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Abstract

A vision model with general-purpose object-level 3D understanding should be
capable of inferring both 2D (e.g., class name and bounding box) and 3D infor-
mation (e.g., 3D location and 3D viewpoint) for arbitrary rigid objects in natural
images. This is a challenging task, as it involves inferring 3D information from 2D
signals and most importantly, generalizing to rigid objects from unseen categories.
However, existing datasets with object-level 3D annotations are often limited by
the number of categories or the quality of annotations. Models developed on these
datasets become specialists for certain categories or domains, and fail to gener-
alize. In this work, we present ImageNet3D, a large dataset for general-purpose
object-level 3D understanding. ImageNet3D augments 200 categories from the
ImageNet dataset with 2D bounding box, 3D pose, 3D location annotations, and im-
age captions interleaved with 3D information. With the new annotations available
in ImageNet3D, we could (i) analyze the object-level 3D awareness of visual foun-
dation models, and (ii) study and develop general-purpose models that infer both
2D and 3D information for arbitrary rigid objects in natural images, and (iii) inte-
grate unified 3D models with large language models for 3D-related reasoning. We
consider two new tasks, probing of object-level 3D awareness and open vocabulary
pose estimation, besides standard classification and pose estimation. Experimental
results on ImageNet3D demonstrate the potential of our dataset in building vision
models with stronger general-purpose object-level 3D understanding. Our dataset
and project page are available here: https://imagenet3d.github.io.

1 Introduction

General-purpose object-level 3D understanding requires models to infer both 2D (e.g., class name and
bounding box) and 3D information (e.g., 3D location and 3D viewpoint) for arbitrary rigid objects
in natural images. Correctly predicting these 2D and 3D information is crucial to a wide range of
applications in robotics [1, 2] and general-purpose artificial intelligence [3, 4, 5]. Despite the success
of previous learning-based approaches [6, 7], embodied or multi-modal LLM agents with stronger
3D awareness will not only reason and interact better with the 3D world [8, 9], but also alleviate
certain key limitations, such as shortcut learning [10] or hallucination [11, 12].

Despite the importance of object-level 3D understanding, previous datasets in this area were limited
to a very small number of categories [13, 14, 15] or specific domains, such as autonomous driving [16,
17] or indoor furniture [18]. Subsequent works then focused on developing specialized models that
excel at 3D tasks for the categories and domains considered in these datasets. While these specialized
models are found useful for certain downstream applications, they fail easily when generalizing to
novel categories. It is largely understudied of how to develop unified 3D models that are capable of
inferring 2D and 3D information for all common rigid objects in natural images.
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Figure 1: Overview of ImageNet3D data and annotations. ImageNet3D provides 3D location
and viewpoint (i.e., 6D pose) for more than 86,000 objects. We also annotate cross-category
3D alignment for the 200 rigid categories in ImageNet3D. Lastly we generate image captions
interleaved with 3D information to integrate unified 3D models with large language models.

In the following, we consider two types of unified 3D models. (i) Pretrained vision encoders with
object-level 3D awareness. Vision encoders from DINO [19], CLIP [20], Stable Diffusion [21], etc.
are pretrained with self-supervised or weakly-supervised objectives. By learning a 3D discriminative
representation, these vision encoders can be integrated into vision systems and benefit downstream
recognition and reasoning. While these encoders are found useful for 3D-related dense prediction
tasks [22], their object-level 3D awareness remains unclear. (ii) Supervised 3D models. By training
on a large number of diverse data with 3D annotations, these models may achieve a stronger robustness
and generalization ability. However, there has been a lack of large-scale 3D datasets with a wide
range of rigid categories, which constrains us from developing large unified 3D models for rigid
objects or study the generalization and emerging properties of these models.

In this work, we present ImageNet3D, a large dataset for general-purpose object-level 3D under-
standing. We extend 200 categories from ImageNet21k [23] with 2D bounding box and 6D pose
annotations for more than 86, 000 objects. To facilitate research on the two problems introduced
above, ImageNet3D incorporates three key designs (see Figure 1). (i) A large number of categories
and instances. ImageNet3D presents 2D and 3D annotations for a large number of object instances
from a wide range of common rigid object categories found in natural images, as opposed to previous
datasets focusing on specific categories and domains (see Table 1). This allows us to train and
evaluate large unified 3D models capable of inferring both 2D and 3D information for arbitrary
rigid objects. (ii) Cross-category 3D alignment. We align the canonical poses of all 200 categories
based on semantic parts, shapes, and common knowledge, as shown in Figure 3. This is crucial for
models to benefit from joint learning from multiple categories and to generalize to unseen categories,
while omitted in previous datasets [24]. (iii) Natural captions with 3D information. We adopt
a GPT-assisted approach [6] and produce image captions interleaved with 3D information. These
captions will be valuable assets to integrate unified 3D models with large language models [25, 26]
and perform 3D-related reasoning from natural images and language.

With the three key designs and new 3D annotations collected, ImageNet3D distinguishes itself
from all previous 3D datasets and facilitates the evaluation and research of general-purpose object-
level 3D understanding. Besides standard classification and pose estimation as studied in previous
works [13, 24], we further consider two new tasks, probing of object-level 3D awareness and open-
vocabulary pose estimation. Experimental results show that with ImageNet3D, we can develop
general-purpose models capable of inferring 3D information for a wide range of rigid categories.
Moreover, baseline results on ImageNet3D reveal the limitations of current 3D approaches and
present new problems and challenges for future studies.

2 Related Works

Datasets with 3D annotations. Previous datasets with 3D annotations have led to significant
advancements of 3D models for 3D object detection [29, 30] and pose estimation [31, 32, 14].
However, most existing datasets are limited to a small number of categories [13, 14, 15] or specific
domains, such as autonomous driving [16, 17] or indoor furniture [18]. ObjectNet3D [24] extends the
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Dataset Images # categories # instances Annotations

PASCAL3D+ (2014) [13] Real 12 12, 000 6D pose
ObjectNet3D (2016) [24] Real 100 57, 000 6D pose
CAMERA25 (2019) [27] Synthetic 6 1, 000 3D bbox
REAL275 (2019) [27] Real 6 24 3D bbox
Objectron (2021) [28] Real 9 18, 000 3D bbox
Wild6D (2022) [14] Real 5 2, 000 3D bbox

ImageNet3D (ours) Real 200 86, 000 6D pose, captions, object
visual quality, cross-category
3D alignment

Table 1: Comparison between ImageNet3D and previous datasets with 3D annotations. Previous
datasets are limited by the number of rigid categories [13, 28, 14] or the quality of the annotations [24],
constraining the development of large unified 3D models for general-purpose 3D understanding.

number of categories but the quality of the annotations constrains us from developing large unified
3D models. Our ImageNet3D largely extends the number of categories and instances, improves
the annotation quality, and presents other crucial annotations such as cross-category 3D alignment
and natural captions interleaved with 3D information. ImageNet3D allows us to develop unified 3D
models for general-purpose 3D understanding and facilitates studies on new research problems, such
as probing of object-level 3D awareness and open-vocabulary pose estimation.

Category-level pose estimation. Our work is closely related to category-level pose estimation, where
a model predicts 3D or 6D poses for arbitrary instances from certain rigid categories. Previous works
have explored keypoint-based methods [31] and 3D compositional models [32, 33]. However, these
approaches limited their scopes to a small number of categories, and as far as we know, there were
no attempts to develop large unified models for all common rigid categories. We further consider
open-vocabulary pose estimation where models generalize to similar but novel categories. This
topic has also been discussed in recent parallel works [34, 35] but [35] was limited to synthetic data
rendered with photorealistic CAD models.

3D awareness of visual foundation Models. Recent work demonstrates the significant capabili-
ties of large-scale pretrained vision models in 2D tasks [20, 36, 37, 38, 21], suggesting robust 2D
representations. Beyond benchmarking the semantic and localization capabilities of visual back-
bones [39, 40, 41, 42, 43, 44], Banani et al. [22] studied the 3D awareness of these 2D models using
trainable probes and zero-shot inference methods. However, their exploration was limited to only two
basic aspects of 3D understanding – single-view surface reconstruction and multi-view consistency –
due to absence of large datasets with 3D annotations. We further analyze the 3D awareness of visual
models and provide a more comprehensive understanding of their progress in learning about the 3D
structure of the world, demonstrating the significance of our proposed ImageNet3D.

3 ImageNet3D Dataset

ImageNet3D dataset aims to facilitate the evaluation and research of general-purpose object-level
3D understanding models. Besides 6D pose annotations for more than 86, 000 objects from 200
categories, we annotate meta-classes, cross-category 3D alignment, and natural captions interleaved
with 3D information as demonstrated in Figure 1. We start by presenting our dataset construction in
Section 3.1. Then in Section 3.2 we introduce the necessity of cross-category 3D alignment and how
it is achieved in our dataset. Lastly, we provide details on our image caption generation in Section 3.3.

3.1 Dataset Construction

Overview. We choose the ImageNet21k dataset [23] as our data source, as it provides a large and
diverse set of images with class labels. We start by annotating 2D bounding boxes for the object
instances in the images. We adopt a machine-assisted approach for 2D bounding box annotations,
where a Grounding DINO model [45] is used to produce 2D bounding boxes prompted with the cate-
gory label. The bounding box annotations are then filtered and improved by human evaluators. Next,
we collect 3D CAD models as representative shapes for each object category from Objaverse [46].
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Figure 2: An overview of our ImageNet3D dataset creation pipeline.

The CAD models are carefully aligned based on their semantic parts and provide canonical poses for
6D pose annotations. For 3D annotations, we recruit a total of 30 annotators to annotate 6D poses for
the objects, as well as the scene density and object visual quality. Lastly we generate natural captions
interleaved with 6D poses with GPT-4o. An overview of our data generation pipeline is visualized in
Figure 2.

Object categories. Our goal is to provide 3D annotations for all common rigid categories in real world.
To achieve this, we carefully examine previous 2D and 3D datasets for image classification [23],
object detection [47, 29, 28], and pose estimation [24, 27]. We choose the categories that are rigid,
have well-defined shapes with certain variance, and have enough number of images available, which
leads to the 200 categories in ImageNet3D. For detailed discussions on the choice of categories, please
refer to Section A.1. Moreover, to leverage existing research in the field, we adopt the 100 categories
and raw images from ObjectNet3D [24] and largely extend the number of categories and instances.
As one of our goals is to improve the quality of 3D annotations, we only take unannotated images
from ObjectNet3D, and all 3D annotations on these images are our original work. In Section D, we
perform human evaluation on the annotation qualities in ObjectNet3D [24] and our ImageNet3D.

Annotator recruitment. We recruit 30 annotators for data annotation. To improve the quality of the
collected data, each annotator must complete an onboarding stage before starting. The onboarding
stage includes training sessions where we present detailed instructions of various annotations and
proper ways to handle boundary cases. Additionally, each annotator must annotate sample questions
and meet the accuracy threshold to qualify for subsequent work. Please refer to Section A and
Section C regarding our annotator guidelines, training sessions, and ethics statement.

Data collection. We develop a web-based tool for data annotation so annotators can easily access
the platform without local installation. A screenshot of our annotation tool is shown in Figure 5.
For each object in ImageNet3D, the annotator needs to annotate the following. (i) 3D location and
3D viewpoint (i.e., 6D pose): For more intuitive annotating, the 3D location is parameterized as a
combination of 2D location and distance of the object. The 3D viewpoint is defined as the rotation
of the object with respect to the canonical pose of the category, and represented by three rotation
parameters, azimuth, elevation, and in-plane rotation (see Figure 6). (ii) Density of the scene: A
binary label indicating if the scene is dense with many objects from the same category close to each
other. (iii) Visual quality of the object: A categorical label with one of the four options: good,
partially visible, barely visible, not visible. We refer the readers to Section C where we provide links
to our annotation guidelines and instructions.

3.2 Cross-Category 3D Alignment

As explained in Section 3.1, the 3D viewpoint of an object is defined as the rotation of the object with
respect to the canonical pose of this category. However, in previous datasets such as ObjectNet3D [24],
canonical poses from different categories are not necessarily “aligned”. From the canonical poses
depicted in Figure 4, the parts where the pencils “write” or the paintbrushes “paint” are pointing to
different directions, and the spouts of faucets and kettles are also mis-aligned.

As we scale up the number of categories in 3D-annotated datasets, having cross-category 3D
alignment is a crucial design for the study of general-purpose object-level 3D understanding.
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Figure 3: Meta classes and cross-category 3D alignment. We align the canonical poses of all 200
categories based on semantic parts, shapes, and common knowledge. This is crucial for models to
benefit from joint learning from multiple categories and to generalize to novel categories.

Figure 4: Mis-aligned canonical poses in Ob-
jectNet3D [24].

Figure 5: Screenshot of our web app for data
annotation.

While objects from different categories have their unique characteristics, certain semantic parts are
often shared between multiple categories, such as the wheels of “ambulances” and “forklifts” or
push handles of “shopping carts” and “hand mowers”. Correctly aligning the canonical poses will (i)
allow models to utilize the semantic similarities between parts of different categories and exploit the
benefits of joint learning from multiple categories, and (ii) generalize to novel categories by inferring
3D viewpoints from semantic parts that the model has seen from other categories during training.

Therefore, we manually align the canonical poses of all 200 categories in ImageNet3D. Specifically,
we consider the following three rules. (i) Semantic parts: categories sharing similar semantic
parts, such as wheels, push handles, or spouts, should be aligned. (ii) Similar shapes: categories
sharing similar shapes, such as fans, Ferris wheels, and life buoys, should be aligned. (iii) Common
knowledge: certain categories are pre-defined with a “front” direction from common knowledge,
such as “refrigerator”, “treadmill”, or “violin”.

3.3 Natural Captions with 3D Information

An important application of general-purpose object-level 3D understanding models is to integrate
them with large language models (LLMs) and benefit downstream multi-modal reasoning. This would
largely improve the 3D-awareness of multi-modal large language models (MLLMs) and improve 3D-
related reasoning capabilities, such as poses [9] and distances [48]. Previous approaches integrated
segmentation or human pose modules with MLLMs [25, 26] and demonstrate strong multi-modal
reasoning abilities.

To integrate general-purpose 3D understanding with existing MLLMs, we present image captions
interleaved with 3D information. As shown in Figure 1, our captions provide a detailed description
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Figure 6: Illustration of the 3D viewpoint parame-
terization.

Figure 7: Qualitative examples of our data
pre-processing.

of the image, object appearances and locations, as well as mutual relations. Moreover, for objects
with 3D annotations, we add a special <pose6d> token as a reference to our 2D and 3D annotations
for this object. To generate these image captions with 3D information, we adopt a GPT-assisted
approach [6] and feed 2D and 3D annotations to the model via the textual prompts. Then GPT-4v
is used to integrate these information and produce a coherent image caption interleaved with 3D
information. Please refer to Section A.3 for details on caption generation as well as our GPT-4v
prompts.

4 Tasks

With the new data and annotations available in ImageNet3D, we hope to push forward the evaluation
and research of general-purpose object-level 3D understanding. We consider two new tasks, probing
of 3D object-level awareness 4.1 and open-vocabulary pose estimation 4.2, besides joint image
classification and category-level pose estimation 4.3. We further other standard computer vision tasks,
such as image classification and object detection, and report the full performance in our dataset page.

4.1 Linear Probing of Object-Level 3D Awareness

Recent developments of large-scale pretraining have yielded visual foundation models with strong
capabilities. Self-supervised approaches such as MAE [49] and DINO [19] provide strong and
generalizable feature representations that benefit downstream recognition and localization. When
jointly trained with language supervision, CLIP features [20] demonstrate transferability to a wide
range of multi-modal tasks. Moreover, foundation models for specific tasks, e.g., MiDaS [50] for
depth estimation, also show impressive capabilities when applied to arbitrary images.

Are these visual foundation models object-level 3D aware? Can these feature representations
distinguish objects from different 3D viewpoints or retrieve objects from similar 3D viewpoints? A
parallel work [22] found that certain foundation models have better 3D awareness despite trained
without 3D supervision. However, they focused on low-level tasks such as depth estimation and part
correspondence. It remains unclear if these visual foundation models are object-level 3D aware and
produce 3D discriminative object representations.

In this task, we aim to evaluate the object-level 3D awareness of visual foundation models by linear
probing the frozen feature representations on 3D viewpoint classification task. This is because
models with superior object-level 3D awareness would produce 3D discriminative features that help
to classify the viewpoints correctly. Compared to low-level tasks such as depth estimation and part
correspondence, object-level 3D awareness is directly associated with high-level scene understanding
that is crucial to downstream recognition and reasoning in robotics and visual question answering.

Task formulation. We evaluate object-level 3D awareness by linear probing the frozen feature
representations on 3D viewpoint classification task. Specifically, three linear classifiers are trained
with respect to each of the three parameters encoding 3D viewpoint. To ensure that the neural
features encode rich information about the target object with 3D annotations, we adopt a data
pre-processing step where we crop and resize the image based on the 2D and 3D annotations (see
Figure 7). Following the linear probing setting on ImageNet1k [51], we apply grid search to a range
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of hyperparameters, such as learning rate, pooling strategy, and training epochs, and select the best
performance achievable with the frozen backbone features.

Evaluation. To jointly evaluate the classification results on three viewpoint parameters, we adopt the
pose error given by the angle between the predicted rotation matrix and the groundtruth rotation
matrix [31]

∆(Rpred, Rgt) =
∥logm(R⊤

predRgt)∥F√
2

(1)

Based on the pose errors, we compute pose estimation accuracy, which is the percentage of samples
with pose errors smaller than a pre-defined threshold.

4.2 Open-Vocabulary Pose Estimation

Existing 3D models for pose estimation [31, 32, 14] or object detection [30, 29] focused on scenarios
where object images and 3D annotations from the target categories are available at training time.
These models fail easily when generalizing to novel categories that posses similar semantic parts
with categories that the models are trained on. A recent study [34] investigated the open-vocabulary
pose estimation problem from synthetic data rendered with photorealistic CAD models. However, the
synthetic dataset demonstrates limited variations in both object appearances and image backgrounds,
while our ImageNet3D provide 3D annotations on real images from a wide range of rigid categories
to study this problem.

How can 3D models generalize to novel categories? Intuitively models may utilize semantic parts that
are shared between novel categories and categories that are seen during training. As demonstrated
in Figure 8, models may generalize 3D knowledge learned from cars (i.e., sedans and SUVs) to fire
trucks based on the wheels and body of vehicles, or from hand barrows to shopping cars based on
the push handles. Additionally, open-vocabulary pose estimation models may utilize large-scale 2D
pre-training data or vision-language supervision and learn useful semantic information. For instance,
after seeing 2D images of people riding a bicycle and a tricycle, models would learn to align the
semantic parts and generalize from bicycles to tricycles. Lastly we provide detailed descriptions
of object shape, part structure, and how humans interact with these objects for all categories in
ImageNet3D (see Section A.1). Models may utilize such information and learn transferable features
that generalize to novel rigid categories.

Task formulation. We split the 200 categories in ImageNet to 63 common categories for training
and 137 categories for open-vocabulary pose estimation. Models may utilize additional 2D data
for pretraining but may be only trained on 3D annotations from the 63 common categories. During
testing time, models have access to our annotated category-level captions besides the testing images.
For complete lists of categories used for training and open-vocabulary pose estimation, please refer
to Section C.

Evaluation. Following standard pose estimation tasks [13, 24], we report pose estimation accuracy
and median pose error (Eq. 1) on testing data from novel categories that are unseen during training.

4.3 Joint Image Classification and Category-Level Pose Estimation

For joint image classification and category-level pose estimation, a model first classifies the object
and then predicts the 3D viewpoint of the object. A prediction is only considered correct if both the
predicted class label is correct and the pose error is within a given threshold.

While this task has been studied in previous datasets [13, 24], ImageNet3D brings new challenges to
existing models. Previous studies often focused on 12 or 20 categories [31, 32, 33] – how can we
scale up these category-level 3D models to 200 categories while retaining a comparable performance?
Moreover, with the meta classes and more categories available, we can better assess the limitations of
current category-level pose estimation models.

Task formulation. For each of the 200 categories, we split the samples into training and validation
splits, each accounting for about 50% of the data. Based on the number of samples used for training,
we can further evaluate models under zero-shot, few-shot, and fully supervised settings.
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Figure 8: Illustration of open vocabulary pose estimation. Open-vocabulary models may utilize
large-scale 2D data, vision-language supervision, or our category descriptions to learn transferable
features and generalize to novel rigid categories.

Evaluation. Following [33], we adopt the 3D-aware classification accuracy, where a prediction is
correct only if the predicted class label is correct and the predicted pose error is lower than a given
threshold.

5 Experimental Results

In this section we report the baseline performance of linear probing of object-level 3D awareness
in Section 5.1, open-vocabulary pose estimation in Section 5.2, and joint image classification and
category-level pose estimation in Section 5.3. For implementation details of various baseline models,
including hyperparameters and hardware setup, please refer to Section B in the appendix. All
experimental results in this section are based on the first version of ImageNet3D with 189 categories.
Please refer to our dataset page for new releases of ImageNet3D and updated baseline results.

5.1 Linear Probing of Object-Level 3D Awareness

Baselines. We measure the object-level 3D awareness for a range of general-purpose vision models
designed for representation learning [52, 49, 19, 51], multi-modal learning [20], and depth estimation
[50]. These models adopt standard transformer architectures and we train a linear probe on frozen
class embedding features. We focus on model sizes comparable to ViT-base and report the training
supervisions and datasets in Table 2.

Results. We report the pose estimation accuracies with threshold π/6 for various baseline methods in
Table 2. Results show that visual foundation models trained without 3D supervision demonstrates a
reasonable level of object-level 3D awareness. Specifically, we find that DINO v2 largely outperforms
other approaches in terms of object-level 3D awareness, followed by MAE, DINO, and MiDaS.
However, the gap between these models are much smaller than the findings in [22]. Our ImageNet3D
provides valuable assets to assess these visual foundation models from the perspective of object-level
3D awareness. In Section E.1 we present results on different metrics and study the scaling properties
of self-supervised approaches on object-level 3D awareness.

5.2 Open-Vocabulary Pose Estimation

Baselines. Open-vocabulary pose estimation is a rather new topic, and there are no existing baselines
designed specifically for this task. Oryon [34] operates on RGBD data and requires an image of the
same object from a different viewpoint as a reference. OV9D [35] studies the problem by generating
photorealistic synthetic data but the code is not available for reproduction. Hence for baseline results,
we consider models that learn category-agnostic features that generalize to novel categories and
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Model Arch. Supervision Dataset
Pose Acc@π/6 ↑

Avg. Elec. Fur. Hou. Mus. Spo. Veh. Work

DeIT III [52] ViT-B/16 classification ImageNet21k 36.6 47.9 48.2 36.8 21.5 16.6 35.0 25.3
MAE [49] ViT-B/16 SSL ImageNet1k 46.6 57.6 67.8 40.2 29.0 20.2 58.4 25.6
DINO [19] ViT-B/16 SSL ImageNet1k 42.0 53.1 57.0 39.8 28.0 19.3 45.3 27.0
DINO v2 [51] ViT-B/14 SSL LVD-142M 56.3 64.0 75.3 47.9 32.9 23.5 74.7 38.1
CLIP [20] ViT-B/16 VLM private 39.7 50.3 52.8 39.7 23.1 19.3 39.8 26.4
MiDaS [50] ViT-L/16 depth MIX-6 40.5 50.9 56.7 40.2 26.7 18.9 39.2 28.1

Table 2: Quantitative results on probing of object-level 3D awareness. We report the π/6 pose
estimation accuracy for the average performance on all categories, as well as the performance for
each meta class (from left to right): electronics, furniture, household items, music instrument, sports
equipment, vehicles & transportation, and work equipment. Among the tested visual foundation
models, DINO v2 demonstrated the best object-level 3D awareness.

Model
Novel Categories - Pose Acc@π/6 ↑

Avg. Electronics Furniture Household Music Sports Vehicles Work

ResNet50-General 53.6 49.2 52.4 45.8 26.0 65.2 56.5 58.5
(trained on novel categories)

ResNet50-General 37.1 30.1 35.6 28.1 11.8 51.7 36.7 40.9
SwinTrans-T-General 35.8 30.9 34.3 26.1 12.2 46.2 34.4 39.2
NMM-Sphere 29.5 31.7 25.4 21.7 25.6 19.8 33.4 19.3

Table 3: Quantitative results on open-vocabulary pose estimation. We report the pose estimation
accuracy with threshold π/6 on testing data from novel categories unseen during training. We report
the average performance on all novel categories, as well as performance for novel categories in
each meta class. Results show that models with category-agnostic features can generalize to novel
categories, but by a limited amount.

instances. Two types of approaches are considered: (i) Classification-based methods that formulate
pose estimation as a classification problem. A pose classification head is trained on top of the
backbone features. We consider two types of backbones, ResNet50 and SwinTransformer-Tiny, as
our baselines. (ii) 3D compositional models learn neural mesh models with contrastive features
and perform analysis-by-synthesis during inference. We develop NMM-Sphere, which is a 3D
compositional model with a general sphere mesh for all categories and trained with class and part
contrastive features [33].

Results. We report the pose estimation accuracy with threshold π/6 in Table 3 and present the full
results in Section E.2. Results show that by annotating cross-category 3D alignment, models trained
with category-agnostic features can generalize to novel categories with a reasonable performance.
However, generalization abilities of current 3D models are still quite limited when compared to
models trained on annotations from novel categories. Open-vocabulary pose estimation is a rather
new topic but is crucial to the development of general-purpose 3D understanding. We call for future
studies on this challenging but important problem.

5.3 Image Classification and Category-Level Pose Estimation

Baselines. We consider two types of baseline methods: (i) Classification-based methods that
formulate pose estimation as a classification problem and train a shared pose classification head. Fol-
lowing previous works [31, 33], we extend ResNet50 and SwinTransformer-Tiny for pose estimation,
denoted by “ResNet50-General” and “SwinTrans-T-General”. (ii) 3D compositional models learn
neural mesh models with contrastive features and perform analysis-by-synthesis during inference.
NOVUM [33] adopts category-level meshes and more robust rendering techniques. We develop
NMM-Sphere, which is a 3D compositional model with a general sphere mesh for all categories and
is trained with class and part contrastive features [33].

Results. We report the 3D-aware classification accuracy with threshold π/6 in Table 4. Results show
that with ImageNet3D, we can develop general-purpose models capable of inferring 3D information
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Model
3D-Aware Acc@π/6 ↑

Avg. Electronics Furniture Household Music Sports Vehicles Work

ResNet50-General 50.9 60.0 67.2 43.0 43.8 27.7 64.1 33.8
SwinTrans-T-General 53.2 63.1 71.6 44.8 45.3 30.4 66.2 35.0
LLaVA-pose 49.1 58.0 65.6 41.6 41.0 26.1 61.8 32.1
NOVUM [33] 56.2 59.6 65.6 52.5 41.9 30.6 69.6 39.3
NMM-Sphere 57.4 61.3 65.9 52.4 51.7 40.5 67.9 43.4

Table 4: Quantitative results on joint image classification and category-level pose estimation.
We report the 3D-aware classification accuracy with threshold π/6 for the average performance, as
well as performance for each meta class. Results show that with ImageNet3D, we can develop unified
3D models capable of inferring 3D information for a wide range of rigid categories. However, we
also identify limitations of current 3D models when scaling up to a lot more object categories.

for a wide range of common rigid categories. However, we also note that there is a clear performance
degradation as the number of categories scale up, as compared to results found in previous works [33].
We present the full results with other metrics and backbones and study the scaling properties of pose
estimation models in Section E.3.

6 Conclusion

In this paper we present ImageNet3D, a large dataset for general-purpose object-level 3D understand-
ing. ImageNet3D largely extends the number of rigid categories and object instances, as compared
to previous datasets with 3D annotations. Moreover, ImageNet3D improves the quality of 3D anno-
tations by annotating cross-category 3D alignment, and provides new types of annotations, such as
object visual qualities and image captions interleaved with 3D information that enable new research
problems. We provide baseline results on standard 3D tasks, as well as novel tasks such as probing
of object-level 3D awareness and open-vocabulary pose estimation. Experimental results show that
with ImageNet3D, we can develop general-purpose models capable of inferring 3D information for a
wide range of rigid categories. We also identify limitations of existing 3D models from our baseline
experiments and discuss new problems and challenges for future studies.

Limitations. As our image data are collected from ImageNet21k, most images are object-centric
with only one or two instances. Thus our dataset may not be suitable for 3D object detection or tasks
that require object co-occurrences. As far as we know, there are no existing 3D object detection
datasets with 3D annotations for more than 20 categories. One reason is that annotating 6D poses
for multiple categories is very time consuming, and category co-occurrences follow a long-tail
distribution. On the other hand, previous studies [32, 33] have found that compositional models
trained on object-centric data have the ability to generalize to real images with multiple objects or
partial occlusion, which makes our ImageNet3D a competitive option when developing models for
general-purpose object-level 3D understanding.
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Appendix Contents

In the appendix, we provide the following materials:

• Section A: Details about our ImageNet3D construction, including annotation guidelines and
other dataset creation details.

• Section B: Implementation details of baseline models considered in our paper and detailed
experimental settings.

• Section C: A summary of our released data and code.

• Section D: Comparison of annotation quality between our ImageNet3D and previous Ob-
jectNet3D.

• Section E: Additional experimental results and ablation studies.

A Details about ImageNet3D Construction

A.1 Dataset Details

Choice of rigid categories. Our goal is to annotate most common rigid categories in natural images.
We choose ImageNet21k as the source of our images as it includes a wide range of diverse images
with object labels. Given the 21k categories in ImageNet21k, we choose the 200 categories based on
the following criteria:

1. The category must be rigid. Categories such as animals, clothes, or food are skipped as
they are not suitable for category-level pose estimation.

2. The category must be a general class of objects, rather than a specific and limited
subset of objects. For instance, categories such as Gondola or speed boats are skipped as
they are considered as subsets of boats.

3. The category must have well-defined shapes. Categories such as chimes vary too much in
shapes, making it hard to define common canonical poses for object pose estimation.

4. Objects from this category must vary in 3D viewpoints. Images of oscilloscopes are often
taken from the same viewpoint (i.e., front), making this category trivial for pose estimation.

Removing ambiguity in 3D viewpoint. Objects from certain categories have ambiguities in terms of
3D viewpoint. For instance, tables when looked from “front” and “back” are visually indistinguishable.
Certain datasets resolve this issue by annotating symmetry axes [35]. We follow [13, 24] and resolve
the ambiguity by defining a “common” viewpoint. For instance, we assume tables are always looked
at from the “front” and bottles always have zero azimuth. Models would learn such biases from the
training data and we could adopt the standard pose estimation metrics during evaluation.

For other information, please refer to our datasheet for dataset.

A.2 Annotator Guidelines

To improve the quality of the 3D annotations, we provide detailed guidelines and tutorials to the
annotators. These documents provide a detailed introduction to each parameter to be annotated, how
to use the web app, and how boundary cases should be handled. We refer the readers to Section C.3
where we provide links to our annotator tutorials and guidelines.

A.3 Caption Generation

In ImageNet3D we provide two types of captions, natural image captions interleaved with 3D
information 3.3 and category-level captions that provide detailed descriptions of object shape, part
structure, and how humans interact with these objects for all categories in ImageNet3D.

Natural image captions interleaved with 3D information. We follow [6] and adopt a GPT-assisted
approach to generate these captions. Specifically, we provide GPT-4v with our 3D annotations as
context information and generate natural captions summarizing the objects in the images, as well
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as the spatial and structural information. To generate captions interleaved with 3D information, we
assign names (e.g., CAR1 and BICYCLE1) to each object in the images, which are fed into GPT-4v
along with each object’s bounding box. Once we obtain the captions from GPT-4v, we insert 3D
annotations after the first mention of the objects names, i.e., from “CAR1” to “CAR1 with <pose6d>”.
Please refer to Figure 9 for examples of our system and user prompts.

Category-level captions. We manually annotate category-level captions that describe in details each
category’s object shape, part structure, and how humans interact with these objects for all categories
in ImageNet3D.

A.4 Ethics and Institutional Review Board (IRB)

We follow the ethics guidelines of NeurIPS and obtained Institutional Review Board (IRB) approvals
prior to the start of our work. We described potential risks to the annotators, such as being exposed
to inappropriate images from the ImageNet21k dataset [23], and explained the purpose of the study
and how the collected data will be used. All annotators are paid by a fair amount as required at our
institution. Link to our IRB approval: drive.google.com.

B Implementation Details

B.1 Baseline Models

Classification-based methods. Classification-based methods formulate pose estimation as a classifi-
cation problem. Three linear classifiers are added on top of feature backbones with respect to the
three pose parameters. Continuous values from 0 to 2π are projected into 40 bins, which are then
learned with a cross-entropy loss by the classifier heads. All classification-based methods are trained
on one A5000 GPUs for less than one day, depending on the backbone size.

3D compositional models. For NOVUM [33], we simply follow the official implementation. For
NMM-Sphere, we extend a neural mesh model with a unified sphere mesh shared by all categories.
The NMM-Sphere model could be applied for joint classification and pose estimation with a class-
contrastive loss, or be used for open-vocabulary pose estimation by learning category-agnostic
features. All 3D compositional models are trained on eight A5000 GPUs for about two days.

LLaVA-pose. Similar to [25, 26], we extend the LLaVA [6] model with a <pose> token, which is
then decoded with a MLP (i.e., a classifier head) to predict the pose. The LLaVA-pose model is
trained on eight A5000 GPUs for one day.

B.2 Training Details

Data augmentations. Our goal is to present baseline performance on ImageNet3D so we avoid
complex data augmentations and leave it for future work to explore the benefits of data augmentation.
For baseline models on all three tasks, we only adopt random horizontal flip.

Linear probing of object-level 3D awareness. Following [51] we grid search learning rates, pooling
strategies, and backbone blocks (where features are taken from) and report the validation accuracy
achieved by the best set of parameters.

Open-vocabulary pose estimation. For classification-based methods, models are trained for 120
epochs with a batch size of 64. We adopt the SGD classifier with an initial learning rate of 0.01.

Joint image classification and category-level pose estimation. We adopt the same training strategy
as in open-vocabulary pose estimation. Moreover, for weights balancing the classification loss and
the pose estimation loss, we simply choose w1 = w2 = 1.0.

B.3 Data Pre-processing for Linear Probing

In the linear probing of object-level 3D awareness experiments, we train linear classifiers on top
of frozen feature representation from various visual foundation models. To ensure that the neural
features encode rich information about the target object, we adopt a data pre-processing step where
we crop and resize the image based on the 2D and 3D annotations. In the processed images, objects
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are centered in the 2D image plane and have a (roughly) consistent size. Qualitative examples are
demonstrated in Figure 7.

C Data and Code Release

C.1 License

Our ImageNet3D dataset, including 3D and other annotations, are released under the ATTRIBUTION-
NONCOMMERCIAL 4.0 INTERNATIONAL license, i.e., CC BY-NC 4.0. Additionally users should
abide to the terms of access and license from the original ImageNet.

C.2 Risks and Concerns

Harmful contents. A very few number of images in ImageNet3D may contain data that, if viewed
directly, might be offensive, insulting, threatening, or might otherwise cause anxiety. These images
are taken directly from ImageNet21k so please follow the guidelines of ImageNet21k.

Personally identifiable information. Certain images may contain faces to identify individuals.
However, these images are taken directly from ImageNet21k so please follow the guidelines of
ImageNet21k.

C.3 ImageNet3D Dataset and Code

1. Datasheet for dataset: github.com

2. Raw data: huggingface.co

3. Croissant metadata: huggingface.co

4. Source code for main experiments: github.com

5. Source code of our web app: github.com

6. Annotator tutorial: drive.google.com

7. Annotator guidelines: drive.google.com

D Human Evaluation of Annotation Quality

As there is an overlap of images between ObjectNet3D [24] and ImageNet3D, we analyze the quality
of the annotations with human evaluation. Specifically, we present the annotated 6D poses from
ObjectNet3D and ImageNet3D side by side to human evaluators. Then the human evaluator must
choose which annotation is correct and visually better. The evaluation metrics include both the
alignment of 3D viewpoint, as well as the 3D location of the object. We randomly shuffle the order
the annotations presented to the annotators.

We collect human evaluation results from 16 categories that are both annotated in ImageNet3D
and ObjectNet3D. 50 images are sampled from each category to compare the annotation quality.
Results show that for all categories tested, annotations from ImageNet3D are generally favored than
the annotations from ObjectNet3D, and on average, for 73.25% of the samples, annotations from
ImageNet3D are favored. This demonstrate that 3D annotations from ImageNet3D tend to have a
better quality than the annotations in ObjectNet3D. Detailed results are presented in Table 5.

E Additional Experimental Results

E.1 Linear Probing of Object-Level 3D Awareness

We report baseline performance using both π/6 and π/18 pose accuracies in Table 6. Moreover,
we study the scaling properties of various baseline methods and visualize the results in Figure 10.
Results show that DINO v2 and DeiT are not scaling well as model parameters increase, and MAE
outperforms DINO v2 in large and huge model sizes.
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E.2 Open-Vocabulary Pose Estimation

We report baseline performance using both π/6 and π/18 pose accuracies in Table 7.

E.3 Joint Image Classification and Category-Level Pose Estimation

We report baseline performance using π/6 and π/18 pose accuracies, as well as the median pose error,
in Table 7. Furthermore, we show in Figure 11 the scaling properties of ResNet and SwinTransformer
on joint image classification and category-level pose estimation. Results show that SwinTransformer
obtains better results when model sizes are comparable to ViT-B but ResNet outperforms Swin
Transformer as the model sizes scale up.

E.4 Ablation Study on Cross-Category 3D Alignment

In ImageNet3D we adopt cross-category 3D alignment by aligning the canonical poses for all object
categories. This design resolves the ambiguity of canonical poses in novel object pose estimation.
Moreover, we find that with cross-category 3D alignment, models can learn shared semantics
between different categories, yielding a higher benchmark performance. Specifically we compare the
benchmark performance before and after a random rotation (multiple of 90 degrees) is added to the
canonical poses of about 1/3 of the object categories. We report the quantitative results in Table 9.
The results highlight the benefits of joint training on cross-category aligned data when developing
unified 3D vision models.

Note that NMM-Sphere fails to converge well without cross-category 3D alignment. The reason is
that misaligned canonical poses lead to false negative pairs and break the part contrastive learning.
For instance, if “shoe” and “slipper” have misaligned canonical pose, then the shared semantic parts
would form negative pairs in contrastive learning. Instead, shared semantic parts would form positive
pairs and produce similar part embeddings when cross-category 3D alignment is adopted.

E.5 Ablation Study on Training Time

We analyze the computational costs of training joint classification and pose estimation models on
our ImageNet3D with 200 categories and on a subset of ImageNet3D with 100 categories (same
categories as ObjectNet3D). We visualize the performance by wall clock time in Figure 12 of the
attached PDF.

Results show that for CNN or transformer models that formulate pose estimation as a classification
problem (i.e., ResNet or SwinTransformer), they generally converge pretty fast and take a similar
amount of time to converge on ImageNet3D or the 100-class subset. These methods don’t require
many computational resources to train.

Meanwhile neural mesh models (i.e., NMM-sphere) take much longer to train and converge. This is
because these models learn part-contrastive features with contrastive losses, which limit the training
batch size and generally don’t converge as fast as standard classification objectives. For future
work we will explore methods to improve the training efficiency of neural mesh models, such as by
involving better foreground/background feature sampling methods or by mining hard-negative pairs.
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Image caption generation with GPT-4v

System:
You are an AI visual assistant that can analyze a single image. You receive an image and
a list of main objects, with the object names in the parentheses and object locations in the
image given by detailed coordinates. These coordinates are in the form of bounding boxes,
represented as (x1, y1, x2, y2) with floating numbers ranging from 0 to 1. These values
correspond to the top left x, top left y, bottom right x, and bottom right y.

Using the provided caption and bounding box information, describe the scene in a detailed
manner.

When describing the given objects, mention the names of the objects as their reference.
Include details like object counts, position of the objects, relative position between the objects.

When using the information from the caption and coordinates, directly explain the scene, and
do not mention that the information source is the caption or the bounding box.

User:
Describe the image in details. There are 2 known objects: BICYCLE1 with bounding box [...],
and BICYCLE2 with bounding box [...]
Mention the names of the objects as their reference.

GPT-4v:
The image captures a scene of two cyclists participating in a bike race. The cyclist on the right,
riding a bicycle BICYCLE1, is at the forefront ... (omitted) The second cyclist, riding a bicycle
BICYCLE2, is to the left of the first cyclist and positioned slightly behind ... (omitted) The
background shows a dirt pathway with orange mesh barriers on either side and ... (omitted)

Figure 9: GPT-assisted approach to generate image caption interleaved with 3D information.
Following [6], we provide our 3D annotations and object names as context information to GPT-4v
and generate natural image captions interleaved with 3D information. Such captions can be used to
integrate general-purpose 3D models with large language models [25, 26].

Category Ours favored Category Ours favored Category Ours favored

computer 90% helmet 56% coffee maker 66%
mouse 70% fire extinguisher 66% backpack 94%
boat 88% train 64% piano 76%
bicycle 94% teapot 56% suitcase 85%
calculator 74% flashlight 62% watch 72%
bucket 60%

Table 5: Human evaluation of 3D annotations between ImageNet3D and ObjectNet3D. For
each of the 16 categories, we sample 50 images and present to the annotators to compare the
annotation qualities. In this table, we present the percentage of samples where the 3D annotation
from ImageNet3D is considered better than the 3D annotation from ObjectNet3D.
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Model Arch. Supervision Dataset
Pose Acc@π/6

Avg. Elec. Fur. Hou. Mus. Spo. Veh. Work

DeIT III [52] ViT-B/16 classification ImageNet21k 36.6 47.9 48.2 36.8 21.5 16.6 35.0 25.3
MAE [49] ViT-B/16 SSL ImageNet1k 46.6 57.6 67.8 40.2 29.0 20.2 58.4 25.6
DINO [19] ViT-B/16 SSL ImageNet1k 42.0 53.1 57.0 39.8 28.0 19.3 45.3 27.0
DINO v2 [51] ViT-B/14 SSL LVD-142M 56.3 64.0 75.3 47.9 32.9 23.5 74.7 38.1
CLIP [20] ViT-B/16 VLM private 39.7 50.3 52.8 39.7 23.1 19.3 39.8 26.4
MiDaS [50] ViT-L/16 depth MIX-6 40.5 50.9 56.7 40.2 26.7 18.9 39.2 28.1

Model Arch. Supervision Dataset
Pose Acc@π/18

Avg. Elec. Fur. Hou. Mus. Spo. Veh. Work

DeIT III [52] ViT-B/16 classification ImageNet21k 14.4 19.1 20.4 14.0 7.1 5.9 13.4 11.0
MAE [49] ViT-B/16 SSL ImageNet1k 21.7 26.4 35.5 18.1 10.5 7.7 27.1 11.9
DINO [19] ViT-B/16 SSL ImageNet1k 18.7 23.2 28.7 16.5 9.3 8.4 20.8 12.3
DINO v2 [51] ViT-B/14 SSL LVD-142M 26.1 28.4 40.6 20.6 12.0 9.7 36.3 17.0
CLIP [20] ViT-B/16 VLM private 16.8 21.2 25.0 16.0 7.5 6.2 17.2 11.6
MiDaS [50] ViT-L/16 depth MIX-6 17.4 22.1 26.7 16.7 8.4 8.1 16.4 12.5

Table 6: Quantitative results on probing of object-level 3D awareness. We report the π/6 pose
estimation accuracy for the average performance on all categories, as well as the performance for
each meta class (from left to right): electronics, furniture, household items, music instrument, sports
equipment, vehicles & transportation, and work equipment. Among the tested visual foundation
models, DINO v2 demonstrated the best object-level 3D awareness.

Figure 10: Scaling properties of various backbones on linear probing of object-level 3D aware-
ness.
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Model
Novel Categories - Pose Acc@π/6 ↑

Avg. Electronics Furniture Household Music Sports Vehicles Work

ResNet50-General 53.6 49.2 52.4 45.8 26.0 65.2 56.5 58.5
(trained on novel categories)

ResNet50-General 37.1 30.1 35.6 28.1 11.8 51.7 36.7 40.9
SwinTrans-T-General 35.8 30.9 34.3 26.1 12.2 46.2 34.4 39.2
NMM-Sphere 29.5 31.7 25.4 21.7 25.6 19.8 33.4 19.3

Model
Novel Categories - Pose Acc@π/18 ↑

Avg. Electronics Furniture Household Music Sports Vehicles Work

ResNet50-General 25.5 25.9 23.3 19.2 11.8 31.0 27.4 28.2
(trained on novel categories)

ResNet50-General 13.5 13.2 12.4 9.0 2.1 21.8 13.1 15.0
SwinTrans-T-General 13.1 13.2 12.7 8.1 1.7 18.0 11.9 13.6
NMM-Sphere 6.0 6.6 4.4 3.5 3.1 4.7 6.2 2.8

Table 7: Quantitative results on open-vocabulary pose estimation. We report the pose estimation
accuracy with threshold π/6 on testing data from novel categories unseen during training. We report
the average performance on all novel categories, as well as performance for novel categories in
each meta class. Results show that models with category-agnostic features can generalize to novel
categories, but by a limited amount.

Model
3D-Aware Acc@π/6 ↑

Avg. Electronics Furniture Household Music Sports Vehicles Work

ResNet50-General 50.9 60.0 67.2 43.0 43.8 27.7 64.1 33.8
SwinTrans-T-General 53.2 63.1 71.6 44.8 45.3 30.4 66.2 35.0
LLaVA-pose 49.1 58.0 65.6 41.6 41.0 26.1 61.8 32.1
NOVUM [33] 56.2 59.6 65.6 52.5 41.9 30.6 69.6 39.3
NMM-Sphere 57.4 61.3 65.9 52.4 51.7 40.5 67.9 43.4

Model
3D-Aware Acc@π/18 ↑

Avg. Electronics Furniture Household Music Sports Vehicles Work

ResNet50-General 25.3 28.6 35.5 19.0 16.3 13.2 36.1 16.2
SwinTrans-T-General 27.4 31.2 40.1 19.9 19.3 15.4 39.2 16.9
LLaVA-pose 15.2 16.2 20.5 11.7 10.8 9.0 23.0 9.2
NOVUM [33] 21.7 22.5 26.2 18.4 10.5 6.6 33.8 9.5
NMM-Sphere 22.8 23.2 31.4 20.1 14.5 10.7 32.7 9.2

Model
Median Pose Error ↓

Avg. Electronics Furniture Household Music Sports Vehicles Work

ResNet50-General 28.6 19.6 14.5 46.9 38.0 88.5 16.3 67.5
SwinTrans-T-General 25.6 17.1 12.4 40.8 35.4 68.0 14.7 64.5
LLaVA-pose 31.2 22.5 17.3 49.5 40.7 90.3 19.1 70.1
NOVUM [33] 24.4 22.1 18.6 27.6 35.7 58.1 16.0 41.6
NMM-Sphere 23.7 21.4 17.4 27.6 28.7 43.4 17.0 36.2

Table 8: Quantitative results on joint image classification and category-level pose estimation.
We report the 3D-aware classification accuracy with threshold π/6 for the average performance, as
well as performance for each meta class. Results show that with ImageNet3D, we can develop unified
3D models capable of inferring 3D information for a wide range of rigid categories. However, we
also identify limitations of current 3D models when scaling up to a lot more object categories.
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Figure 11: Scaling properties of ResNet-50 and Swin Transformer on joint image classification
and category-level pose estimation.

Model
w/ 3D Novel Categories - Pose Acc@π/6 ↑

Alignment Avg. Electronics Furniture Household Music Sports Vehicles Work

ResNet50-General no 47.6 56.9 63.0 40.0 39.0 27.1 59.3 32.0
ResNet50-General yes 50.9 60.0 67.2 43.0 43.8 27.7 64.1 33.8
SwinTrans-T-General no 49.8 60.0 67.0 42.2 43.6 29.6 60.5 32.6
SwinTrans-T-General yes 53.2 63.1 71.6 44.8 45.3 30.4 66.2 35.0
NMM-Sphere no 10.6 3.8 12.1 6.7 1.2 2.1 26.0 4.2
NMM-Sphere yes 57.4 61.3 65.9 52.4 51.7 40.5 67.9 43.4

Table 9: Ablation study on the benefits of joint training on cross-category aligned data. Results
show that with cross-category 3D alignment, models can learn shared semantics between different
categories, yielding a higher benchmark performance. This highlights the benefits of joint training on
cross-category aligned data when developing unified 3D vision models.

(a) ImageNet3D (100 classes) (b) ObjectNet3D (100 classes)

Figure 12: Models’ performance by wall clock time on ImageNet3D with 200 classes (left) and
ObjectNet3D with 100 classes (right).
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