
Workshop track - ICLR 2016

ON-THE-FLY NETWORK PRUNING
FOR OBJECT DETECTION

Marc Masana, Joost van de Weijer & Andrew D. Bagdanov
Computer Vision Centre
Universitat Autònoma de Barcelona
Barcelona, 08193, Spain
{mmasana,joost,bagdanov}@cvc.uab.cat

ABSTRACT

Object detection with deep neural networks is often performed by passing a few
thousand candidate bounding boxes through a deep neural network for each image.
These bounding boxes are highly correlated since they originate from the same
image. In this paper we investigate how to exploit feature occurrence at the image
scale to prune the neural network which is subsequently applied to all bounding
boxes. We show that removing units which have near-zero activation in the image
allows us to significantly reduce the number of parameters in the network. Results
on the PASCAL 2007 Object Detection Challenge demonstrate that up to 40% of
units in some fully-connected layers can be entirely eliminated with little change
in the detection result.

1 INTRODUCTION

Deep neural networks are often trained for recognition problems over very many labels. This is
partially to ensure wide applicability of the network and partially because networks are known to
benefit from multi-label data (additional training examples from one class can increase performance
of another class because they share features among several layers). At testing time, however, one
might want to apply the neural network to a collection of examples which are highly correlated.
They only contain a limited subset of the original labels and consequently will result in sparse node
activations in the network. In these cases, application of the full neural network to the whole col-
lection results in a considerable amount of wasted computation. In this paper we describe a method
for pruning of neural networks based on analysis of internal unit activations with the objective of
constructing more efficient networks.

In computer vision many problems have the structure described above. We briefly mention two
here. Imagine you want to classify the semantic content in each frame (an example) of a video
(the collection). A fast assessment of the video might reveal that it is an indoor birthday party.
This knowledge might exclude many of the nodes in the neural network – those which correspond to
’snow’, ’leopards’, and ’rivers’, for example, will be unlikely to be needed in any of the thousands of
frames in this video. Another example is object detection, where we extract thousands of bounding
boxes (examples) from a single image (the collection) with the aim of locating all semantic objects
in the image. Given an assessment of the image, we have knowledge of the node activations for the
entire collection, and based on this we can propose a smaller network which is subsequently applied
to the thousands of bounding boxes. We will here only consider the latter example in more detail.

Reducing the size and complexity of neural networks (or network compression) enjoys a long his-
tory in the learning community. The authors of Bucila et al. (2006) train a simpler neural network
to mimic the output of a complex one, and in Ba & Caruana (2014) the authors compress deep and
wide (i.e. with many feature maps) networks to shallow but wider ones. The technique of Knowl-
edge Distillation was introduced in Hinton et al. (2015) as a model compression framework. The
framework compresses an ensemble of deep networks (teacher) into a student network of similar
depth. More recently, the FitNets approach leverages the Knowledge Distillation framework to ex-
ploit depth and train student networks that are thin but remain deep(Romero et al. (2014)). Another
network compression strategy was proposed in Girshick (2015); Xue et al. (2013) that uses singu-

1

Workshop track - ICLR 2016

lar value decomposition to reduce the rank of weight matrices in fully connected layers in order to
improve efficiency.

In this paper we are not interested in mimicking the operation of a deep neural network over all
examples and all classes (as in the student-teacher compression paradigm common in the literature).
Rather, our approach is to make a quick assessment of image content and then, based on analysis of
unit activation on entire image, to modify the network to use only those units likely to contribute to
correct classification of labels of interest when applied to each candidate bounding box.

2 FORWARD AND BACKWARD UNIT PRUNING FOR OBJECT DETECTION

+ =

+ =

backward row removal

forward column removal

 1k
h x

k
W

1k
W k

h x

 k
h x

 1k
h x 1k

b x

 k
b x

n

m

n

p

Figure 1: Example of backward and forward unit
pruning. We use ‖.‖ to indicate the relu (.) activa-
tion function. Based on knowledge that some unit
activations hk (x) are zero (indicated in green),
we can reduce the parameters of Wk, Wk+1 and
bk (indicated in red).

Consider the original neural network f (x; θ),
where θ are the network parameters. We wish
to compute a network defined by parameters θ∗
for which:

f (x; θ∗) ≈ f (x; θ)∀x ∈ C (1)

where |θ∗| < |θ| (i.e. the number of parameters
in θ∗ is considerably lower than in the origi-
nal network. In the case of object detection we
will use the unit activations of the entire image
to prune the network which will be applied to
all the bounding box proposals. This is based
on the observation that for some layers, nodes
with zero activations on the whole image can-
not have nonzero activation on any bounding
box in the image.

The hidden layer activation of a fully connected
layer k can be written as:

hk (x) = relu(bk +Wkhk−1 (x)) (2)

where bk and W are the biases and weights of
the k-th layer, and relu(·) indicates the rectified
linear activation function. We first consider how knowledge of the absence of node activations in the
image can be translated into a network with fewer parameters. We consider two cases: backward
and forward unit pruning, as illustrated in Fig. 1.

Backward unit pruning: Without loss of generality, we order the activations in layer hk so that
the q non-active, zero nodes are at the end of vector hk. Then we can write:[

hk (x)1:(n−q) ;0q,1

]
= relu

([
Wk

1:(n−q),1:m;0q,m

]
hk−1 (x) +

[
bk

1:(n−q)
;0q,1

])
(3)

where we use 0m,n to indicate the zero-matrix of dimension m by n, and subscripts are used to
indicate a selection of indices from the original vector or matrix. We use [., .] for horizontal and [.; .]
for vertical concatenation (following Matlab convention). Eq. 3 shows that backward unit pruning
allows us to remove from Wk and bk an equal amount of rows as there are zeros in hk – without
changing the output of the network.

Forward unit pruning: Here we look how the zeros in the activation hk can be exploited to
remove parameters from the following layer. The activation in layer k + 1 can be written:

hk+1 (x) = relu
([

Wk+1
1:p,1:(n−q),0p,q

] [
hk (x)1:(p−q) ;0q,1

]
+ bk+1

)
(4)

In this case, the zeros in hk result in the removal of columns from Wk+1. These can be removed
without changing the output of the network.

In practice there might only be a few zero activation in the image and therefore we consider all node
activations which are below a certain threshold to be zero1. This allows us to further increase the

1In case the activation function is not the ReLU one should consider the absolute value of the activation
function to be smaller than a threshold.

2

Workshop track - ICLR 2016

parameter reduction of the network f (x; θ∗) but at the cost of slight deviations from the original net-
work f (x; θ). We also note that although notations are about fully-connected layers for simplicity,
our proposal would also be applicable to convolutional layers too.

3 RESULTS AND CONCLUSIONS

We evaluate our proposed methods on the VOC PASCAL 2007 dataset (Everingham et al. (2010))
with the fast R-CNN framework by Girshick (2015). The VOC 2007 has a total of 24,640 annotated
objects for training, with an average of 2.5 objects per image, and in the test set an average of 2.4
objects per image. The Fast R-CNN framework is fit for our purposes since it first passes the image
through all the convolutional layers to later use the extracted feature maps with the corresponding
bounding boxes which we want to evaluate (usually 1,000+ boxes). The network used a modification
of the VGG16 network (Simonyan & Zisserman (2014)).

Forward pruning. Our first experiment uses forward unit pruning on the pool5 layer of the
VGG16 network to reduce the number of parameters of the fc6 layer. This is the layer with highest
percentage of parameters (38.7% parameters in the network). The pool5 layer has 512 × 7 × 7
outputs, where the first dimension represents the feature maps, and the second and third dimensions
are spatial dimensions (smaller than the original image size because of the resizing at each pooling
layer). In order to decide which activations to prune, we first pass the whole image through the
network and observe the activations at each unit in pool5. We sum over the spatial dimensions and
apply a threshold to select units to prune from the network before applying it to all bounding boxes.

Figure 2: Performance loss as a function of pa-
rameter reduction.

Results show an initial minor improvement in the
performance of the framework when removing
parameters (see Fig. 2). The lack of propagation
through the network of very low value activations
could be the cause of the small difference in per-
formance. Then, for reductions of 25-40% of the
parameters on layer fc6, we obtain a mAP loss of
less than 1. From that point on, further removal of
parameters leads to higher loss. This happens be-
cause the activations removed start to be too rele-
vant for the network’s discriminative power.

Backward pruning. The second experiment ap-
plies backward unit pruning to the fc8 layer to re-
duce the number of parameters from the weight
and bias matrices used to compute the network
outputs. In this case, we use an image classi-
fier (VGG16 deep features based) to decide which
classes (activations) would be more likely to ap-
pear in the original image. Based on that classifi-
cation, we adopt a top-N strategy where we keep

the N classes with higher probability from the image classifier and remove the rest. This reduction
affects the weight and bias matrices of the fc8, which would no longer propagate into the follow-
ing layers (the softmax in this case). In this case, results keeping 6 or more classes (reductions of
0-70%) show a mAP loss of less than 1. However, performance starts dropping after because of im-
ages having more classes present than classes kept. It should be noted that only a small percentage
of the total parameters of the network are in fc8. However, when considering object detection with
thousands of classes, the relevance of this layer is comparable to fc6.

Conclusions. We have presented a method to prune units in neural networks for object detection
through analysis of unit activation on the entire image. We show that for some layers up to 40% of the
parameters can be removed with minimal impact on performance. We are interested in combining
our method with other parameter reduction methods such as Xue et al. (2013). Also applying our
method to other types of layers (e.g. convolutional) and evaluating on datasets with very many labels
are promising research directions. In addition, we are interested in applying our method to semantic
segmentation where, similarly as in our problem, a redundant network is applied to every pixel.

3

Workshop track - ICLR 2016

REFERENCES

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in neural informa-
tion processing systems (NIPS), pp. 2654–2662, 2014.

C Bucila, R Caruana, and A Niculescu-Mizil. Model compression: Making big, slow models practi-
cal. In Proc. of the 12th International Conf. on Knowledge Discovery and Data Mining (KDD06),
2006.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 1440–1448, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. CoRR, abs/1412.6550, 2014. URL http:
//arxiv.org/abs/1412.6550.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models with
singular value decomposition. In INTERSPEECH, pp. 2365–2369, 2013.

4

http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1412.6550

	Introduction
	Forward and backward unit pruning for object detection
	Results and Conclusions

