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ABSTRACT

Conformal prediction provides machine learning models with prediction sets that
offer theoretical guarantees, but the underlying assumption of exchangeability lim-
its its applicability to time series data. Furthermore, existing approaches struggle
to handle multi-step ahead prediction tasks, where uncertainty estimates across
multiple future time points are crucial. We propose JANET (Joint Adaptive pre-
dictioN-region Estimation for Time-series), a novel framework for constructing
conformal prediction regions that are valid for both univariate and multivariate
time series. JANET generalises the inductive conformal framework and efficiently
produces joint prediction regions with controlled K-familywise error rates, en-
abling flexible adaptation to specific application needs. Our empirical evaluation
demonstrates JANET’s superior performance in multi-step prediction tasks across
diverse time series datasets, highlighting its potential for reliable and interpretable
uncertainty quantification in sequential data.

1 INTRODUCTION

In this work, we tackle the challenging problem of multi-step uncertainty quantification for time series
prediction. Our goal is to construct joint prediction regions (JPRs), a generalisation of prediction
intervals to sequences of future values. The naive approach of taking the Cartesian product of
marginal prediction intervals, each with the desired coverage level (1− ϵ), does not guarantee the
desired global coverage. If future time steps were independent, this approach would result in coverage
(1− ϵ)H , where H is the length of the horizon. Although techniques such as Bonferroni correction
(13) can adjust for this, it becomes overly conservative as H increases, especially in the presence of
temporal dependencies, which, of course, is to be expected in the case of time series data.

Conformal Prediction (CP) (3; 39; 17) offers a distribution-free frequentist methodology for un-
certainty quantification with finite-sample coverage guarantees. Specifically, CP ensures that
Pr(Y ∈ C(X∗)) ≥ 1 − ϵ, where C(X∗) is the prediction set (or interval in the univariate case)
for a new input X∗. The theoretical guarantees and model-agnostic nature of CP have spurred its
application in diverse areas, including large language models (30) and online model aggregation (19).
CP is readily applicable to any algorithm that provides a (non-)conformity score, a measure of how
well a data point aligns with the rest of the dataset. The key assumption is exchangeability, which is
satisfied for independent and identically distributed (IID) data. Extensions of CP exist for dependent
data settings (9; 6; 43), but primarily focus on single-step predictions, and the extension to multistep
prediction is not trivial.

CP offers finite-sample guarantees, making it an attractive approach to building joint prediction
regions (JPRs). However, the exchangeability assumption of CP is always violated in time series data.
Moreover, the multivariate residuals (H in total — one residual per time step) in a multi-step ahead
prediction pose a challenge, as for most regression cases, CP relies on the exchangeability of the scalar
non-conformity scores and the quantile inversion for calibration. This poses the question of mapping
multivariate residuals to a scalar value. Whilst single-step prediction allows for simple residual
sorting and the necessary quantile inversion, this approach fails for multi-step scenarios due to the
multidimensionality of the residuals. We address the exchangeability issue in the inductive conformal
setting by showing an extension of the work of (9) from the transductive (full) to the inductive (split)
CP setting. Full CP requires fitting many models, whilst inductive CP only requires fitting a single
model. The approach of (9) leverages specific index permutations of a single time series, providing a
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distribution of residuals for each permuted time series. We further introduce a novel non-conformity
score designed to map multi-dimensional residuals to univariate quantities, enabling the construction
of valid JPRs. The resulting framework, JANET (Joint Adaptive predictioN-region Estimation for
Time-series), allows for inductive conformal prediction of JPRs in both multiple and single time
series settings. When applied to multiple independent time series, JANET guarantees validity as
the permutation across independent time series is exchangeable, whilst, for single time series, it
provides approximate validity under weak assumptions on the non-conformity scores as long as
transformations (permutations within a single series) of the data are a meaningful approximation for
a stationary series.

Our key contributions are: (i) formally generalising the framework in (9) to the inductive setting
for computational efficiency whilst maintaining approximate coverage guarantees; (ii) design of
non-conformity measures that effectively control the K-familywise error (a generalisation of the
familywise error) (25; 41), whilst accounting for time horizon and historical context; and (iii)
empirical demonstration of JANET’s (finite-sample) coverage guarantees, computational efficiency,
and adaptability to diverse time series scenarios.

2 RELATED WORK

Relaxing exchangeability Recent research has shown a growing interest in adapting conformal
prediction (CP) to non-exchangeable data. Early work by (40) explored relaxing the exchangeability
assumption using Mondrian CP, which divides observations into exchangeable groups. (14) built
upon this idea to share strengths between groups in hierarchical modelling. (37) and (29) addressed
covariate and label shifts, respectively, by reweighting data based on likelihood ratios. Similarly,
(27) and (8) applied reweighting for predictive inference in causal inference and survival analysis,
while (16) focused on controlling covariate shift by statisticians. However, these methods address
heterogeneity rather than the serial dependence found in time series.

One-step or multivariate prediction (20) tackled distribution shifts in an online manner by
adapting coverage levels based on comparisons of current coverage with desired coverage. (44)
extended this work with online expert aggregation. (21) later introduced an expert selection scheme
to guide update step sizes. These works typically require a gradient-based approach to learn a model
that adapts to the coverage. (6) generalised pure conformal inference for dependent data, using fixed
weights for recent training examples to account for distributional drift. (43) employed predictor
ensembling, assuming exchangeability but with asymptotic guarantees. (9) leveraged randomisation
inference (32) to generalise full conformal inference to serial dependence, achieving valid coverage
under exchangeability and approximate validity with serial dependence. Notably, these methods
primarily focus on single-step predictions for univariate series. A similar extension to the inductive
setting is provided in (12) for the functional time series setting. They randomly selected the time
indices to form a calibration series, however, such an approach does not preserve the statistical
properties of the time series. Additionally, the work is primarily based on applying to the time
series and lacks formalisation as the generalised inductive conformal predictors. In contrast, we
split the sequence into two such that we preserve the statistical properties of the time series; our
method formally extends (9) to inductive conformal prediction and multi-step scenarios, including
multivariate time series.

Other notable works, (11; 1; 42) constructed prediction bands for multivariate functional data,
functional surfaces and ellipsoidal regions for multivariate time series, respectively, but only for
single-step predictions.

Multi-step prediction (2) applied the jackknife method to RNN-based networks for multi-step
prediction, with theoretical coverage of 1 − 2ϵ at significance level ϵ. (33) assumed conditional
IID prediction errors in multi-output models, using Bonferroni correction (22) to achieve desired
coverage. However, their approach can be overly conservative with increasing prediction horizons
and may not hold when model assumptions are violated. Additionally, they require multi-output
prediction models. (10) utilised linear complementary programming and an additional dataset to
optimise the parameters of a multi-step prediction error model. In recent work, (36), building on
(28), employed copulas to adjust for temporal dependencies, enabling multi-step and autoregressive
predictions for multivariate time series filling in the deficit from other works. However, their method
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requires two calibration sets and gradient-based optimisation, making it data-inefficient. Furthermore,
unlike our proposed framework JANET, their approach requires multiple independent time series
(just like the preceding works) and cannot adapt prediction regions based on historical context.

A concurrent work (45) primarily focussed on single-step prediction adapted (20) to account for
heterogeneous trajectories in multiple time series settings. However, they require multiple calibration
sets and do not show how to control K−familywise error when dealing with multi-step prediction.

Non-conformal prediction regions Beyond conformal methods, bootstrapping provides an alterna-
tive method for constructing joint prediction regions especially when one only has a single time series.
(34) generates B bootstraps and finds a heuristic-based prediction region from the bootstrapped
predictive sequences, however, the method only provides have asymptotic guarantees. (41) creates
JPRs that are asymptotically valid and can control the K-familywise error. However, given that this
method is based on bootstrapping, it has a large computational cost that is infeasible when working
with neural networks. Our work can be seen as conformalisation of (41; 15) without relying on
bootstrapping and with adaptive prediction regions. Additionally, as a conformal method, JANET
can be readily applied to time series classification tasks which is not apparent for bootstrap-based
methods.

To the best of our knowledge, JANET is the only framework that can handle both single and
multiple time series (univariate or multivariate), whilst providing adaptive prediction regions based on
historical context (lagged values), and controlling K-familywise error with finite-sample guarantees.

3 BACKGROUND ON CONFORMAL PREDICTION

In this section, we provide an overview of conformal prediction for IID data in the context of
regression tasks. In the next section, we specify CP for the time series setting.

Full conformal predictors assess the non-conformity of a test sample x∗ and a postulated target y to a
training set by running the underlying algorithm (n+ 1)c times, where n is the number of training
samples and c is the number of points along a discretised grid of the target space (Y). This is done to
construct prediction sets by inversion: the set of grid points that best conform according to a desired
significance level ϵ. Full CP is prohibitive for compute-intensive underlying training algorithms as it
requires refitting a model for each postulated label/grid point. Inductive conformal predictors (ICPs)
offer an elegant solution to this problem by training the model only once. We focus on regression
tasks with ICPs.

Let P be the data generating process for the sequence of n training examples Z1, . . . , Zn, where
for each Zi = (Xi, Yi) pair X ∈ X is the sample and Y ∈ Y is the target value. We partition the
sequence into a proper training set, Ztr = {Z1, . . . , Zntr

} (the first ntr elements), and the remaining
ncal elements form a calibration set, Zcal = {Zntr+1, . . . , Zntr+ncal

}, such that n = ntr + ncal. A
point prediction model, f̂ , is trained on the training set proper Ztr, and non-conformity scores, ai,
are computed for each element of the calibration set, Zcal.

In standard regression, a natural non-conformity score is the absolute residual ai = |yi − f̂(xi)|. By
construction, for any i, yi ∈ [f̂(xi)± ai]; ai is half the interval width that ensures coverage for any
new sample (assuming symmetric intervals). In ICP we compute a non-conformity score for each of
the ncal samples in the calibration set and then sort them from largest to smallest. Let a(1) denote the
largest and a(ncal) denote the smallest. Then intervals of the form (f̂(xi)± a(1)) will cover all but
one sample from the calibration set and intervals of the form (f̂(xi)± a(ncal)) will cover none of the
samples from the calibration set (assuming no ties).

Extending this line of thinking, a prediction interval with (1−ϵ) coverage can be obtained by inverting
the quantile of the distribution of non-conformity scores ai. To do so we find the ⌊ϵ(ncal + 1)⌋th
largest non-conformity score, qa1−ϵ := a(⌊ϵ(ncal+1⌋) and set this to half of our interval width. For an
unseen Z∗ = (X∗, Y ∗), we will provide a prediction interval of the form

Ca
1−ϵ(X

∗) =
(
f̂(X∗)− qa1−ϵ, f̂(X

∗) + qa1−ϵ

)
. (1)
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A drawback of this method is that the intervals are of constant width, 2qa1−ϵ. (26) suggest an

alternative non-conformity score that takes into account local information, ri =
|yi−f̂(xi)|

ŝ(xi)
. Here, ŝ(·)

is also fit on the train set and predicts the conditional mean absolute deviation. Now we can provide
locally adaptive prediction intervals for a test sample Z∗ = (X∗, Y ∗) with (1− ϵ) coverage:

Cr
1−ϵ(X

∗) =
(
f̂(X∗)− qr1−ϵ · ŝ(X∗), f̂(X∗) + qr1−ϵ · ŝ(X∗)

)
(2)

where qr1−ϵ is the ⌊ϵ(ncal + 1)⌋th largest non-conformity score. In Eq. (1), the ai (and qa1−ϵ) directly
define the width of the interval whilst in Eq. (2), the ri (and qr1−ϵ) inform how much to rescale the
conditional mean absolute deviation to achieve coverage of a particular level.

4 GENERALISED INDUCTIVE CONFORMAL PREDICTORS

In this section, we formally describe a generalised framework for inductive conformal predictors
based on Generalised CP (9) and randomisation inference (32) applied to time series forecasting.
With minor notational adjustments, our generalised ICP extends to multi-step and multivariate time
series prediction. In the following sections, we demonstrate how to obtain exact validity guarantees
for independent time series (or IID data) and approximate validity guarantees for a single time series.
Our task is to forecast H steps into the future conditioned on T steps of history.

4.1 MULTIPLE TIME SERIES

Assume we have n independent time series Z = {Zk}nk=1 where each individual time series,
Zk, is an independent realisation from an underlying distribution P (and within each Zk there is
temporal dependence). As usual in ICP, we split Z into a proper training sequence Ztr = {Zk}ntr

k=1
and a calibration sequence Zcal = {Zntr+i}ncal

i=1 . Without loss of generality, we assume the time
series are length T + H . For each time series, we can define Zk = {zk,1, zk,2, . . . , zk,T+H} as
(Xk, Yk), each with Xk = {zk,1, . . . zk,T } = {xk,1, . . . xk,T } denoting the relevant series’ history,
Yk = {zk,T+1, . . . , zk,T+H} = {yk,1, . . . , yk,H} being the values at the next H time steps and each
zk,j ∈ Rp (where p = 1 corresponds to univariate time series and p > 1 corresponds to multivariate
time series). In other words, each time series can be split into the history we use to predict (Xk) and
the target (Yk). As in any other ICP setting, we can train a model f̂ : Rp×T → Rp×H that predicts H
steps into the future based on T steps of history. Then, we can compute non-conformity scores for a
non-conformity scoring function A. Note that we can form a distribution over non-conformity scores
with one non-conformity score per time series. From there we can invert the quantiles and produce a
prediction interval.

4.2 SINGLE TIME SERIES

Unlike the case of multiple time series, we only have a single time series and we do not have access
to an entire distribution of non-conformity scores—we only have a single score. To address this
problem we apply a permutation scheme from (9) on the calibration series that provides a distribution
over the conformity scores, this is equivalent to the view of randomisation inference employed in (9).
We compute the p-values as in Definition 1. Now we can treat this collection of permuted time series
in the same way we did for multiple time series. Each permutation will provide a non-conformity
score and this is how we approximate a distribution of non-conformity scores.

We now assume we have a single time series Z = {z1, . . . zL} where L = Ltr + Lcal is the length
of the entire single series, Ltr, Lcal ≥ T + H and all zi ∈ Rp. We split Z into a train subseries,
Ztr = {z1, . . . , zLtr}, and a calibration subseries, Zcal = {zLtr+1, . . . , zLtr+Lcal

}. Ztr is used to
fit our point prediction model f̂ and Zcal will be used to calibrate our prediction intervals.

Let Π be a set of permutations of the indices {1, . . . , Lcal}. For a permutation π ∈ Π, let
Zπ
cal = {zLtrπ(i)}

Lcal
i=1 denote a permuted version of the calibration sequence, Zcal. We call

ZΠ
cal = {Zπ

cal}π∈Π the set of permuted version of Zcal under the permutations in Π. We can
partition each permutation of Zcal into X and Y components as in the multiple time series setup
where X is the lagged version of Y .

4
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Permutation scheme (9) introduced a permutation scheme to address data dependence. We adapt
this scheme and their notation to our setting on Zcal. Given a time calibration sequence of length
Lcal, divisible (for simplicity) by a block size b, we divide the calibration series into d = Lcal/b
non-overlapping blocks of b observations each. The jth non-overlapping block (NOB) permutation is
defined by the permutation Πj,NOB : {1, . . . , Lcal} → {1, . . . , Lcal} where

i → πj,NOB(i) =

{
i+ (j − 1)b if 1 ≤ i ≤ Lcal − (j − 1)b

i+ (j − 1)b− l if Lcal − (j − 1)b+ 1 ≤ i ≤ Lcal
for i = 1, . . . , Lcal.

Figure 3 in the Appendix provides a visualisation of the NOB permutation scheme to a hypothetical
time series Z with L = Ltr + Lcal = 10 + 6 = 16 and b = 1.

4.3 VALIDITY OF ICP WITH PERMUTATIONS

In Theorem 1 we establish that under mild assumptions on ergodicity and small prediction errors, as
defined in A.2.1, we can achieve approximate validity in the case of a single time series whilst using
the permutation scheme from (9). In the case of IID data, we have exact validity guarantees shown in
Theorem 2 and this exact validity can be applicable in the case of multiple independent time series.

Definition 1 (Randomised p-value). We define the randomised p-value as:

p̂ = p̂(y) :=
1

d

d∑
j=1

1
(
A
(
Ztr, Z

πj

cal

)
≥ A (Ztr, Zcal)

)
where Π is a group of permutations of size d and A is a non-conformity measure.

Effectively we are computing an empirical quantile of our test sample’s non-conformity relative to
the calibration set. Let

αj := A(Ztr, Z
πj

cal) for j = 1, . . . , d

where πj is the jth permutation of Π. We can invert the quantile to gain a prediction interval as in
Eq. (1). Theorem 1 is adapted from (9) to the inductive conformal setting.

Theorem 1 (Approximate General Validity of Inductive Conformal Inference). Under mild as-
sumptions on ergodicity and small prediction errors (see Appendix A.2.1), for any ϵ ∈ (0, 1), the
approximate conformal p-value is approximately distributed as follows:

|Pr(p̂ ≤ ϵ)− ϵ| ≤ 6δ1d + 4δ2m + 2D
(
δ2m + 2

√
δ2m

)
+ γ1d + γ2m (3)

for any ϵ ∈ (0, 1) and the corresponding conformal set has an approximate coverage 1− ϵ, i.e,

|Pr(y∗ ∈ C1−ϵ)− (1− ϵ))| ≤ 6δ1d + 4δ2m + 2D
(
δ2m + 2

√
δ2m

)
+ γ1d + γ2m. (4)

The proof can be found in Appendix A.2.

Remark: (9) demonstrated that conformity scores obtained via the permutations (Figure 3) offer a
valid approximation to the true conformity score distribution for strongly mixing time series. Notably,
stationary processes like Harris-recurrent Markov chains and autoregressive moving average (ARMA)
models exhibit strong mixing properties (5; 4). Statistical tests designed for ARMA models, such
as the Ljung-Box or KPSS tests, can be employed to assess the presence of strongly mixing. Our
empirical findings suggest that even when stationarity is violated, approximate coverage can still be
achieved (see Table 1).

5 JANET: JOINT ADAPTIVE PREDICTION-REGION ESTIMATION FOR
TIME-SERIES

A joint prediction region (JPR) typically controls the probability of the prediction region containing
the entire true prediction sequence at a specified significance level ϵ. This can be interpreted as the
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probability of observing at least one element of the true sequence outside the region, also known as
the familywise error rate (FWER), namely:

FWER := Pr(at least one of the H components are not in the computed region).

However, as the prediction sequence length, H , increases, controlling for FWER can become overly
strict and lead to excessively large prediction regions. In such cases, the K-FWER offers a valuable
generalisation (25; 41). K-FWER relaxes the FWER definition, allowing for a specified number of
errors (K) within the true prediction sequence:

K-FWER := Pr(at least K of the H components are not in the computed region)

When K = 1, the K-FWER reduces to the standard FWER. By allowing a tolerance for errors,
larger values of K yield smaller, more informative prediction regions, which can be beneficial in
decision-making scenarios where some degree of error is acceptable.

Remark: JPRs can be constructed in various forms. Whilst hyperspherical construction is a common
choice, it may not facilitate reasoning about individual time steps in the horizon. Although it is
possible to project the hypersphere onto a hyperrectangle to enable component-wise analysis, this
results in a larger region and a loss of predictive efficiency (11; 41).

We introduce JANET (Joint Adaptive predictioN-region Estimation for Time-series) to control
K-FWER in multi-step time series prediction.

We adopt the notation for the multiple time series setting and further assume that the time series are
univariate (i.e. p = 1). In the case of a single time series, we use the same non-conformity scores but
treat the permutations of the single time series as distinct, exchangeable time series. We propose two
non-conformity measures that are extensions of a locally adaptive non-conformity score from (26)

αK
i := K-max

{
|yi,1 − ŷi,1|

σ̂1
, . . . ,

|yi,H − ŷi,H |
σ̂H

}
and (5)

RK
i := K-max

{
|yi,1 − ŷi,1|
σ̂1(Xi)

, . . . ,
|yi,H − ŷi,H |

σ̂H(Xi)

}
(6)

for i ∈ {1, . . . , ncal} where, K-max(x⃗) is the Kth largest element of a sequence x⃗, yi,j is the jth

entry of the target Yi and ŷi,j is the jth entry of f̂(Xi). Note that the prediction steps can be generated
by any model f̂ (AR models with H = 1 or multi-output models with H > 1). The difference
between Eqs. (5) and (6) is only in the scaling factors (denominators). In Eq. (5) the scaling factors
σ̂1, . . . , σ̂H are standard deviations of the error, that are computed on the proper training sequence.
These scaling factors account for differing levels of variability and magnitude of errors across the
prediction horizon but do not depend on the history. Meanwhile, for Eq. (6) the scaling factors are
conditional on the relevant history X .

We call these functions σ̂1(·), . . . , σ̂H(·) and they are also fit on the training sequence. Even with
IID errors, the predictor may have higher errors for certain history patterns. The history-adaptive
conformity score penalises these residuals and aims to deliver uniform miscoverage over the prediction
horizon.

Note: In the multivariate case (i.e., z ∈ Rp, p > 1), the entries of Eqs. (5) and (6), whose entries are[
|yi,j−ŷi,j |
σ̂j(Xi)

]
j

for j ∈ {1, . . . , p}. We then take the K-max, across all p dimensions, and all H steps

in the time horizon.

The quantile qα1−ϵ can be found by inverting the conformity scores. Then a JPR of the desired
significance ϵ and tolerance K for a test sample Z∗ = (X∗, Y ∗) (where Y ∗ is unknown) can be
constructed as follows:

Cα
1−ϵ(X

∗) =
(
ŷ1 ± qα1−ϵ · σ̂1

)
× · · · ×

(
ŷH ± qα1−ϵ · σ̂H

)
(7)

whereas, the JPR for the second score that incorporates historical context are:

CR
1−ϵ(X

∗) =
(
ŷ1 ± qR1−ϵ · σ̂1(X

∗)
)
× · · · ×

(
ŷH ± qR1−ϵ · σ̂H(X∗)

)
(8)

where X∗ is the sequence of lagged values (i.e. the history) for the unknown Y ∗ that is to be predicted.
The K-max operation maps the multidimensional residuals to a singular score which allows for

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

quantile inversion as done in Eq. (1). Further, by taking the K-max, each αK
i (or RK

i ) is the value to
rescale each σ̂j by to provide intervals that cover all but K of the predicted time points for a specific
trajectory Zi ∈ Zcal.

We provide two methods for producing JPRs, JANET* and JANET, and describe how to construct a
JANET JPR in Algorithm 1:

• JANET*: Adapts prediction intervals over time horizon as defined in Eq. (7) and only
requires fitting a single model.

• JANET: Adapts prediction intervals conditional on the relevant history as defined in Eq. (8).

Algorithm 1: JANET algorithm

Input: Time series Z, significance level ϵ, group of permutations Π = {πi}di=1, length of
relevant history T , prediction horizon H , error tolerance K

Output: Joint Prediction Region (JPR)
begin

1. Partition Z into training sequence Ztr and calibration sequence Zcal

2. Train a prediction model, f̂(·), on the training sequence Ztr.
3. Train an error predicting model σ̂(·) on the training sequence Ztr.
4. for i ∈ {1, . . . , d} do

a. Generate permuted calibration series Zπi

cal

b. Compute nonconformity score αK
i according to Eq. (6)

5. Invert the ϵ-quantile of the set of nonconformity scores {αi}di=1.
6. Construct the JPR as defined in Eq. (8).
return JPR

Remark: The constructed regions are two-sided and symmetric, we discuss the construction of
one-sided intervals and asymmetric intervals in Appendix A.1.

6 EXPERIMENTS

We demonstrate the utility of our method, JANET, on single time series and multiple time series.
For the single time series, we compare against Bonferroni and Scheffé JPRs. Further, we compare
against bootstrapping methods. Note that for Bonferroni and Scheffé we can only train the models for
complete coverage (1-FWE), whilst for Bootstrap-JPR we can vary K (as with our method). Despite
matching this level of flexibility in the choice of K, Bootstrap-JPR is much more computationally
intensive than JANET. For the multiple time series, we compare against baselines (CopulaCPTS (36),
CF-RNN (33), MC-Dropout (18)) that make stronger assumptions (different series being independent)
than us on synthetic datasets as well as real-world data. Our generalised ICP method can lead to
greater data efficiency whilst creating approximately valid prediction sets should independence be
violated.

6.1 SINGLE TIME SERIES EXPERIMENTS

We now focus on the scenario where only a single time series is available, and the goal is to construct a
JPR for horizon H . Common approaches, such as bootstrapping, are used to estimate prediction errors
and subsequently compute JPRs. However, these methods suffer from two limitations: (i) bootstrap
guarantees often hold only asymptotically, not for finite samples, and (ii) bootstrapping can be
computationally expensive, particularly when using neural networks as function approximations (or
predictors). We compare JANET to the following baselines:

• Bonferroni Correction (13; 22): This approach controls the FWER, but it is conservative.
We use bootstrapping-based methods to find the standard deviation of the prediction errors
before applying the correction.

• Scheffé-JPR (35): This statistical method assumes normality of errors but may not hold for
prediction intervals.
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• Bootstrap-JPR (41; 15): This method is based on bootstrapping and lacks finite-sample
guarantees and can be computationally demanding.

We use an ARIMA model as the learner for all methods in this section. Due to computational con-
straints over numerous simulations, we do not use neural networks for the main coverage experiments.
Both Bootstrap-JPR and our proposed method, JANET, control the K-FWER (25), so we compare
for different tolerance levels, K. We want to point out that Bootstrap-JPR can be conformalised in a
naive way. Whilst conformalised bootstrapping can address finite-sample issues, it does not reduce
computational cost. In contrast, JANET requires training the model only once per simulation. We
compare both of our variants: JANET and JANET*.
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Figure 1: Monte Carlo Experiment Coverage Error (pp) vs Interval Width. The y-axis shows the
difference in coverage from the target 1 − ϵ for ϵ = 0.2 in percentage points (pp) and the x-axis
is the geometric mean of the interval width over the time horizon. The red line represents perfect
calibration. Better methods can be found near the red line and to the left (well-calibrated, narrower
interval width). The left plot is for the case of K = 1 whilst the right plot shows K = 3. The
Bonferroni and Scheffé-JPR methods are only applicable for K = 1. Shapes represent calibration
methods and colours signify forecast horizon, H .

6.1.1 MONTE CARLO SIMULATIONS

We generate data from an AR(2) process with ρ ∈ {1.25,−0.75} and evaluate empirical coverage
across 1000 simulations. We compute the JPRs for K ∈ {1, 2, 3}, H ∈ {6, 12, 18, 24} and signifi-
cance level, ϵ ∈ {0.7, 0.8, 0.9}. For methods that cannot control the K-FWER, the corresponding
results refer to K = 1. The interval width of one JPR is calculated as the geometric mean of the
widths over the horizon H . The average over all simulations per setting is reported in Tables 6 to 8.

Tables 3 to 5 in the Appendix present coverage results for ϵ and varying tolerances K, whilst Figures 4
to 6 in the Appendix display coverage errors as bar plots. As expected, Bonferroni is conservative,
particularly at larger ϵ. Scheffé-JPR undercovers substantially, likely due to the normality assumption.
Bootstrap-JPR and JANET* perform comparably. JANET often has smaller coverage errors but
slightly larger average widths, as it treats errors uniformly across the history covariates. Additionally,
Tables 6 to 8 in the Appendix present empirical width results for various significance levels ϵ and
varying tolerances K and Figures 7 to 9 in the Appendix plot empirical widths against forecast
horizon (H) for various significance levels ϵ and K = 1. Figure 1 compares coverage errors against
widths, with the ideal method being close to zero error with minimal width within each colour group
(representing the same tolerance K). Note that within a level of K, the points tend to cluster together.
(refer to Figure 2 in the Appendix for all different K and all significance levels α). The left plot
(K = 1) includes more points per cluster as Bonferroni and Scheffé-JPR control for this tolerance
level only. The analysis also shows that JANET* generally achieves good coverage with minimal
width.
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6.1.2 U.S. REAL GROSS DOMESTIC PRODUCT (GDP) DATASET

We evaluate JANET on the U.S. real gross domestic product (GDP) dataset (38). To address non-
stationarity, we log-transform and de-trend the data as a preprocessing step. The resulting series is
shown in Figure 10 in the Appendix. Our task is to forecast the next H = 4 quarters (equivalent to
one year) and construct a JPR for the true sequence. We set the significance level to ϵ = 0.2. Due
to the limited availability of real-world data, we create windowed datasets to increase the number
of datasets for evaluating coverage. Each window consists of a sequence of 48 quarters (12 years)
for JPR computation, followed by a true sequence of 4 quarters (1 year) for coverage assessment. It
should be noted that this method for computing empirical coverage has two deficiencies, (i) there
are only 100 series (created through windowing); (ii) the series are not independent of each other.
Nevertheless, it still provides an assessment of the out-of-sample performance of the method. Table 1
shows the coverage results of the data. Similar to the experiment in Monte Carlo simulations in the
previous section, the out-of-sample coverages for JANET and Bootstrap-JPR are close to the desired
level at all tolerances K, whereas Bonferroni overcovers and Scheffé-JPR undercovers.

Table 1: Empirical Out-of-Sample Coverages on the US GDP Data (ϵ = 0.2, target coverage 80%)
and training times (minutes), numbers in the parenthesis refer to values of K. Bootstrap-JPR (Boot)
and JANET perform similarly whereas Bonferroni (Bonf.) shows over coverage as usual and Scheffé
undercovers. Bonf. and Scheffé can only be performed for K = 1. The bootstrap methods take
approximately 13 times as long as our method in wall-clock time in our implementations.

Bonf.(1) Scheffé(1) Boot(1) JANET(1) Boot(2) JANET(2) Boot(3) JANET(3)

Cov. (%) 83 63 78 79 80 78 79 81
Time (min) 5 8 91 7 91 7 91 7

6.2 MULTIPLE INDEPENDENT TIME SERIES EXPERIMENTS

In this section, we focus on the setting with multiple independent time series as in (33; 36). As
previously noted, this scenario allows us to achieve exact validity guarantees, rather than approximate
validity, due to the independence assumption. We compare JANET against the following methods:

• CF-RNN (33) is designed for multi-output neural networks–the entire predictive sequence
is outputted at once. It assumes conditional IID prediction errors, which may not always be
accurate, especially if the trained model has not captured the underlying trend. Further, it
relies on the Bonferroni correction (22), which tends to be conservative.

• MC-Dropout (18) is a Bayesian method for neural networks that can provide prediction
intervals that are often overly narrow intervals with poor coverage, indicating overconfidence.

• CopulaCPTS (36) uses copulas to adjust for dependencies. However, it is data-inefficient
since it requires two calibration sets and unlike JANET, it cannot adapt its regions based on
history or handle different values of K in the K-FWER control problem.

• CAFHT (45) uses ACI (8) for primarily heterogenous trajectories.. Just like CopulaCPTS,
it is also data-inefficient due to additional tuning parameters and cannot adapt its regions
based on history or handle different values of K in the K-FWER control problem.

Following the evaluation approach used in the baseline methods, we report the "frequency of coverage"
on the test set, which should not be interpreted as frequentist coverage, as the latter requires asymptotic
repetition (39).

6.2.1 PARTICLE SIMULATION DATASETS

We evaluate our model on two synthetic datasets from (24) using the same experimental settings
as in (36). In both cases, we predict H = 24 steps into the future based on a history of length
T = 35. Each time step is in R2. In the two setups, we add in mean-zero Gaussian noise with
σ = 0.05 and σ = 0.01, respectively. We used two different predictors for the experiments. See
Appendix B.2 for predictor model and training details. Table 2 shows results for the particle5
experiment σ = 0.05. Under the EncDec predictor, our coverage is closer to the desired level.
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For RNN architectures, we observe slight under-coverage for JANET and over-coverage for CF-
RNN, whilst other methods, especially MC-dropout, exhibit severe under-coverage. In the particle1
experiment (Table 2, σ = 0.01), JANET achieves better coverage under both predictors. Other
methods again show significant under-coverage, particularly MC dropout.

6.2.2 UK COVID-19 DATASET

We evaluate JANET on the UK COVID-19 dataset with daily case counts from 380 UK regions (33;
36). Table 2 presents the results. The task is to predict daily cases for the next 10 days based on the
previous 100 days. Whilst the COVID case sequences from different regions are not independent, we
anticipate at least approximate validity using our generalised ICP framework. JANET’s coverage
is close to the desired significance level ϵ. CF-RNN shows overcoverage with the basic RNN
architecture but performs closer to the desired level with the EncDec architecture.

Table 2: Comparison of coverage (%) and interval widths/areas on the test set for ϵ = 0.1. Coverage
values closest to 90% are highlighted in bold for every grouping of architecture (RNN, EncDec) on
each dataset. Narrower intervals are preferred. Coverages close to the desired significance level for
K = 1 are bolded.

Method Particle1 Particle5 UK COVID-19
Coverage Area Coverage Area Coverage Width

K = 1 MC-Dropout 79.40 2.2026 43.40 2.1846 0.00 1969
CF-RNN 95.20 1.1210 95.60 6.3749 92.50 19356
CopulaCPTS-RNN 89.60 0.9036 90.40 5.1736 85.00 16109
CAFHT-RNN 93.30 1.6913 86.60 4.6579 92.50 19356
JANET-RNN 85.80 0.7372 89.80 4.7120 88.75 19054

CF-EncDec 98.80 8.5731 92.40 5.8444 87.50 19194
CopulaCPTS-EncDec 85.60 2.9410 86.40 5.3351 78.75 14572
CAFHT-EncDec 94.60 1.0053 93.00 4.9368 92.50 19356
JANET-EncDec 90.60 1.0053 87.60 4.2098 87.50 19188

K = 2 JANET-RNN 87.20 0.7011 89.20 4.1417 91.25 16007
JANET-EncDec 90.20 0.9018 88.00 4.3892 87.50 16319

K = 3 JANET-RNN 87.00 0.6542 89.00 3.9888 91.25 14551
JANET-EncDec 90.60 0.8552 87.80 4.2098 90.00 14572

7 DISCUSSION AND FUTURE WORK

In this paper, we have formally extended the Generalised Conformal Prediction framework proposed
by (9) to the inductive conformalisation setting (40). Building upon this foundation, we have
introduced JANET (Joint Adaptive predictioN-region Estimation for Time-series), a comprehensive
framework for constructing prediction regions in time series data. JANET is capable of producing
prediction regions with marginal intervals that adapt to both the time horizon and the relevant
historical context of the data. Notably, JANET effectively controls the K-FWER, a valuable feature
particularly when dealing with long prediction horizons.

JANET includes several desirable properties: computational efficiency, as it requires only a single
model training process; applicability to scenarios involving multiple independent time series, with
exact validity guarantees; and approximate validity guarantees when a single time series is available.
Furthermore, JANET is flexible enough to provide asymmetric or one-sided prediction regions, a
capability not readily available in many existing methods.

Looking towards future work, we envision several promising directions for extending JANET. One
avenue involves exploring the extension of JANET to a cross-conformal setting (40), which could offer
gains in predictive efficiency at the expense of potentially weaker coverage guarantees. Additionally,
we acknowledge a current limitation of JANET, which is its inability to create multiple disjoint
prediction regions (23). Such disjoint regions could be denser than a single joint region, thereby
providing more informative uncertainty estimates, particularly in cases with multimodal predictive
distributions. We intend to address this limitation in future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Niccolò Ajroldi, Jacopo Diquigiovanni, Matteo Fontana, and Simone Vantini. Conformal
prediction bands for two-dimensional functional time series. Computational Statistics & Data
Analysis, 187:107821, 2023.

[2] Ahmed M. Alaa and Mihaela van der Schaar. Frequentist uncertainty in recurrent neural
networks via blockwise influence functions, 2020.

[3] Anastasios N. Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction
and distribution-free uncertainty quantification, 2022.

[4] Krishna B. Athreya and Sastry G. Pantula. Mixing properties of harris chains and autoregressive
processes. Journal of Applied Probability, 23(4):880–892, 1986.

[5] Krishna B. Athreya and Sastry G. Pantula. A note on strong mixing of arma processes. Statistics
& Probability Letters, 4(4):187–190, 1986.

[6] Rina Foygel Barber, Emmanuel J. Candes, Aaditya Ramdas, and Ryan J. Tibshirani. Conformal
prediction beyond exchangeability, 2023.

[7] R.C. Bradley. Introduction to Strong Mixing Conditions. Number v. 1 in Introduction to Strong
Mixing Conditions. Kendrick Press, 2007.

[8] Emmanuel J. Candès, Lihua Lei, and Zhimei Ren. Conformalized survival analysis, 2023.

[9] Victor Chernozhukov, Kaspar Wüthrich, and Zhu Yinchu. Exact and robust conformal inference
methods for predictive machine learning with dependent data. In Sébastien Bubeck, Vianney
Perchet, and Philippe Rigollet, editors, Proceedings of the 31st Conference On Learning Theory,
volume 75 of Proceedings of Machine Learning Research, pages 732–749. PMLR, 06–09 Jul
2018.

[10] Matthew Cleaveland, Insup Lee, George J. Pappas, and Lars Lindemann. Conformal prediction
regions for time series using linear complementarity programming, 2024.

[11] Jacopo Diquigiovanni, Matteo Fontana, and Simone Vantini. The importance of being a band:
Finite-sample exact distribution-free prediction sets for functional data, 2021.

[12] Jacopo Diquigiovanni, Matteo Fontana, and Simone Vantini. Distribution-free prediction bands
for multivariate functional time series: an application to the italian gas market, 2024.

[13] Olive Jean Dunn. Multiple Comparisons among Means. Journal of the American Statistical
Association, 56(293):52–64, March 1961.

[14] Robin Dunn, Larry Wasserman, and Aaditya Ramdas. Distribution-free prediction sets for
two-layer hierarchical models, 2022.

[15] Eshant English. Joint prediction regions for time-series models, 2024.

[16] Clara Fannjiang, Stephen Bates, Anastasios N. Angelopoulos, Jennifer Listgarten, and Michael I.
Jordan. Conformal prediction under feedback covariate shift for biomolecular design. Proceed-
ings of the National Academy of Sciences, 119(43), October 2022.

[17] Matteo Fontana, Gianluca Zeni, and Simone Vantini. Conformal prediction: A unified review
of theory and new challenges. Bernoulli, 29(1), February 2023.

[18] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA,
20–22 Jun 2016. PMLR.

[19] Matteo Gasparin and Aaditya Ramdas. Conformal online model aggregation, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[20] Isaac Gibbs and Emmanuel Candès. Adaptive conformal inference under distribution shift,
2021.

[21] Isaac Gibbs and Emmanuel Candès. Conformal inference for online prediction with arbitrary
distribution shifts, 2023.

[22] Winston Haynes. Bonferroni Correction. Springer New York, New York, NY, 2013.

[23] Rafael Izbicki, Gilson Shimizu, and Rafael B. Stern. Cd-split and hpd-split: efficient conformal
regions in high dimensions, 2021.

[24] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems, 2018.

[25] E. L. Lehmann and Joseph P. Romano. Generalizations of the familywise error rate. The Annals
of Statistics, 33(3), June 2005.

[26] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman.
Distribution-Free Predictive Inference for Regression. Journal of the American Statisti-
cal Association, 113(523):1094–1111, July 2018. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/01621459.2017.1307116.

[27] Lihua Lei and Emmanuel J. Candès. Conformal inference of counterfactuals and individual
treatment effects, 2021.

[28] Soundouss Messoudi, Sébastien Destercke, and Sylvain Rousseau. Copula-based conformal
prediction for multi-target regression, 2021.

[29] Aleksandr Podkopaev and Aaditya Ramdas. Distribution-free uncertainty quantification for
classification under label shift, 2021.

[30] Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S. Jaakkola, and
Regina Barzilay. Conformal language modeling, 2023.

[31] E. Rio. Asymptotic Theory of Weakly Dependent Random Processes. Probability Theory and
Stochastic Modelling. Springer Berlin Heidelberg, 2017.

[32] Joseph P. Romano. On the behavior of randomization tests without a group invariance assump-
tion. Journal of the American Statistical Association, 85(411):686–692, 1990.

[33] Kamile Stankeviciute, Ahmed M. Alaa, and Mihaela van der Schaar. Conformal Time-series
Forecasting. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 6216–6228.
Curran Associates, Inc., 2021.

[34] Anna Staszewska-Bystrova. Modified scheffé’s prediction bands. Journal of Economics and
Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), 233(5-6):680–690, 2013.

[35] Anna Staszewska-Bystrova. Bootstrap prediction bands for forecast paths from vector autore-
gressive models. Journal of Forecasting, 30(8):721–735, 2011.

[36] Sophia Huiwen Sun and Rose Yu. Copula conformal prediction for multi-step time series
prediction. In The Twelfth International Conference on Learning Representations, 2024.

[37] Ryan J. Tibshirani, Rina Foygel Barber, Emmanuel J. Candes, and Aaditya Ramdas. Conformal
prediction under covariate shift, 2020.

[38] U.S. Bureau of Economic Analysis. Real Gross Domestic Product, January 1947. Publisher:
FRED, Federal Reserve Bank of St. Louis.

[39] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic Learning in a Random World. Springer
International Publishing, 2023.

[40] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random
world, volume 29. Springer, 2005.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[41] Michael Wolf and Dan Wunderli. Bootstrap joint prediction regions. ECON - Working Papers
064, Department of Economics - University of Zurich, 2013.

[42] Chen Xu, Hanyang Jiang, and Yao Xie. Conformal prediction for multi-dimensional time series
by ellipsoidal sets, 2024.

[43] Chen Xu and Yao Xie. Conformal prediction for time series, 2023.

[44] Margaux Zaffran, Aymeric Dieuleveut, Olivier Féron, Yannig Goude, and Julie Josse. Adaptive
conformal predictions for time series, 2022.

[45] Yanfei Zhou, Lars Lindemann, and Matteo Sesia. Conformalized adaptive forecasting of
heterogeneous trajectories, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ONE-SIDED INTERVALS AND ASYMMETRIC INTERVALS

One-sided conformalised JPRs can be formed with a slight change to the conformity score. To do so
we consider signed residuals instead of absolute ones at each time step, redefining the conformity
score and present them in the multiple time series setting

αk
i,+ = K-max

{
yi,1 − ŷi,1
σ̂1(Xi)

, . . . ,
yi,H − ŷi,H
σ̂H(Xi)

}

for i ∈ {1, . . . , ncal} and where K-max(x⃗) as the Kth largest element of a sequence x⃗. One-sided
lower JPRs for test sample Z∗ = (X∗, Y ∗) can be given by

Cα+
1−ϵ =

(
ŷ1 − qK- max

1−ϵ · σ̂1(X
∗),∞

)
× · · · ×

(
ŷH − qK- max

1−ϵ · σ̂H(X∗),∞
)

and analogously a one-side upper JPR is given by

Cα−
1−ϵ =

(
−∞, ŷ1 + qK- max

1−ϵ · σ̂1(X
∗)
)
× · · · ×

(
−∞, ŷH + qK- max

1−ϵ · σ̂H(X∗)
)
.

where, X∗ are the lagged values(i.e the history) for the unknown Y ∗ that is to be predicted.

We define qK- max
η as the ηth empirical quantile of the distribution of αk

i,+.

Asymmetric intervals: If the intervals are unlikely to be symmetric, one can adapt the inversion of
quantiles from the conformity scores such as ϵ+, ϵ− > 0 with ϵ+ + ϵ− = ϵ thus the JPR is

Cα±
1−ϵ =

((
ŷ1 − qK- max

1−ϵ− · σ̂1(X
∗)
)
,
(
ŷ1 + qK- max

1−ϵ+ · σ̂1(X
∗)
))

× . . .

· · · ×
((

ŷH − qK- max
1−ϵ− · σ̂H(X∗)

)
,
(
ŷH + qK- max

1−ϵ+ · σ̂H(X∗)
))

.

A.2 DETAILS ON THEOREM 1

A.2.1 ASSUMPTIONS FOR THEOREM 1

Let αo be an oracle non-conformity measure, and let α be the corresponding non-conformity score
for approximate results. Assume the number of randomisations, d, and the size of the training
sequence, m, grow arbitrarily large, i.e. d,m → ∞. Further, let {δ1d, δ2m, γ1d, γ2m} be sequences
of non-negative numbers converging to zero. We impose the following conditions:

(1) Approximate Ergodicity: With probability 1− γ1d, the randomisation distribution

F̂ (x) :=
1

d

∑
π∈Π

1{αo(Zπ
cal) < x} (9)

is approximately ergodic for

F (x) = Pr(αo(Zcal) < x) (10)

that is supx∈R |F̂ (x)− F (x)| ≤ δ1d;
(2) Small estimation errors: With probability 1− γ2m the following hold:

(a) the mean squared error is small, d−1
∑

π∈Π[(α(Z
π
cal)− αo(Zπ

cal))]
2 ≤ δ22m;

(b) the pointwise error when π is the identity permutation is small, |α(Zcal)−αo(Zcal)| ≤
δ2m;

(c) the pdf of αo(Zcal) is bounded above by a constant D.

Condition (1) states an ergodicity condition, that permuting the oracle conformity scores provides
a meaningful approximation to the unconditional distribution of the oracle conformity score. This
holds when a time series is strongly mixing (α-mixing) (7; 31; 7; 31) using the permutation scheme
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discussed 4.2. Notably ARMA (Autoregressive and Moving Average) series with IID innovations are
known to be α-mixing (7; 31). Condition (2) bounds the discrepancy between the non-conformity
scores and their oracle counterparts.

Theorem 1 (Approximate General Validity of Inductive Conformal Inference)

Under mild assumptions on ergodicity and small errors (see Appendix A.2.1), for any ϵ ∈ (0, 1), the
approximation of conformal p-value is approximately distributed as follows:

|Pr(p̂ ≤ ϵ)− ϵ| ≤ 6δ1d + 2δ2m + 2D(δ2m + 2
√
δ2m) + γ1d + γ2m (11)

for any ϵ ∈ (0, 1) and the corresponding conformal set has an approximate coverage 1− ϵ, i.e,

|Pr(y∗ ∈ C1−ϵ)− (1− ϵ))| ≤ 6δ1d + 2δ2m + 2D(δ2m + 2
√
δ2m) + γ1d + γ2m. (12)

Proof. The proof largely follows the proof of Generalised Conformal Prediction in (9), adapted for
Inductive Conformal Prediction. Since the second condition (bounds on the coverage probability) is
implied by the first condition, it suffices to prove the first claim. Define the empirical distribution
function of the non-conformity scores under randomization as:

F̂ (x) :=
1

d

∑
π∈Π

1{αo(Zπ
cal) < x} (13)

The rest of the proof proceeds in two steps. We first bound F̂ (x)− F (x) and then derive the desired
result.

Step 1: We bound the difference between the p-value and the oracle p-value, F̂ (α(Zcal)) −
F (αo(Zcal)). Let M be the event that the conditions (1) and (2) hold. By assumption,

Pr(M) ≥ 1− γ1d − γ2m. (14)

Notice that on the event M,∣∣∣F̂ (α(Zcal))− F (αo(Zcal))
∣∣∣ ≤ ∣∣∣F̂ (α(Zcal))− F (α(Zcal))

∣∣∣+ |F (α(Zcal)− F (αo(Zcal))|
(i)
≤ sup

x∈R

∣∣∣F̂ (x)− F (x)
∣∣∣+D |α(Zcal)− αo(Zcal)|

≤ sup
x∈R

∣∣∣F̂ (x)− F̃ (x)
∣∣∣+ sup

x∈R

∣∣∣F̃ (x)− F (x)
∣∣∣+D|α(Zcal)− αo(Zcal)|

≤ sup
x∈R

∣∣∣F̂ (x)− F̃ (x)
∣∣∣+ δ1d +D|α(Zcal)− αo(Zcal)|

≤ sup
x∈R

∣∣∣F̂ (x)− F̃ (x)
∣∣∣+ δ1d +Dδ2m, (15)

where (i) holds by the fact that the bounded pdf of αo(Zcal) implies the Lipschitz property for F .

Let A = {π ∈ Π: |α(Zπ
cal) − αo(Zπ

cal)| ≥
√
δ2m. Notice that on the event M, by Chebyshev

inequality

|A|δ2d ≤
∑
π∈Π

(α(Zπ
cal)− αo(Zπ

cal))
2 ≤ dδ22m
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and thus |A|/m ≤ δ2m. Also notice that on the event M, for any x ∈ R,∣∣∣F̂ (x)− F̃ (x)
∣∣∣

≤ 1

d

∑
π∈A

|1{α(Zπ
cal) < x} − 1{αo(Zπ

cal) < x}|+ 1

d

∑
π∈(Π\A)

|1{α(Zπ
cal) < x} − 1{αo(Zπ

cal) < x}|

(i)
≤ |A|

d
+

1

d

∑
π∈(Π\A)

1
{
|αo(Zπ

cal)− x| ≤
√

δ2

}
≤ |A|

d
+

1

d

∑
π∈Π

1
{
|αo(Zπ

cal)− x| ≤
√

δ2m

}
≤ |A|

d
+ Pr

(
|αo(Zcal)− x| ≤

√
δ2m

)
+ sup

z∈R

∣∣∣∣∣1d ∑
π∈Π

1
{
|αo(Zπ

cal)− z| ≤
√
δ2m

}
− Pr

(
|αo(Zcal)− z| ≤

√
δ2m

)∣∣∣∣∣
=

|A|
d

+ Pr
(
|αo(Zcal)− x| ≤

√
δ2m

)
+ sup

x∈R

∣∣∣[F̃ (
z +

√
δ2m

)
− F̃

(
z −

√
δ2m

)]
−

[
F
(
z +

√
δ2m

)
− F

(
z −

√
δ2m

)]∣∣∣
≤ |A|

d
+ Pr

(
|αo(Zcal)− x| ≤

√
δ2m

)
+ 2 sup

x∈R

∣∣∣F̃ (z)− F (z)
∣∣∣

(ii)
≤ |A|

d
+ 2D

√
δ2m + 2δ1d

(iii)
≤ 2δ1d + δ2m + 2D

√
δ2m,

where

i. follows by the boundedness of indicator functions and the elementary inequality of
|1 {α(Zπ

cal) < x} − 1{αo(Zπ
cal) < x} | ≤ 1 {|αo(Zπ

cal)− x| ≤ |α(Zπ
cal)− αo(Zπ

cal)|};

ii. follows by the bounded pdf of αo(Zcal);

iii. follows by |A|/d ≤ δ2m.

Since the above result holds for each x ∈ R, it follows that on the event M,

sup
x∈R

∣∣∣F̂ (x)− F̃ (x)
∣∣∣ ≤ 2δ1d + δ2m + 2D

√
δ2m. (16)

We combine (15) and (16) and obtain that on the event M,∣∣∣F̂ (α(Zcal))− F (αo(Zcal))
∣∣∣ ≤ 3δ1d + δ2m +D(δ2m + 2

√
δ2m). (17)

Step 2: The derivation of the main result follows: Notice that∣∣Pr (1− F̂ (α(Zcal)) ≤ ϵ
)
− ϵ

∣∣
=

∣∣∣E (
1
{
1− F̂ (α(Zcal)) ≤ ϵ

}
− 1{1− F (αo(Zcal)) ≤ ϵ}

)∣∣∣
≤ E

∣∣∣1{1− F̂ (α(Zcal)) ≤ ϵ
}
− 1 {1− F (αo(Zcal)) ≤ ϵ}

∣∣∣
(i)
≤ Pr

(
|F (αo(Zcal))− 1 + ϵ| ≤

∣∣∣F̂ (α(Zcal))− F (αo(Zcal))
∣∣∣)

≤ Pr
(
|F (αo(Zcal))− 1 + ϵ| ≤

∣∣∣F̂ (α(Zcal))− F (αo(Zcal))
∣∣∣ and M

)
+ Pr

(
MC)

(ii)
≤

(
Pr(|F (αo(Zcal))− 1 + ϵ| ≤ 3δ1d + δ2m +D(δ2m − 2

√
δ2m)

)
+ Pr(MC)

(iii)
≤ 6δ1d + 2δ2m + 2D(δ2m − 2

√
δ2m) + γ1d + γ2m,
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where

i. follows by the elementary inequality |1{1 − F̂ (α(Zcal)) ≤ ϵ} − 1{1 − F (αo(Zcal)) ≤
ϵ}| ≤ |1{F (αo(Zcal))− 1 + ϵ| ≤ |F̂ (α(Zcal))− F (αo(Zcal))|},

ii. follows by (17),

iii. follows by the fact that F (αo(Zcal)) has the uniform distribution on (0, 1) and therefore,
has pdf equal to 1, and by (14).

Theorem 2 (General Exact Validity). Consider a sequence of observations Zπ
cal that has an exchange-

able distribution under the permutation group Π. For any fixed permutation group the randomisation
quantiles, ϵ, are invariant, namely

A(r(ϵ)) (Ztr, Z
π
cal) = A(r(ϵ)) (Ztr, Zcal) ∀π ∈ Π

where r(ϵ) = ⌈(d+ 1)ϵ)⌉-th non-conformity score (when ranked in the descending order). Then, the
following probabilistic guarantees hold:

• Pr(p̂ ≤ ϵ) = Pr
(
A (Ztr, Zcal) > A

(
Ztr, Z

(r(ϵ))
cal

))
≤ ϵ

• Pr(Y ∗ ∈ C1−ϵ) ≥ 1− ϵ

where Z
(r(ϵ))
cal is the permuted sequence that corresponds to the ⌈(d+ 1)ϵ⌉th non-conformity score

when ranked in descending order, C1−ϵ is the prediction interval for (1− ϵ) coverage and test sample
Z∗ = (X∗, Y ∗).

The proof follows from arguments for randomisation inference that can be found in (9; 32).

B TRAINING DETAILS

We perform all our experiments on Intel(R) Xeon(R) W-2265 CPU @ 3.50GHz with 20 CPUs, 12
cores per socket, and 2 threads per core. In totality, we used on the order of 100 compute hours.

B.1 SINGLE TIME SERIES EXPERIMENTS

For Monte Carlo simulations and the US GDP dataset, we train AR(2) models as the main predictor.
For learning scaling factors, we use a linear regression model and use the last 6 steps as the features
to output the scaling factors.

B.2 PARTICLE EXPERIMENTS

We take the same experimental setup as (36) and use a 1-layer sequence-to-sequence LSTM network
(EncDec) where the encoder has a single LSTM layer with embedding size 24 and the decoder has
a single LSTM layer with embedding size 24 and a linear layer. We also fit a 1-layer RNN with a
single LSTM layer (RNN) with embedding size 24, followed by a linear layer. We train the model for
150 epochs and set batch size to 150.

For each dataset, 5000 samples were generated and split into 45/45/10 proportions for training,
calibration, and testing, respectively. Baselines not requiring calibration used the calibration split for
training.

B.3 UK COVID EXPERIMENTS

We take the same architectures from the particle experiments and apply them to the same COVID
data as (33). We train these models for 200 epochs with embedding sizes of 128 and set batch size of
64.

Of the 380 time series, we utilise 200 sequences for training, 100 for calibration, and 80 for testing.
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B.4 COMPLETE MONTE CARLO RESULTS

We visualise the results of these experiments in Figure 2. For complete numerical results see Tables 3-
8. We find that our JANET methods are comparable or better with respect to coverage and interval
widths against the baselines.

Figure 2: Monte Carlo Experiment Coverage Error (pp) vs Interval Width. The y-axis shows the
difference in coverage from the target 1 − ϵ for ϵ = 0.2 in percentage points and the x-axis is
the geometric mean of the interval width over the time horizon. The red line represents perfect
calibration. Better methods can be found near the red line and to the left (well-calibrated, narrower
interval width). The left plot is for the case of K = 1 while the right plot shows K = 3. The
Bonferroni and Scheffé-JPR methods are only applicable for K = 1. Shapes represent calibration
methods and colors signify forecast horizon, H . For K = 1 (top row) note that the Bonferroni
regions are consistently overconservative (overcoverage) while the Scheffé regions are consistently
anticonservative (undercoverage). Meanwhile the bootstrap and JANET JPRs are comparable and
generally provide close to the desired coverage and are similar in width.
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Zπ1
cal:

Zπ2
cal:

...

Zπ6
cal:

z11 z12 z13 z14 z15 z16

z12 z13 z14 z15 z16 z11

z16 z11 z12 z13 z14 z15

Figure 3: Visualisation of NOB permutations applied to a single time series Z of length L =
Ltr + Lcal = 10 + 6 = 16 (z1, . . . , z10 are used for training and z11, . . . , z16 are reserved for
calibration). The first row shows the calibration portion of a time series, Z, under the identity
permutation, π1. Subsequent rows show how different permutations rearrange Z for block size, b = 1.
Arrows denote how the objects are permuted. Each permutation in this group rotates the front block
to the end.

Table 3: Empirical Coverages of Monte Carlo Simulations with Significance Level ϵ = 0.1. Coverages
are presented as percentages.

ϵ = 0.1

Method H = 6 H = 12 H = 18 H = 24

Bonferroni 91.7 90.8 91.1 88.3
Scheffé-JPR 86.6 85.9 85.7 85.7
Boot-JPR(K = 1) 88.7 87.7 88.0 87.3
JANET*(K = 1) 87.6 88.0 88.2 87.9
JANET(K = 1) 88.7 89.7 89.3 88.6

Boot-JPR(K = 2) 87.2 87.5 88.2 87.3
JANET*(K = 2) 88.9 87.7 89.1 89.4
JANET(K = 2) 88.5 88.6 88.7 87.9

Boot-JPR(K = 3) 88.2 87.5 87.6 87.4
JANET*(K = 3) 89.9 87.9 87.7 88.7
JANET(K = 3) 88.9 88.8 88.5 88.7

Table 4: Empirical Coverages of Monte Carlo Simulations with ϵ = 0.2. Coverages are presented as
percentages. The desired coverage is 80%.

ϵ = 0.2

Method H = 6 H = 12 H = 18 H = 24

Bonferroni 86.0 85.9 85.2 83.4
Scheffé-JPR 73.1 71.5 71.0 70.8
Boot-JPR(K = 1) 79.4 80.0 80.1 79.7
JANET*(K = 1) 78.9 79.2 79.9 79.3
JANET(K = 1) 79.5 80.5 81.4 80.3

Boot-JPR(K = 2) 79.1 77.5 79.8 78.6
JANET*(K = 2) 79.6 78.4 79.9 79.7
JANET(K = 2) 79.5 79.3 81.2 78.6

Boot-JPR(K = 3) 78.7 79.3 78.6 78.7
JANET*(K = 3) 79.9 80.5 79.3 80.2
JANET(K = 3) 78.3 79.8 79.5 79.3
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Table 5: Empirical Coverages of Monte Carlo Simulations with ϵ = 0.3. Coverages are presented as
percentages. Desired coverage is 70%.

ϵ = 0.3

Method H = 6 H = 12 H = 18 H = 24

Bonferroni 82.3 81.0 77.5 78.8
Scheffé-JPR 60.2 57.5 56.8 56.5
Boot-JPR(K = 1) 69.6 70.2 70.3 71.2
JANET*(K = 1) 69.3 69.3 71.0 71.2
JANET(K = 1) 69.8 72.0 72.1 71.4

Boot-JPR(K = 2) 71.0 68.9 69.8 69.4
JANET*(K = 2) 69.4 70.3 71.4 70.6
JANET(K = 2) 70.7 71.1 71.4 69.8

Boot-JPR(K = 3) 68.8 69.1 70.0 70.8
JANET*(K = 3) 70.7 71.3 71.3 70.9
JANET(K = 3) 68.8 68.9 70.6 70.8

Table 6: Empirical Widths of Monte Carlo Simulations with ϵ = 0.1. The desired coverage is 90%
and narrower intervals are preferred. These reported widths are geometric means over the time steps
averaged over the 1000 simulations.

ϵ = 0.1

Method H = 6 H = 12 H = 18 H = 24

Bonferroni 7.73 9.51 10.45 10.94
Scheffé-JPR 7.98 10.83 12.83 14.41
Boot-JPR(K=1) 7.69 9.73 10.87 11.66
JANET*(K = 1) 7.44 9.50 10.64 11.40
JANET(K = 1) 7.60 9.71 10.95 11.76

Boot-JPR(K = 2) 6.17 8.12 9.18 9.89
JANET*(K = 2) 6.04 7.98 9.05 9.74
JANET(K = 2) 6.13 8.09 9.19 9.96

Boot-JPR(K = 3) 4.88 6.87 7.97 8.61
JANET*(K = 3) 4.78 6.75 7.82 8.56
JANET(K = 3) 4.83 6.83 7.94 8.69

Table 7: Empirical Widths of Monte Carlo Simulations with ϵ = 0.2. The desired coverage is 80%.
Narrower intervals are preferred. These reported widths are geometric means over the time steps
averaged over the 1000 simulations.

ϵ = 0.2

Method H = 6 H = 12 H = 18 H = 24

Bonferroni 6.89 8.73 9.64 10.26
Scheffé-JPR 6.61 9.25 11.14 12.64
Boot-JPR(K = 1) 6.59 8.56 9.66 10.47
JANET*(K = 1) 6.41 8.33 9.45 10.20
JANET(K = 1) 6.53 8.47 9.63 10.44

Boot-JPR(K = 2) 5.23 7.12 8.19 8.89
JANET*(K = 2) 5.13 7.00 8.06 8.76
JANET(K = 2) 5.19 7.07 8.14 8.88

Boot-JPR(K = 3) 4.08 6.00 7.08 7.79
JANET*(K = 3) 4.00 5.93 6.99 7.72
JANET(K = 3) 4.03 5.96 7.04 7.78
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Table 8: Empirical Widths of Monte Carlo Simulations with ϵ = 0.3. The desired coverage is 70%.
Narrower intervals are preferred. These reported widths are geometric means over the time steps
averaged over the 1000 simulations.

ϵ = 0.3

Method H = 6 H = 12 H = 18 H = 24

Bonferroni 6.38 8.22 8.96 9.79
Scheffé-JPR 5.67 8.15 9.96 11.40
Boot-JPR(K = 1) 5.86 7.73 8.81 9.63
JANET*(K = 1) 5.70 7.55 8.64 9.38
JANET(K = 1) 5.78 7.64 8.76 9.54

Boot-JPR(K = 2) 4.60 6.41 7.47 8.21
JANET*(K = 2) 4.51 6.32 7.37 8.08
JANET(K = 2) 4.57 6.35 7.41 8.16

Boot-JPR(K = 3) 3.53 5.42 6.48 7.20
JANET*(K = 3) 3.48 5.32 6.39 7.13
JANET(K = 3) 3.49 5.36 6.43 7.17

Figure 4: Bar plot for the coverages of different methods, ϵ = 0.1. The desired coverage is 90%.
Negative values indicate undercoverage and positive values indicate overcoverage.

Figure 5: Bar plot for the coverages of different methods, ϵ = 0.2 (80% coverage).
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Figure 6: Bar plot for the coverages of different methods, ϵ = 0.3 (70% coverage)

Figure 7: Geometric mean of widths for different forecast horizons of different methods, ϵ = 0.3
(70% coverage).
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Figure 8: Geometric mean of widths for different forecast horizons of different methods, ϵ = 0.2
(80% coverage).

Figure 9: Geometric mean of widths for different forecast horizons of different methods, ϵ = 0.1
(90% coverage).
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Figure 10: The resulting GDP data after preprocessing (log transform and differencing).
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