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ABSTRACT

A number of problems in learning can be formulated in terms of the basic primitive
of sampling k elements out of a universe of n elements. This subset sampling
operation cannot directly be included in differentiable models, and approximations
are essential. Current approaches take an order sampling approach to sampling
subsets and depend on differentiable approximations of the Top-k operator for
selecting the largest k elements from a set. We present a simple alternative method
for sampling subsets based on conditional Poisson sampling. Unlike order sampling
approaches, the complexity of the proposed method is independent of the subset
size, which makes the method scalable to large subset sizes. We adapt the procedure
to make it efficient and amenable to discrete gradient approximations for use in
differentiable models. Furthermore, the method allows the subset size parameter
k to be differentiable. We validate our approach extensively, on image and text
model explanation, image subsampling and stochastic k-nearest neighbor tasks
outperforming existing methods in accuracy, efficiency and scalability.

1 INTRODUCTION

The fundamental combinatorial operation of selecting subsets of elements from a given universe is
ever increasingly being incorporated in differentiable neural models due to its range of applicability.
Example applications include model explanations (Chen et al., 2018), sequence modeling (Kool et al.,
2019), point cloud modeling (Yang et al., 2019), and nearest neighbor networks (Grover et al., 2018).

Current neural network approaches for sampling subsets generally fall in the class of order sampling
methods. In the order sampling scheme, each element in the universe is assigned an independent
ranking random variable. To obtain a subset sample of size k, the largest (or smallest) k elements
are chosen. Thereby, the ranking variable distribution induces a probability distribution over the
possible subsets. However, the operation of choosing the largest k elements (Top-k) is naturally not
differentiable, since it is a discrete operation. This means that the Top-k procedure cannot be directly
used in gradient learning models. This has led to a number of proposals of relaxed and differentiable
versions of the Top-k operator (Goyal et al., 2018; Pietruszka et al., 2021; Plötz & Roth, 2018).
Building on Top-k approaches several methods of sampling subsets as k-hot vectors have appeared in
the literature (Paulus et al., 2020; Xie & Ermon, 2019).

In this paper, we explore Poisson sampling (Tillé, 2006) and conditional Poisson sampling (Hájek &
Dupač, 1981) as an alternative to order sampling for subsets. With Poisson sampling, each element in
the set is independently drawn to be selected for the subset or not. As these independent trials cannot
guarantee a fixed size for subsets, with conditional Poisson sampling, the Poisson sampling procedure
is conditioned to return subsets of exactly k elements. In practice, the conditioning amounts to
repeating the Poisson sampling procedure until a subset of size k is obtained.

The general (conditional) Poisson sampling approach has a number of features which make it
an attractive alternative to Top-k-based order sampling methods. Firstly, the sampling is done
independently in Poisson sampling methods, which makes the procedure very efficient for sampling
subsets with large values of k. By contrast, current Top-k methods (Goyal et al., 2018; Plötz & Roth,
2018) often have an inner loop depending on k, which makes them expensive for sampling large
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subsets in terms of both time and memory. Furthermore, computations in modern neural network
models are vectorized. This makes sampling different subset size k for different elements in a batch
difficult for current Top-k procedures, since the number of sampling iterations to obtain the Top-k
elements depend on k. With Poisson sampling, it is trivial to sample different subset sizes for batched
inputs, making it ideally suited to vectorized computation. Finally, with Top-k, the subset size k itself
is not differentiable. With Poisson sampling, k appears as a scaling parameter for the probabilities
of the individual elements in the universe. Therefore, the subset size parameter k can easily be
incorporated in differentiable computations when having a differentiable sampling procedure.

Despite the aforementioned advantages, there are two difficulties with Poisson sampling. The first
is that vanilla Poisson sampling can lead to large variance in the sampled subset size. This can be
resolved with conditional Poisson sampling to obtain exact samples, but only at the cost of high
computational complexity. The second (and main) difficulty is that neither Poisson sampling nor its
conditional variant are differentiable and cannot be directly included in differentiable models.

In this paper, and in the context of differentiable subset sampling with neural networks, we propose
neural conditional Poisson subset sampling. We note that often we do not need subsets of k elements
exactly, as conditional Poisson sampling would have us do, and instead sampling k-sized subsets in
expectation is enough. With neural conditional Poisson subset sampling, we relax the constraint of
sampling exactly k elements, thus allowing to trade off accuracy in the subset size for efficiency of
sampling large subsets. Compared to Top-k approaches for sampling subsets (Xie & Ermon, 2019),
neural conditional Poisson subset sampling allows for efficient sampling of large subsets, easy choice
of per-instance subset sizes, and differentiable subset sizes for a small loss in subset size accuracy,
when an exact number of elements in the sampled subsets is not a necessity. Secondly, we adapt
the sampling procedure so that gradient approximations for discrete variables are applicable. The
resulting method is scalable and can be used to sample large subsets even from image-size domains
in full resolution – a task that is to date infeasible for current subset sampling methods.

2 PRELIMINARIES

Let U = {1, 2 . . . , n} denote a universe consisting of n elements. Each element i ∈ U is assigned
a “size” pi ∈ (0, 1). We assume the sizes here to be normalized to the unit interval. Let x denote a
subset of the elements in U represented as an indicator vector of size n, x = (x1, . . . , xn), where
xi ∈ {0, 1} and xi = 1 if the ith element is included in the subset. The sample size is the number of
elements, i.e.,

∑
xi, in the chosen subset. In this paper, we are concerned with sampling subsets of

given size k from a universe of n elements.

A sampling design (Tillé, 2006), S, is a way to assign a probability to each subset of universe U ,
i.e., S : P(U) → [0, 1], where P(U) is the power set. Intuitively, a sampling procedure induces
a sampling design by assigning each subset with the probability with which the subset is chosen.
Conversely, there could be a number of sampling procedures that correspond to the same sampling
design. Occasionally, a sampling procedure is also referred to as a sampling design.

Inclusion Probability. Important parameters of a sampling design are the inclusion probabilities.
The first order inclusion probability of an element i is the marginal probability, over the space of
samples, that i is included in the sample. If Ii is an indicator variable where Ii = 1 when i is included,
the i-th inclusion probability is πi := E[Ii].

2.1 POISSON SAMPLING

Algorithm 1 Poisson Sampling
Require: Input p ∈ (0, 1)n,

∑
i pi = 1; k integer;

Require: Output S
1: for i = 1, ..., n do
2: Sample ui ∼ U(0, 1)
3: if ui ≤ kpi then
4: S ← S ∪ {i}
5: end if
6: end for

Poisson sampling (Tillé, 2006) is a probability-
proportional-to-size sampling design for sam-
pling without replacement. This means that each
element i is included in the sample with prob-
ability proportional to its size pi, where we as-
sume that

∑
i pi = 1. With Poisson sampling,

the sample size is a random variable with ex-
pected size k. Given independent uniform ran-
dom variables ui ∼ U(0, 1), an element i is
included in the sample if ui ≤ kpi (see Algo-
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rithm 1). When kpi > 1 for some i, the corresponding elements are always added to the output. The
procedure is then repeated for the remaining elements after appropriate normalization (Tillé, 2006).
When using Poisson sampling, the resulting sample can have large variance in sample size due to
independent sampling of elements.

2.2 CONDITIONAL POISSON SAMPLING

Algorithm 2 Conditional Poisson Sampling
Require: Input p ∈ (0, 1)n,

∑
i pi = 1; k integer;

Require: Output S
1: S ← {}
2: while |S| ≠ k do
3: S ← {}
4: for i = 1, ..., n do
5: Sample ui ∼ U(0, 1)
6: if ui ≤ kpi then
7: S ← S ∪ {i}
8: end if
9: end for

10: end while

Conditional Poisson sampling (Hájek & Dupač,
1981) is a sampling design over samples with
exactly k elements. The design can be imple-
mented simply by repeating the Poisson sam-
pling procedure until a sample with exactly k
elements is obtained. That is, discarding the en-
tire sampled subset if it does not contain exactly
k element and repeating from scratch. Since the
sampling has to be repeated, it may require many
trials before a size k sample is obtained. Hájek
& Dupač (1981) showed that conditional Pois-
son sampling is a maximum entropy design, sub-
ject to required inclusion probabilities pi (when∑

pi = k) and sample size k.

One potential difficulty with conditional Poisson sampling is that the inclusion probabilities πi, which
we would approach if we repeated the sampling numerous times, are approximations of the desired
probabilities pi, when p1, ..., pn are also used as sampling probabilities. This is because with standard
Poisson sampling with the probabilities pi, not all samples result in a valid subset of size k.

It is possible to improve the approximation by correcting the given pi to obtain sampling probabilities
p′i. Using the corrected p′is for sampling leads to inclusion probabilities, πi, that are closer to the
desired probabilities pi (Lundquist, 2009).

3 NEURAL CONDITIONAL POISSON SUBSET SAMPLING

We first give an overview of the proposed sampling procedure, and we detail it next.

3.1 OVERVIEW

Conditional Poisson sampling only accepts samples of exactly k elements, discarding the sample
otherwise. This may require numerous sampling iterations, thus becoming an efficiency bottleneck.
On the other hand, vanilla Poisson sampling can be viewed as repeating the same process only
once, thus yielding high variance in the subset size. Furthermore, neither Poisson sampling nor the
conditional extension is differentiable relative to the parameters pi. Oftentimes, it is not strictly
necessary to sample exactly size k subsets (unlike conditional Poisson sampling), for as long as the
subsets that we sample are size k in expectation and with low variance (unlike Poisson sampling).
This, for example, is the case when we need to explain images in terms of large subsets of pixels.

Leveraging this observation, we propose neural conditional Poisson subset sampling (NCPSS), which
is intermediate between Poisson sampling and conditional Poisson sampling. Similar to conditional
Poisson sampling, our sampling procedure performs multiple passes. Differently, however, for every
new pass, and depending on whether our sample has more or less than k elements, we do not throw
away the previously sampled subset: instead, we add or remove elements from it. Crucially, we
repeat our sampling procedure only for a predetermined number of passes. That is, unlike conditional
Poisson sampling, we do not need to sample exactly k elements to terminate. We show that this
adaptation reduces variance in the subset size while yielding significant gains in sampling efficiency.

3.2 PROPOSED SAMPLING PROCEDURE

In the context of neural networks, we want to make our sampling procedure amenable to training by
discrete variable gradient approximations. We, therefore, first adapt the Poisson sampling procedure
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so that the scaled probabilities kpi remain bounded in (0, 1). That is, if we have sampling probabilities
pi and their sum s :=

∑
i pi, we compute the normalized probabilities pi/s. The reason is that we

then only require for our new sampling procedure to sample from Bernoulli distributions, and we
can rely on popular gradient estimations for discrete operations, like Straight-Through (Bengio et al.,
2013) or Gumbel-Sigmoid relaxations (Maddison et al., 2017).

Reversing samples. To sample a subset of size k with Poisson sampling, we multiply the normalized
probabilities by k. Unfortunately, this results in probabilities pik/s that can be greater than 1 if
k/s > 1. Specifically, elements i with pik/s > 1 will certainly be included in the sample, which,
however, is no longer a valid Bernoulli sample since the “probability” parameter is greater than 1.

We make, however, the observation that if k/s > 1, we could still sample from the complementary
distribution with probabilities 1− pi, since

∑
(1− pi) = n− s and (n− k)/(n− s) ≤ 1 where n

is the total number of elements. This implies that if k > s, we can perform Poisson sampling with
probabilities (1− pi) to compute the individual sampling probabilities as (1− pi)(n− k)/(n− s).
Performing Bernoulli sampling with these new probabilities gives a sample with expected size n− k.
In this case, rather than sampling the k elements to include from our full set, we sample instead the
n− k elements (in expectation) to exclude. For the final sample, we simply flip (i.e., flip 1s and 0s)
our obtained “exclusion” sample of expected size k, having used only Bernoulli samples.

Reducing variance by iterating. Our new sampling procedure is based on Poisson sampling, and thus
will return samples of size k in expectation. To reduce variance in sample size, we perform a (small)
prescribed number of passes. Let U = {1, ..., n} be our full set and St the currently sampled subset at
iteration t, During each new pass t+1, we either add or remove elements from St to get closer to size k.
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Figure 1: Histograms showing
subset size distribution with
t = 1 iteration (top) and 5 iter-
ations (bottom), when choos-
ing k = 300 elements from
n = 3000 elements. We ob-
serve a large reduction in vari-
ance with 5 iterations.

Specifically, if our current sampled subset is smaller than it should
(|St| < k), we make a new pass over the unselected elements, U−St,
to sample new elements to add. Conversely, if our current sampled
subset is larger than it should (|St| > k), we make a new pass over
the currently selected elements St, and use the inverted probabilities,
1− pi, to sample which elements to remove.

While this procedure is more efficient than conditional Poisson sam-
pling by relaxing the constraint of obtaining exactly size-k subsets,
we can also show that it produces samples of lower variance com-
pared to regular Poisson sampling. Specifically, under reasonable
assumptions and for the simpler case of equal input probabilities, i.e.,
p1 = p2 = ... = pn, the subset size variance decreases exponentially
with the number of iterations. This implies that only a few iterations
are required to obtain samples that are close to the target size k.

Proposition 3.1. Let Si ∈ {0, 1}n denote the subset and qi
bounding the probability at step i in the iterative Poisson sam-
pling procedure. Then after T iterations we have V ar(|ST |) ≤
V ar(|S1|)

∏T
i=2 qi, where V ar(|S1|) is the Poisson sampling vari-

ance. Assuming that the probability bound is bounded away from
1, i.e., qi < 1 − ϵ for ϵ > 0, the procedure obtains an exponential
decrease in variance with the number of steps T .

We provide the proof of this proposition in Appendix B, as well as
an empirical verification of the exponential reduction in variance in
Figure 1 with the details of the experiment given in Appendix E.

3.3 END-TO-END ALGORITHM

Next, we introduce Neural Conditional Possion Subset Sampling (NCPSS), a differentiable way of
using the previously described sampling procedure in a gradient-based learning framework. Given a
probability vector pi parameterized by a neural network and sum s =

∑
i pi, for each i, we adjust the

sampling probabilities to the subset size s. We refer to these probabilities as qi and compute them as:

qi =

{
kpi/s k <= s

1− (n− k)(1− pi)/(n− s) k > s
(1)
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Algorithm 3 Iterative Poisson Sampling

Require: Input p ∈ (0, 1)n; k integer; t iterations
1: Initialize empty output set O.
2: Repeat 3-9 for t iterations.
3: if O has less than k elements then
4: Run Sample-Approx-K-Hot only with pi where

xi ̸= 1 and k = k − |O|.
5: Add result to O.
6: else if O has more than k elements then
7: Run Sample-Approx-K-Hot only with pi coordi-

nates with xi = 1, k = |O| − k and p = 1− p.
8: Remove result from O.
9: end if

10: Function Sample-Approx-K-Hot (p, k)
11: Compute s =

∑
pi.

12: if k <= s then
13: Optionally apply correction to kpi/s for each i

to obtain corrected probabilities p′i.
14: xi = Bernoulli(p′i) for each i.
15: else
16: Optionally correct (n− k)(1− pi)/(n− s) for

each i to obtain corrected probabilities p′i.
17: xi = Bernoulli(p′i) for each i.
18: end if
19: if k > s then
20: x = 1− x.
21: end if
22: Return x
23: EndFunction

In the forward pass, we run the approximate conditional Poisson sampling procedure to ob-
tain a k-hot sample x, which can be used as input to the downstream neural network. In the
backward pass, the gradient relative to x is used as the straight-through gradient relative to qi.

Iterative
Poisson
Sampler

Straight-Through
Gradient

Forward

Backward

Figure 2: Diagram of the proposed k-hot sampling
procedure with straight-through gradients. The
vector of probabilities p is output by a neural net-
work. The vector q is computed using Equation 1.

As the new Poisson sampling procedure relies
only on Bernoulli samples, we can also relax
the entire approximate conditional Poisson sam-
pling procedure by the Gumbel-Sigmoid relax-
ation (Maddison et al., 2017). In this paper,
however, we rely exclusively on the described
straight-through gradient estimation, since it
showed to work well in our experiments. The
full algorithm is described in Algorithm 3 and
pseudocode is given in the appendix in Algo-
rithm 4. Also, Figure 2 shows the modular ar-
chitecture with the conditional Poisson subset
sampling and straight-through gradients.

3.4 OTHER CONSIDERATIONS

Number of iterations. The method described in Algorithm 3 depends on repeating the Poisson
sampling procedure for a number of iterations t. Here we note that t does not depend on the subset
size parameter k unlike Top-k procedures and is a fixed constant. Second, we note that the function
of the parameter t is to reduce variance in the subset size and a few iterations is enough to obtain
with high probability a sample size within ±1 of k, even for large k. In our experiments, we choose t
between 5 and 8. Empirical results on the sample variance are discussed in Appendix E and Figure 1.

Differentiable subset size. We observe in Equation 1 and Algorithm 3 that the subset size parameter
k appears only as a scaling parameter in the probability vector. This implies that k can be made
differentiable assuming that the samples can be differentiated, for instance using the straight-through
estimator as described earlier or some kind of relaxation. In this case, we learn k as a fraction of the
overall number of elements n, i.e. k/n (as a continuous sigmoid output), and then rescale it by n.
Note that this procedure is different from Top-k procedures, which usually use k in an internal loop
index, making differentiation difficult.

Correction for inclusion probabilities. Given a set of desired probabilities pi such that
∑

pi = k,
the conditional Poisson design does not necessarily lead to inclusion probabilities πi such that πi = pi.
However, it gets approximately close, i.e. πi ≈ pi, when d :=

∑
i pi(1 − pi) is large (Hájek &

Dupač, 1981). Furthermore, Bondesson et al. (2006); Lundquist (2009) suggest corrections for the
sampling probabilities to improve the approximation, which we discuss in more detail in Appendix C.

Complexity. The parallel (vectorized) complexity of the method (Algorithm 3) is constant, O(1), up
to the logarithmic factors required for reduction operations such as summation. This is because each
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Poisson sampling step has constant parallel complexity up to reductions and we only iterate for a
constant number of steps because of exponential variance reduction.

4 RELATED WORK

A few approaches for selecting subsets have appeared in the literature. Some of these methods
(Pietruszka et al., 2021; Plötz & Roth, 2018; Xie et al., 2020) are designed to satisfy pre-defined
constraints, such as fixed subset size. Other methods use regularization objectives to find some
optimal subset size (De Cao et al., 2020; Louizos et al., 2018). The methods can be further classified
in terms of whether they are deterministic (Pietruszka et al., 2021; Plötz & Roth, 2018; Xie et al.,
2020) or stochastic (Chen et al., 2018; Paulus et al., 2020; Xie & Ermon, 2019).

Deterministic methods with constraints on the subset size often depend on relaxations of the Top-k
operator for selecting the largest k elements from a set. One such relaxation is developed by Plötz &
Roth (2018) as a repeated temperature-scaled softmax that is iterated k times. At each iteration, an
element is sampled from the categorical distribution induced by the softmax. For the next iteration,
the categorical distribution is re-normalized after setting the probability of the selected sample to zero.
The relaxation replaces samples from the distribution by expectations. Top-k relaxations have been
proposed with optimal transport (Xie et al., 2020) and tournament selection (Pietruszka et al., 2021).

The Top-k relaxations are deterministic operations which can be combined with ranking distributions
for sampling subsets. Building on Reservoir Sampling Efraimidis & Spirakis (2006), Xie & Ermon
(2019) define a subset sampling operation by using the Gumbel distribution as a ranking distribution
and using the Top-k relaxation defined by Plötz & Roth (2018). A similar approach is taken by Goyal
et al. (2018). Another sampling method is used by Chen et al. (2018) where independent samples are
taken from the Concrete distribution (Maddison et al., 2017) followed by the element-wise maximum.
This has the disadvantage that features may be repeated and fewer than k elements might be finally
selected.

In comparison, our proposed method is stochastic, and we impose a weaker constraint on the expected
subset size rather than a hard constraint on the exact size and reduce variance. We also allow
controlling the subset size per-instance by adding a regularization objective.

Poisson sampling, conditional Poisson sampling (Hájek & Dupač, 1981; Tillé, 2006) and related
methods have been traditionally used in applications such as survey design (Ogus & Clark, 1971) and
the consumer price index (Ohlsson, 1990).

5 EXPERIMENTS

We validate neural conditional Poisson sampling on three different tasks: model explainability for
text and image classification Chen et al. (2018), high resolution image sub-sampling Huijben et al.
(2019), as well as differentiable k-nearest neighbor search Plötz & Roth (2018). Specifically, image
sub-sampling requires sampling from as many as 260K elements, which is the pixel resolution
of the images. Sampling from so large spaces is intractable with current models due to extreme
dimensionality, showing the scalability of the proposed method. Last, we validate with ablation
experiments the efficiency, variance reduction, and inclusion probability approximation for the
method. For lack of space, the latter experiments can be found in Appendix E.

5.1 LEARNING TO EXPLAIN TEXT CLASSIFICATION

For the task of model explainability, we work with the Learning to Explain framework of Chen et al.
(2018). The aim is to generate post hoc instance-wise explanations of a classifier model, achieved by
building an explainer network e to select the k input features with maximal mutual information with
the model prediction per instance.

Since it is difficult to compute the mutual information directly, the framework works with a variational
lowerbound of mutual information parameterized by a neural network. The optimization problem
solved by in the learning to explain framework is written as

max
e,q

E[log q(XS)], where S ∼ e(X), (2)
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Table 1: Learning to explain text classification measured in post-hoc accuracy.

Model IMDB (k = 10) 20NewsGroup (k = 25) 20NewsGroup (k = 50)

L2X (Chen et al., 2018) 90.8 50.5 34.7

RSS (Xie & Ermon, 2019) 91.7 58.6 58.0
RSS (Xie & Ermon, 2019) + ST 91.7 51.9 58.4

NCPSS 91.2 67.9 66.5
NCPSS + differentiable k 91.2 65.7 68.2

Table 2: Learning to explain image classification measured in post-hoc accuracy. The RSS baseline
runs out of GPU memory on sizes greater than 100. The baseline CIFAR-10 and STL-10 models
have 80% and 75% accuracy respectively

CIFAR-10 STL-10

k 50 100 150 100 400 600 700

RSS (Xie & Ermon, 2019) 50.7 54.1 – 42.5 – – –

NCPSS 63.6 65.2 68.0 50.6 56.3 57.6 59.6
NCPSS + differentiable k 60.3 64.9 65.3 46.2 50.1 51.7 53.4

where q(XS) is the variational lower bound parameterized by a neural network, XS is the subset of k
features output by the explainer network e.

In practice, the output of the explainer network is a k-hot vector distribution from which a sample S
is used to mask features of the true input X by element-wise multiplication, i.e., XS = X ⊙ S. For
the text classification experiments we use the Large Movie Review Dataset (Maas et al., 2011) with
two classes for sentiment classification. We follow the same pre-processing as in Chen et al. (2018)
by resizing each review to 400 words. We also use the 20Newsgroups dataset (Rennie & Lang, 2008)
for classification of posts in 20 different newsgroups. We resize each document to 1000 words by
padding or cutting.
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Figure 3: Histograms showing
frequency of sampled tokens that
correspond to actual words and
not padding for our method (top)
and RelaxSubSample (bottom)
on the 20Newsgroups evaluation
set. k is set to 50 and only doc-
uments with at least 50 words
were considered. RelaxSubSam-
ple shows a large variation in the
number of actual words selected.

The models to be explained in both cases are convolutional neural
networks, which achieve 90% and 70% test set accuracy on IMDB
and 20Newgsroups, respectively. For the 20Newsgroups dataset
we use pretrained GLoVe embeddings (Pennington et al., 2014),
while for IMDB we train from scratch. For the IMDB dataset we
select k = 10 words as explanations, while for the 20Newsgroups
dataset we use k ∈ {25, 50} words. We use the same network
architecture as in Chen et al. (2018) for the IMDB dataset. For
20Newsgroups we use a similar architecture but with two extra
convolutional layer each in the explainer and the variational net-
work and a filter size of 128. We evaluate the final performance
using post hoc accuracy (Chen et al., 2018). For evaluation we
always use hard binary vectors as masks S.

The results are shown in Table 1. In the simpler IMDB dataset
both our model and RelaxSubSampling (RSS) can explain well
classifications with a small number of words k, matching the ac-
curacy of the full model. For the larger 20Newsgroups, however,
neural conditional Poisson sampling outperforms RelaxSubSam-
pling by a significant margin of 7-10%, while coming close to
the accuracy of the full model. Moverover, when comparing sam-
pled tokens, we see that RelaxSubSample (Xie & Ermon, 2019)
samples often invalid words like padding tokens unlike neural
conditional Poisson sampling, as seen in Figure 3. This shows that
RelaxSubSampling is unable to take advantage of larger subset
sizes when going from k = 25 to k = 50. These results validate
our claim that our method performs better with larger subsets,
whereas Gumbel Top-k relaxations deteriorate because of their longer softmax iteration chains. For
NCPSS, both k = 25 and k = 50 achieve post-hoc accuracies close to the original test accuracy.
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edu writes stuff del for bandwidth sake why sigh if you don have more than mbs of memory using with windows
is of memory windows will access mb ram better as memory as to why what you did didn work it is because
and paths are stored inside the group ini files all of the sudden things went from drive to drive however if you
wanted to copy an application up to the and re setup it up that should work normally but as previously stated this
will only hurt things unless you ve got more than mbs of ram and are using whats above as the personally have
mb of ram and run mb with great deal of success however if you are looking to speed up windows the three
things ve noted that work the best are graphics card co processor even an helps some other disk cache besides ve
tried several and lightning for windows and norton cache give me major headaches as well think the purpose the
original poster was trying to serve is to avoid the significant amount of disk access that windows does on startup
it like it trying to it bit in wearing the damn drive out estimate it only reading mb of programs data but from the
performance the drive gives it sounds like they are scattered all over the drive my drive is however compressed
what is it that takes so much perhaps if ms would take the trouble to this startup process less people would be
wanting to find solution themselves

Class: comp.os.ms-windows.misc, Predicted: comp.os.ms-windows.misc, Words Selected: 20/261, Total Tokens Selected: 20

Figure 4: Example text explanation with the 20Newsgroups dataset for a correctly classified document
with differentiable set size with an average explanation size of 50 words. In this case the model
chooses a smaller explanation size of 20 words. In this case all chosen tokens correspond to actual
words and no padding tokens or similar are selected. See the appendix for examples on longer inputs.

Differentiable explanation sizes. For explaining text documents with 20Newsgroups we also
experiment with learning optimal differentiable subset sizes of k, for which we consider a prior k̂
to be either 25 or 50. For this we add a squared loss term in the loss expression as γ(µk − k̂)2,
where µk is the mini-batch average k computed the network, and γ is the regularization strength
chosen from {0.1, 0.01, 0.001}. Constraining only the average explanation size allows the model
to choose the explanation size per instance, often yielding even stronger explanations in terms of
post-hoc accuracies, see Table 1. For instance, in Figure 4 the model chose a 20-word explanation for
a correct classification although the average explanation is conditioned to 50 words. Examples of
longer explanations can be found in the appendix.

5.2 LEARNING TO EXPLAIN IMAGE CLASSIFICATION

We repeat the experiment now for explaining image classification models on CIFAR-10 (Krizhevsky,
2009) and STL-10 (Coates et al., 2011) using the same “learning to explain” framework (Chen et al.,
2018) and sub-pixel explainers. This means that the explainer e outputs a 3x32x32 size mask for
CIFAR-10 with 32x32 resolution, and 3x96x96 for STL-10. Generating such explanations requires
large subset sizes. For CIFAR-10 we explain a simple CNN model with 8 convolutional layers that
achieves 80% val. accuracy, and for STL-10 a ResNet-10 model that achieves 75% val. accuracy.

Figure 5: Learning to explain im-
age classification with 700 sub-
pixels on STL-10.

We choose a simple CNN explainer and variational network ar-
chitecture. For CIFAR-10 the explainer has 5 convolutional layers
of 64 filters and no subsampling. The variational network has 3
convolutional layers of size 32 with 4x4 max pooling layers after
each intermediate layer and 2x2 average pooling at the output. For
STL-10 the explainer has 5 convolutional layers with 96 filters.
The variational network has 5 hidden convolutional layers of sizes
[64, 128, 256, 512] with max pooling layers for downsampling and
a final global average pooling layer with 10 outputs.

We compare against RelaxSubSample (Xie & Ermon, 2019) for
k = 50, 100 for CIFAR-10, and k = 100 for STL10. For larger
subset sizes, we experienced RelaxSubSample to run out of GPU
memory. The reason is the large input sizes on STL-10, as well as
the fact that RelaxSubSample needs to perform k softmax opera-
tions per image, and all must be kept in memory for backpropaga-
tion. In contrast, NCPSS is easily scalable, such that we also run
our method with k ∈ {400, 500, 600, 700} on STL-10. We choose the relaxation temperatures for
RelaxSubSample from {0.1, 0.5, 1.0}.
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We show results in Table 2. Overall, neural conditional Poisson sampling outperforms the Gumbel-
Top-k RelaxSubSample by a large margin on the same subset sizes, over 10% for CIFAR-10 and 8%
for STL-10. Furthermore, we see a clear increase of performance with larger subset size, indicating
that NCPSS makes efficient use of the set sizes. Note that in these experiments, the post hoc accuracy
of the best model is still below the original model, which can likely be addressed by a better explainer
or variational network architecture. We provide examples explanations (the negative of the generated
mask, for better illustration) of correct predictions by our method in Section 5.2. Finally, for CIFAR-
10 and STL-10, we also experiment with differentiable subset sizes with our method when the average
explanation size is regularized to be, e.g., 50 and 100 by adding a term in the loss function as we did
for our document classification experiments. Generally, we find that adding a differentiable average
subset size constraint leads to worse evaluation accuracy.

Subset size variation. We show that our method leads to very low variation in the sampled subset
sizes on real data with only a few iterations t. We sample 1000 subsets for different input data points
and compute the minimum, maximum, and mean subset size for k ∈ {50, 100} and t ∈ {3, 5, 8}.
Results in Table 8 in Appendix E show only a small variation (±4 at t = 8) in subset sizes given t.

Efficiency comparison. We compare the time taken per epoch for our method and the baseline
Gumbel Top-k method RelaxSubSample for increasing subset size k on the learning to explain task
on CIFAR-10, see Table 7 in Appendix E. The proposed algorithm, NCPSS, trains almost twice as
fast as RelaxSubSample for k = 50, and twice as fast for k = 100. In general, the runtime was only
minimally affected by different subset sizes k and sampling iterations t.

5.3 SUBSAMPLING LARGE IMAGES
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Figure 6: 512x512
sub-sampled Celeb
HQ images for eye
glasses classification.
Selected pattern is
shown in red.

Last, to showcase the capacity of neural conditional Poisson sampling for
large-scale inputs and experiments, we subsample large images for a down-
stream classification task following Huijben et al. (2019). For this, we create
a subset of the CelebA-HQ (Lee et al., 2020) dataset with 512x512 images,
half of them featuring the eyeglasses attribute and the other half not. The
eyeglasses attribute then serves as the classification target. The task of the
subsampler is to compute a global input mask. We replace the Gumbel
sampling layer used by Huijben et al. (2019) with our iterative Poisson sam-
pler. We subsample 5, 10 and 15 percent of the pixels which are fed to
the downstream classifier. We use a small 6-layer CNN with max-pooling
layers for downsampling, a final global average pooling layer for the output,
and train the model for 80 epochs. We obtain accuracies of 93.4, 95.1 and
95.4 percent for 5, 10 and 15 percent pixels respectively. This experiment is
intractable with the method from Huijben et al. (2019) due to high memory
usage. Example images are shown in Figure 6. We also experimented with
per-instance features for eye glasses classification. Qualitative results for this
can be seen in Appendix G.1.

By contrast, the method from Huijben et al. (2019) is infeasible for such large
images since it attempts to create the full subsampling matrix, requiring over
27GB of memory for 512x512 images and batch size of 10. To make a comparison with Huijben et al.
(2019) possible, we downscaled images to 64x64, on which NCPSS obtains 2-3% higher accuracy
(91.1 v. 89.1 for 15% selected pixels and 89.4% v. 86.6 for 10% selected pixels, see Appendix D).

6 CONCLUSION

We presented a method for sampling a subset of k elements from an n element universe. The method
is intermediate between Poisson and conditional Poisson sampling by reducing variance in Poisson
sampling and generating samples that are close to k-hot. The main limitations of the method are: 1)
the subset size k is only achieved in expectation, so there is not much advantage gained for very small
subsets in terms of complexity, and 2) there are no theoretical guarantees for the straight-through
gradient. In spite of this, the method is efficient and scalable to sampling of large subset sizes beyond
what is achievable by current Gumbel Top-k methods.
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J. Hájek and V. Dupač. Sampling from a Finite Population. Statistics Series. M. Dekker, 1981. ISBN
9780824712914.

Iris AM Huijben, Bastiaan S Veeling, and Ruud JG van Sloun. Deep probabilistic subsampling
for task-adaptive compressed sensing. In International Conference on Learning Representations,
2019.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International Conference on
Machine Learning, pp. 3499–3508. PMLR, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive
facial image manipulation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning Sparse Neural Networks through
L 0 Regularization. In International Conference on Learning Representations, 2018.

Anders Lundquist. Contributions to the theory of unequal probability sampling. phdthesis, Institutio-
nen för Matematik och Matematisk Statistik, Umeå universitet, 2009.
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A PSEUDOCODE FOR ITERATIVE POISSON SAMPLING

Algorithm 4 Iterative Poisson Sampling Pseudocode

Require: Input p ∈ Rd, k integer, t integer;
1: Set i = 0, f = 1, S = 0d,mask =

1d, pin = p, kin = k
2: while i < t do
3: s = Sample-Approx-K-Hot(p, k,mask)
4: Set S = S + f · s
5: Set r =

∑
S

6: if k <= r then
7: Set f = −1,mask = s, p = 1 −

pin, k = r − kin
8: else
9: Set f = 1,mask = 1−s, p = pin, k =

kin− r
10: end if
11: end while

12: Function Sample-Approx-K-Hot (p,
k,mask)

13: Set c =
∑

p ·mask, n =
∑

mask
14: if k <= c then
15: Set q = kp/c
16: else
17: Set q = (n− k)(1− p)/(n− c)
18: end if
19: Sample s independently from q
20: if k <= c then
21: Return s ·mask
22: else
23: Return (1− s) ·mask
24: end if
25: EndFunction

B PROOF OF PROPOSITION 3.1

Proposition 3.1. Let Si ∈ {0, 1}n denote the subset and qi bounding the probability at step
i in the iterative Poisson sampling procedure. Then after T iterations we have V ar(|ST |) ≤
V ar(|S1|)

∏T
i=2 qi, where V ar(|S1|) is the Poisson sampling variance. Assuming that the probability

bound is bounded away from 1, i.e., qi < 1 − ϵ for ϵ > 0, the procedure obtains an exponential
decrease in variance with the number of steps T .

Proof. By design we have that E[|Si| | Si−1] = k, where k is the required subset size. Note that
V ar(|S1|) is the plain Poisson sampling subset size variance. Using the following upper bound for
the variance of the binomial distribution,

V ar(;n, p) = np(1− p) ≤ np,

we have
V ar(|Si||S1:i−1) ≤ (n− |Si−1|)(k − |Si−1|)qi.

Combining with E[X2] = V ar(X) + E[X]2, we get

V ar(|Si| | S1:i−2) = E[V ar(|Si| | S1:i−1)] (3)

≤ E
[
nk − n|Si−1| − k|Si−1|+ |Si−1|2 | S1:i−2

]
qi (4)

≤ qiV ar(|Si−1| | S1:i−2). (5)

Unrolling from T to 1 we get

V ar(|ST |) ≤ V ar(|S1|)
T∏

i=2

qi.

Combined with the assumption that qi are bounded away from 1, the right hand side gives an
exponential decay in the Poisson sampling variance V ar(S1) over T steps.

Conditional Poisson sampling would need on average 1/
(
n
k

)
pk(1−p)n−k steps given that the success

probability for size k in each sample is
(
n
k

)
pk(1− p)n−k.
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C CORRECTION FOR INCLUSION PROBABILITY

Given desired probabilities pi such that
∑

pi = k, the conditional Poisson design does not lead to
inclusion probabilities πi such that πi = pi. However, πi ≈ pi and the approximation improves
when d :=

∑
i pi(1 − pi) is large Hájek & Dupač (1981). Bondesson et al. (2006); Lundquist

(2009) develop corrections p′i for sampling probabilities to improve the approximation relative to the
desired inclusion probabilities pi depending on whether d is large or small. For large d, the suggested
correction uses p′i such that

p′i
1− p′i

= α
pi

1− pi
exp

(
1/2− pi

d

)
, (6)

where α is chosen so that
∑

i p
′
i = k. Another correction that subsumes the large d and very small d

cases is to use p′i such that

p′i
1− p′i

= α
pi

1− pi
exp

(
a arcsinh

(
1/2− pi
a · d

))
, (7)

where a is recommended by Lundquist (2009) to be chosen as a = 1/2 + d3/2. For our experiments
we found the correction from equation (7) work better than the one from equation (6), which we
choose to use. In general, in our experiments, we find the corrections to be useful only when n is
small and k is less than n/2. Otherwise, for large n the inclusion probabilities were approximated
quite well by the uncorrected probabilities pi in our experiments. We experimentally validate the
inclusion probability correction in Appendix E.

D SUBSAMPLING COMPARISON

We compare the performance of our method on an image subsampling task for downstream classifi-
cation with deep probabilistic sampling (DPS) Huijben et al. (2019) which uses Gumbel sampling
for sampling subsets. We use the CelebA dataset for this experiment. Since we find that the DPS
method is infeasible to use on large images due to its high memory requirement, we compare on
images downscaled to 64x64. We prepare the dataset as described in Section 5.3 and build a classifier
for the eyeglasses attribute. We use a 5 layer CNN with maxpooling downsampling layers and train
for 100 epochs. For DPS we use temperatures of 0.5 and 1.

Table 3: Subsampling comparison on CelebA eyeglasses attribute classification evaluation set

Model Percent Pixels Percent Evaluation Accuracy

NCPSS 10 89.4
DPS Huijben et al. (2019) 10 86.6
NCPSS 15 91.1
DPS Huijben et al. (2019) 15 89.1

Table 4: Subsampling performance on CelebA-HQ 512x512 images for eyeglasses attribute classifi-
cation on the evaluation set

Model Percent Pixels Percent Evaluation Accuracy

NCPSS 5 93.1
NCPSS 10 95.1
NCPSS 15 95.4

D.1 TIMING COMPARISON

Our method is significantly more efficient than Top-k methods for large k. Below we provide timing
comparison for the subsampled eyeglasses classification experiment described above with 64x64
images. The times are for 80 epochs.
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Table 5: Training time comparison on CelebA 64x64 images for subsampled eyeglasses attribute
classification

Method Pixels Time/80 epochs

NCPSS 10% 41 minutes
DPS Huijben et al. (2019) 10% 3 hours
NCPSS 15% 41 minutes
DPS Huijben et al. (2019) 15% 4.4 hours

E FURTHER VALIDATION OF THE METHOD

In this section we verify some properties of the proposed method. First, we verify that the actual
inclusion probabilities are close to the desired probabilities and the conditions under which the
correction described in Section C improves the approximation. Second, we verify that the method
indeed reduces variance in the subset size at the exponential rate suggested by Proposition 3.1.

E.1 VERIFYING THE APPROXIMATION FOR INCLUSION PROBABILITIES

First we verify that our proposed method generates k-hot samples with probabilities close to the
prescribed probabilities. We generate random probability vectors, p, of dimension chosen from
{100, 500} that are normalized to sum to 1. Next we generate 1000 k-hot vectors using our method
both with and without the correction described in Appendix C. We estimate the inclusion probability
by averaging across the 1000 k-hot samples for each dimension, denoting the empirical probabilities
by p̂. We compute the mean squared error as

∑
i(pi − p̂i/k)

2. We repeat the procedure for values of
k ∈ {10, 20, 30, 40, 50, 60}. The root mean squared (RMS) error with and without the correction for
various values of k is shown in Table 6.

Table 6: Root mean squared error for inclusion probabilities

k (n = 100)

Method 10 20 30 40 50 60

NCPSS 0.0165 0.0095 0.0071 0.0042 0.0030 0.0043
NCPSS+cr. 0.0116 0.0082 0.0060 0.0037 0.0027 0.0043

k (n = 500)

Method 50 100 150 200 250 300

NCPSS 0.0048 0.0030 0.0021 0.0015 0.0017 0.0082
NCPSS+cr. 0.0045 0.0028 0.0020 0.0015 0.0017 0.0369

From the table we find that the empirical inclusion probabilities are already quite close to the desired
probabilities without the correction for the chosen values of n and k. The largest RMS error is about
0.016 for k = 10 and n = 100 and the error generally decreases for large values of k up to n/2. We
also find from the table that the correction helps more for smaller n but only for values of k less than
about n/2 beyond which it makes the error worse. Since the results show that the correction can help
improve the approximation when k is small relative to n, we treat the correction as a modeling choice
depending on the experiment.

E.2 SUBSET SIZE VARIANCE

We examine the variance of the size of the subset selected with our method and its relation with
the number of iterations t performed by Algorithm 3. We choose a probability vector of n = 3000
dimensions and choose 1000 subsets of size k = 300 and run the algorithm for t = 1 and t = 5
iterations. Histograms of the subset size distribution are shown in Figure 1. The results show a
significant decrease in variance with a small number of iterations.
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E.3 EFFICIENCY COMPARISON

Table 7: Time per epoch in seconds versus k on CIFAR-10

k Baseline

Method 50 75 100 150 200 1

RelaxSubSample 22s 28s 32s - - 10s
NCPSS 13s 13s 13s 13s 13s 10s

E.4 SUBSET SIZE VARIATION

Table 8: Variation in subset size with number of iterations t on CIFAR-10.

k = 50 k = 100

t Mean Min Max Mean Min Max

3 49.9 45 60 99.7 94 105
5 49.95 47 54 100.1 95 104
8 50.01 49 52 99.9 96 102

E.5 KNN CLASSIFICATION

We show that our method is also competitive against other methods when using smaller subset
sizes (k=9) on a stochastic k nearest neighbors classification task with deep features Grover et al.
(2018); Xie & Ermon (2019). We use the same setup as Xie et al. (2020) except that we use cosine
distance rather than Euclidean distance, since our method requires the weights of the elements to be
normalized to (0, 1).

We use k = 9 neighbours and compare against RelaxSubSample, NeuralSort Grover et al. (2018),
SOFT Top-k Xie et al. (2020). The results are shown in Table 9. From the result we see that although
we do slightly worse on MNIST, we outperform all baselines except the deterministic SOFT Top-k
and are on-par with SOFT Top-k on CIFAR-10. The results show that our method performs well and
on-par with other similar methods, also in the regime of small subset sizes k.

Table 9: kNN Test Set Classification Accuracy for k = 9

Model MNIST CIFAR-10

kNN Grover et al. (2018) 97.2 35.4
kNN+PCA Grover et al. (2018) 97.6 40.9
kNN+AE Grover et al. (2018) 97.6 44.2
kNN+RelaxSubSample Xie & Ermon (2019) 99.3 90.1
kNN+NeuralSort Grover et al. (2018) 99.5 90.7
kNN+k-Softmax Xie et al. (2020) 99.3 92.2
kNN+Soft-Topk Xie et al. (2020) 99.4 92.6

kNN+NCPSS 99.2 92.5

F LEARNING TO EXPLAIN: TEXT EXAMPLES

In the following we show examples of explanations generated by our method for the 20Newsgroups
dataset with differentiable set size. The mean size was set to 50 words. This allows the model to
choose per-instance explanation sizes.
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in article liu se writes intersection between line and polygon by dave tom from graph-
ics cornell edu in recent years many geometric problems have been successfully in new
language called postscript see postscript language by adobe systems incorporated isbn co
so given line and polygon we can write postscript program that draws the line and the
polygon and then outputs the answer by output we mean the program command called
which actually prints page of paper containing the line and the polygon quick examination
of the paper provides an answer to the reduced problem and thus the original problem in
modern postscript the point in polygon problem can be solved even more easily to wit
title point in polygon creator allen ab cc purdue edu for the of comp graphics humor sense
thereof this program will test whether point is inside given polygon currently it uses the
even odd rule but that can be changed by replacing with these are level operators so if you
ve only got level you re out of luck the result will be printed on the output stream caution
only accurate to device pixels put huge scale in first if you aren sure point to test put and
here of polygon in counter order put array of pairs of here get pop length roll sub pop yes
no

Class: comp.graphics, Predicted: comp.graphics, Words Selected: 13/223, Total Token Selected: 13

in article apr sps mot com email sps mot com writes their problem wasn giving them any
more money the finance guy then brought in the manager on duty who proceeded to give me
hard time reminded him that was the customer and didn think should be treated like that and
that if he didn back off he could forget the whole deal he made some smart remark so told
him where he could stick it back my check and left needless to say they were not pleased
by the turn of events that nothing when friend of mine went shopping for small sedan few
years ago she brought me along as token male so the wouldn give her the treatment her
first choice was mazda and second choice was nissan we went to mazda dealership and
described what we wanted we started negotiating on the price and the kept playing the let
me run this price by the sales manager after playing the good salesman bad salesman game
we finally told him that if he didn have the authority to negotiate price perhaps we should
be speaking directly to someone who did he brought in the sales manager who proceeded
to dick us around with every trick in the book read don get taken every time for list finally
after playing few more rounds of you ll have to work with us on this price also known
as each time you come up thousand dollars we ll come down ten the gave signal to his
two sales stood up and said well we can come down any more so guess we can help you
and they out of the room leaving us sitting in the salesman office all by ourselves hmm
read that sometimes bug their own offices so they can leave and listen in on discussing the
sales offer and mentioned this to my friend while we were sitting there wondering why
they would leave us in the office instead of showing us to the door for lack of anything
better to do picked up the phone on the desk and called another mazda dealership asked
for salesman and began discussing what kind of price they would consider few sentences
into the conversation mr broke into the line and began telling me how rude he thought it
was that would call another dealership from his phone said that since he announced that
our business was over he shouldn care and every time tried to talk to the other sales guy
the sales manager would out our voices with his own how did he know that was using the
phone anyway finally hung up and we headed out of the sales manager and come out of
little room and he begins to us again we say that we won bother him anymore we re going
next door to the nissan dealership then comes the part wish could have as we go out the
front door the sales manager across the entire customers and all go ahead you deserve to
buy nissan so my friend bought just so the guilty won go ll mention that the sales manager
name was gary from his manner his refusal to come down to reasonable price and his anger
at the end my guess is that he had bet our original salesman who was young that he be able
to get at least dollars out of us and he was that we wouldn fall for his tricks

Class: rec.autos, Predicted: rec.autos, Words Selected: 62/583, Total Token Selected: 64
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previously wrote yeah the phillies played over their heads almost the whole year but it all
caught up to them in one game streak am as old as man and was big phillies fan at the time
age september is still painful thing to remember but can tell you that the phillies never led
the league by that year going by memory alone believe their biggest lead was games and
they were ahead when the famous game losing streak began streak during which it seemed
that they found just about every way to lose known to man anyway think they just before
the end and won their last couple games and were still in the thing until the final day but
finished tied with the giants one game out and didn the dodgers or somebody else finish two
games back that has to be one of the closest last minute ever ok you guys up my childhood
memories so went and did some research on the final month or so of the season it turns out
that my were pretty darn accurate at least as far as the phillies record goes on september this
was the top of the standings gb philadelphia cincinnati st louis san francisco this is game by
game description of the remainder of the phillies season date score opponent lead pitcher
starting and winner loser houston houston short houston san francisco win san francisco
san francisco short los angeles los angeles wise los angeles st louis cardinals take over nd
place from cincinnati st louis short san francisco san francisco giants move into tie for nd
with st louis san francisco cardinals back in sole of nd place houston short houston houston
los angeles wise los angeles short los angeles los angeles reds move back into tie for nd
with cardinals well so far so good for the phillies but now it all falls apart cincinnati reds
take sole of nd place cincinnati short cincinnati milwaukee milwaukee short cards now
back in rd giants in th milwaukee milwaukee lose games in days reds take over st cardinals
back in rd st louis short cardinals take over nd place drop to rd st louis reds and cardinals
now tied for st st louis cardinals take game lead over reds cincinnati short phillies game
losing streak cards lead reds by game did not play cards lose to mets reds tied for st game
back cincinnati cards beat mets take first by from reds and phillies what finish and the final
standings were gb st louis philadelphia cincinnati san francisco now it doesn appear to me
that phillies pitchers and short were really at least by the four man rotation standard of the
day until well along into the game losing streak at which time was probably desperate for
win at any cost because the phillies substantial lead had the way they were used at that time
may have made the problem worse although had one of his games of the year in the final
day of the reds that cost the reds share of the pennant pitched complete game six hitter
striking out five and walking one it would be to see though how the total innings for the
year for and short up against the rest of the league also notice that the phillies played every
day from at least september through october while they didn play substantially more games
than the other teams the other teams each had couple days off during that stretch eric smith
netcom com com ci

Class: rec.sport.baseball, Predicted: rec.sport.baseball, Words Selected: 77/594, Total Token Selected: 81
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in article ponder jesse writes hi have you used mac system or if the answer is positive you
would know if ms windows is mature os this is silly is unix mature os depends on who you
ask and how you define mature system is if anything less mature than windows days ago
people that ms windows is not real os can see why they have such question ms windows
many people microsoft mac but it did lousy job for example you can not create hierarchy
groups there is no way to create group in group if you know how please tell me so why
do you need something like to create groups under the apple menu everyone knows that
apple menu items are of the program manager if you want program launcher there are lots
available documentation it not easy to find the reason why causes an error and this is easy
on mac give me break having spent hours moving system extensions around and the mac to
see why certain app crashes all the time find this group file after group users have to use file
manager to delete files but if users forget to delete some related files the disk will be full of
nonsense files oh great ever hear of wonder why apple implemented them share problem
once you create two windows doing and editing in some language good editor there will be
sharing problem you just can not open or save the program if it is loaded it makes sense to
prevent from saving but not opening eh don follow it by no means easy to satisfy everybody
but if microsoft want to keep their they should evaluate the user interface more carefully
before products distribute why is it that find the mac desktop incredibly annoying whenever
use it no flame please yeah right you post flame bait yet ask for no flames the only thing
worse than ala internet silver ucs indiana edu frog is frog ala bitnet

Class: comp.os.ms-windows.misc, Predicted: comp.os.ms-windows.misc, Words Selected: 27/334, Total Tokens Selected: 27

am very interested in hearing from all of you who are using or implementing interactive
applications what types of widgets you would like to have in your applications widget
is usually located in the same scene as other objects of the application it may let you
manipulate application data the camera objects in the scene and so on or view the status
of the application or objects via the widget shape color position orientation and so on or
do whatever missed but you think is possible for example widget can be virtual shown as
partially transparent sphere super imposed on the object to be feedback widget can be with
ends to objects the length of the changes as the objects move and value is shown on the
indicating the distance widget can provide both manipulation and feedback for example
the can be used to change the distance between the objects along its own axis please mail
me or post your opinions on interaction the information gathered will help me design ui
construction tool your help is very much appreciated tony lau cs ubc ca sc student dept of
computer science

Class: comp.graphics, Predicted: comp.windows.x, Words Selected: 44/190 Total Token Selected: 48
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G IMAGE CLASSIFICATION EXAMPLES

G.1 CELEBA

Figure 7: Per-instance examples on Celeba with 150x150 images for eye glasses attribute classification
with 500 pixels.

G.2 CIFAR-10

Figure 8: Learning to explain image classification with 100 sub-pixels on CIFAR-10.

G.3 STL-10
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Figure 9: Learning to explain image classification with 700 sub-pixels on STL-10.
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Figure 10: Learning to explain image classification with 800 sub-pixels on STL-10.
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