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Abstract

The average-reward formulation of reinforcement learning (RL) has drawn in-1

creased interest in recent years for its ability to solve temporally-extended problems2

without relying on discounting. Meanwhile, in the discounted setting, algorithms3

with entropy regularization have been developed, leading to improvements over4

deterministic methods. Despite the distinct benefits of these approaches, deep RL5

algorithms for the entropy-regularized average-reward objective have not been6

developed. While policy-gradient based approaches have recently been presented7

for the average-reward literature, the corresponding actor-critic framework remains8

less explored. In this paper, we introduce an average-reward soft actor-critic algo-9

rithm to address these gaps in the field. We compare with existing average-reward10

algorithms, achieving superior performance for the average-reward criterion.11

1 Introduction12

A successful reinforcement learning (RL) agent learns from interacting with its surroundings to13

achieve desired behaviors, as encoded in a reward function. However, in “continuing” tasks, where14

the amount of interactions is potentially unlimited, the total sum of rewards received by the agent is15

unbounded. To avoid this divergence, a popular technique is to discount future rewards relative to16

current rewards. The framework of discounted RL enjoys convergence properties [Sutton and Barto,17

2018, Kakade, 2003, Bertsekas, 2012], practical benefits [Schulman et al., 2016, Andrychowicz18

et al., 2020], and a plethora of useful algorithms [Mnih et al., 2015, Schulman et al., 2015, 2017,19

Hessel et al., 2018, Haarnoja et al., 2018b] making the discounted objective an obvious choice for the20

RL practitioner. Despite these benefits, the use of discounting introduces a (typically unphysical)21

hyperparameter γ which must be tuned for optimal performance. The difficulty in properly tuning the22

discount factor γ is illustrated in our motivating example, Figure 1. Furthermore, agents solving the23

discounted RL problem will fail to optimize for long-term behaviors that operate on timescales longer24

than those dictated by the discount factor, (1 − γ)−1. Moreover, recent work has argued that the25

discounted objective is not even a well-defined optimization problem [Naik et al., 2019]. Importantly,26

despite most state-of-the-art algorithms operating within this discounted framework, their metric for27

performance is most often the total or average reward over trajectories, as opposed to the discounted28

sum, which they are designed to optimize. In such cases, the discounted objective is used as a crutch29

for optimizing the true object of interest: long-term average performance.30

To address these issues, another objective for solving continuing tasks has been defined and studied31

[Schwartz, 1993, Mahadevan, 1996]: the average-reward objective. Although it is arguably a more32

natural choice, it has less obvious convergence properties since the associated Bellman operators no33

longer possess the contraction property. Despite an ongoing line of work on the theoretical properties34

of the average-reward objective [Zhang et al., 2021, Wan, 2023], there remain a limited number35

of deep RL algorithms for this setting. Current algorithms beyond the tabular or linear settings36

focus on policy-gradient methods to develop deep actor-based models [Zhang and Ross, 2021, Ma37

et al., 2021, Saxena et al., 2023]. While these advancements represent a positive step toward solving38
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the average-reward objective, there remains a need for alternative approaches for the problem of39

average-reward deep RL.40

In both the discounted and average-reward scenarios, optimal policies are known to be41

deterministic [Mahadevan, 1996, Sutton and Barto, 2018]. However, under various real-42

world circumstances (e.g. errors in the model, perception, and control loops), a determin-43

istic policy can fail. In deployment, when RL agents face the sim-to-real gap, are trans-44

ferred to other environments, or when perturbations arise [Haarnoja et al., 2017, 2018a,45

Eysenbach and Levine, 2022], fully-trained deterministic agents may be rendered useless.46

Figure 1: The Swimmer-v5 environment,
often not included in Mujoco bench-
marks [Franceschetti et al., 2022], is no-
toriously difficult for discounted methods
to solve when the discount factor is not
tuned over and set to its default value of
γ = 0.99. Other discount-sensitive exam-
ples of environments have been discussed
by Tessler and Mannor [2020]. We find that
after carefully tuning the discount factor,
SAC can solve the task, but the solution
is quite sensitive to the choice of γ. Each
curve corresponds to an average over 30 ran-
dom seeds, with the standard error indicated
by the shaded region.

To address these important use-cases, it would be use-47

ful to have a stochastic optimal policy which is flexible48

and robust under uncertainty. Rather than using heuris-49

tics (e.g. ε-greedy, mixture of experts, Boltzmann) to50

generate a stochastic policy post-hoc, the original RL51

problem can be regularized with an entropy-based term52

that yields an optimal policy which is naturally stochas-53

tic. Implementing this entropy-regularized RL objec-54

tive corresponds to additionally rewarding the agent (in55

proportion to a temperature parameter, β−1) for using56

a policy which has a lower relative entropy [Levine,57

2018], in the sense of Kullback-Leibler divergence.58

This formulation of entropy-regularized (often consid-59

ered in the special case of maximum entropy or “Max-60

Ent”1) RL has led to significant developments in state-61

of-the-art off-policy algorithms [Haarnoja et al., 2017,62

2018b,c].63

Despite the desirable features of both the average-64

reward and entropy-regularized objectives, an empirical65

study of the combination of these two formulations is66

limited, and no function-approximator algorithms ex-67

ist yet for this setting. To address this, we propose a68

novel algorithm for average-reward RL with entropy69

regularization which is an extension of the discounted70

algorithm Soft Actor-Critic (SAC) [Haarnoja et al.,71

2018b,c].72

Notably, our implementation requires minimal changes73

to common codebases, making it accessible for re-74

searchers and allowing for future extensions by the75

community.76

2 Preliminaries77

In this section, we discuss the background material necessary for the subsequent discussion. Let78

∆(X ) denote the probability simplex over the space X . A Markov Decision Process (MDP) is79

modeled by a state space S, action space A, reward function r : S × A → R, transition dynamics80

p : S × A → ∆(S) and initial state distribution µ ∈ ∆(S). The state space describes the set of81

possible configurations in which the agent (and environment) may exist. (This can be juxtaposed82

with the “observation” which encodes only the state information accessible to the agent. We will83

consider fully observable MDPs where state and observation are synonymous.) The action space is84

the set of controls available to the agent. Enacting control, the agent may alter its state. This change85

is dictated by the (generally stochastic) transition dynamics, p. At each discrete timestep, an action is86

taken and the agent receives a reward r(s, a) ∈ R from the environment.87

We will make some of the usual assumptions for average-reward MDPs [Wan et al., 2021]:88

Assumption 1. The Markov chain induced by any stationary policy π is communicating.89

1MaxEnt refers to using a uniform prior policy. In that case, “low relative entropy” (with respect to a uniform
prior) is equivalent to “high Shannon entropy”. In this work, we consider the case of more general priors.
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Assumption 2. The reward function is bounded.90

In solving an average-reward MDP, one seeks a control policy π which maximizes the expected91

reward-rate, denoted ρπ . In the average-reward framework, such an objective reads:92

ρπ = lim
N→∞

1

N
E

τ∼p,π,µ

[
N−1∑
t=0

r(st,at)

]
, (1)

where the expectation is taken over trajectories generated by the dynamics p, control policy π, and93

initial state distribution µ.94

The remaining non-scalar (that is, state-action-dependent) contribution to the value of a policy is95

called the average-reward differential bias function. Because of its analogy to the Q-function in96

discounted RL, we follow recent work [Zhang and Ross, 2021] and similarly denote it as:97

Qπρ (s,a) = E
τ∼p,π

[ ∞∑
t=0

r(st,at)− ρπ
∣∣∣∣∣s0 = s,a0 = a

]
. (2)

We will now introduce a variation of this MDP framework which includes an entropy regularization98

term. For notational convenience we refer to entropy-regularized average-reward MDPs as ERAR99

MDPs. The ERAR MDP constitutes the same ingredients as an average-reward MDP stated above,100

in addition to a pre-specified prior policy2 π0 : S → ∆(A) and “inverse temperature”, β. The101

modified objective function for an ERAR MDP now includes a regularization term based on the102

relative entropy (Kullback-Leibler divergence), so that the agent now aims to optimize the expected103

entropy-regularized reward-rate, denoted θπ:104

θπ
.
= lim
N→∞

1

N
E

τ∼p,π,µ

[
N−1∑
t=0

r(st,at)−
1

β
log

π(at|st)
π0(at|st)

]
, (3)

105
π∗(a|s) = argmax

π
θπ. (4)

Assumption 1 implies the expression in Equation (3) is independent of the initial state-action and106

ensures the reward-rate is indeed a unique scalar. From hereon, we will simply write θ = θπ
∗

for the107

optimal entropy-regularized reward-rate for brevity. Comparing to Equation (1), this rate is seen to108

include an additional entropic contribution, the relative entropy between the control (π) and prior109

(π0) policies.110

Beyond a mathematical generalization from the MaxEnt formulation, the KL divergence term has111

also found use in behavior-regularized RL tasks, especially in the offline setting [Wu et al., 2019,112

Zhang and Tan, 2024] and has found growing interest in its application to large language models113

(LLMs) [Rafailov et al., 2024, Yan et al., 2024]. Using a non-uniform prior has also been exploited to114

develop approaches for solving the un-regularized problem Adamczyk et al. [2025]. Intuitively, the115

choice of prior allows one to exploit inductive biases while maintaining robustness.116

The corresponding differential entropy-regularized action-value function is then given by:117

Qπθ (s,a) = r(s,a)− θπ + E
τ∼p,π

[ ∞∑
t=1

(
r(st,at)−

1

β
log

π(at|st)
π0(at|st)

− θπ
)∣∣∣∣∣s0 = s,a0 = a

]
. (5)

We have used the subscripts of θ and ρ in this section to distinguish the two value functions. In118

the following, we drop the θ subscript as we focus solely on the entropy-regularized objective.119

Similar to the notation for the average-reward rate, we make the notation compact, and write120

Q(s,a) = Qπ
∗

θ (s,a) as a shorthand.121

3 Prior Work122

Research on average-reward MDPs has a longstanding history, dating back to seminal contributions by123

Blackwell [1962] and later Mahadevan [1996], which laid the groundwork for future algorithmic and124

2For convenience we assume that π0 has support across A, ensuring the Kullback-Leibler divergence is
always finite.
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theoretical investigations [Even-Dar et al., 2009, Abbasi-Yadkori et al., 2019, Abounadi et al., 2001,125

Neu et al., 2017, Wan et al., 2021]. Due to their theoretical nature, these studies primarily focused on126

algorithms within tabular settings or under linear function approximation, possibly explaining the127

limited work on the average-reward problem in the deep RL community. However, recent work has128

begun to address this challenge by tackling deep average-reward RL [Zhang and Ross, 2021, Ma et al.,129

2021, Saxena et al., 2023] with methods based on the policy gradient algorithm [Sutton et al., 1999].130

Especially when tested on long-term optimization tasks, these studies have demonstrated superior131

performance of average-reward algorithms in the continuous control Mujoco benchmark [Todorov132

et al., 2012], compared to their discounted counterparts.133

In the deep average-reward RL literature, research has primarily focused on extending known algo-134

rithms from the discounted to the average-reward setting. For example, Zhang and Ross [2021] first135

provided an extension of the on-policy trust region method TRPO [Schulman et al., 2015] to the136

average-reward domain. To extend the classical discounted policy improvement theorem to this137

domain, they introduced a novel (double-sided) policy improvement bound based on Kémeny’s138

constant (related to the Markov chain’s mixing time). Experimentally, they illustrated the success of139

ATRPO against TRPO, especially for long-horizon tasks in the Mujoco suite. Shortly thereafter, [Ma140

et al., 2021] introduced an analogue of PPO [Schulman et al., 2017] for average-reward tasks with141

an extension of generalized advantage estimation (GAE) and addressing the problem of “value142

drift”, again proving successful in experimental comparisons with PPO. Most recently, Saxena et al.143

[2023] continued this line of work by extending DDPG [Lillicrap et al., 2016] to the average-reward144

domain with extensive supporting theory, including finite-time convergence analysis. The authors145

also demonstrate the improved performance of their algorithm, ARO-DDPG, against the previously146

discussed methods, thereby demonstrating a new state-of-the-art algorithm for the average-reward147

objective.148

In parallel, the discounted objective has included an entropy-regularization term, discussed in works149

such as [Todorov, 2006, 2009, Ziebart, 2010, Rawlik, 2013, Haarnoja et al., 2017, Geist et al., 2019]150

which to our knowledge has not yet been introduced in a deep average-reward algorithm. The included151

“entropy bonus” term in these methods has found considerable use in the development of both theory152

and algorithms in distinct branches of RL research [Haarnoja et al., 2018a, Eysenbach and Levine,153

2022, Park et al., 2023]. This innovation yields optimal policies naturally exhibiting stochasticity154

in continuous action spaces, which has led SAC [Haarnoja et al., 2018c] and its variants to become155

state-of-the-art solution methods for addressing the discounted objective.156

However, there is limited work on the combination of average-reward and entropy-regularized157

methods, especially for deep RL. Recent work by Rawlik [2013], Neu et al. [2017], Rose et al.158

[2021], Li et al. [2022], Arriojas et al. [2023], Wu et al. [2024] set the groundwork for combining the159

entropy-regularized and average-reward formulations by providing supporting theory and validating160

experiments. We will leverage their results to address the problem of deep average-reward RL with161

entropy regularization, while introducing some new theoretical results. In the next section, we present162

our average-reward extension of soft actor-critic.163

4 Proposed Algorithm164

We begin with a brief discussion of soft actor-critic (SAC), for which we derive new theoretical165

results and provide an algorithm in the average-reward setting. SAC [Haarnoja et al., 2018b] relies on166

iteratively calculating a value (critic) of a policy (actor) and improving the actor through soft policy167

improvement (PI). In the discounted problem formulation, soft PI states that a new policy (denoted168

π′) can be derived from the value function of a previous policy (π) with π′ ∝ expβQπ(s,a), which169

is guaranteed to outperform the previous policy in the sense of (soft) Q-values: Qπ
′
(s,a) > Qπ(s,a)170

for all s,a (cf. Lemma 2 of [Haarnoja et al., 2018b] for details). We will first show that an analogous171

result for policy improvement holds in the ERAR setting. Note that in the case of large state-action172

spaces, experimentally verifying such inequalities becomes intractable [Naik, 2024] and can be173

alleviated by instead comparing reward rates: scalar quantities which can (in principle) be efficiently174

evaluated with rollouts.175

Since the value of a policy is now encoded in the entropy-regularized average reward rate θπ and not176

in the differential value, the analogue to policy improvement (Qπ
′
> Qπ) is to establish the bound177

θπ
′
> θπ for some construction of π′ from π. Indeed, as we show, the same Boltzmann form over178
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the differential value leads to soft PI in the ERAR objective. We later give some intuition on how this179

result can be understood as the limit γ → 1 of SAC. After establishing PI and the related theory in180

this setting we will present our algorithm, denoted “ASAC” (for average-reward SAC, and following181

the naming convention of APO [Ma et al., 2021] and ATRPO [Zhang and Ross, 2021]).182

4.1 Theory183

As in the discounted case, it can be shown that the Q function for a fixed policy π satisfies a recursive184

Bellman backup equation3. This proposition was also derived in the concurrent work of Wu et al.185

[2024] which analyzed the ERAR problem in the inverse RL framework:186

Proposition 1. Let an ERAR MDP with reward function r(s,a), policy π and prior policy π0 be187

given. Then the differential value of π, denoted Qπ(st,at), satisfies188

Qπ(st,at) = r(st,at)− θπ + E
st+1∼p

V π(st+1), (6)

with the entropy-regularized definition of state-value function189

V π(st) = E
at∼π

[
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

]
. (7)

190

For completeness, we give a proof of this result (and all others) in the Appendix. As in the discounted191

case, the proof exploits the recursive structure of Eq. (5).192

As mentioned above, in the average reward formulation, the metric of interest is the reward-rate.193

Our policy improvement result thus focuses on increases in θπ, generalizing the recent work of194

Zhang and Ross [2021] to the entropy-regularized setting. We find that the gap between any two195

entropy-regularized reward-rates can be expressed in the following manner:196

Lemma 1 (ERAR Rate Gap). Consider two policies π, π′ absolutely continuous w.r.t. π0.
Then the gap between their corresponding entropy-regularized reward-rates is:

θπ
′
− θπ = E

st∼dπ′
at∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (8)

where Aπ(st,at) = Qπ(st,at)−V π(st) is the advantage function of policy π and dπ′ is the
steady-state distribution induced by π′.

197

As a consequence of this result, we find that with the proper choice of the updated policy π′, the198

right-hand side of Equation (8) is guaranteed to be positive, implying that soft PI holds. Using the199

Boltzmann form of a policy [Haarnoja et al., 2018b] with the differential Q-values as the energy200

function and the appropriate prior distribution (π0), gives the desired result:201

Theorem 1 (ERAR Policy Improvement). Let a policy π absolutely continuous w.r.t. π0 and
its corresponding differential value Qπ(st,at) be given. Then, the policy

π′(at|st)
.
=

π0(at|st)eβQ
π(st,at)∫

eβQπ(st,at)dπ0(at|st)
(9)

achieves a greater entropy-regularized reward-rate. That is, θπ
′ ≥ θπ , with equality only at

convergence, when π′ = π = π∗.
202

Upon convergence, Equation (8) is identically zero, with the optimal policy satisfying203

π∗ ∝ expβA∗(st,at) as expected from the analogous discounted result. We note that the cor-204

responding result in Lemma 2 of Haarnoja et al. [2018b] for SAC (which uses a uniform prior policy),205

3Equation (7) is an extension of V π
soft in [Haarnoja et al., 2017] to the case of non-uniform prior policy.
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Figure 2: Training curves on continuous control benchmarks. We compare our algorithm, average-
reward soft actor-critic (ASAC), with the following baselines: average-reward off-policy deep deter-
ministic policy gradient (ARO-DDPG), average-reward trust-region policy optimization (ATRPO),
and average-reward policy optimization (APO). ASAC learns the fastest with the best asymptotic
performance. Each curve corresponds to an average over 20 random seeds, with standard errors
indicated by the shaded region.

involves the total value function. On the other hand, under the average-reward objective, the improved206

policy is calculated with the differential value function. Intuitively, this result can be understood207

as the γ → 1 limit of PI for SAC. Numerically, this can be seen as setting γ = 1 and continuously208

subtracting the “extensive” contribution to the total value function throughout. This bulk contribution209

scales with the number of timesteps in an episode and is the result of accruing a per-timestep reward210

θπ . Since the same term accrues in the state- and action-value functions, it cancels in the numerator211

and denominator of Equation (9). In the case of SAC, the bulk contribution (essentially Nθπ, for212

N ≫ 1) is included in the value function and so a discount factor γ < 1 is required to ensure that the213

total value function is bounded in the limit of large N (in the sense of Equation (3)). In contrast, for214

the case of ASAC, the bulk contribution is automatically excluded from the corresponding evaluation215

(by definition), and the differential value function remains bounded in the limit of large N , obviating216

the need to introduce a discount factor. This intuition can be formalized through a Laurent series217

expansion; cf. Mahadevan [1996].218

To complete the discussion of convergence for ASAC, the policy evaluation (PE) step must also219

converge. To formulate this, we rely on the work of Wan et al. [2021] who give convergence proofs220

for average-reward policy evaluation.221

Lemma 2 (ERAR Policy Evaluation). Consider a fixed policy π, for which θπ of Equation (1) has222

been calculated (e.g. with direct rollouts). The iteration of Equations (2) and (7) converges to the223

entropy-regularized differential value of π: Qπ(st,at).224

Proof. The proof follows from the convergence results established in the un-regularized case, e.g.225

Wan et al. [2021]. Since the policy π is fixed (and π ≪ π0), the entropic cost −β−1KL (π||π0) is226

finite and can be absorbed into the reward function’s definition: r ←− r − β−1KL (π||π0), and the227

standard proof techniques apply.228

4.2 Implementation229

As in SAC [Haarnoja et al., 2018b], we propose to interleave steps of policy evaluation (PE) and policy230

improvement (PI) using stochastic approximation to train the critic and actor networks, respectively.231

We use a deep neural net with parameters ψ, and denote Qψ as the “online” critic network (with232
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trainable parameters), and denote Qψ̄ as the “target” critic, updated periodically through Polyak233

averaging of the parameters. To implement a PI step, we use the KL divergence loss to update the234

parameters ϕ of an actor network πϕ based on the policy improvement theorem (Equation (9)):235

Lϕ =
∑
st∈B

KL
(
πϕ(·|st)

∣∣∣∣∣∣∣∣π0(·|st)eβQψ(st,·)Z(st)

)
. (10)

Similar to SAC, the independence of parameters on the partition function Z allows us to simplify this236

loss expression to the more tractable form:237

Lϕ =
∑
st∈B

E
at∼πϕ

(
log

πϕ(at|st)
π0(at|st)

− β−1Qψ(st,at)

)
. (11)

In practice, we also use the re-parameterization trick to efficiently propagate gradients through the238

actor model. After updating the actor via soft policy improvement, we update the critic (differential239

value) by performing a policy evaluation step with actions sampled from the current actor network.240

The mean squared error loss is calculated by comparing the expected Q-value to the right-hand side241

of Equation (6):242

Lψ =
∑

(st,at,r,st+1)∼B

∣∣∣∣Qψ(st,at)− ŷ(r, θ; ψ̄, ϕ)∣∣∣∣2, (12)

where ŷ is the target value, defined as:243

ŷ(r, θ; ψ̄, ϕ) = r − θ + E
at+1∼πϕ(·|st+1)

[
Qψ̄(st+1,at+1)−

1

β
log

πϕ(at+1|st+1)

π0(at+1|st+1)

]
.

To update the ERAR rate θπ, we define its target as the batch-wise mean of its definition in Equa-244

tion (3). We treat θ as a trainable parameter (using an Adam optimizer) and train it to minimize the245

residual error compared to this target value.246

We adopt the double Q-learning paradigm [Fujimoto et al., 2018, Haarnoja et al., 2018b, Saxena247

et al., 2023] used in previous literature for reducing estimation bias: two critics are maintained, and248

the minimum Q-value is used at each state-action pair. Although the corresponding theory [Fujimoto249

et al., 2018] for the average-reward case has not been studied in detail, we found this to improve250

experimental performance. Understanding the effect of estimation bias is an interesting line of study251

for future work.252

Unique to the average-reward objective is the family of solutions to the Bellman equation. Rather253

than a unique solution, the average-reward Bellman equation gives the differential value function an254

additional degree of freedom: If Q(s,a) satisfies Eq. (5) then Q(s,a) + c is also a solution for all255

c ∈ R. Section 4.1 of [Ma et al., 2021] provides an interesting discussion on the learning of value256

functions with an additive bias and a related downstream “value drifting problem”, which they correct257

with value-based regularization. Section 6 of [Wan et al., 2021] provides a discussion on learning258

centered value functions via an additionally learned corrective “value function” F . To correct for259

this additional degree of freedom in an off-policy way, we introduce a baseline for centering the260

value function. Since an entire family of value functions can solve the Bellman equation, to pin261

the value, we choose the solution which passes through the origin, by always subtracting the value262

Q(s = 0, a = 0). This choice is arbitrary, but works well in practice. Compared to the proposed263

regularization, it does not require any additional hyperparameters. Since it is not centering the value264

function in the traditional sense, it does not require on-policy data, but in principle the constant shift265

can be recovered upon convergence via rollouts of the optimal policy.266

Finally, in average-reward tasks with terminating states, previous work [Zhang and Ross, 2021] has267

introduced a “reset cost”, giving a penalty to the agent for resetting the environment and treating the268

reset state s ∼ µ(·) as the next state to emulate a continuing task. Prior work has chosen a fixed reset269

cost (−100) which was deemed suitable in the environments tested. However, it is not reasonable to270

expect such penalties to be effective for tasks with different reward scales or dynamics (cf. Humanoid271

results in Appendix D of [Zhang and Ross, 2021]). As such, we introduce a novel adaptive reset272

cost: To ensure the penalty for resetting is commensurate with the accrued rewards, we simply take273

the mean of all rewards in the current batch that do not correspond to termination. We use a rolling274

average (with the same learning rate as used for θ) to slowly adapt the penalty to the agent’s policy.275
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We note that learning (and even defining) an “optimal” reset cost is an open question, which calls for276

further study. More details on the implementation, as well as the pseudocode for ASAC can be found277

in the Appendix, Section B.278

5 Experiments279

To evaluate our new algorithm, we test ASAC on a set of locomotion environments of increasing280

complexity including HalfCheetah, Ant, Swimmer, Hopper, Walker2d, and Humanoid (all version281

5) from the Gymnasium Mujoco suite [Todorov et al., 2012, Towers et al., 2024]. We compare282

the performance (average evaluation return across 10 episodes) against the existing average-reward283

algorithms discussed in Section 3: APO, ATRPO, and ARO-DDPG. For these baselines, we use284

the hyperparameters provided in the corresponding papers. While the focus of this paper is on a285

comparison of algorithms for the average-reward criterion, we also provide a comparison to the286

discounted algorithm SAC in the Appendix. To alleviate the cost of hyperparameter tuning, we simply287

use the default values inherited from SAC. Further details on the implementation and hyperparameter288

selection can be found in Section B.1. ASAC performs well compared to both off-policy (ARO-289

DDPG) and on-policy algorithms (ATRPO, APO). To maximize performance of the ARO-DDPG290

baseline, we found it beneficial to use a replay buffer of maximum length (equal to number of291

environment interactions). Compared to ASAC, the baselines fail to solve the task in a meaningful292

way on some environments (Walker, Ant, Humanoid), highlighting the importance of maximum-293

entropy approaches for high-dimensional locomotion tasks, especially in the average-reward setting.294

The results of these experiments are shown in Figure 2. Our experiments show that ASAC represents295

a novel and effective algorithm for the average-reward setting.296

6 Discussion297

The motivation for developing novel algorithms for average-reward RL arises from the problems298

generally associated with discounting. When the RL problem is posed in the discounted framework,299

a discount factor γ ∈ [0, 1) is a required input parameter. However, there is often no principled300

approach for choosing the value of γ corresponding to the specific problem being addressed. Thus,301

the experimenter must treat γ as a hyperparameter. This reduces the choice of γ to a trade-off between302

large values to capture long-term rewards and small values to capture computational efficiency which303

typically scales polynomially with the horizon, H = (1− γ)−1 [Kakade, 2003].304

It is important to note that the horizon H introduces a natural timescale to the problem, but this305

timescale may not be well-aligned with another timescale corresponding to the optimal policy: the306

mixing time of the induced Markov chain. For the discounted solution to accurately approximate the307

average-reward optimal policy, the discounting timescale (horizon) must be larger than the mixing308

time. Unfortunately, the estimation of the mixing time for the optimal dynamics can be challenging309

to obtain in the general case, even when the transition dynamics are known, making a principled use310

of discounting computationally expensive.311

Therefore, an arbitrary “sufficiently large” choice of γ is often made (sometimes dynamically [Wei312

et al., 2021, Koprulu et al., 2024]) without knowledge of the relevant problem-dependent timescale.313

This can be problematic from a computational standpoint as evidenced by recent work [Jiang et al.,314

2015, Schulman et al., 2017, Andrychowicz et al., 2020]. These points are illustrated in Figure 1315

which showed the performance of SAC for the Swimmer environment with different choices of γ.316

For the widely used choice γ = 0.99 the evaluation rewards are low relative to the optimal case,317

whereas the average rewards algorithms perform well (Fig. 2), highlighting the benefits of using318

the average-reward criterion. Following the acceptance of this paper, we became aware of related319

work: RVI-SAC Hisaki and Ono [2024], which proposes a similar approach via relative value iteration320

(RVI), whereas we use an empirical estimator for the ERAR rate (closer to differential Q-learning;321

see also Wan et al. [2021] and Naik et al.’s “simple reward centering”). A detailed comparison of322

RVI-SAC and ASAC is left to future work.323

In this work, we have developed a framework for combining the benefits of the average-reward324

approach with entropy regularization. In particular, we have focused on extensions of the discounted325

algorithm SAC to the average-reward domain. By leveraging the connection of the ERAR objective to326

the soft discounted framework, we have presented the first solution to ERAR MDPs in continuous state327
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and action spaces by use of function approximation. Our experiments suggest that ASAC compares328

favorably in several respects to their discounted counterparts: stability, convergence speed, and329

asymptotic performance. Our algorithm leverages existing codebases allowing for a straightforward330

and easily extendable implementation for solving the ERAR objective.331

7 Future Work332

The current work suggests multiple extensions for future exploration. Beginning with the average-333

reward extension of SAC [Haarnoja et al., 2018b], further developments have been made [Haarnoja334

et al., 2018c] including automated temperature adjustment, which we foresee as a straightforward335

extension for future work. As a value-based technique, other ideas from the literature such as336

TD(n), REDQ [Chen et al., 2021], DrQ [Kostrikov et al., 2020], combating estimation bias [Hussing337

et al., 2024], or dueling architectures [Wang et al., 2016] may be included. From the perspective338

of sampling, the calculation of θ can likely benefit from more complex replay sampling, e.g. PER339

[Schaul et al., 2015]. An important contribution for future work is studying the sample complexity340

and convergence properties of the proposed algorithm. We believe that the average-reward objective341

with entropy regularization is a fruitful direction for further research and real-world application, with342

this work addressing a gap in the existing literature.343
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A Proofs512

Lemma 1 (ERAR Backup Equation). Let an ERAR MDP be given with reward function r(s,a), fixed513

evaluation policy π and prior policy π0. Then the differential value of π, Qπ(st,at), satisfies514

Qπ(st,at) = r(st,at)− θπ + Est+1∼pV
π(st+1), (13)

with the entropy-regularized definition4 of state-value function515

V π(st) = Eat∼π

[
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

]
. (14)

Proof. We begin with the definitions for the current state-action and for the next state-action value516

functions, respectively:517

Qπ(st,at) = r(st,at)− θπ + E
p,π

[ ∞∑
k=1

(
r(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

,

Qπ(st+1,at+1) = r(st+1,at+1)− θπ + E
p,π

[ ∞∑
k=2

(
(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

.

Re-writing Qπ(st,at) by writing out the first term in the infinite sum and highlighting the terms of518

Qπ(st+1,at+1) in blue,519

Qπ(st,at) = r(st,at)− θπ+ E
p,π

[
r(st+1,at+1)−

1

β
log

π(at+1|st+1)

π0(at+1|st+1)
− θπ+

∞∑
k=2

(
r(st+k,at+k)−

1

β
log

π(at+k|st+k)
π0(at+k|st+k)

− θπ
)]

,

Qπ(st,at) = r(st,at)− θπ+ E
st+1∼p,at+1∼π

[
Qπθ (st+1,at+1)−

1

β
log

π(at+1|st+1)

π0(at+1|st+1)

]
.

Identifying the entropy-regularized state value function (as in the discounted setting)520

V (st) = Eat∼π

[
Qπ(st,at)− 1

β log π(at|st)
π0(at|st)

]
completes the proof.521

Lemma 1 (ERAR Rate Gap). Consider two policies π, π′ absolutely continuous w.r.t. π0. Then the522

gap between their corresponding entropy-regularized reward-rates is:523

θπ
′
− θπ = E

st∼dπ′
at∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (15)

where Aπ(st,at) = Qπ(st,at) − V π(st) is the advantage function of policy π and dπ′ is the524

steady-state distribution induced by π′.525

Proof. Working from the right-hand side of the equation,526

E
st∼dπ′ ,at∼π′

(
Aπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

)
= E

st∼dπ′ ,at∼π′

(
Qπ(st,at)− V π(st)−

1

β
log

π′(at|st)
π0(at|st)

)
= E

st∼dπ′ ,at∼π′

(
r(st,at)− θπ + E

st+1∼p
V π(st+1)− V π(st)−

1

β
log

π′(at|st)
π0(at|st)

)
= θπ

′
− θπ + E

st∼dπ′ ,at∼π′

(
E

st+1∼p(·|st,at)
V π(st+1)− V π(st)

)
= θπ

′
− θπ.

4Equation (14) is an extension of V π
soft in Haarnoja et al. [2017] to the case of a non-uniform prior policy.
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where we have used the definition527

θπ
′
= E

st∼dπ′ ,at∼π′

(
r(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
, (16)

and528

E
st∼dπ′

E
at∼π′

E
st+1∼p

V π(st+1) = E
st∼dπ′

V π(st), (17)

which follows given that dπ′ is the stationary distribution. In other words, dπ′ is an eigenvector of the529

transition operator p(st+1|st,at) · π′(at+1|st+1).530

Theorem 1 (ERAR Policy Improvement). Let a policy π absolutely continuous w.r.t. π0 and its531

corresponding differential value Qπ(st,at) be given. Then, the policy532

π′(at|st)
.
=

π0(at|st)eβQ
π(st,at)∫

eβQπ(st,at)dπ0(at|st)
(18)

achieves a greater entropy-regularized reward-rate. That is, θπ
′ ≥ θπ, with equality only at533

convergence, when π′ = π = π∗.534

Proof. Let π′ be defined as above. Then535

1

β
log

π′(at|st)
π0(at|st)

= Qπ(st,at)−
1

β
log E

a∼π0

eβQ
π(st,at). (19)

Using Lemma 1,536

θπ
′
− θπ = E

s∼dπ′ ,a∼π′

(
Aπ(st,at)−

1

β
log

π′(at|st)
π0(at|st)

)
= E
s∼dπ′ ,a∼π′

(
Qπ(st,at)− V π(s)−

1

β
log

π′(at|st)
π0(at|st)

)
= E
s∼dπ′ ,a∼π′

(
1

β
log E

a∼π0

eβQ
π(st,at) − V π(s)

)
≥ 0 ,

where the last line follows from the variational formula Mitter and Newton [2000], Theodorou and537

Todorov [2012],538

1

β
log E

a∼π0

eβQ
π(st,at) = sup

π
E
a∼π

(
Qπ(st,at)−

1

β
log

π(at|st)
π0(at|st)

)
. (20)

539

B Implementation Details540

For all SAC runs, we used Raffin et al. [2021] implementation of SAC with hyperparameters (beyond541

the default values) shown below in Section B.1. The finetuned runs here took ∼ 3000 GPU hours542

for all environments, ran on a variety of RTX series and A100 GPUs. Each run requires roughly543

∼ 1− 10 GB of RAM.544

B.1 Hyperparameters545

In addition to the methods discussed in the main text, we also use gradient clipping (on critic network546

only), with the maximum gradient norm of 10 for all experiments.547

For all ASAC experiments, we use the same hyperparameters as Haarnoja et al. [2018b]: batch size548

of 256, replay buffer size of 1 000 000, hidden dimension of 256 for each of 2 hidden layers (actor549

and critic networks), Polyak averaging with coefficient 0.005, train frequency and gradient steps of 1550

(train for one gradient step at each environment step). We use the Adam optimizer for actor, critic, and551

reward-rate with learning rates 10−4, 5× 10−4, 5× 10−3. We clip the critic network gradients with a552

maximum norm of 10. The scale for reset penalties is chosen as p0 = 10 (see pseudocode below). In553
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all environments (for SAC and ASAC) we use β = 5, except for Swimmer and Humanoid, for which554

we use β = 20. Note that this is in line with the “reward scale” used in [Haarnoja et al., 2018b]. We555

found that hyperparameter sweeps can give better performance for individual environments, but the556

values listed above gave a strong performance universally.557

We found the replay buffer size to be a sensitive hyperparameter for ARO-DDPG, in particular558

for maintaining its asymptotic performance. We chose the largest replay buffer for ARO-DDPG559

(equivalent to total environment interactions), but further tuning is left to future work as it is an560

expensive environment-dependent operation. We also note that beyond the default hyperparameters561

for ASAC described above, we did not perform any tuning, showcasing ASAC’s robustness to562

hyperparameter choice. Future work may entail an extensive hyperparameter sweep and sensitivity563

analysis to further understand the robustness and maximize performance across various environments.564

565

Figure 3: Comparison to SAC shows that our average-reward extension outperforms the original
discounted SAC on the environments tested. It is worth recalling that SAC and ASAC are inherently
designed to optimize different objectives (a discounted return and average reward, respectively),
despite the prevalent use of SAC as a surrogate for optimizing the average reward. Nevertheless,
we give a comparison between the two algorithms here for completeness. We note that the reward
values are different than in earlier environment versions (as used in e.g. Haarnoja et al. [2018b]), as
the result of an updated reward function and bug fixes (including changes to contact forces, control
costs), described in detail here: https://farama.org/Gymnasium-MuJoCo-v5_Environments.
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Algorithm 1 Average-Reward Soft Actor-Critic (ASAC)
1: Initialize policy parameters ϕ, Q-function parameters ψ1, ψ2.
2: Initialize target parameters ψ̄1 ← ψ1, ψ̄2 ← ψ2.
3: Initialize learning rates and optimizers (Adam).
4: Initialize mini-batch size b, Polyak step-size τ , temperature α (fixed), replay buffer D.
5: while not converged do
6: Observe state st and sample action at ∼ πϕ(· | st)
7: Execute at, observe reward rt and next state st+1

8: Store (st, at, rt, st+1) in replay buffer D
9: for each gradient step do

10: Sample mini-batch of b tuples (si, ai, ri, s′i) ∼ D
11: Sample a′i ∼ πϕ(· | s′i)
12: Shift the target Q-functions to pass through the origin:

Qψ̄j (s, a)← Qψ̄j (s, a)−Qψ̄j (0, 0)

13: Use pessimistic estimate by taking the pointwise minimum:

Qψ̄(s, a)← min
j=1,2

Qψ̄j (s, a) ∀(s, a)

14: If episode terminated at s′, apply adaptive penalty:

r ← r − p where p← (1− τ)p+ τ p̄ and p̄ = p0 ·
1

b

∑
r∼B

r

15: Compute target:

ŷ(r, θ; ψ̄, ϕ) = r − θ + Ea′∼πϕ(·|s′)
[
Qψ̄(s

′, a′)− β−1 log
πϕ(a

′ | s′)
π0(a′ | s′)

]
16: Update Q-functions (for ψ ∈ {ψ1, ψ2}) by minimizing:

Lψ =
1

b

∑
(s,a,r,s′)∼B

(
Qψ(s, a)− ŷ(r, θ; ψ̄, ϕ)

)2
17: Update policy by minimizing (using pessimistic estimate of online networks Qψ):

Lϕ =
1

b

∑
s∈B

Ea∼πϕ
[
log

πϕ(a | s)
π0(a | s)

− β−1Qψ(s, a)

]
18: Update ERAR rate θ by minimizing Lθ = (θ − θ̄)2 where:

θ̄ =
1

b

∑
(s,a,r)∼B

[
r − β−1 log

πϕ(a | s)
π0(a | s)

]
19: Update target networks:

ψ̄j ← τψj + (1− τ)ψ̄j for j = 1, 2

20: end for
21: end while

16
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