CanonicalFusion: Generating Drivable
3D Human Avatars from Multiple Images

Jisu Shin'®, Junmyeong Lee!® *, Seongmin Lee!®, Min-Gyu Park?3®,
Ju-Mi Kang?®, Ju Hong Yoon?3¢, and Hae-Gon Jeon!®| **

! GIST AI Graduate School
2 Korea Electronics Technology Institute (KETT)
3 polygom

Abstract. We present a novel framework for reconstructing animatable
human avatars from multiple images, termed CanonicalFusion. Our cen-
tral concept involves integrating individual reconstruction results into the
canonical space. To be specific, we first predict Linear Blend Skinning
(LBS) weight maps and depth maps using a shared-encoder-dual-decoder
network, enabling direct canonicalization of the 3D mesh from the pre-
dicted depth maps. Here, instead of predicting high-dimensional skin-
ning weights, we infer compressed skinning weights, i.e., 3-dimensional
vector, with the aid of pre-trained MLP networks. We also introduce a
forward skinning-based differentiable rendering scheme to merge the re-
constructed results from multiple images. This scheme refines the initial
mesh by reposing the canonical mesh via the forward skinning and by
minimizing photometric and geometric errors between the rendered and
the predicted results. Our optimization scheme considers the position
and color of vertices as well as the joint angles for each image, thereby
mitigating the negative effects of pose errors. We conduct extensive ex-
periments to demonstrate the effectiveness of our method and compare
our CanonicalFusion with state-of-the-art methods. Our source codes are
available at https://github.com/jsshin98/CanonicalFusion.

Keywords: Drivable 3D Avatar - Canonical Fusion - Forward Skinning-
based Differentiable Rendering

1 Introduction

Generating human avatars from images has gained significant interest, which is
one of key technologies for various applications to metaverse and AR/VR. Tradi-
tionally, this process required huge manual efforts of skilled artists with expensive
equipments in controlled environments. The advances in neural networks have
simplified this process, anticipating automatic avatar creation shortly.
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Fig.1: Our framework, CanonicalFusion, generates a drivable avatar from multiple
images.

Existing approaches address the human reconstruction problem through var-
ious methods, including training deep implicit functions , explicitly
predicting depth maps , or leveraging hybrid representations such as
deformable tetrahedron . Deep implicit functions compute signed distances
within a pre-defined volume where the iso-surface can be extracted from the
signed distance volume or the novel view can be rendered via volume render-
ing. The explicit approaches infer explicit geometric information, such as depth
maps or surface normal, allowing for higher resolution handling than the implicit
approach. In addition, the reconstructed mesh or point cloud can be refined us-
ing predicted results, notably through, differentiable rendering. DMTet and
flexicube leverage both explicit and implicit representations as hybrid ap-
proaches. They apply both volumetric and differentiable rendering to enhance
the quality of 3D models. Thanks to the huge progress, researchers have moved
their eyes onto animating reconstruction as in the real world.

To bring life into a virtual human, it is essential to estimate the position of
joints and skinning weights for each vertex as well as the shape and color of a
human model. The majority of studies employ the skinned template models [25]
to take their skinning weights and joints as weak supervision signals. For
example, one can fit a template human model to a reconstructed mesh and
assign skinning weights to each vertex using nearest neighbor search. We refer
to this process as inverse skinning that assigns skinning weights to the posed
mesh, allowing for the acquisition of a canonical mesh by warping each vertex to
canonical space. This can serve as a post-processing step for animating human
mesh, and the weights can be further refined by using multiple scan models as
in SCANimate [36]. Moreover, several studies attempt to directly predict
skinning weights in the image space together with depth values. The predicted
depth map back-projects pixels into 3D points, and these points are animated
using the predicted skinning weights. Here, the dimension of skinning weights
aligns with the number of joints and typically exhibits sparsity (i.e., zero values)
as only a few joints influence the position of one vertex.
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On the other hand, numerous studies have evolved the canonical template
mesh while changing the posture, using a single image [4,(9}/11,|12}/14}[24], mul-
tiple frames [6}/15,[17}/31,/50,[52}/54], or generated images [19] through diffusion
networks. This approach has double-sided edges, which retains the robustness of
reconstruction, but often fails to recover loose clothing and hair.

In this work, we focus on generating drivable 3D human avatars from multiple
images by jointly predicting depth and Linear Blend Skinning (LBS) maps, fol-
lowed by a forward skinning-based differentiable rendering. Similar to sandwich-
like approaches [5,/41,/46], we initially infer double-sided depth and LBS maps
for each image. Here, we utilize a stacked autoencoder MLP model to repre-
sent the LBS weights as a low-dimensional vector and decode them back to
full-dimensional skinning weights, 4.e., 55 dimensions. We can reconstruct the
canonical mesh directly from an input image, predicted depth map, and predicted
LBS map. After generating the initial canonical mesh, we refine the position and
color of vertices through forward skinning-based differentiable rendering. Our
method warps the canonical mesh w.r.t. multiple images via forward skinning
and renders the normal maps and color images using a differentiable rasterizer.
Then, we minimize the color and normal map errors to enhance the geomet-
rical accuracy of the mesh; moreover, we consider the error of the joints, i.e.,
3D human pose parameters, as one of the loss functions, which comes from the
inconsistency between the initial pose and the reconstructed mesh.

Our pipeline, dubbed CanonicalFusion, can animate by using motions gener-
ated from texts |51], as shown in Fig. |1} Furthermore, we conducted an extensive
ablation study to validate each component of our method with publicly avail-
able benchmarks, demonstrating superior performance compared to the previous
baseline. We also show the in-the-wild results to validate the practical utility.

2 Related Works

We review relevant studies by categorizing them into two groups: clothed human
reconstruction and drivable avatar generation from images.

2.1 Clothed Human Reconstruction

Existing 3D clothed human reconstruction methods can be roughly divided into
two major categories depending on their 3D representation: implicit and ex-
plicit. Implicit approaches train a deep implicit function defined for a continu-
ous 3D space, that is capable of representing arbitrary humans. PIFu and PI-
FuHD |[34}35] are pioneering studies that exploit pixel-aligned image features
to predict the occupancy value and color at a queried position. Following stud-
ies [4,81/91/14,221/241/47|48//53] incorporate geometric priors such as depth, LiDAR,
3D volumetric features, or parametric body models to alleviate the limitations
of PIFu. For example, Geo-PIFu [8] employs latent voxel features to generate
occupancy volume coarsely. ARCH [14] and ARCH++ [9] utilize the geometry
encoder to estimate the 3D body shape of a given subject.
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Explicit methods predict explicit geometric representation such as depth
maps |5] or point clouds [27] to reconstruct 3D humans. Predicting front and
back depth maps of given RGB images and then merging them in a "sandwich-
like" manner [5] to form explicit meshes became a popular approach because of
its efficiency in predicting 3D human models. To further generate high fidelity
3D clothed humans, several studies [41}/46] derive normal maps from depth maps
facilitating the reconstruction of loose clothes and challenging postures. Recent
approaches incorporate diffusion with text-level guidance |13}/19] or latent code
inversion from given reference image [45]. With the generated normal maps with
text prompts, differentiable rendering [44] is used to optimize the clothed human
mesh from skinned body models [25},30].

Recently, on the other hand, the boundary between implicit and explicit
approaches has disappeared thanks to the hybrid representations [39,/40]. The
hybrid representations provide differentiable mesh generation with optimized im-
plicit volumes, therefore, both volume rendering and differentiable rendering can
be applicable. TeCH [13], for example, exploits deep marching tetradedron [39]
to reconstruct human models.

2.2 Drivable Human Avatar Generation

Drivable 3D human avatars can be generated from pre-scanned models |36],
images [9/12,|14]24], and texts |10], where we focus on generating them from
images including a single image input. Several studies |9,[12}/14}/24] train animat-
able implicit neural representations from a single image with the guidance of
the SMPL body model. ARCH [14] and ARCH++ [9] assign skinning weights to
the canonical surface from the implicit skinning field, initialized with skinning
weights from the underlying canonical SMPL model. However, distant points,
e.g., loose cloth, from the surface of a canonical template model are not correctly
initialized, resulting in poor results. CAR [24] addresses this by using front and
back normal maps as geometric cues. They learn the canonical implicit represen-
tation by adopting a canonical Signed-Distance Field (SDF) and further refines
normal maps to generate high-fidelity clothed avatars.

Another group of studies takes an explicit approach that directly estimates
the skinning weight map from a given image. Weng et al. [43] propose to learn
an explicit warping function that warps normal and skinning maps of a pre-
dicted SMPL model into the silhouette of an image and S3 [48] predicts the
skinning field along with occupancy and pose fields, enabling reconstruction and
animation of clothed meshes simultaneously.

Recent methods take multi-view images [31], videos [4}[6l[17,/50,[52}54], or
multiple scans [3}[23}|36}38] as inputs to enhance the quality of drivable avatar.
For example, SCANimate [36] ensures cycle consistency between posed scans and
canonical scans by utilizing an implicit skinning field to transform posed scans
into canonical scans and back under the guidance of the body model. SNARF 3]
proposed a differentiable forward skinning field representation, which is trained
without a canonical avatar using an iterative root-finding algorithm. However,



CanonicalFusion 5

Explicit Joint Prediction of Depth and LBS maps Canonical Fusion via Differential Rendering

~

rN Decoded LBS
dKave L LBS  \eights (55-D) _ ™
h n Decoder 2@
| «
Depth / LBS ¥ 5 (Sec.3.2) % 5 |
—> Prediction ) 20 @ - |
(Sec.3.2) g ]
; as | A
Posed mesh generation |
F B 8 &«
28 ——
& (14 Color 'g ;“ 3
Prediction 25 4
E B (Sec.33) | Canonicalized | |
Input image / Lk |23 mesh w/
guide depth maps Normal maps Flexicubes .
(from SMPL-X) (from depth maps) F B Predicted color / normal Refined

from multiple frames  canonical mesh
Fig. 2: An overview of our framework, CanonicalFusion. It takes RGB image and depth
maps generated from SMPL-X and estimates dual-sided depth and 3-dimensional LBS
weight map. Original skinning weights are decoded from compressed LBS weight maps
and used to generate a canonicalized mesh. To further increase the quality, canonical
mesh is refined by integrating multiple frames with forward skinning based differen-
tiable rendering.

they require detailed 4D scanned data such as CAPE to train a forward
skinning network.

3 The Proposed Method

Our pipeline consists of two main steps in Fig. 2} First, we jointly predict geom-
etry and skinning weights from a single input image followed by an additional
texture prediction network. Afterward, we generate an initial mesh from the
predicted results and then canonicalize the mesh to feed the canonical mesh
to the next step. The second step involves the forward skinning-based differen-
tiable rendering, refining the canonical mesh while minimizing geometric and
photometric errors between the predicted and the rendered images. Note that
our framework, CanonicalFusion, has no restrictions on the number of images,
viewpoints, and pose variations.

3.1 Preliminaries on Linear Blend skinning

Since the template model, i.e., SMPL-X , can encompass various charac-
teristics of a human avatar such as shape, pose, joints, semantic body parts,
and skinning weights, we leverage its concept to define skinning weights for
clothed humans. The position of vertices changes w.r.t. § and 8 in which g is
an N-dimensional vector representing the shape and § € R7*3 refers to pose pa-
rameters, i.e. angles for each joint, with J denoting the number of joints, i.e. 55.
6 can be converted to a set of rotation matrices, T = {T; € R3*3 i =1,...,J}.
Given a mesh M = {V, F}, where V, F denotes vertices and faces, respectively,
the position of joints J = {J; € R3,i = 1,...,J} can also be determined by
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(a) Encoded LBS result (b) Deformation results with decoded LBS
Fig. 3: (a) UV map and SMPL mesh colored with encoded skinning weights. (b) Re-

posed mesh using decoded LBS weight from the pretrained decoder.

regressing designated vertices in V. Here, i of T; and J; indicates an index of a
joint. Once pose parameters are determined, V can be moved accordingly,

xP = LBS(x¢, T) (Z w;(x ) ,
-1
x¢ = LBS™ <Zw ) xP

where LBS(:) warps a point as a linear combination of transformed vertices by
T and x¢, xP are vertices in canonical and posed space respectively. The inverse
of LBS(-) transforms a point from the posed to the canonical space. w;(x) is a
linear blend skinning (LBS) weight of vertex x for the i*! joint, and x¢, x? are
vertex in canonical and posed space respectively.

3.2 Joint Depth and LBS Prediction

Given an RGB image, we first predict the depth and skinning weight maps
for both the front and back side views using a shared-encoder-double-decoder
network, denoted as S(-), employing the ATUNet architecture ,

(D,L) =5(@,D) (2)

where I is an input image and D is dual-sided depth maps generated from the
predicted SMPL-X parameters. Here, the network S(-) has a shared encoder and
two decoder networks in which the first decoder predicts depth maps D and the
second one infers LBS maps L. Due to the sparsity nature of skinning weights,
we embed these skinning weights into a low-dimensional space to effectively com-
pute linear blend skinning (LBS) weights. Then, with the aid of LBS weights
and depth maps, it becomes feasible to canonicalize the predicted mesh directly.
Lastly, we estimate color images using an additional network, which takes in-
put images and dual-sided normal maps as input which are converted from the
predicted depth map.
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Compact representation of skinning weights. We employ a stacked au-
toencoder MLP network to compress skinning weights into a 3-dimensional la-
tent space considering the sparsity nature of skinning weights. Here, we denote
the low-dimensional LBS weight map as L and the full-dimensional LBS weight
map as L. We utilize the SMPL-X model’s skinning weights, which are 55-
dimensional, and interpolate skinning weights in the SMPL-X’s UV coordinate
via barycentric interpolation, where the resolution of the UV map is 1024 x 1024.
Consequently, the number of training samples to train the autoencoder network
is about 800K. With these training samples, we minimize the following objective
function:

L:’P = )\LlLl(LFa fJF) + )\NZLnonzcro(LFa ]:F) + AKLLKL(LFv EF)v (3)

where Lyonzero ensures that the estimated LBS weight map, LF , has the same
number of nonzero elements as the ground truth weights, L, after decoding back
to the original dimension. We use the approximation for the nonzero count using
differentiable relaxation by employing a sum of narrow Gaussian basis functions.
L; represents the Lq loss and Lk, is the KL divergence loss. Hyperparameters
AL1, Anz and Agp, are empirically set to 1.0, 0.1 and 0.1, respectively. Since
the sum of skinning weights is 1, we apply the softmax operation after the last
layer of MLP. Fig. (b) shows that our skinning weight can deform the clothed
mesh naturally, which is decoded back from the latent space. Fig. a) provides
a visualization of the latent code. Note that this LBS compression network is
pre-trained before training S(-). During inference, we only utilize the decoder to
decode the predicted LBS weights.

Objective Function. Our loss function for the initial mesh prediction network
S(+) is defined as:

ﬁS :>\1LL2 (D; f)) + )\2Lssim(Da f)) + >\3Lcos (N7 N)

) . (4)
+ ML (N,N) 4+ AsLr2(L, L),

where D is the ground truth depth map and N is the normal map calculated
from the depth map. Similarly, L denotes the compressed LBS weight map. We
utilize Lo, structural dissimilarity, and cosine loss functions to compare depth,
normal, and LBS weight maps. Note depth maps and LBS weight maps are
predicted for the front and hidden views. In addition, A1, Aa, A2, A3, Ay and As
are set to 0.9, 0.1, 1, 0.15, and 1, respectively.

3.3 Texture Prediction

Given the pretrained network S(-), we train the color prediction network C(-)
to infer shade-removed images for the front and hidden surfaces. We employ a
UNet architecture that takes an input front image and the normal maps from
the predicted depth map,

C=CI®N), (5)
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where @ indicates a channel-wise concatenation and N is the predicted normal
map. To train C(-), we minimize

Le = A2Lra(C,C) + MvacLvac(C, C), (6)

where C and C are the predicted and ground truth color images for front and
back views, respectively. Ao and Ayvge are hyperparameters for the Lo loss and
the perceptual loss which are set to 0.85 and 0.15, respectively.

3.4 Canonical Mesh Reconstruction

The reconstructed avatar from D is defined in the posed space. With the pre-
dicted LBS maps E, it can be warped to its canonical space without an additional
optimization procedure to fit the template human model. Here, we define the
canonical mesh as M = {V¢ C, F}, consisting of a set of vertices, vertex colors,
and faces, which is obtained via an inverse skinning operation from the posed
mesh, M?P = {VP C, F},

Ve ={LBS ' (x",T) | VxP € VP}, (7)

where LBS ™! (-) utilizes the skinning weights decoded back from the encoded LBS
map, L. However, this inverse skinning process fails to recover unseen geometry,
such as armpit and thigh regions where the reconstructed mesh is not separated.
Therefore, if we remove the faces stretched above the pre-defined value, these
regions remain empty in the canonical space. To fill these empty regions, we
combine the canonicalized mesh and canonical template mesh through signed
distance integration as below:

Sc(x%) = SDF(x°, 0Mg\ipL-x); (8)
S,(x¢) = SDF(LBS(x¢,T),0MP?) = SDF (x*, 0O MP),
where SDF(-) computes the signed distance from 3D point x¢ to the near-
est surface of OM, OM represents the surface of mesh M, and Mgypr_x is
the canonical template mesh. To integrate two signed distance functions in the
canonical space, we integrate signed distance values within a pre-defined volume,
i.e., 2m3, where the LBS weights are obtained by taking the LBS weights of the
nearest vertex of Mg ;pr, x. Then, we warp x° to the posed space with the LBS
weights and compute the signed distance in the posed space. Here, direct canon-
icalization of MP generates holes and artifacts, therefore, we warp M€ back to
the posed space to sample the signed distance values. Finally, we take the signed
distance of S, (x°) if there exists canonical vertices V° in the vicinity of x°,

ey _ [ Sp(x)  min|x®—V°| <,
S(x%) = { S.(x°) otherwise, 9)

where 7 is empirically set to 5 by observing average discrepancy between ground
truth SMPL-X and posed meshes.
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Afterward, we obtain a canonical mesh via the marching cubes and re-
parametrize it using Flexicubes [40|, transforming it into a differentiable, wa-
tertight and compact mesh via a gradient-based optimization. Here, a reference
frame with the smallest Chamfer distance over the canonical SMPL-X mesh for
multiple input images is chosen as the initial canonical mesh. In the rest of the
paper, we refer M€ as the canonical mesh after applying Flexicubes.

3.5 Incorporating Multiple Images into
Forward Skinning-based Differentiable Rendering

As the final step, we rasterize the posed mesh deformed from the initial canonical
mesh using Neural Deferred Shading (NDS) [44] to minimize the discrepancy
between the rendered image and the predicted image from the previous step. In
this process, we refine the 3D human pose as well as the shape and color of the
canonical mesh. This is crucial because errors in human pose can substantially
impair the quality of deformation results generating undesirable artifacts.
Formally, we have depth maps, D = {Dj,---,D,}, color images, C =
{Cy,---,C,}, posed meshes, M¥ = {M% ... MP} and canonical mesh M°®
obtained from the previous steps, where D and C are double-sided depth maps
and images and n is the number of images. Here, the vertex color and faces of
the canonical mesh M¢ (selected in Sec. are invariant w.r.t. the change of
vertex positions. With the linear skinning weights of the canonical mesh, we can
apply forward skinning-based warping w.r.t given transformation as follows:

VP = {LBS(x°,T}) | vx° € V°}, (10)

where /\;lf = {V?,C, F} is the predicted posed mesh for i*? image via forward
warping and 7; is the transformation matrix calculated from the 3D human pose.
Before the optimization, we downsample the canonical mesh and progressively
upsample the mesh while updating the canonical mesh.

To this end, we define our objective function,

L :)\lLlaplacian(MC) + )‘QLfli%mal(MC)
n
+ > (A3 Lnormal (N7, N?) + Ay Lipasic (M7, MT), (11)

=1
+ ASLchamfer(Mfa Mf) + AGLCOIOI‘(Cfa Cf))y

which updates the canonical mesh M and 3D human pose T using differential
renderer [21]. Lyormal minimizes the L; loss between normal maps, and Ly ask
and Lcolor minimize the discrepancy between binary masks and color images
using MSE-based losses, respectively. Note that our refinement procedure can
take an arbitrary number of input images as input, which means n can range
from at least 1 to tens of images. To prevent the abrupt change of vertices, we
adopt the Laplacian loss function in NDS [44],

1™
Llaplacian = E Z ||5l||g’ (12)
=1
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where §; = (LV¢); € R? are the differential coordinates of vertex i with the
graph Laplacian L. We also utilize normal consistency loss as:

re 1
Lnogrmal = m Z (1 — N nj>27 (13)

(i,5)eF

where |F| is the number of the faces, 7, which is paired with a shared edge and
n; € R? is the normal of triangle ¢ in M¢°. We further minimize the Chamfer
distance [18] between M? and M? for the i*® frame. Due to the potential mis-
alignment between each 3D human pose and the reconstructed mesh, we update
the initial human pose parameters to consider pose errors while updating the
shape and color of the canonical mesh.

We initially set the hyperparameters A1, A2, A3, Ag, A5, Ag to 40, 0.1, 1, 2,
0.0001, and 0 respectively. We employ a progressive update scheme in NDS [44]
for T and V¢, where we upsample V¢ by a factor of about 4 and multiply A3 and
A4 by 4 every 500 iterations, up to 2000 iterations. After optimizing T, we fix it
and proceed to recover C and V¢ by minimizing the Ly loss between the input
color maps, C¥, and the predicted color maps, Cf , for the #*" frame, denoted as
Leolor- During this step, we set Ag to 10 to prioritize the color optimization.

4 Experimental Results

Datasets. We employed popularly used commercial [33] and public [49] datasets.
First, we obtained 412 human models from RenderPeople Y] denoted as RP. The
ground truth SMPL parameters for RP dataset were sourced from Agora [29].
Within 412 models, 332 models are mostly standing, whereas 80 models are in
T-pose. To augment our training data, we generated 800 human models from the
80 T-posed models while changing body poses using V-poser [30]. In addition, we
used the THuman 2.0 [49] dataset for training our model, containing 526 models.
For testing, we selected 20 scan models from RP and TH3.0 datasets that were
not used for training. The list of tested models is given in the supplementary
material.

Training data generation. To generate training data, we followed the proto-
cols of prior studies [1,[35] and rendered synthetic images and depth maps as
follows. Initially, human models were centered at the origin aligned based on the
centroid of each mesh to ensuring them to be positioned at the center of the im-
age. Afterward, we put a perspective camera with 52 degrees of field-of-view that
is 3 meters away from the origin. Next, the human models were rotated 0, 1, 2,
3,4, 5,10, 15, 20, 30, 40, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 340, 345,
350, 355, 356, 357, 358 and 359 degrees, along the vertical axis. To synthesize
images, we sampled spherical harmonics mimicking natural illuminations [34]
and rendered 20 images with different lighting conditions. Ground truth data
includes color albedo maps, depth maps, and LBS maps for both the front and
back sides, and silhouette masks. The resolution of the image is 512 x 512.

4 https://renderpeople.com/
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Table 1: Quantitative comparison of monocular human reconstruction methods. * de-
notes the ground truth SMPL(-X) parameters were used as input. PIFu* and PaMIR*
are newly devised in ICON [47] to analyze the dependency on the template model. {
and I denote our result trained on TH2.0 and combination of TH2.0 and RP, respec-
tively. Average point-to-surface distance, chamfer distance, and average surface normal
error are denoted as P2S, CF and NR, respectively. The first(dark color) and second-
best(light color) results are marked in color.

- RP 2K2K TH3.0

DATASET —poTCF] [ NRJ [ P2Sy | CFJ | NRJ | P2S| | CF} | NRJ

PIFuHD [35] RP 1420 | 1434 | 1.401 | 1.334 | 1.399 | 1.266 | 1.534 | 1.527 | 1.628
PIFu* [34] RP 1787 | 1.816 | 1.822 | 1.390 | 1.433 | 1.764 | 1.747 | 1.742 | 1.820
PaMIR" [53] RP 1.545 | 1.616 | 1.679 | 1.464 | 1.536 | 1.654 | 1.706 | 1.722 | 1.715
ICON* 47 RP 1.296 | 1.364 | 1.447 | 1.582 | 1.675 | 2.024 | 1.371 | 1.437 | 1.666
PHORHUM (1] | CUSTOM | 1512 | 1.617 | 1.633 | 1.638 | 1.663 | 2.206 | 2.073 | 2.120 | 2.716
ECON* [46] TH2.0 2.066 | 2.290 | 1.756 | 2.382 | 2.769 | 1.806 | 1.944 | 2.139 | 1.821
9K2K* {7] TH2.0+RP | 1.097 | 1.195 | 1.507 | 1.310 | 1.265 | 1.339 | 1.416 | 1.542 | 1.952
TeCH* |15] N,,/A 1.489 1.523 2.068 1.428 1.467 1.808 1.721 1.795 2.551
Ours” RP 0.901 | 0.978 | 0.076 | 0.914 | 1.007 | 0.761 | 1.086 | 1.189 | 1.413
Ours* TH2.0 1.043 | 1.126 | 1.049 | 1.011 | 1.102 | 0.862 | 1.074 | 1.169  1.281
Ours** TH2.0+RP | 0.886 | 0.943 | 0.987 | 0.807 | 0.981 | 0.793 | 1.072 | 1.165 1.278

Training settings. We used the Adam [20] optimizer with 8;=0.9 and £2=0.999,
and set a learning rate to 0.001. We trained our main network (Sec. using
four NVIDIA RTX 3090 GPUs which took 2 days for training. Our pipeline
takes about 11 minutes in total: 3 minutes for the initial canonicalization and 8
minutes for the forward skinning-based differentiable rendering.

4.1 Quantitative and Qualitative Evaluations

We compare our method with existing static avatar reconstruction techniques,
in Tab. [l PHORHUM |[1], PaMIR [53], PIFu [34], PIFuHD [35]|, ICON [47],
2K2K [7], ECON [46], and TeCH |13]|. Here, PIFu*, PaMIR*, PIFulHD, and
ICON were trained by using the RP dataset and ECON [46] used TH dataset,
2K2K 7] used 2K2K and RP datasets, respectively. Since comparison methods
are trained with different dataset settings, we train our model in several ways for
a fair comparison: train only with RP, train only with TH, and train with both
RP and TH. For methods that take SMPL guidance, we evaluate them with the
ground truth SMPL-X that we used.

To assess human reconstruction methods, we employed average point-to-
surface distance (P2S), Chamfer distance, and average surface normal error.
The units for P2S and Chamfer distances are centimeters. For normal errors,
we projected normal maps to the front and back views, calculating the aver-
age L2 distance between ground truth and predicted normal maps. To enhance
readability, the normal error values were multiplied by 100.

Our quantitative analysis presented in Tab. [I] shows that our method per-
forms better than previous methods. Our analysis indicates that leveraging di-
verse datasets consistently enhances performance, as evidenced by all three sets
from our approach achieving the highest scores across all evaluation metrics.
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Input GT PIFUHD ICON ECON PHORHUM  2K2K TeCH OURS
Fig. 4: Comparison of normal maps. The first two rows are from the TH3.0 test data,
and the latter two are from the RP dataset.

Table 2: Quantitative comparison with SCANimate in canonical space. We select
2 avatars from RP rigged T pose dataset and generate 15 posed scans for each avatar,
where poses are obtained from CAPE dataset . We differ the training sets to 5 and
15 views, and use 3D metrics for evaluation.
SET1 SET2

Methods # of views | P2S] CF| NRJ] | P2S| CF| NR|
s [] |_fyiee | 12 | 1|t v 2o
5 view 0.244 | 0.260 | 0.482 | 0.180 | 0.209 | 0.395
15 view 0.199 | 0.218 | 0.412 | 0.149 | 0.175 | 0.307

Ours

From this, we can argue that explicitly predicting depth maps from a single
image with the guidance of SMPL-X remains an effective approach, without
necessitating complex techniques.

Fig. [ shows the qualitative results of ours and comparison results, where
ECON, PHORHUM, 2K2K, and our methods recover the details in wrinkles
and facial regions. The diversity and quantity of training data are crucial for
model-free methods because they directly regress the human model from the
image, in that PHORHUM frequently lost arm regions for the TH3.0 dataset,
which contains diverse postures. In the case of 2K2K, they could not recover the
details of the backsides because part-based normal prediction possibly loses the
global context for the backside. TeCH utilizes normal map-based SDS loss ,
which often generates different facial shapes and undesirable artifacts on limbs.
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$ 5 Views 15 Views Reposed 5 Viws 15 Views Rposed
(a) Input Scans (b) SCANimate (c) Ours

Fig. 5: Comparison of results between SCANimate and our method. We used the same

SMPL pose parameters for SCANimate and ours. Five and fifteen scans were used to

canonicalize the meshes.
) Y

(@) Input frames (b) Posed mesh (c) Canonical mesh (d) w/ pose update (e) w/o szE update
Fig. 6: Reconstructed results with and without pose error refinement when the canon-
ical mesh is given with noisy pose.

We compare our framework with SCANimate [36], which takes a set of raw
scans to generate a canonical mesh. SCANimate relies on the SMPL model to
canonicalize the raw scans and to fill missing regions, therefore, it fails in the
presence of pose errors. To compare SCANimate with our method, we took the
same input as SCANimate, i.e., multiple raw scans, and used the same SMPL
body pose parameters. The results are given in Tab. 2] and Fig. [f] that show our
method accurately merges posed meshes into a canonical mesh.

4.2 Ablation Study

We conduct several experiments to further analyze the characteristics of our
proposed method. We demonstrate its robustness under pose variations and its
ability to capture loose cloth, leveraging the advantage of the usage of the initial
canonicalized model. In general, multiple frames improve the completeness of the
human model because invisible regions shrink. Both Fig. [f] and Fig. [7] indicate
that our framework effectively integrates multiple results in the canonical space,
even with errors in depth, LBS weights and joint positions. We present results
for challenging cases in Fig. [6] where a woman shows difficult poses. In this case,
the initial canonical mesh exhibits bent arms in Fig. @(e). Our differentiable
rendering scheme, however, alleviates this error because it is able to refine pose
errors as well as the shape and color. Furthermore, several studies employ
differential rendering to obtain clothed human meshes, starting from a canonical
template mesh. This means that it often fails to recover an accurate shape when
the topology of the target mesh significantly differs from the template mesh.
Contrarily, our initial canonical mesh is in a similar shape to the target mesh
because we warp initial posed meshes into canonical space with predicted LBS
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v

(a) Input frames (b) Initial mesh (c) Refined mesh (d) Reposed mesh
Fig. 7: Example of reconstructed human wearing a loose cloth. (a) Given an input
frame, (b) we initially reconstruct the canonical mesh. (c) With a forward skinning-
based differentiable rendering, we integrate multiple frames and generate the refined
avatar. (d) We can repose our mesh to unseen poses.

2 & ' J Y i { o L L
(a) Posed mesh recon.  (b) Initial mesh ~ (c) Refined mesh (a) Posed mesh recon. (b) Refined mesh
Fig. 8: Actors-HQ results. Fig. 9: In-the-wild loose cloth results.

weights, as shown in Fig. [7] Importantly, our method does not require ground-
truth canonical meshes, as opposed to ARCH and ARCH++ @ We only
compare errors w.r.t. the images and normal maps in the posed space.

We also carry out experiments on real-world scenarios, including non-rigid cloth
deformations in Fig. 8 and Fig. [] whose avatars are generated from Actors-HQ
dataset (Actor 8) and in-the-wild captured images, respectively. Here, we
adopt hand replacement module from ECON using the template model to
demonstrate the capability of the hand refinement. Even with a large number of
input frames, the blurry results occur when the cloth deformation is large, our
approach can generate realistic 3D avatar with only a few frames. The experi-
mental details and more results are provided in the supplementary material.

5 Conclusion

We have proposed CanonicalFusion which creates animatable human avatars
from images via posed mesh prediction and forward skinning-based differentiable
rendering. As a first step, we predict depth maps and LBS weights using a shared-
encoder-dual-decoder network, where the LBS weights are compressed into a 3-
dimensional latent vector without a loss of accuracy. Furthermore, we proposed
a differentiable rendering technique to refine a canonical mesh by minimizing
normal, color, and 3D human pose errors for an arbitrary number of images. We
experimentally validated the effectiveness of our method from various aspects
compared to existing methods. We believe our next direction is to handle the
non-rigid deformation of cloth and hairs to simulate more realistic results and
to combine our method with generative techniques to diversify our avatars.
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