q(y|z)). (1)

Here, H(Y ) is the entropy, or uncertainty, of Y , and LCE is the cross-entropy loss on the test set of
a discriminator network q(y|z) trained to approximate the true distribution p(y|z). Our definition is
motivated in the following manner. The test set cross-entropy loss approximates how much uncer-
tainty there is in the output Y given Z and the discriminator. A low loss implies that there is low
uncertainty in Y given Z, or that the discriminator can extract a lot of “information” about Y from
Z. If the logarithm in the cross-entropy loss is in base 2, it is measured in bits. If the value of Y
were approximately the same for any Z, there would be little uncertainty in Y to begin with, so it
is important to know the amount of uncertainty in Y given Z with respect to the initial uncertainty
in Y . What is most relevant is the amount of remaining uncertainty in Y given Z. Thus we use the
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difference in uncertainty H(Y )−LCE as the amount of “usable information” that Z contains about
Y , as shown in our definition in Equation 1.

This definition is appealing to study representations, in part, because it can be computed from sam-
ples of Z and Y , and is a quantity that is comparable across network training. We estimate LCE

using a small neural network that learns a distribution q(y|z). To train the network, we sample acti-
vations Z and the quantity Y and learn q(y|z) by minimizing the cross-entropy loss on a training set.
We then evaluate the LCE on the test set (Equation 1). We provide details about the neural network
and the training we used for decoding in Appendix B.3 and C.2. We also show in the Appendix that
the usable information is a lower bound on the mutual information (Appendix A.1). Importantly,
usable information also is not constrained by the data processing inequality; that is, the informa-
tion can be made more “usable” by transformation to later layers, consistent with the representation
learning view that later layers are forming improved representations of the inputs (Xu et al., 2020).

4 EXPERIMENTS

Our goal was to characterize how optimal representations are formed through SGD training. We
trained multiple network architectures on tasks and assessed the usable information in representa-
tions across layers and training epochs. For a given architecture and task, all hyper-parameters were
kept constant throughout experiments, unless explicitly stated.

To develop intuition, we initially investigate how small fully connected networks represent the rel-
evant and irrelevant information in the CB Task. We trained two different network architectures,
‘Small FC’: 5 layers, with 10−7−5−4−3 units in each layer, ‘Medium FC’: 100−20−20−20.
Small FC was a network used in prior literature (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2018).
Our networks were fully-connected and used ReLU activation. We trained the networks using SGD
with a constant learning rate to perform the CB task, described in detail in Appendix B.4. The
hyper-parameters used for the CB experiments are listed in Appendix B.5.

In our CB task experiments, we quantified the usable color and direction information in the hidden
representation, Z`. In the n = 2 CB task, the color information represents half of the input in-
formation. We emphasize that, unless otherwise specified, the network was only trained to output
the correct direction choice, so given a representation of the direction, representing the color choice
is irrelevant. Therefore, a minimal representation should not include information about the color
choice, since it is not necessary to represent given a representation of the direction decision. To
make the task more complex, we also generalized the CB task to have n = 10 and n = 20 targets.

We then use this framework to examine how relevant and irrelevant information are represented in
more realistic tasks and architectures, and how hyper-parameters affect the learning dynamics. We
define a coarse labelling of task labels and study how the network represents the fine and coarse
labelling through training, using a ResNet-18 (He et al., 2016) and All-CNN (Springenberg et al.,
2015) on CIFAR-10 and CIFAR-100.

4.1 SGD WITH RANDOM INITIALIZATION RESULTS IN MINIMAL SUFFICIENT
REPRESENTATIONS IN THE CB TASK

We first assessed the optimality of the network representations by training Small FC networks on
the CB task using n = 2 colors (Fig 2a) using a random initialization for the weights. In particular,
the initial weights do not contain information about the dataset. We computed the usable color and
direction information across layers of the neural network and epochs of training. In our plots, later
layers are denoted by darker shades. In deeper layers, there was a decrease in usable color informa-
tion, corresponding to more minimal representations. After training, the asymptotic representation
in the last layer contained zero usable color information and 1 bit of usable direction information.
To visualize this minimal sufficient representation, we plotted the activations of the 3 units in the last
layer of the Small FC network for different inputs. These visualizations are labeled by the correct
color (red and green) and direction (cross or circle). In the asymptotic representation, representation
of the input color is overlapping (red and green), while the representation of the direction output is
separable (crosses and circles), forming a minimal sufficient representation.
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Figure 2: SGD with random initialization leads to minimal representations. (a) Small FC net-
work trained on the n = 2 checkerboard task. Max usable direction and color information: 1 bit.
This network was trained without regularization for 100 epochs using SGD with a learning rate of
0.05 and batch size of 32. Blue (orange) lines correspond to usable information about the direction
(color) decision in the representation. Darker shades of color correspond to deeper layers in the
network. In the asymptotic representations, we observed that direction information was high across
layers, while color information decreased in the later layers.The usable color information was ap-
proximately zero in the last layer of the Small FC network. (b) Medium FC network trained with
n = 10 checkerboard colors. Max usable direction and color information: 3.32 bits. In the last
layer, there is nearly zero usable color information. Across layers, there is a decrease in usable color
information, and an increase in usable direction information. (c) Medium FC network trained with
n = 20 checkerboard colors, a batch size of 128 and a learning rate of 0.5. Max usable direction
and color information: 4.32 bits. In the later layers (darker shades) there is small usable color infor-
mation, but large usable direction information. (d) Visualization of the activations of the last layer
of Small FC from (a) at epochs [0, 10, 20, 100], where the correct color choice is denoted by the
marker color (red or green) and the correct direction choice is denoted by marker shape (crosses or
dots). After training the crosses and dots are overlapping, corresponding to nearly zero usable color
information and nearly 1 bit of direction information. This is a minimal and sufficient representation
to solve the task.

To test if this observed minimality was a result of our simple task, we extended the CB task to a
variant with n input checkerboard colors, with n corresponding output direction classes. We trained
networks using a larger architecture (Medium FC). We show results for n = 10 and n = 20 classes
in Fig 2b,c. We observed similar phenomena to the n = 2 case: there was decreasing usable color
information in deeper layers, and nearly zero color information in the last layer’s representation. In
contrast, there was significant usable direction information across all layers in the asymptotic rep-
resentation, with usable information about the direction increasing for deeper layers. We validated
our results using different random initializations (Figures 9, 10, 11).

These results show that, for a simple task with SGD and random initialization, minimal sufficient
representations emerge through training. Asymptotic representations were sufficient to perform the
task, but contained less usable color information in deeper layers, approaching zero color informa-
tion in the last layer. In this simple task, we observed that it was possible for the network to solve
the task with nearly zero usable color information in its last layer across training (Fig 2b,c).

We also examined how changing the initialization by pretraining the network to output the color
choice affected the resulting representations. We found that the resulting representations were not
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Figure 3: Usable fine and coarse class information in a ResNet-18 on CIFAR-10. The fine classes
(show in blue) correspond to the 10 CIFAR-10 classes. The coarse classes correspond a superclass
consisting of all the even and odd classes. We trained the network to output the correct coarse class,
which corresponds to 1 bit of information. Through training epochs, while the validation accuracy
(green dashed line) is increasing, the information about the coarse class also increases towards 1 bit.
Early in training, the usable information about the fine label also increased, even though the network
was not explicitly provided any information about the fine class. Around epoch 100, the network
“forgets” this fine label information. The scale of the validation accuracy is shown on the right hand
side of the plot.

minimal for the n = 2 checkerboard case (Fig 6a), retaining some structure from the initialization
(Fig 6d). This result also held for the CB task with n = 10 and n = 20 (Fig 6b,c). Furthermore, we
found that pretraining on the color choice led to worse generalization performance (Fig 7).

4.2 ACQUISITION AND FORGETTING OF USABLE INFORMATION IN MODERN DEEP
NETWORKS

Using a similar approach as we did for the CB task to characterize relevant and irrelevant informa-
tion, we next investigated how modern deep neural networks trained with SGD learned task repre-
sentations. To study learning dynamics, we investigated (1) how networks learned and represented
task information as well as information about a representative semantically meaningful variable, and
(2) how this information was represented across training epochs. To this end, we defined coarse la-
bels corresponding to groups of classes in the CIFAR-10 and CIFAR-100 datasets. The CIFAR-100
dataset defines fine labels corresponding to each of the 100 classes, as well as 20 coarse labels corre-
sponding to meaningful groupings of 5 from the 100 classes. In the CIFAR-10 case, we defined two
coarse labels arbitrarily, corresponding to even and odd class labels. Thus, when training the net-
work to output the coarse label, we can investigate the network’s representation of the semantically
meaningful fine label description, which serves as a proxy for the computation and representations
that the network is learning. We note that, when trained to output the coarse label, a minimal repre-
sentation should contain no additional information about the fine label.

We trained a ResNet-18 (He et al., 2016) to output the coarse label of CIFAR-10, using an initial
learning rate of 0.1 with exponential annealing (0.97), momentum (0.9), and a batch size of 128. We
investigated the usable information in the last layer of the ResNet-18, which has a dimension of 512.
We found that while training the network to predict the coarse-grained class, the network acquired
information about the coarse-grained class, evidenced by an increase in usable information during
training (orange curve) while validation accuracy (green dashed line; scale on the right hand side
of plot) was increasing (Fig 3). Strikingly, while the validation accuracy and usable coarse-grained
class information increased, the information about the fine labels first increased and then decreased
(around epoch 100). It then decreased to minimality, storing no additional usable information about
the fine labels than was contained in the coarse labels. These learning dynamics were proposed
Shwartz-Ziv & Tishby (2017), but due to controversies of their information estimation and experi-
mental setup, have been widely debated (Saxe et al., 2018). We emphasize that even though we did
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Figure 4: Sensitivity to hyper-parameters. (a-c) The usable coarse and fine label information
through training with a batch size of 64, 256, and 512 (a batch size of 128 was used in Fig 3. The
learning dynamics only undergo a compression at small batch sizes of 128 or less. The validation
accuracy is higher for smaller batch sizes as well. The plot of a batch size of 1024 is in Fig 8.
(d-f) Usable coarse and fine label information using initial learning rates of 0.075, 0.05 and 0.01 (a
learning rate of 0.1 was used in Fig 3. With larger learning rates, the network observed an increase
and decrease in fine label information. With a smaller learning rate 0.01, the network exhibited an
increase in fine label information, without a subsequent decrease. The final validation accuracies
(green dashed lines) are approximately comparable (96.5%, 96.8% and 95.8% respectively) though
lowest with initial learning rate of 0.01 when the network did not form a minimal representation.

not ask the network to acquire information about the fine labels, SGD naturally led the network to
learn information about the fine label, and then decreased this information later in training.

Together, these results show that SGD tends to result in minimal representations, which may be
guided by interesting learning dynamics. To achieve this minimality, the network displays a learning
motif where it learns additional information early in training, then discards it later on. We next
investigate how these findings depend on hyper-parameter choices, architecture, and task.

4.3 SENSITIVITY OF USABLE INFORMATION TRAINING DYNAMICS TO HYPER-PARAMETERS,
ARCHITECTURE, AND TASK

Using this framework, we evaluated how hyper-parameter choices affected the learning dynamics in
deep networks. We focus on the ResNet-18 trained on CIFAR-10 in Figure 3. We varied the batch
sizes from 64 to 1024 and found that a small batch size led to dynamics similar to that of Fig 3,
while a larger batch size did not lead to minimal representations (Fig 4a-c). Results for a batch size
of 1024 are shown in Fig 8. The learning rate also affected the learning dynamics. We found that
all networks increased the information about the fine labels during training. However, we found that
only for large initial learning rates did the network “forget” the superfluous information. Results
for a learning rate of 0.001 are also shown in the appendix in Fig 8. We found that small learning
rates (0.001) or large batch sizes (512 or larger) led to lower validation accuracy. Thus, the implicit
regularization coming from the use of SGD with a small batch size and large learning rate, which
is common in practical settings, is crucial for learning minimal sufficient representations. Here we
have provided an underpinning for these choices by exposing their associated learning dynamics.

Additionally, we investigated whether the phenomenon of acquiring “superfluous” task information
was common across different architectures and tasks. We used an All-CNN (Springenberg et al.,
2015) trained on CIFAR-10 to output the binary coarse label, observing a similar trend with an
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Figure 5: Different Architecture, Task, and learning schedule (a) Using an All-CNN architecture
Springenberg et al. (2015), we observe a similar trend in the learning dynamics of usable informa-
tion, with a increase and decrease in the fine label information during the CIFAR-10 task. This
decrease does not lead to a completely minimal representation, though it does become close to min-
imal. (b) We trained a ResNet-18 on the coarse labels in the CIFAR-100 task, and tracked the
information the network had about the fine and coarse label through training. We find that the net-
work converges to an approximately minimal representation, though it did not undergo a noticeable
increase and decrease in the fine label information, suggesting that this learning motif depends on
the structure of the task. (c) Pretraining the network to output the fine labels before epoch 20 led to
improved final performance (85.6% vs 83.5%) in (b). Note that the validation accuracy for the first
20 epochs was the validation accuracy on the ‘fine’ labels task, and was the validation accuracy on
the ‘coarse’ task after epoch 20.

increase and decrease in the usable information about the fine label (Fig 5a). In this case, the infor-
mation about the fine label did not decrease to minimality, but nonetheless, there was a significant
reduction in the fine label information, suggesting that SGD naturally compresses additional input
information. Finally, we evaluated how a ResNet-18 represented task information using the CIFAR-
100 dataset. This dataset is accompanied with 100 fine labels and 20 coarse labels, corresponding to
groupings of the 100 classes. We used the same hyper-parameters as in Fig 3. We trained the network
to output the coarse labels, observing an increase to approximately 3.5 bits of usable information.
The network achieved a nearly minimal representation (Fig 5b).

It is important to note that for this setting of hyper-parameters in the CIFAR-100 task (the same as
in the CIFAR-10 case), SGD did not show a visible increase followed by a decrease in usable in-
formation in the fine labels, a result different than what we observed in CIFAR-10. We conjectured
this could be due to at least three potential reasons: (1) the hyper-parameter settings may be subop-
timal, which we observed may result in learning dynamics that do not increase then decrease fine
information (Fig 4c, f). (2) In CIFAR-100, coarse and fine labels are semantically similar, so there
may not be not much more information to be naturally learned in the fine than the coarse labels, and
further that it is possible that while the information about the fine labels remains approximately flat,
the network is forgetting information about aspects of the fine labels while learning other parts of
fine label information in the process of increasing coarse label information and arriving at a nearly
minimal representation. (3) CIFAR-100 has relatively few examples, 500 per fine label, impacting
the learning of fine label information. Despite these limitations, our results from CIFAR-10 suggest
that SGD learning dynamics that increase then decrease information about the fine label should re-
sult in more optimal representations and higher validation accuracy. To test this, we performed an
experiment where we pretrained the network to output fine label information until epoch 20, after
which the network then was trained to output coarse information. This training process resulted in
learning dynamics that resembled SGD learning in Fig 3. We observed that these learning dynamics
resulted in networks with a 2.1% increase in validation accuracy (compare Fig 5b and c). These
results support that learning dynamics that increase, and then decrease, information about inputs,
may result in more optimal representations that achieve higher validation accuracy.

5 DISCUSSION

We introduced a notion of the usable information in the representation, which reflects the amount
of information that can be extracted by a learned decoder, for understanding the training dynamics
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in deep networks. This definition is appealing, in part, due to its flexibility. For instance, if it is
important to understand how accessible the information is to a linear decoder, it suffices to apply our
formulation of usable information using a linear decoder trained with cross-entropy loss. In contrast,
if the goal is to extract all information present in a representation, regardless of how accessible this
information is, one can train a high capacity nonlinear decoder. Since neural networks are powerful
function approximators, as the function approximation improves, the decoder will approach the
optimal decoder. In this case, the usable information approaches Shannon mutual information, as the
lower bound becomes tight (Section A.1). Future theoretical and empirical work should investigate
the tightness of this bound and its dependence on training parameters.

In our case, we used a relatively small nonlinear neural network as the decoder, which provided
insight into the evolution of optimal representations through training on simple tasks inspired by
neuroscience literature and on image classification tasks. These tasks allowed us to show that the
implicit regularization of SGD plays an important role in learning minimal sufficient representa-
tions. In particular, in standard hyper-parameter settings, we observed learning dynamics where
the network learns to encode semantically meaningful but ultimately irrelevant information early in
training, before later discarding this information to arrive at a minimal sufficient representation.

Monkeys performing the checkerboard task, like our networks, also had minimal sufficient represen-
tations in an output (motor) area (Chandrasekaran et al., 2017; Kleinman et al., 2019). Despite the
obvious implementation differences of both information processing systems, we speculate that the
general effects coming from a noisy learning process, which led to minimal sufficient representations
in our artificial networks, may be an important factor leading to minimal sufficient representations
in biological networks.

It is remarkable that in the CIFAR-10 task, SGD naturally exploited the semantically meaningful
structure of the fine labels, in order to solve the coarse labels task. In general, it is difficult to
identify the features that are being learned during training, and whether they correspond to some-
thing semantically meaningful. However by defining a coarse label, our task setup allowed us to
study how semantically meaningful information was represented during training. During training,
the network increased the information about the semantically important part of the input, even when
only asked to output the coarse label. It then decreased the information later in training. We did
not notice such a major increase in CIFAR-100, perhaps due to the nature of the dataset or hyper-
parameter configuration. However, by inducing the network to follow similar learning dynamics to
Fig 3 by pretraining the network to output the fine labels, we were able to improve the performance
on the coarse labelling task. This suggests that a detailed understanding of the training dynamics and
the features learned is important for learning optimal representations and successfully transferring
representations between tasks.

Using usable information, we observed an increase and decrease in the information about an irrele-
vant variable, which has been proposed (Shwartz-Ziv & Tishby, 2017), but has been debated, largely
due to controversies over the estimation of Shannon’s mutual information (Saxe et al., 2018). Our
observation is in accordance with the ideas of Shwartz-Ziv & Tishby (2017), and importantly we
have observed these dynamics on modern architectures and realistic tasks. Our results are also con-
sistent with a complementary view of information in the weights, where it has been observed that
the Fisher Information increased and decreased during training (Achille et al., 2019), corresponding
to a critical period in neural network training.
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A PROOFS

A.1 USABLE INFORMATION LOWER BOUNDS THE MUTUAL INFORMATION

The entropy of a distribution is defined as

H(x) = Ex∼p(x)

[
log

1

p(x)

]
. (2)

The mutual information, I(X;Y ), can be written in terms of an entropy term and a conditional
entropy term:

I(Z;Y ) = H(Y )−H(Y |Z). (3)

We want to show that:

I(Z;Y ) ≥ Iu(Z;Y ) := H(Y )− LCE(p(y|z), q(y|z)) (4)

It suffices to show that:
H(Y |Z) ≤ LCE (5)

where LCE is the cross-entropy loss on the test set. For our study, H(Y ) represented the known
distribution of output classes, which in our case were equiprobable.

H(Y |Z) := E(z,y)∼p(z,y)

[
log

1

p(y|z)

]
(6)

= E(z,y)∼p(z,y)

[
log

1

q(y|z)

]
︸ ︷︷ ︸

cross-entropy loss

−Ez∼p(z) [KL(p(y|z)||q(y|z)]︸ ︷︷ ︸
≥0

, (7)

≤ E(z,y)∼p(z,y)

[
log

1

q(y|z)

]
:= LCE (8)

To approximate H(Y |Z), we first trained a neural network with cross-entropy loss to predict the
output, Y , given the hidden activations, Z, learning a distribution q(y|z). The KL denotes the
Kullback-Liebler divergence. We multiplied (and divided) by an arbitrary variational distribution
q(y|z) in the logarithm of equation 6, leading to equation 7. The first term in equation 7 is the cross-
entropy loss commonly used for training neural networks. The second term is a KL divergence and
is therefore non-negative. In our approximator, the distribution q(y|x) is parametrized by a neural
network. When the distribution q(y|z) = p(y|z), our variational approximation of H(Y |Z), and
hence approximation of I(Z;Y ) is exact (Barber & Agakov, 2003; Poole et al., 2019).

B ADDITIONAL RESULTS AND DETAILS IN THE CHECKERBOARD TASK

B.1 SGD WITH NON-RANDOM INITIALIZATION MAY NOT FORM MINIMAL
REPRESENTATIONS IN THE CB TASK

Implicit regularization in SGD is hypothesized to result in a minimal representation through com-
pression of irrelevant input information, also called a “forgetting” phase (Shwartz-Ziv & Tishby,
2017; Achille & Soatto, 2018; Achille et al., 2019). We tested this hypothesis by initializing net-
works with significant color information, and subsequently performing SGD on the CB task. We
then evaluated whether SGD resulted in networks with minimal color representations. We initialized
the weights by pretraining the network to output the color decision for 20 epochs, which required
the network to represent color information. After 20 epochs, we reverted to training on the CB
task, where only the direction decision was reported. Since the learning rate was kept constant, the
pretrained weights can be viewed as a different initialization in parameter space for the modified
task.

Strikingly, we found that the resulting representations were not minimal for the n = 2 checkerboard
case (Fig 6a). This result also held for the CB task with n = 10 and n = 20 (Fig 7b,c). While
we observed some compression of usable color information through training, the asymptotic repre-
sentations had significantly greater than zero color information. In Fig 7b, we observed all layers
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Figure 6: Usable color and direction information in a network through training following pretraining
the network to output color, not direction. Pretraining occurred for the first 20 epochs, indicated by
the dashed red line. Subsequently, the network was trained to output direction, as in Fig 2. (a)
Usable information for Small FC trained on the N = 2 CB task. Usable color information increased
in training, and decreased when the loss function changed. However, the asymptotic representation
is not minimal. (b) Medium FC trained on N = 10 CB task. Similarly, the network formed a
representation of color during pretraining, but the asymptotic representation is not minimal. (c)
Medium FC trained on N = 20 checkerboard task. (d) Visualization of the Small FC network in (a)
showing that an optimal representation is not formed. The asymptotic representation in the last area
has separate representations for red and green crosses. These should be overlapping in a minimal
representation.

had more usable color information than the direction information in the first layer. The network
therefore solved the task using an alternative representation that was not minimal. We visualized
the activations corresponding to the asymptotic non-minimal representations of Small FC in Fig 6d.
In the early epochs the red and green points converge (both crosses and dots) as a result of suc-
cessful pretraining. However, when we trained the CB task starting at epoch 20, the representations
changed. While the dot clusters for red and green checkerboards are overlapping, the cross clusters
are not. This representation is not minimal as color information can be decoded above chance.

These results show that the initialization affects the asymptotic representation of neural networks.
SGD, under particular initializations, may not lead to minimal representations of the task inputs.
This suggests there is a trade-off between learning a minimal representation and simply reusing the
existing representations present in the initial weights. Initial structure in the network representations
from pretraining, such as the separation of the red and green crosses in the last layer representation,
was maintained even when performing SGD to train a different task. Together, these results suggest
that while SGD compresses representations towards minimality, it finds a solution that is functionally
related to the initial representation. This may correspond to a optima in the neighborhood of the
initialization.

B.2 RELATIONSHIP BETWEEN PRETRAINING, MINIMALITY, AND GENERALIZATION IN THE
CB TASK

Our results show that the minimality of network representations, and therefore solutions, depends
on initialization. All trained networks (for n larger than 2), however, achieved zero training er-
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Figure 7: (a) Final usable information and validation accuracy (green dashed line) as a function of
pretraining epoch for the CB task (n = 2) averaged over 8 random initializations. (b) Final usable
information and accuracy as a function of pretraining epoch for the CB task (n = 10) averaged
over 8 random initializations. (c) Final usable information and accuracy as a function of pretraining
epoch for the CB task (n = 20) averaged over 8 random initializations. (d) Final usable information
and accuracy as a function of pretraining epoch for the CB task (n = 25) averaged over 8 random
initializations. Error bars show the S.E.M.

ror. A natural question to ask is how does the pretraining affect the resulting representation and
generalization performance?

To answer this, we varied the number of epochs that we pretrained the CB tasks of n = 2, n =
10, and n = 20 classes, and quantified the usable color and direction information, as well as the
trained network’s test accuracy to understand how the network generalizes (Fig. 7). We found that
networks trained with longer pretraining had less minimal representations and worse generalization
performance. This was true regardless of the number of classes, but the effect was more pronounced
(in terms of absolute difference in accuracy) when the network did not solve the task perfectly
without pretraining. We note that regardless of how long the networks were pretrained for, the
networks were subsequently trained for the same number of epochs (80), with the same learning
rate throughout training. One interpretation is that when using existing structure to solve the task,
the network learned a suboptimal solution to solving the task, increasing the chance of overfitting.
Another interpretation is that the pretraining changed the distribution of the weights, affecting the
minimality and generalization.

B.3 DETAILS OF NEURAL NETWORK FOR USABLE INFORMATION IN THE CB TASK

To estimate usable information, we computed the cross-entropy loss of a decoder q(y|z) that pre-
dicts Y from Z. The decoder was a three-layer neural network, with 128, 64, and 32 units per layer,
with Leaky-ReLU activations (slope = 0.2), batch-norm and dropout (p = 0.7). At each epoch, 1250
training samples were generated and supplied to the decoder, along with either the corresponding
correct direction or color choice. We evaluated the cross-entropy loss on 3750 test samples to min-
imize overfitting. We trained the network for 100 epochs using a learning rate of 0.5 for ‘Medium
FC’ and 0.05 for ‘Small FC.’
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B.4 CHECKERBOARD TASK DESCRIPTION

Following the conventions of Kleinman et al. (2019), we modeled the CB task (Fig 1a), inputting
the checkerboard color and target configuration to a neural network that outputted the direction
choice (Fig 1b). We minimized the cross-entropy loss of the network output and the ground truth
output. We extended the checkerboard task to the n checkerboard task by increasing the number of
checkerboards. Each target was 1 out of the n colors, with the targets forming an ‘n-polygon’. The
correct direction corresponds to the direction of the target having the same color of the checkerboard.
We specified the color of each target using a one-hot encoding, and the color of the checkerboard as
a one-hot encoding. Noise with mean 0 and standard deviation of 0.1 was added to the checkerboard
inputs. The target and checkerboard color inputs were concatenated to form an input vector. The
correct direction of the target was the output.

B.5 DETAILS OF CB EXPERIMENTS

The following are the hyper-parameters used in our experiments. We trained two different network
architectures, ‘Small FC’: 5 layers, with 10−7−5−4−3 units in each layer, ‘Medium FC’: 100−
20− 20− 20. We trained networks using SGD with a constant learning rate throughout training.

FC Small, n = 2:

• batch size: 32, learning rate: 0.05, number of data samples: 10000 (90% train, 10% vali-
dation)

Medium FC, n = 10:

• batch size: 64, learning rate: 0.5, number of data samples: 25000 (90% train, 10% valida-
tion)

Medium FC, n = 20:

• batch size: 128, learning rate: 0.5, number of data samples: 50000 (90% train, 10% vali-
dation)

Medium FC, n = 25:

• batch size: 128, learning rate: 0.5, number of data samples: 75000 (90% train, 10% vali-
dation)

B.6 DEFINITION OF RELEVANT AND IRRELEVANT INFORMATION IN THE CB TASK

In the CB task, the color of the checkerboard and target configuration (inputs) are necessary to
determine the correct direction to reach (output). While both a color and direction decision are
made, after the direction is determined, the color decision no longer needs to be represented: the
network can generate the correct output with only the direction representation. Formally, the output
y is conditionally independent of the color representation, Zc, given the direction representation Zd

(i.e., y ⊥⊥ (Zc, Zt)|Zd, as illustrated by the graph in Fig 1b). Hence, given a representation of
the direction choice, the color choice (and target configuration) no longer needs to be represented.
We emphasize that, in general, the output is not independent of the color representation and target
configuration representation Zt, i.e., y 6⊥⊥ (Zc, Zt), hence information about the dominant color of
the checkerboard is necessary to compute y. When this conditional independence holds, we call the
conditionally independent variable “irrelevant.” We therefore refer to the color choice as “irrelevant”
and the direction choice as “relevant.” We study how these components evolve together throughout
training.
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Figure 8: (Left) Usable information for initial learning rate of 0.001 in CIFAR-10. The information
about the fine labels does not decrease, and the validation accuracy only reaches 92%, in co ntrast
to Fig 3 where the validation accuracy reached 96%. (Right) Usable information for batch size of
1024 in CIFAR-10.

C ADDITIONAL RESULTS AND DETAILS IN THE CIFAR-10 AND CIFAR-100
TASK

C.1 CIFAR-10 AND CIFAR-100 TASK DESCRIPTION

We trained a ResNet-18 and an All-CNN architecture to output a superclass corresponding to the
twenty coarse-grained classes in CIFAR-100 and, in CIFAR-10, to an arbitrary superclass corre-
sponding to the even and odd classes. Accordingly, a minimal representation should only encode
the superclass.

C.2 DETAILS OF NEURAL NETWORK FOR USABLE INFORMATION

To estimate usable information, we computed the cross-entropy loss of a decoder q(y|z) that predicts
Y from Z. We used a two-layer neural network, with 200 and 100 with Leaky-ReLU activations
(slope = 0.2), batch-norm and dropout (p = 0.7). At each epoch, 7500 samples were supplied to
the decoder, along with either the corresponding correct direction or color choice. We evaluated the
cross-entropy loss on 2500 test samples. We trained the network for 50 epochs using Adam with a
learning rate of 0.01 and weight decay of 0.001.

C.3 DETAILS OF NEURAL NETWORK TRAINING

In our experiments, unless otherwise stated, we trained a ResNet-18 (He et al., 2016) with an ini-
tial learning rate of 0.1 decaying smoothly with a factor of 0.97 at each epoch, batch size of 128,
momentum of 0.9 and weight decay with coefficient 0.0005. For the All-CNN (Springenberg et al.,
2015) we used a batch size of 128, initial learning rate of 0.05 decaying smoothly by a factor of
0.97 at each epoch, momentum of 0.9, and weight decay with coefficient 0.001. We used standard
data augmentation with random translations up to 4 pixels and random horizontal flipping. These
parameter configurations were taken directly from prior work (Achille et al., 2019).

D ADDITIONAL PLOTS
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Figure 9: Evolution of usable information for eight random initializations for the n = 2 CB task.
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Figure 10: Evolution of usable information for eight random initializations for the n = 10 CB task.
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Figure 11: Evolution of usable information for eight random initializations for the n = 20 CB task.
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Figure 12: Evolution of usable information for eight random initializations for the n = 2 CB task
with 20 epochs of pretraining. If the the usable information was negative, indicating that the decoder
overfit, we set the usable information to 0. Note that this occurred for a very small number of points.
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Figure 13: Evolution of usable information for eight random initializations for the n = 10 CB task
with 20 epochs of pretraining.
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Figure 14: Evolution of usable information for eight random initializations for the n = 20 CB task
with 20 epochs of pretraining.
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