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Abstract

The average-reward formulation of reinforcement learning (RL) has drawn in-
creased interest in recent years for its ability to solve temporally-extended problems
without relying on discounting. Meanwhile, in the discounted setting, algorithms
with entropy regularization have been developed, leading to improvements over
deterministic methods. Despite the distinct benefits of these approaches, deep RL
algorithms for the entropy-regularized average-reward objective have not been
developed. While policy-gradient based approaches have recently been presented
for the average-reward literature, the corresponding actor-critic framework remains
less explored. In this paper, we introduce an average-reward soft actor-critic algo-
rithm to address these gaps in the field. We compare with existing average-reward
algorithms, achieving superior performance for the average-reward criterion.

1 Introduction

A successful reinforcement learning (RL) agent learns from interacting with its surroundings to
achieve desired behaviors, as encoded in a reward function. However, in “continuing” tasks, where
the amount of interactions is potentially unlimited, the total sum of rewards received by the agent is
unbounded. To avoid this divergence, a popular technique is to discount future rewards relative to
current rewards. The framework of discounted RL enjoys convergence properties [Sutton and Bartol
2018, [Kakade, 2003}, Bertsekas, [2012]], practical benefits [[Schulman et al., 2016, /Andrychowicz
et al., 2020], and a plethora of useful algorithms [Mnih et al, 2015} |Schulman et al.l 2015/ 2017,
Hessel et al.,|2018| [Haarnoja et al., 2018b|] making the discounted objective an obvious choice for the
RL practitioner. Despite these benefits, the use of discounting introduces a (typically unphysical)
hyperparameter v which must be tuned for optimal performance. The difficulty in properly tuning the
discount factor  is illustrated in our motivating example, Figure[T] Furthermore, agents solving the
discounted RL problem will fail to optimize for long-term behaviors that operate on timescales longer
than those dictated by the discount factor, (1 — ) ~!. Moreover, recent work has argued that the
discounted objective is not even a well-defined optimization problem [Naik et al.l|2019]]. Importantly,
despite most state-of-the-art algorithms operating within this discounted framework, their metric for
performance is most often the total or average reward over trajectories, as opposed to the discounted
sum, which they are designed to optimize. In such cases, the discounted objective is used as a crutch
for optimizing the true object of interest: long-term average performance.

To address these issues, another objective for solving continuing tasks has been defined and studied
[Schwartz, 1993, [Mahadevan, [1996]): the average-reward objective. Although it is arguably a more
natural choice, it has less obvious convergence properties since the associated Bellman operators no
longer possess the contraction property. Despite an ongoing line of work on the theoretical properties
of the average-reward objective [Zhang et al., 2021, [Wan, |2023]], there remain a limited number
of deep RL algorithms for this setting. Current algorithms beyond the tabular or linear settings
focus on policy-gradient methods to develop deep actor-based models [Zhang and Ross| 2021, Ma
et al.| [2021] [Saxena et al., 2023]]. While these advancements represent a positive step toward solving
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the average-reward objective, there remains a need for alternative approaches for the problem of
average-reward deep RL.

In both the discounted and average-reward scenarios, optimal policies are known to be
deterministic [Mahadevan, 1996, [Sutton and Barto, 2018]. However, under various real-
world circumstances (e.g. errors in the model, perception, and control loops), a determin-
istic policy can fail. In deployment, when RL agents face the sim-to-real gap, are trans-
ferred to other environments, or when perturbations arise [Haarnoja et al., 2017, |2018a,
Eysenbach and Levine, 2022], fully-trained deterministic agents may be rendered useless.
To address these important use-cases, it would be use-

ful to have a stochastic optimal policy which is flexible

and robust under uncertainty. Rather than using heuris- ?, 350 SAC for Different Discount Factors, y
tics (e.g. e-greedy, mixture of experts, Boltzmann) to 5300 1 ::gggg

generate a stochastic policy post-hoc, the original RL T Jo — y=0.9999

problem can be regularized with an entropy-based term S 500

that yields an optimal policy which is naturally stochas- E 150

tic. Implementing this entropy-regularized RL objec- E 100

tive corresponds to additionally rewarding the agent (in o

proportion to a temperature parameter, 3~ 1) for using g °° Py

a policy which has a lower relative entropy [Levinel g 00 02 04 06 08 10

2018]}, in the sense of Kullback-Leibler divergence. Environment Steps
This formulation of entropy-regularized (often consid-

ered in the special case of maximum entropy or “Max- Figure 1: The Swimmer-v5 environment,
Ent’ﬂ) RL has led to significant developments in state- often not included in Mujoco bench-
of-the-art off-policy algorithms [Haarnoja et al., 2017, marks [Franceschetti et al., 2022], is no-

2018bic]l. toriously difficult for discounted methods

Despite the desirable features of both the average- (O solve when the discount factor is not
reward and entropy-regularized objectives, an empirical tuned over and set to its default value of
study of the combination of these two formulations is 7 = 0-99- Other discount-sensitive exam-
limited, and no function-approximator algorithms ex- Ples of environments have been discussed
ist yet for this setting. To address this, we propose a bY [Tessler and Mannor|[2020]. We find that
novel algorithm for average-reward RL with entropy after carefully tuning the discount factor,
regularization which is an extension of the discounted SAC can solve the task, but the solution

algorithm Soft Actor-Critic (SAC) [Haarnoja et al] 1 quite sensitive to the choice of 7. Each
2018blc]. curve corresponds to an average over 30 ran-

) ) ) o dom seeds, with the standard error indicated
Notably, our implementation requires minimal changes by the shaded region.

to common codebases, making it accessible for re-
searchers and allowing for future extensions by the
community.

2 Preliminaries

In this section, we discuss the background material necessary for the subsequent discussion. Let
A(X) denote the probability simplex over the space X'. A Markov Decision Process (MDP) is
modeled by a state space S, action space A, reward function r : S x A — R, transition dynamics
p:S x A — A(S) and initial state distribution ¢ € A(S). The state space describes the set of
possible configurations in which the agent (and environment) may exist. (This can be juxtaposed
with the “observation” which encodes only the state information accessible to the agent. We will
consider fully observable MDPs where state and observation are synonymous.) The action space is
the set of controls available to the agent. Enacting control, the agent may alter its state. This change
is dictated by the (generally stochastic) transition dynamics, p. At each discrete timestep, an action is
taken and the agent receives a reward r(s, a) € R from the environment.

We will make some of the usual assumptions for average-reward MDPs [Wan et al., |2021]]:

Assumption 1. The Markov chain induced by any stationary policy 7 is communicating.

"MaxEnt refers to using a uniform prior policy. In that case, “low relative entropy” (with respect to a uniform
prior) is equivalent to “high Shannon entropy”. In this work, we consider the case of more general priors.
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Assumption 2. The reward function is bounded.

In solving an average-reward MDP, one seeks a control policy m which maximizes the expected
reward-rate, denoted p™. In the average-reward framework, such an objective reads:

1 N—-1
T — i . 1

where the expectation is taken over trajectories generated by the dynamics p, control policy 7, and
initial state distribution .

The remaining non-scalar (that is, state-action-dependent) contribution to the value of a policy is
called the average-reward differential bias function. Because of its analogy to the ()-function in
discounted RL, we follow recent work [Zhang and Ross, [2021]] and similarly denote it as:

Qy(s,a) = E lz r(st,as) — p"

T~p,T =0

so:s,aoza] . (2)

We will now introduce a variation of this MDP framework which includes an entropy regularization
term. For notational convenience we refer to entropy-regularized average-reward MDPs as ERAR
MDPs. The ERAR MDP constitutes the same ingredients as an average-reward MDP stated above,
in addition to a pre-specified prior policyﬂ 7o : S = A(A) and “inverse temperature”, 5. The
modified objective function for an ERAR MDP now includes a regularization term based on the
relative entropy (Kullback-Leibler divergence), so that the agent now aims to optimize the expected
entropy-regularized reward-rate, denoted 6™:

N-1

o 1 1 7(ay(st)
"= lim — E r(s¢,a;) — = lo , 3)
N—oo N T, tz:; ( t t) B & 7rO(at|st)
7" (als) = argmax 07 4)

Assumption [T|implies the expression in Equation (3) is independent of the initial state-action and
ensures the reward-rate is indeed a unique scalar. From hereon, we will simply write § = 6™ for the
optimal entropy-regularized reward-rate for brevity. Comparing to Equation (T)), this rate is seen to
include an additional entropic contribution, the relative entropy between the control (7) and prior
(mo) policies.

Beyond a mathematical generalization from the MaxEnt formulation, the KL divergence term has
also found use in behavior-regularized RL tasks, especially in the offline setting [Wu et al, [2019,
Zhang and Tan, [2024] and has found growing interest in its application to large language models
(LLMs) [Rafailov et al., [2024} [Yan et al., 2024]. Using a non-uniform prior has also been exploited to
develop approaches for solving the un-regularized problem Adamczyk et al.[[2025]. Intuitively, the
choice of prior allows one to exploit inductive biases while maintaining robustness.

The corresponding differential entropy-regularized action-value function is then given by:

Qj(s,a) =r(s,a) = 0"+ E [Z <T(st7at) - log mladsy) _ 0”)

TopT | S B mo(a[st)

So =s,a0:a1. 5)

We have used the subscripts of § and p in this section to distinguish the two value functions. In
the following, we drop the 6 subscript as we focus solely on the entropy-regularized objective.
Similar to the notation for the average-reward rate, we make the notation compact, and write

Q(s,a) = Qg* (s,a) as a shorthand.

3 Prior Work

Research on average-reward MDPs has a longstanding history, dating back to seminal contributions by
Blackwell| [1962] and later Mahadevan| [[1996]], which laid the groundwork for future algorithmic and

?For convenience we assume that 7o has support across A, ensuring the Kullback-Leibler divergence is
always finite.
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theoretical investigations [Even-Dar et al.l 2009| |Abbasi-Yadkori et al., 2019, /Abounadi et al.| 2001}
Neu et al., 2017}, Wan et al.| 2021]. Due to their theoretical nature, these studies primarily focused on
algorithms within tabular settings or under linear function approximation, possibly explaining the
limited work on the average-reward problem in the deep RL community. However, recent work has
begun to address this challenge by tackling deep average-reward RL [Zhang and Ross| [2021| Ma et al.}
2021} |Saxena et al.,2023]] with methods based on the policy gradient algorithm [Sutton et al.,[1999].
Especially when tested on long-term optimization tasks, these studies have demonstrated superior
performance of average-reward algorithms in the continuous control Mujoco benchmark [Todorov
et al.,[2012f], compared to their discounted counterparts.

In the deep average-reward RL literature, research has primarily focused on extending known algo-
rithms from the discounted to the average-reward setting. For example, |[Zhang and Ross| [[2021]] first
provided an extension of the on-policy trust region method TRPO [Schulman et al., 2015] to the
average-reward domain. To extend the classical discounted policy improvement theorem to this
domain, they introduced a novel (double-sided) policy improvement bound based on Kémeny’s
constant (related to the Markov chain’s mixing time). Experimentally, they illustrated the success of
ATRPO against TRPO, especially for long-horizon tasks in the Mujoco suite. Shortly thereafter, [Ma
et al.}2021]] introduced an analogue of PPO [Schulman et al.,[2017] for average-reward tasks with
an extension of generalized advantage estimation (GAE) and addressing the problem of “value
drift”, again proving successful in experimental comparisons with PPO. Most recently, Saxena et al.
[2023]] continued this line of work by extending DDPG [Lillicrap et al.,|2016] to the average-reward
domain with extensive supporting theory, including finite-time convergence analysis. The authors
also demonstrate the improved performance of their algorithm, ARO-DDPG, against the previously
discussed methods, thereby demonstrating a new state-of-the-art algorithm for the average-reward
objective.

In parallel, the discounted objective has included an entropy-regularization term, discussed in works
such as [Todorov, 2006, 2009, [Ziebart, 2010, Rawlik} 2013} [Haarnoja et al.} 2017} Geist et al., [2019]
which to our knowledge has not yet been introduced in a deep average-reward algorithm. The included
“entropy bonus” term in these methods has found considerable use in the development of both theory
and algorithms in distinct branches of RL research [[Haarnoja et al.|[2018al [Eysenbach and Levine,
2022} [Park et al.,[2023|]. This innovation yields optimal policies naturally exhibiting stochasticity
in continuous action spaces, which has led SAC [Haarnoja et al.,2018c] and its variants to become
state-of-the-art solution methods for addressing the discounted objective.

However, there is limited work on the combination of average-reward and entropy-regularized
methods, especially for deep RL. Recent work by Rawlik [2013]], [Neu et al.| [2017]], [Rose et al.
[2021]), ILi et al.|[2022]], |Arriojas et al|[2023]], Wu et al.|[2024] set the groundwork for combining the
entropy-regularized and average-reward formulations by providing supporting theory and validating
experiments. We will leverage their results to address the problem of deep average-reward RL with
entropy regularization, while introducing some new theoretical results. In the next section, we present
our average-reward extension of soft actor-critic.

4 Proposed Algorithm

We begin with a brief discussion of soft actor-critic (SAC), for which we derive new theoretical
results and provide an algorithm in the average-reward setting. SAC [Haarnoja et al., 2018b] relies on
iteratively calculating a value (critic) of a policy (actor) and improving the actor through soft policy
improvement (PI). In the discounted problem formulation, soft PI states that a new policy (denoted
7') can be derived from the value function of a previous policy () with 7" o< exp SQ™ (s, a), which
is guaranteed to outperform the previous policy in the sense of (soft) ()-values: Q’T/ (s,a) > Q" (s,a)
for all s, a (cf. Lemma 2 of [Haarnoja et al., |2018b|| for details). We will first show that an analogous
result for policy improvement holds in the ERAR setting. Note that in the case of large state-action
spaces, experimentally verifying such inequalities becomes intractable [Naik, 2024]] and can be
alleviated by instead comparing reward rates: scalar quantities which can (in principle) be efficiently
evaluated with rollouts.

Since the value of a policy is now encoded in the entropy-regularized average reward rate ™ and not
in the differential value, the analogue to policy improvement (Q™ > (™) is to establish the bound
0™ > 0™ for some construction of 7’ from 7. Indeed, as we show, the same Boltzmann form over
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the differential value leads to soft PI in the ERAR objective. We later give some intuition on how this
result can be understood as the limit v — 1 of SAC. After establishing PI and the related theory in
this setting we will present our algorithm, denoted “ASAC” (for average-reward SAC, and following
the naming convention of APO [Ma et al.,2021]] and ATRPO [Zhang and Ross| 2021]).

4.1 Theory

As in the discounted case, it can be shown that the Q) function for a fixed policy 7 satisfies a recursive
Bellman backup equatiorﬂ This proposition was also derived in the concurrent work of [Wu et al.
[2024] which analyzed the ERAR problem in the inverse RL framework:

Proposition 1. Let an ERAR MDP with reward function r(s, a), policy m and prior policy mg be
given. Then the differential value of m, denoted Q™ (s, a;), satisfies
Q" (st,ar) =7(se,a)) =07+ E  V7(st41), (6)

St4+1~p

with the entropy-regularized definition of state-value function

1
VT(st) = a}Eﬂ Q" (st,at) — B log m - @)

For completeness, we give a proof of this result (and all others) in the Appendix. As in the discounted
case, the proof exploits the recursive structure of Eq. (3).

As mentioned above, in the average reward formulation, the metric of interest is the reward-rate.
Our policy improvement result thus focuses on increases in 0™, generalizing the recent work of
Zhang and Ross|[2021]] to the entropy-regularized setting. We find that the gap between any two
entropy-regularized reward-rates can be expressed in the following manner:

Lemma 1 (ERAR Rate Gap). Consider two policies w, 7" absolutely continuous w.r.t. mg.
Then the gap between their corresponding entropy-regularized reward-rates is:

’ 1 7T/(at|St)>
" — 0= E (A’fs,a — log ——t2Y ) 8
semd (st ay) 3 g'ﬂ—O(atlst) (®)

’
a~T

where A™ (s, a;) = Q7 (s¢,ar) — V™ (s¢) is the advantage function of policy w and d is the
steady-state distribution induced by 7.

As a consequence of this result, we find that with the proper choice of the updated policy 7/, the
right-hand side of Equation (8) is guaranteed to be positive, implying that soft PI holds. Using the
Boltzmann form of a policy [Haarnoja et al, [2018b|] with the differential ()-values as the energy
function and the appropriate prior distribution (), gives the desired result:

Theorem 1 (ERAR Policy Improvement). Let a policy m absolutely continuous w.r.t. mg and
its corresponding differential value Q™ (s, a;) be given. Then, the policy

T (at|St)€ﬁQ7r(st»at)
J ePmsnadmo(ayls:)

' (ay]s;) =

©))

achieves a greater entropy-regularized reward-rate. That is, 0™ > 0™, with equality only at
convergence, when ' = m = 7*.

Upon convergence, Equation (§) is identically zero, with the optimal policy satisfying
T o exp SA* (s, a;) as expected from the analogous discounted result. We note that the cor-
responding result in Lemma 2 of [Haarnoja et al.|[2018b] for SAC (which uses a uniform prior policy),

Equation (7 is an extension of V.7 in [Haarnoja et al., |2017] to the case of non-uniform prior policy.



206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221

222
223
224

225
226
227
228

229

231
232

— APO

ARO-DDPG —— ASAC

—— ATRPO

Hopper-v5 Walker2d-v5 HalfCheetah-v5
5000 15000
3000 < 4000 c
£ £ £
?, % % 10000
< 2000 e 3000 b
g g g
§ § 2000 § 5000
1000
< 4 < 1000 K4
4 |
0 or— 0
0.0 0.2 0.4 0.6 0.8 1.0 00 05 10 15 20 25 3.0 00 05 1.0 15 20 25 3.0
Environment Steps (x1M) Environment Steps (x1M) Environment Steps (x1M)
Ant-v5 Swimmer-v5 Humanoid-v5
6000
300 8000
- 5000 - -
€ £ £
2 4000 2 2 6000
& & 200 &
3000 ) & 4000
o ° o
@ 2000 @ 100 [
> > >
< < < 200
1000 000
v -
0 0 ( prm—
00 05 1.0 15 20 25 3.0 00 05 1.0 15 20 25 3.0 0 2

. 4 6 8
Environment Steps (x1M) Environment Steps (x1M) Environment Steps (x1M)

Figure 2: Training curves on continuous control benchmarks. We compare our algorithm, average-
reward soft actor-critic (ASAC), with the following baselines: average-reward off-policy deep deter-
ministic policy gradient (ARO-DDPG), average-reward trust-region policy optimization (ATRPO),
and average-reward policy optimization (APO). ASAC learns the fastest with the best asymptotic
performance. Each curve corresponds to an average over 20 random seeds, with standard errors
indicated by the shaded region.

involves the fotal value function. On the other hand, under the average-reward objective, the improved
policy is calculated with the differential value function. Intuitively, this result can be understood
as the v — 1 limit of PI for SAC. Numerically, this can be seen as setting v = 1 and continuously
subtracting the “extensive” contribution to the total value function throughout. This bulk contribution
scales with the number of timesteps in an episode and is the result of accruing a per-timestep reward
0™ . Since the same term accrues in the state- and action-value functions, it cancels in the numerator
and denominator of Equation (]9) In the case of SAC, the bulk contribution (essentially N6™, for
N > 1) is included in the value function and so a discount factor v < 1 is required to ensure that the
total value function is bounded in the limit of large N (in the sense of Equation (3)). In contrast, for
the case of ASAC, the bulk contribution is automatically excluded from the corresponding evaluation
(by definition), and the differential value function remains bounded in the limit of large IV, obviating
the need to introduce a discount factor. This intuition can be formalized through a Laurent series
expansion; cf. Mahadevan|[[1996]].

To complete the discussion of convergence for ASAC, the policy evaluation (PE) step must also
converge. To formulate this, we rely on the work of [Wan et al.[[2021]] who give convergence proofs
for average-reward policy evaluation.

Lemma 2 (ERAR Policy Evaluation). Consider a fixed policy , for which 0™ of Equation (1) has
been calculated (e.g. with direct rollouts). The iteration of Equations (2)) and (7) converges to the
entropy-regularized differential value of w: Q™ (s¢, a).

Proof. The proof follows from the convergence results established in the un-regularized case, e.g.
Wan et al.|[2021]]. Since the policy 7 is fixed (and m < ), the entropic cost —3 LKL (r||mg) is
finite and can be absorbed into the reward function’s definition: r <— 7 — 8~'KL (7||mo), and the
standard proof techniques apply.

4.2 TImplementation

Asin SAC [Haarnoja et al., 2018b], we propose to interleave steps of policy evaluation (PE) and policy
improvement (PI) using stochastic approximation to train the critic and actor networks, respectively.
We use a deep neural net with parameters v, and denote )y, as the “online” critic network (with
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trainable parameters), and denote Q; as the “target” critic, updated periodically through Polyak
averaging of the parameters. To implement a PI step, we use the KL divergence loss to update the
parameters ¢ of an actor network 7, based on the policy improvement theorem (Equation (9)):

.S BQW(SM')
o= 3 K (I8N

10
2 Z(s1) (10)

Similar to SAC, the independence of parameters on the partition function Z allows us to simplify this
loss expression to the more tractable form:

Ly=Y E <log”("“‘t|st)—5—1@¢(st,at)>. (11)

StEBatNﬂ-d) Wo(at‘st)

In practice, we also use the re-parameterization trick to efficiently propagate gradients through the
actor model. After updating the actor via soft policy improvement, we update the critic (differential
value) by performing a policy evaluation step with actions sampled from the current actor network.
The mean squared error loss is calculated by comparing the expected ()-value to the right-hand side
of Equation (6):

2

‘Cw = Z ’Qw(staat) - Q(T797&a¢) ) (12)

(st,at,m,8t41)~B

where ¢ is the target value, defined as:

X - 1 7T¢(at+1st+1)}
r,0;0,0) =1r—0+ E { 5(St+1,a — —log ———MmM—=| .
y( P @b) aveammClsenn) Q¢( t+1 t+1) 3 g Wo(at+1|5t+1)

To update the ERAR rate 67, we define its target as the batch-wise mean of its definition in Equa-
tion (3). We treat 6 as a trainable parameter (using an Adam optimizer) and train it to minimize the
residual error compared to this target value.

We adopt the double )-learning paradigm [Fujimoto et al [2018| [Haarnoja et al.,[2018b}, [Saxena
et al.,[2023[] used in previous literature for reducing estimation bias: two critics are maintained, and
the minimum ()-value is used at each state-action pair. Although the corresponding theory [Fujimoto
et al., 2018] for the average-reward case has not been studied in detail, we found this to improve
experimental performance. Understanding the effect of estimation bias is an interesting line of study
for future work.

Unique to the average-reward objective is the family of solutions to the Bellman equation. Rather
than a unique solution, the average-reward Bellman equation gives the differential value function an
additional degree of freedom: If Q(s, a) satisfies Eq. (3) then Q(s, a) + c is also a solution for all
c € R. Section 4.1 of [Ma et al.,2021]] provides an interesting discussion on the learning of value
functions with an additive bias and a related downstream “value drifting problem”, which they correct
with value-based regularization. Section 6 of [Wan et al, |2021]] provides a discussion on learning
centered value functions via an additionally learned corrective “value function” F'. To correct for
this additional degree of freedom in an off-policy way, we introduce a baseline for centering the
value function. Since an entire family of value functions can solve the Bellman equation, to pin
the value, we choose the solution which passes through the origin, by always subtracting the value
Q(s = 0,a = 0). This choice is arbitrary, but works well in practice. Compared to the proposed
regularization, it does not require any additional hyperparameters. Since it is not centering the value
function in the traditional sense, it does not require on-policy data, but in principle the constant shift
can be recovered upon convergence via rollouts of the optimal policy.

Finally, in average-reward tasks with terminating states, previous work [Zhang and Ross| 2021]] has
introduced a “reset cost”, giving a penalty to the agent for resetting the environment and treating the
reset state s ~ () as the next state to emulate a continuing task. Prior work has chosen a fixed reset
cost (—100) which was deemed suitable in the environments tested. However, it is not reasonable to
expect such penalties to be effective for tasks with different reward scales or dynamics (cf. Humanoid
results in Appendix D of [Zhang and Ross| |2021]]). As such, we introduce a novel adaptive reset
cost: To ensure the penalty for resetting is commensurate with the accrued rewards, we simply take
the mean of all rewards in the current batch that do not correspond to termination. We use a rolling
average (with the same learning rate as used for 6) to slowly adapt the penalty to the agent’s policy.
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We note that learning (and even defining) an “optimal” reset cost is an open question, which calls for
further study. More details on the implementation, as well as the pseudocode for ASAC can be found
in the Appendix, Section [B]

S Experiments

To evaluate our new algorithm, we test ASAC on a set of locomotion environments of increasing
complexity including HalfCheetah, Ant, Swimmer, Hopper, Walker2d, and Humanoid (all version
5) from the Gymnasium Mujoco suite [Todorov et al.l 2012} [Towers et al., [2024]. We compare
the performance (average evaluation return across 10 episodes) against the existing average-reward
algorithms discussed in Section [3} APO, ATRPO, and ARO-DDPG. For these baselines, we use
the hyperparameters provided in the corresponding papers. While the focus of this paper is on a
comparison of algorithms for the average-reward criterion, we also provide a comparison to the
discounted algorithm SAC in the Appendix. To alleviate the cost of hyperparameter tuning, we simply
use the default values inherited from SAC. Further details on the implementation and hyperparameter
selection can be found in Section [B.1] ASAC performs well compared to both off-policy (ARO-
DDPG) and on-policy algorithms (ATRPO, APO). To maximize performance of the ARO-DDPG
baseline, we found it beneficial to use a replay buffer of maximum length (equal to number of
environment interactions). Compared to ASAC, the baselines fail to solve the task in a meaningful
way on some environments (Walker, Ant, Humanoid), highlighting the importance of maximum-
entropy approaches for high-dimensional locomotion tasks, especially in the average-reward setting.
The results of these experiments are shown in Figure[2] Our experiments show that ASAC represents
a novel and effective algorithm for the average-reward setting.

6 Discussion

The motivation for developing novel algorithms for average-reward RL arises from the problems
generally associated with discounting. When the RL problem is posed in the discounted framework,
a discount factor v € [0,1) is a required input parameter. However, there is often no principled
approach for choosing the value of v corresponding to the specific problem being addressed. Thus,
the experimenter must treat -y as a hyperparameter. This reduces the choice of ~ to a trade-off between
large values to capture long-term rewards and small values to capture computational efficiency which
typically scales polynomially with the horizon, H = (1 — ~)~! [Kakade, 2003].

It is important to note that the horizon H introduces a natural timescale to the problem, but this
timescale may not be well-aligned with another timescale corresponding to the optimal policy: the
mixing time of the induced Markov chain. For the discounted solution to accurately approximate the
average-reward optimal policy, the discounting timescale (horizon) must be larger than the mixing
time. Unfortunately, the estimation of the mixing time for the optimal dynamics can be challenging
to obtain in the general case, even when the transition dynamics are known, making a principled use
of discounting computationally expensive.

Therefore, an arbitrary “sufficiently large” choice of v is often made (sometimes dynamically [Wei
et al.| 2021} [Koprulu et al., 2024]) without knowledge of the relevant problem-dependent timescale.
This can be problematic from a computational standpoint as evidenced by recent work [Jiang et al.
2015} |Schulman et al.| 2017, |Andrychowicz et al., [2020]]. These points are illustrated in Figure E]
which showed the performance of SAC for the Swimmer environment with different choices of +.
For the widely used choice v = 0.99 the evaluation rewards are low relative to the optimal case,
whereas the average rewards algorithms perform well (Fig. [2), highlighting the benefits of using
the average-reward criterion. Following the acceptance of this paper, we became aware of related
work: RVI-SAC Hisaki and Ono|[2024]], which proposes a similar approach via relative value iteration
(RVI), whereas we use an empirical estimator for the ERAR rate (closer to differential )-learning;
see also Wan et al.|[[2021]] and |[Naik et al.’s “simple reward centering”). A detailed comparison of
RVI-SAC and ASAC is left to future work.

In this work, we have developed a framework for combining the benefits of the average-reward
approach with entropy regularization. In particular, we have focused on extensions of the discounted
algorithm SAC to the average-reward domain. By leveraging the connection of the ERAR objective to
the soft discounted framework, we have presented the first solution to ERAR MDPs in continuous state
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and action spaces by use of function approximation. Our experiments suggest that ASAC compares
favorably in several respects to their discounted counterparts: stability, convergence speed, and
asymptotic performance. Our algorithm leverages existing codebases allowing for a straightforward
and easily extendable implementation for solving the ERAR objective.

7 Future Work

The current work suggests multiple extensions for future exploration. Beginning with the average-
reward extension of SAC [Haarnoja et al.||2018b]], further developments have been made [Haarnoja
et al., 2018c] including automated temperature adjustment, which we foresee as a straightforward
extension for future work. As a value-based technique, other ideas from the literature such as
TD(n), REDQ [Chen et al.| 2021], DrQ [Kostrikov et al., 2020], combating estimation bias [Hussing
et al., [2024], or dueling architectures [Wang et al., 2016] may be included. From the perspective
of sampling, the calculation of 6 can likely benefit from more complex replay sampling, e.g. PER
[Schaul et al., 2015]]. An important contribution for future work is studying the sample complexity
and convergence properties of the proposed algorithm. We believe that the average-reward objective
with entropy regularization is a fruitful direction for further research and real-world application, with
this work addressing a gap in the existing literature.
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A  Proofs

Lemma (ERAR Backup Equation). Let an ERAR MDP be given with reward function r(s, a), fixed
evaluation policy T and prior policy mo. Then the differential value of w, Q™ (s, a;), satisfies

Q" (st ar) = r(s,ar) — 0" + Es, p V7 (Se41)s (13)
with the entropy-regularized deﬁnitiorﬁ of state-value function

V7™ (st) = Ea,on {Q”(st,at) - %log m] . (14)

Proof. We begin with the definitions for the current state-action and for the next state-action value
functions, respectively:

oo

Z (T(St-i-kzat-i-k) — %log M _ 971')] ,

Q" (s, ar) = r(se,a) — 07 + E

1 7o(s4k[Se+k)

o0

Z ((st+kaat+k) - %108; w - 9”)1 .

(s a =r(s a —0" 4+
Q" (St+1,a14+1) (St+1,a¢41) E 2 o (@ nlSiar)

p,

Re-writing Q™ (s¢, a;) by writing out the first term in the infinite sum and highlighting the terms of
Q™ (St41,a¢4+1) in blue,

1
(001, a001) — - Tog Talse) e

(s¢,ar) =r(sg,a;) — 0"+ K
Q" (st,a¢) = (st ) B 7 mo(artalset1)

b,

oo

Z (r(StJrka at+k) - %log M _ 9%)] ,

Wo(at—&-k‘st—&-k)

k=2
1 m(at1]St41) }
(st ap) =r(sg,ar) — 0™+ E HETSE: — —log ————=— 1| .
Q ( ¢ t) ( ¢ t) St41~P,ap41~T {Qe( o tH) 8 gﬂ'O(at-&-l‘St-&-l)
Identifying the entropy-regularized state value function (as in the discounted setting)
V(st) = Ea,~on [Q”(st, a;) — %log %(f;tl‘ss‘t))} completes the proof. O

Lemma(ERAR Rate Gap). Consider two policies 7, 7' absolutely continuous w.r.t. . Then the
gap between their corresponding entropy-regularized reward-rates is:

’ 1 7T/(at|St)>
" —0"= R (A”s,a — —log ————=% |, 15
stwdﬂ// ( t t) 3 g Wo(at|5t) (15)

where A™ (s, a;) = Q7 (s¢,a;) — V™ (sy) is the advantage function of policy © and d is the
steady-state distribution induced by '.

Proof. Working from the right-hand side of the equation,

1D (Aﬂ(suat) - l10g 7T(at|st)> = E <Q’T(st,at) —V7(sy) — 1 log 7r/(E"’f|st)>

s¢~d . ,a~m! 6 ™0 (atlst) s¢~d . ,a~m! 6 ) (at|st)

1 !
= E (r(st-,at) _971——’— E Vﬂ(st+1) _Vﬂ(St)——log 7'((at|st))

s¢~d s ,a~m! St417~P 6 o (at|st)

!’
—0" ot E (
se~dr,ag~m' \sip1~p(-|st,ar)

V(sean) = V(s

/

=07 0.

*Equation (T4) is an extension of V; inHaarnoja et al{[2017] to the case of a non-uniform prior policy.
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where we have used the definition
/ 1 7r’(at |St) >
0" = E (rs,a — —log————= |, (16)
Strod, 1,8~ (5:,2¢) B & mo(ag[s;)

and
E E E Vi(sit1)= E V7(sy), an

si~d s ag~T Sty1~p sg~d ./
which follows given that d, is the stationary distribution. In other words, d - is an eigenvector of the
transition operator p(s;y1[st, as) - 7 (as41St41)- O

Theorem [I] (ERAR Policy Improvement). Let a policy m absolutely continuous w.r.t. Ty and its
corresponding differential value Q™ (s, a;) be given. Then, the policy

T (at|st)eﬁQ"(sf,,af,)
J ePamsnadmy(ayls:)

7T/(at|St) = (18)

achieves a greater entropy-regularized reward-rate. That is, o™ > 67, with equality only at
convergence, when ' = m = 7*.

Proof. Let 7’ be defined as above. Then

1 7T/(at|st) 1 T
Zlog — 2 = Q7 (sy,a;) — = log B ePQ7 (5020, (19)
B8 mofads) ~ @ S T glos B
Using Lemmal[I]
, 1 W’(atst))
0" — 0™ = A" (s, ay) — - log ———=
s~d 1 ,a~vT’ < ( ! t) B o8 7T0(at|st)

= E (Q”(st,at)w(s)11og”'(atst>)

s~d 1 ,a~vT’ ﬂ o (at|st)

1 ™
E <ﬂlog E ePQ(sea) V”(s)) >0,

s~d s ,arm! an~To

where the last line follows from the variational formula Mitter and Newton|[2000], Theodorou and
Todorov|[2012],

1 x 1 7(ay[st)
Zlog E €P9TG0a) —gqup | ( (s, ap) — = log ————= | . (20)
B %8 i, 0t Q" (st 2:) 35 o (aulst)

O

B Implementation Details

For all SAC runs, we used Raffin et al.|[2021]] implementation of SAC with hyperparameters (beyond
the default values) shown below in Section [B.1] The finetuned runs here took ~ 3000 GPU hours
for all environments, ran on a variety of RTX series and A100 GPUs. Each run requires roughly
~ 1 —10 GB of RAM.

B.1 Hyperparameters

In addition to the methods discussed in the main text, we also use gradient clipping (on critic network
only), with the maximum gradient norm of 10 for all experiments.

For all ASAC experiments, we use the same hyperparameters as Haarnoja et al.|[2018b]]: batch size
of 256, replay buffer size of 1 000 000, hidden dimension of 256 for each of 2 hidden layers (actor
and critic networks), Polyak averaging with coefficient 0.005, train frequency and gradient steps of 1
(train for one gradient step at each environment step). We use the Adam optimizer for actor, critic, and
reward-rate with learning rates 1074, 5 x 10™%,5 x 1073, We clip the critic network gradients with a
maximum norm of 10. The scale for reset penalties is chosen as pg = 10 (see pseudocode below). In
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all environments (for SAC and ASAC) we use 3 = 5, except for Swimmer and Humanoid, for which
we use S = 20. Note that this is in line with the “reward scale” used in [Haarnoja et al.l 2018b]. We
found that hyperparameter sweeps can give better performance for individual environments, but the
values listed above gave a strong performance universally.

We found the replay buffer size to be a sensitive hyperparameter for ARO-DDPG, in particular
for maintaining its asymptotic performance. We chose the largest replay buffer for ARO-DDPG
(equivalent to total environment interactions), but further tuning is left to future work as it is an
expensive environment-dependent operation. We also note that beyond the default hyperparameters
for ASAC described above, we did not perform any tuning, showcasing ASAC’s robustness to
hyperparameter choice. Future work may entail an extensive hyperparameter sweep and sensitivity
analysis to further understand the robustness and maximize performance across various environments.

—— ASAC SAC
Walker2d-v5 HalfCheetah-v5 Ant-v5
5000 15000 6000
< 4000 - 12500 - 5000
5 E 5
2 4 10000 & 4000
& 3000 2 &
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© 2000 I ®
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Figure 3: Comparison to SAC shows that our average-reward extension outperforms the original
discounted SAC on the environments tested. It is worth recalling that SAC and ASAC are inherently
designed to optimize different objectives (a discounted return and average reward, respectively),
despite the prevalent use of SAC as a surrogate for optimizing the average reward. Nevertheless,
we give a comparison between the two algorithms here for completeness. We note that the reward
values are different than in earlier environment versions (as used in e.g.[Haarnoja et al.| [2018D]), as
the result of an updated reward function and bug fixes (including changes to contact forces, control
costs), described in detail here: https://farama.org/Gymnasium-MuJoCo-v5_Environments.
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Algorithm 1 Average-Reward Soft Actor-Critic (ASAC)

14:

16:

17:

18:

19:

20:
21:

Initialize policy parameters ¢, QQ-function parameters 1, 1.
Initialize target parameters 1y <— Y1, Y2 < V3.
Initialize learning rates and optimizers (Adam).
Initialize mini-batch size b, Polyak step-size 7, temperature « (fixed), replay buffer D.
while not converged do
Observe state s; and sample action a; ~ 7y (- | s¢)
Execute a;, observe reward r; and next state S;41
Store (8¢, az, 4, S¢+1) in replay buffer D
for each gradient step do
Sample mini-batch of b tuples (s;, a;, i, s
Sample a) ~ 7y (- | s5)
Shift the target Q-functions to pass through the origin:

Qzﬁj (S, a) <~ Qij (S, a) - QqZ] (07 0)

Use pessimistic estimate by taking the pointwise minimum:

) ~D

/
i

Qpls.@) « min Qg (s,0) ¥(s,a)
If episode terminated at s’, apply adaptive penalty:
1
r<r—p where p < (1—T)p+7’]§andﬁ:po.gzr

r~B

Compute target:

0o ) — ] 1, Told | 8)
G(r, 051, ¢) =r — 0+ Ea/~ﬂ¢(~|s’) [Qw(s/a a/) — 7" log W
Update @-functions (for ¢» € {11, ¥2}) by minimizing:
1 N - 2
Ly=53 D (Quls,a)=3(r,0:0,0))
(s,a,r,s")~B
Update policy by minimizing (using pessimistic estimate of online networks @ ):
1 mo(als)
Ly=— anﬂ' 1 1 N )
o= X B, [0 T 5700, (5,0)
seB
Update ERAR rate by minimizing £y = (6 — 0)? where:
1 _ mo(a ] s)
== _ B Llog 1\E 1)
P X e )
(s,a,r)~B
Update target networks:
Vi T+ (1 —7)p; forj=1,2

end for
end while
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