
Dependency Transformer Grammars: Integrating Dependency Structures
into Transformer Language Models

Anonymous ACL submission

Abstract

Syntactic Transformer language models aim to001
achieve better generalization through simulta-002
neously modeling syntax trees and sentences.003
While prior work has been focusing on adding004
constituency-based structures to Transformers,005
we introduce Dependency Transformer Gram-006
mars (DTGs), a new class of Transformer lan-007
guage model with explicit dependency-based008
inductive bias. DTGs simulate dependency009
transition systems with constrained attention010
patterns by modifying attention masks, incor-011
porate the stack information through relative012
positional encoding, and augment dependency013
arc representation with a combination of to-014
ken embeddings and operation embeddings.015
When trained on a dataset of sentences anno-016
tated with dependency trees, DTGs achieve017
better generalization while maintaining com-018
parable perplexity with Transformer language019
model baselines. DTGs also outperform re-020
cent constituency-based models, showing that021
dependency can better guide Transformer lan-022
guage models. Our code will be publicly avail-023
able upon acceptance.024

1 Introduction025

Transformer language models have shown strong026

performance on language modeling tasks and a027

broad spectrum of downstream tasks (Radford028

et al., 2019; Devlin et al., 2019; Brown et al., 2020).029

Despite the great power of the Transformer archi-030

tecture (Vaswani et al., 2017), it lacks the induc-031

tive biases of syntactic structures, which has been032

hypothesized to improve generalization (Everaert033

et al., 2015). A straightforward way to incorporate034

such biases into Transformers is explicit modeling035

of syntactic structures.036

Inspired by earlier work of generative parsing as037

language modeling that integrates syntactic struc-038

tures into RNNs (Dyer et al., 2016; Choe and Char-039

niak, 2016), recent studies have focused on adapt-040

ing this method to Transformer architectures (Qian041

et al., 2021; Yoshida and Oseki, 2022; Sartran et al., 042

2022; Murty et al., 2023). The models proposed by 043

these studies are categorized as syntactic language 044

models because they jointly model the distribution 045

of surface strings and their corresponding syntactic 046

trees. Experiments show that these models achieve 047

competitive perplexity in language modeling and 048

gain better syntactic generalization, supporting the 049

above hypothesis on the benefits of introducing 050

inductive bias of syntactic structures. However, 051

the structural supervision that has been used in all 052

these models is based on constituency trees and it 053

is unclear of the performance of dependency-based 054

Transformer syntactic language models. Different 055

from constituency structures, which model recur- 056

sive syntactic compositions, dependency structures 057

focus more on the relationship between tokens, 058

which is similar to the self-attention mechanism in 059

Transformer, hinting at potential synergy between 060

the two. 061

In this paper, we propose Dependency Trans- 062

former Grammars (DTGs), dependency-based syn- 063

tactic language models that learn joint distribu- 064

tions of sentences and dependency trees. DTGs 065

introduce an inductive bias of dependency struc- 066

tures to Transformers by (i) modeling transition 067

sequences of transition-based dependency parsers 068

instead of sentences, (ii) simulating the stack op- 069

erations in transition-based dependency parsers 070

through modification of attention masks, (iii) incor- 071

porating the stack information of transition-based 072

systems through relative positional encoding of 073

stack depth, and (iv) representing head-dependent 074

relations through a combination of head token em- 075

beddings and transition operation embeddings. Fol- 076

lowing a line of previous work in generative depen- 077

dency parsing (Titov and Henderson, 2007; Cohen 078

et al., 2011; Buys and Blunsom, 2015), the gen- 079

erative formulation of our model is based on the 080

arc-standard system (Nivre, 2004), which builds a 081

dependency tree in a bottom-up manner. We also 082

1



explore models using other dependency transition083

systems for comparison.084

Our experiments show that DTGs achieve com-085

parable perplexity in language modeling and im-086

proved syntactic generalization on both the BLiMP087

benchmark (Warstadt et al., 2020) and the SG test088

suites (Hu et al., 2020) over Transformer language089

model baselines. Furthermore, DTGs outperform090

constituency-based syntactic language models in091

both language modeling and syntactic generaliza-092

tion.093

In summary, our contributions are as follows.094

• We propose dependency-based syntactic lan-095

guage models, DTGs, to incorporate depen-096

dency inductive bias into Transformers.097

• We primarily build DTGs using the arc-098

standard transition system, while we also099

study the usage of other dependency transi-100

tion systems.101

• Experimental results on two syntactic gener-102

alization benchmarks show the benefits of in-103

troducing inductive bias of dependency struc-104

tures.105

2 Preliminaries: Transition-based106

Dependency Parsing107

Given a sentence, transition-based dependency108

parsing predicts a sequence of predefined transi-109

tions between states that incrementally build a de-110

pendency parse tree. A state contains a stack σ with111

token i on the top, a buffer β with j at its leftmost112

side, and a set A of dependency arcs, denoted as113

(σ∣i, j∣β,A).114

In this work, we focus on unlabeled projective115

dependency parsing for the simplicity of its tran-116

sition systems. There are several different transi-117

tion systems for projective dependency parsing, as118

shown in Table 1. Arc-standard (Nivre, 2004) is119

a widely used transition system that defines three120

transitions: SHIFT, LEFTARC and RIGHTARC. Arc-121

standard builds dependency trees in a bottom-up122

manner, that is, every token is not connected to123

its head token until it gathers all of its dependents.124

Arc-eager (Nivre, 2003) is another transition sys-125

tem that adds one more transition: POP. The main126

difference between arc-standard and arc-eager lies127

in the scope of arcs. Arc-standard only allows128

inducing arcs in the stack while arc-eager eases129

the restriction by defining arc transitions between130

the stack and the buffer. As a result, dependency 131

trees are no longer built from bottom to up in 132

arc-eager. A later system arc-hybrid (Kuhlmann 133

et al., 2011) combines LEFTARC in arc-eager and 134

RIGHTARC in arc-standard. Another more re- 135

cent system arc-swift (Qi and Manning, 2017) ex- 136

tends arc-inducing to non-local cases: transition 137

LEFTARC/RIGHTARC[k] in arc-swift can be seen as 138

k − 1 POP operations followed by one arc-inducing 139

in arc-eager. 140

The above dependency parsing transition sys- 141

tems can be changed into a generative form, such 142

that they generate sentences along with their associ- 143

ated dependency trees. The main change to the tran- 144

sition systems is that tokens need to be generated 145

instead of being shifted from the buffer. Specifi- 146

cally, in arc-standard we substitute SHIFT with a 147

token generation transition GEN, while retaining the 148

other transitions (Titov and Henderson, 2007; Co- 149

hen et al., 2011; Buys and Blunsom, 2015). Other 150

systems require additional efforts to obtain a gen- 151

erative form because they contain the usage of the 152

buffer head in LEFTARC and/or RIGHTARC before 153

shifting it to the stack. Simply replacing SHIFT 154

with GEN cannot ensure the existence of the two to- 155

kens involved in a newly generated arc. Therefore, 156

we need to insert a GEN’ transition,1 which gener- 157

ates a new token but puts it in the buffer, before any 158

LEFTARC/RIGHTARC transition that involves an un- 159

generated token. The SHIFT transitions are omitted 160

because any generated token will be shifted to the 161

stack once a new token is generated. 162

We can use an oracle to extract a transition se- 163

quence from a dependency parse tree: An arc- 164

inducing transition is generated whenever possi- 165

ble, and a POP transition (in arc-eager) is gen- 166

erated when it is impossible to generate other 167

transitions, i.e., the transition preference order is 168

LEFTARC/RIGHTARC > GEN > POP. 169

3 Model 170

DTG follows the generative form of the arc- 171

standard dependency transition system and gen- 172

erates a sequence of transitions that construct a sen- 173

tence x and its dependency tree y incrementally. 174

The sequence consists of three types of transitions: 175

• GEN(x): generating a token, which corre- 176

sponds to the GEN operation in generative arc- 177

1To simplify, we will refer to GEN’ as GEN, which can be
distinguished according to transition systems.

2



arc-standard arc-hybrid
Shift (σ, i∣β,A) ⇒ (σ∣i, β, A)
LArc (σ∣i∣j, β,A) ⇒ (σ∣j, β,A ∪ {(j → i)})
RArc (σ∣i∣j, β,A) ⇒ (σ∣i, β, A ∪ {(i → j)})

Shift (σ, i∣β,A) ⇒ (σ∣i, β,A)
LArc (σ∣i, j∣β,A) ⇒ (σ, j∣β,A ∪ {(j → i)})
RArc (σ∣i∣j, β,A) ⇒ (σ∣i, β, A ∪ {(i → j)})

arc-eager arc-swift

Shift (σ, i∣β,A) ⇒ (σ∣i, β, A)
LArc (σ∣i, j∣β,A) ⇒ (σ, j∣β,A ∪ {(j → i)})
RArc (σ∣i, j∣β,A) ⇒ (σ∣i∣j, β,A ∪ {(i → j)})
Pop (σ∣i, β, A) ⇒ (σ, β,A)

Shift (σ, i∣β,A) ⇒ (σ∣i, β, A)
LArc[k] (σ∣ik∣ . . . ∣i1, j∣β,A)

⇒ (σ, j∣β,A ∪ {(j → ik)})
RArc[k] (σ∣ik∣ . . . ∣i1, j∣β,A)

⇒ (σ∣ik∣j, β,A ∪ {(ik → j)})

Table 1: Transitions defined by different transition systems (adapted from Qi and Manning (2017))

<ROOT>

Dep tree

Sentence

Transitions

There is a difference

 GEN  1   LA  1 

 1   2   3   4 

 1 
 4 

 GEN  2   GEN  3 

 GEN  4   LA  2   RA  3   RA  4 

 2 
 3 

Figure 1: An example sentence with its dependency tree
and transition sequence. Numbers in blue and red are
indices of tokens and arcs respectively.

standard and is exactly what a standard Trans-178

former decoder does at each step;179

• LEFTARC or LA: inducing an arc from the most180

recent unconnected token (i.e., a token that181

has not been connected to its head) to the sec-182

ond most recent unconnected token, which183

corresponds to the LEFTARC operation in arc-184

standard;185

• RIGHTARC or RA: inducing an arc from the186

second most recent unconnected token to the187

most recent unconnected token, which cor-188

responds to the RIGHTARC operation in arc-189

standard.190

An example is shown in Figure 1.191

We write α(x,y) = (α0, α1, ..., αT−1) as the192

transition sequence of length T of sentence x and193

parse tree y, where each αt belongs to one of the194

three types mentioned above. DTG is a Trans-195

former decoder that models the distribution of196

α(x,y) in the manner of causal language mod-197

eling, that is, p(α(x,y)) = ∏
i
p(αi∣α<i). It dif-198

fers from a standard Transformer in several aspects199

in order to incorporate the dependency inductive200

bias, including attention masks, positional encod-201

ing, augmented representation of arcs, and con-202

strained generation, which we discuss in the fol-203

lowing subsections. 204

3.1 Arc-Standard via Attention Mask 205

DTGs generate the transition sequence autoregres- 206

sively. A standard Transformer language model 207

makes predictions based on the complete gener- 208

ation history. In contrast, to incorporate the de- 209

pendency inductive bias into DTGs, we generate 210

transitions based on the stack in arc-standard. The 211

stack is encoded into the model with different at- 212

tention forms and is updated by input transitions. 213

When a GEN transition comes, the transition 214

system pushes a new token onto the stack and 215

then gathers the stack information to generate the 216

next transition, which we realize by the first at- 217

tention form, STACK attention. When a transi- 218

tion changing the dependency structure comes, i.e., 219

a LEFTARC/RIGHTARC transition, the stack is up- 220

dated in two steps: (i) pop two tokens from the 221

stack and designate one as the head of the other 222

and (ii) push the head token back onto the stack. 223

The two steps are realized by the second form of 224

attention, COMPOSE attention, which updates the 225

representation of the head by consuming its de- 226

pendent but ignoring everything else to reflect the 227

newly induced dependency arc. Then all the stack 228

information is gathered for generating the next tran- 229

sition, which is again realized by STACK attention. 230

Therefore, two forms of attention are required for 231

one transition. As each transition can only use 232

one form of attention in Transformer, we duplicate 233

the arc transitions, namely LEFTARC/RIGHTARC and 234

LEFTARC2/RIGHTARC2. The former encodes depen- 235

dency information with COMPOSE attention and 236

makes no generation, while the latter triggers the 237

generation of the next transition with STACK at- 238

tention. After the duplication, the sequence length 239

increases from T to T
′. We denote the new se- 240

quence as α
′, which is the exact input sequence 241

3



i Input Attn. Mask Prediction

0 <ROOT> STACK GEN(There)
1 There STACK GEN(is)
2 is STACK LEFTARC
3 LEFTARC + is COMPOSE -
4 LEFTARC2 + is STACK GEN(a)
5 a STACK GEN(difference)
6 difference STACK LEFTARC
7 LEFTARC + difference COMPOSE -
8 LEFTARC2 + difference STACK RIGHTARC
9 RIGHTARC + is COMPOSE -
10 RIGHTARC2 + is STACK RIGHTARC
11 RIGHTARC + <ROOT> COMPOSE -
12 RIGHTARC2 + <ROOT> STACK <END>

(a) Transition sequence after duplicating LEFTARC/RIGHTARC
transitions. We do not have to make predictions for positions
3, 7, 9, 11.

<ROOT>

There

LA

is

LA2

a

diff.

LA

LA2

RA

RA2

RA

RA2

<R
OO
T>

Th
ere is LA LA2 a diff. LA LA2 RA RA2 RA RA2

(b) Attention mask. Tokens are simplified for a tight view.
We use orange to represent COMPOSE and blue to represent
STACK.

Figure 2: Transition sequence and attention masks of an example sentence

Algorithm 1 COMPOSE/STACK attention

Require: α
′ sequence of transitions

Ensure: A ∈ RT
′×T ′

attention mask
1: S ← [] ▷ Empty stack
2: A ← 0
3: for i ← 0 to T

′ do
4: if type(a′[i]) = LEFTARC or
5: type(a′[i]) = RIGHTARC then ▷ COMPOSE
6: Aii ← 1
7: l← S.pop()
8: r← S.pop()
9: Ail ← 1

10: Air ← 1
11: S.push(i) ▷ View transition i as the head token
12: else ▷ STACK
13: if type(a′[i]) ≠ LEFTARC2 and
14: type(a′[i]) ≠ RIGHTARC2 then
15: S.push(i)
16: end if
17: for j ∈ S do
18: Aij ← 1
19: end for
20: end if
21: end for
22: return A ▷ Attention mask

of our model. Note that this does not change the242

distribution of α(x,y), as the generation sequence243

remains unchanged. An example of the expanded244

transition sequence and the corresponding attention245

forms is shown in Figure 2a.246

The two forms of attention can be realized by247

leveraging different attention masks. We represent248

the attention masks as A ∈ RT
′×T ′

, where Aij = 1249

means position j can be attended from i and Aij = 250

0 means position j is masked from i. Our models 251

generate transitions in an autoregressive manner, so 252

the attention mask is causal, i.e., Aij = 0 for j > i. 253

STACK attention is performed at each position 254

i which needs to predict a new transition, i.e., α′
i ∈ 255

{GEN(x), LEFTARC2, RIGHTARC2}. From position i, 256

we attend to all the unmasked positions before i 257

(including i) to collect all the information on the 258

stack for generation. 259

COMPOSE attention is performed at each po- 260

sition i where α
′
i ∈ {LEFTARC, RIGHTARC}. From 261

position i, we attend to the positions of the most re- 262

cent two unmasked tokens, i.e., the top two tokens 263

on the stack in arc-standard, which forms a head- 264

dependent pair. Then we mask the two attended 265

positions from subsequent positions, effectively 266

popping the two tokens from the stack. The newly 267

computed representation serves as a substitute for 268

the head token that has absorbed the information 269

of its dependent and is pushed back onto the stack. 270

Algorithm 1 shows how to compute attention 271

masks for a transition sequence as described above. 272

We also show attention masks of an example tran- 273

sition sequence in Figure 2b. 274

3.2 Relative Positional Encoding 275

We design the positional encoding for DTGs based 276

on the relative positional encoding in Transformer- 277

XL (Dai et al., 2019). In Transformer-XL, the po- 278

4



sitional encoding is based on the distance between279

the attending position i and the attended position280

j, i.e., Rij = i − j. In DTGs, we modify the for-281

mulation to reflect the stack information. Crucially,282

Rij is only computed when Aij = 1. For STACK283

attention, we define d(i) as the depth in the stack,284

which increases from the top to the bottom. We285

then define Rij = d(i) − d(j). For COMPOSE286

attention, we define two positions, 0 and −1, to287

distinguish between the head and the dependent288

to be composed, i.e., Rij = 0 if token j is the289

head token and Rij = −1 if token j is the depen-290

dent token. The new representation computed with291

COMPOSE inherits the depth of the head token,292

i.e., d(i) = d(j) if token j is the composed head293

token.294

3.3 Arc Representation295

In standard language models, generated tokens296

are fed back into models as history. For arc-297

inducing transitions in DTGs, the generated transi-298

tions have surface forms of LEFTARC or RIGHTARC299

while the tokens ought to be pushed back are the300

head tokens. We propose to feed a combination301

of LEFTARC/RIGHTARC and the head token via sum-302

ming the embedding of these two parts. This formu-303

lation stems from the following two considerations:304

(i) the attention in DTGs cannot distinguish be-305

tween LEFTARC and RIGHTARC, so the embedding306

of LEFTARC/RIGHTARC acts as an indicator of the307

arc direction; (ii) the representation computed with308

COMPOSE is viewed as a substitute of the com-309

posed head token by subsequent positions, so we310

add the embedding of the head token to bias the311

representation.312

3.4 Other Transition Systems via Attention313

Mask314

We also design the attention mechanism for gen-315

erative arc-eager and arc-swift and name the re-316

sulting models DTG-eager and DTG-swift. We317

do not work on generative arc-hybrid because its318

transition sequences are exactly the same as that of319

generative arc-standard.320

For DTG-eager, we make two modifications321

based on DTG: (i) Change the COMPOSE atten-322

tion of RIGHTARC by not masking the position of323

the dependent token because in arc-eager, the de-324

pendent token can still induce arcs to subsequent325

tokens. (ii) For transition POP, we define POP-326

STACK attention, which pops the stack top. The327

stack top is the second most recent unmasked to-328

ken in most cases, and the most recent one is the 329

head of the buffer. However, if all tokens have been 330

generated and thus the buffer is empty, the stack 331

top is the most recent unmasked token. 332

For DTG-swift, LEFTARC and RIGHTARC are dec- 333

orated by an additional positive number k. This 334

affects ranges of attending and masking in COM- 335

POSE attention. That is, we attend to not only 336

the head-dependent pair but also the k − 1 tokens 337

between them, and we mask all these k + 1 tokens 338

for subsequent positions. 339

More details and examples of these two models 340

are provided in Appendix A. 341

3.5 Constraints on Inference 342

We define several constraints on transition gener- 343

ation during DTGs inference to make it consis- 344

tent with the corresponding transition-based depen- 345

dency parsing systems: 346

• For all the systems, the LEFTARC and 347

RIGHTARC transition can only be generated if 348

at least two tokens exist in the stack. 349

• For arc-eager, POP can only be generated if 350

the top of the stack has been recognized as a 351

right dependent of some head token. 352

• For arc-swift, the value of k in 353

LEFTARC/RIGHTARC[k] must not exceed 354

the size of the stack. 355

4 Experiments 356

We compare DTGs with DTG-eager, DTG-swift, 357

two Transformer-XL baselines, and constituency- 358

based syntactic Transformer language models. The 359

two Transformer-XL baselines follow those of Sar- 360

tran et al. (2022): (i) TXL (tokens) is a standard 361

Transformer-XL that generates sentences only, and 362

(ii) TXL (trans) is Transformer-XL that gener- 363

ates transition sequences just like DTG, but uses 364

standard attention masks and positional encod- 365

ing. Constituency-based syntactic Transformer lan- 366

guage models include: (i) the “generative parsing 367

as language modeling” of Qian et al. (2021) (PLM), 368

(ii) Transformer Grammars of Sartran et al. (2022) 369

(TG) and (iii) Pushdown Layers of Murty et al. 370

(2023) (Pushdown). 371

Dataset and Preprocessing All the models are 372

trained on the BLLIP-LG dataset of Charniak et al. 373

(2000), with training splits from Hu et al. (2020). 374

For our models, we obtain unlabeled projective 375

5



Model PPL (↓) BLiMP (↑) SG (↑)

Models without syntactic inductive bias
TXL (tokens) 14.8 75.3 76.6

Constituency-based models
PLM 29.8

♢
75.1 80.2

TG 18.4
♣

73.5
♣

82.5

Pushdown 19.9
♢

75.6 82.3
Dependency-based models

TXL (trans) 14.4 77.3 81.1

O
ur

s DTG-eager 15.5 75.2 -
DTG-swift 15.0 76.2 -
DTG 14.9 76.1 83.9

Table 2: Results of our models and baselines. ♢: Results
are taken from prior work and are only for reference
due to differences in tokenization. ♣: We rerun the
code from the original work (Sartran et al., 2022) and
obtain better perplexity than the reported result in it. All
results for PLM and Pushdown are taken from Murty
et al. (2023). The SG result for TG is taken from Sartran
et al. (2022).

dependency trees by parsing the dataset with a376

Biaffine-roberta parser (Dozat and Manning, 2017)377

implemented in Supar2. Tokenization is performed378

with the same scheme as in Sartran et al. (2022)379

with SentencePiece (Kudo and Richardson, 2018).380

Note that we model each sentence independently381

in all the experiments.382

Training Details We use the same hyperparame-383

ters as in Sartran et al. (2022) for training our mod-384

els, using 16-layer models with 252M parameters.385

To accelerate the training of token embeddings, we386

add a multiplier of 2.0 to the learning rate of em-387

bedding weights. More details can be found in388

Appendix B.389

4.1 Sentence-Level Language Modeling390

Setup For syntactic language models that jointly391

model the distributions of sentences and syntactic392

trees, i.e., p(x,y), we compute the string proba-393

bility p(x) = ∑y p(x,y). It is impossible to com-394

pute p(x) precisely due to the large space of all395

possible trees, so we follow Sartran et al. (2022) to396

approximate it using a relatively small set of trees397

sampled from a proposal model q(y∣x). For our398

depdendency-based models, we use the Biaffine-399

roberta (Dozat and Manning, 2017) parser as the400

proposal model to sample 300 unlabeled projective401

2
https://github.com/yzhangcs/parser

Lic
en

sin
g

Lo
ng

-D
ist

an
ce

Dep
en

den
cie

s

Agr
ee

m
en

t

Gar
den

-P
at

h

Eff
ec

ts
Gro

ss

Syn
ta

ct
ic 

Sta
te

Cen
te

r

Em
bed

ding

0

0.25

0.5

0.75

1

S
co

re
s

Ours TXL (trans)

Figure 3: Scores on the six circuits of the SG test suites.

dependency trees without replacement as a pro- 402

posal tree set Y′. p(x) is then approximated by 403

∑y∈Y′ p(x,y), which is an exact lower bound of 404

the true value of p(x) (hence leading to an upper 405

bound of perplexity). We evaluate the models by 406

sentence-level perplexity. 407

Results We report the perplexity of all the models 408

in Table 2. DTG achieves comparable perplexity 409

with TXL (tokens) and DTG-swift, outperforming 410

DTG-eager. TXL (trans) achieves lower perplexity 411

than TXL (tokens) even though the reported result 412

of TXL (trans) is an upper bound of its true per- 413

plexity. It shows that jointly modeling dependency 414

trees and sentences is helpful for sentence-level 415

language modeling. 416

The perplexity upper bound of DTG can be seen 417

to be lower than that of TG. There are two possi- 418

ble interpretations of this result: (i) Dependency 419

trees give better guidance than constituency trees 420

in syntactic language modeling. (ii) 300 trees may 421

be too few to get an accurate approximation of per- 422

plexity when sampling from a large set of possible 423

trees. Evaluating DTG and TG requires samples of 424

unlabeled projective dependency trees and labeled 425

constituency trees, respectively. The number of 426

the former is much smaller than the number of the 427

latter. Therefore, sampling 300 trees may give a 428

much tighter perplexity upper bound for DTG than 429

for TG, resulting in a gap in the reported results. 430

Unfortunately, it requires nontrivial work to distin- 431

guish between the two possibilities and we leave it 432

for future work. 433

4.2 Syntactic Generalization 434

To measure the syntactic generalization, we evalu- 435

ate our models on BLiMP (Warstadt et al., 2020) 436

and SG test suites (Hu et al., 2020). 437

6

https://github.com/yzhangcs/parser


Setup on BLiMP BLiMP contains 67 general-438

ization tests, each with 1000 sentence pairs. Each439

sentence pair consists of a grammatical sentence440

and an ungrammatical sentence. Models are eval-441

uated by whether they assign a higher probability442

to the grammatical one. We use the same setup443

as in section 4.1, sampling 300 trees for each sen-444

tence and calculating a lower bound of marginal445

probability p(x) for comparison.446

Setup on SG SG consists of test suites for six447

fine-grained syntactic phenomena. Each test suite448

has a specific inequality formula for evaluation.449

These inequalities are based on incremental natu-450

ral processing, requiring computing the surprisal451

values, i.e., − log p(xt∣x<t). We implement the452

word-synchronous beam search (Stern et al., 2017;453

Hale et al., 2018) to get the marginal probability at454

each token t and calculate the surprisal value. We455

fix the beam size at 300.456

Results The results are reported in Table 2. For457

BLiMP, we found that most of the constituency-458

based syntactic language models perform compa-459

rably with our baseline TXL (tokens), while DTG,460

DTG-swift, and TXL (trans) outperform them. For461

SG, all syntactic language models perform better462

than TXL (tokens), and DTG achieves the highest463

score. These results show that explicit modeling of464

syntactic structures is helpful for better generaliza-465

tion in Transformer language models, and depen-466

dency relations may lead to greater improvements467

in generalization than constituency compositions.468

We further compare TXL (trans) with DTG. The469

SG scores of 6 circuits are shown in Figure 3. In470

SG, DTG achieves a much higher average score471

than TXL (trans) and outperforms TXL (trans) in472

4 circuits while maintaining comparable scores in473

the other 2 circuits. On the other hand, TXL (trans)474

performs better than DTG on BLiMP. We believe475

it is because BLiMP evaluates semantic knowl-476

edge in addition to syntactic knowledge as detailed477

in Warstadt et al. (2020), even though BLiMP is478

used as a syntactic testset in previous work of syn-479

tactic language models (Qian et al., 2021; Murty480

et al., 2023). Syntax-motivated attention masking481

in DTG, while helpful in syntactic modeling, hin-482

ders acquisition of semantic information. Please483

refer to Appendix C for more discussion. It is thus484

an interesting future direction to integrate syntactic485

language models with standard language models486

so as to get the best of both worlds.487

Model UAS (↑)

Biaffine-roberta 96.9
TXL (trans) 97.0
DTG 97.0

Table 3: UAS on the PTB test set.

Model PPL (↓) BLiMP (↑)

w 15.1 75.9
arc 15.2 75.8
w+arc 14.9 76.1

Table 4: Results of different arc representations.

4.3 Parse Reranking 488

Setup We study to what extent DTG and 489

TXL (trans) have learned to produce correct de- 490

pendency structures. We still sample 300 trees with 491

the Biaffine-roberta parser and rerank them using 492

the two models. We convert human-annotated con- 493

stituency trees in the Penn Treebank (PTB) (Marcus 494

et al., 1993) test split into dependency trees with 495

CoreNLP 3.3.0 (Manning et al., 2014) and then 496

evaluate the UAS of the reranked trees on them. 497

Result We present the results in Table 3. TXL 498

(trans) and DTG both achieve a slightly higher 499

score than the proposal model Biaffine-roberta. Note 500

that both models are trained on the dependency 501

parse trees produced by Biaffine-roberta. The results 502

show that both models successfully learn about 503

dependency structures from Biaffine-roberta. 504

5 Analysis 505

5.1 Arc Representation 506

We compare three different representations of 507

LEFTARC/RIGHTARC in DTG : (i) the default for- 508

mulation of summing the LEFTARC/RIGHTARC em- 509

bedding and the embedding of the head token x, 510

(denoted as w + arc); (ii) the embedding of the 511

LEFTARC/RIGHTARC alone (denoted as arc); (iii) 512

the embedding of the head token alone (denoted 513

as w). DTG models with these representations are 514

trained and evaluated with the same setting as in 515

section 4. 516

The result is reported in Table 4. The default for- 517

mulation outperforms the other two representations, 518

showing that both the head token embedding and 519

the LEFTARC/RIGHTARC embedding play a positive 520

role in arc representation. 521

7



Parser PPL (↓) BLiMP (↑)

Biaffine 15.1 76.0
Biaffine-roberta 14.9 76.1

Table 5: Results of using different external parsers.

5.2 Dependency Parses for Training522

We use an external parser to provide dependency523

trees in the training data and sample 300 trees in524

sentence probability evaluation. Here, we study525

how the quality of the external parser affects our526

model’s performance. We compare two parsers,527

vanilla Biaffine without pre-trained token embed-528

dings and Biaffine-roberta,3 as the external parser529

used in training and evaluation. Note that Biaffine-530

roberta is more accurate than vanilla Biaffine.531

The result is reported in Table 5. We see an532

improvement in both perplexity and generalization533

when using a better parser.534

6 Related Work535

Augmenting language models with syntactic bias536

has been studied for a long time. One line of work537

adds constituency-based syntactic structures to lan-538

guage models through jointly modeling the distri-539

bution of sentences and structures (Chelba, 1997;540

Roark, 2001; Henderson, 2004; Choe and Charniak,541

2016; Kim et al., 2019). The RNNG model (Dyer542

et al., 2016) is a representative work of syntactic543

language models, using recursive networks to build544

representations of phrases. More recent work of545

syntactic language models is based on Transform-546

ers (Qian et al., 2021; Yoshida and Oseki, 2022;547

Sartran et al., 2022; Murty et al., 2023). Qian548

et al. (2021) and Sartran et al. (2022) constrain549

the attention with syntactic bias, while Pushdown550

Layers (Murty et al., 2023) enforce structural con-551

straints via gradient based learning. The above552

work is all based on constituency structures, and553

there has been some work considering dependency554

trees with simple neural networks (Titov and Hen-555

derson, 2007; Cohen et al., 2011; Buys and Blun-556

som, 2015; Mirowski and Vlachos, 2015). Most557

of them, however, focus more on generative de-558

pendency parsing while scratching the surface of a559

language modeling setting. A more general work560

is Prange et al. (2022), which both introduces con-561

stituency and dependency graphs to augment Trans-562

former language modeling, but it requires given563

3Also from https://github.com/yzhangcs/parser

gold trees for generation. Following the work of 564

generative dependency parsing and the constrained 565

attention patterns used in Sartran et al. (2022) and 566

other work (Strubell et al., 2018; Peng et al., 2019; 567

Zhang et al., 2020; Nguyen et al., 2020; Fernan- 568

dez Astudillo et al., 2020; Lou and Tu, 2023), we 569

propose DTG, a novel class of dependency-based 570

syntactic language models. It is the first syntactic 571

language model that designs a dependency-based 572

constrained attention mechanism for Transformers. 573

Another line of work augments models by learn- 574

able structures. Some studies integrate stack- 575

structured memory into models, where updating 576

patterns are learned from data rather than being dic- 577

tated by predefined syntactic inductive bias (Joulin 578

and Mikolov, 2015; Yogatama et al., 2018; DuSell 579

and Chiang, 2021, 2023). Besides, some studies 580

propose to learn structural attention patterns (Kim 581

et al., 2017; Wang et al., 2019; Shen et al., 2021, 582

2022). For example, Kim et al. (2017) assumes 583

that the attention scores are subject to linear-chain 584

or tree conditional random fields (CRFs; Lafferty 585

et al., 2001). These kinds of augmentation lead to 586

better generalization but usually cost longer run- 587

ning time than naive counterparts. 588

Some other studies focus on examining the syn- 589

tactic knowledge acquired by standard attention 590

after pretraining (Htut et al., 2019; Kovaleva et al., 591

2019; Kim et al., 2020; Ravishankar et al., 2021). 592

These studies have identified that certain attention 593

heads align their attention patterns with syntactic 594

structures, thereby providing pivot beliefs on the 595

benefits of introducing syntactic inductive bias. In 596

addition, some work re-invents attention using de- 597

pendency structures and CRFs (Wu and Tu, 2023), 598

motivating more linguistically principled studies. 599

7 Conclusion 600

We propose DTGs, a new type of syntactic lan- 601

guage models that add explicit dependency bias 602

into Transformers. DTGs simulate dependency 603

transition systems with constrained attention pat- 604

terns and incorporate stack information through 605

relative positional encoding. Experiments show 606

that DTGs surpass Transformer language model 607

baselines and other constituency-based syntactic 608

language models on syntactic generalization while 609

maintaining competitive perplexity. This implies 610

that the presence of dependency information does 611

improve the performance of Transformer language 612

models. 613

8

https://github.com/yzhangcs/parser


Limitations614

DTGs rely on dependency trees for training, which615

are predicted by an external parser in this study.616

However, for languages lacking accurate depen-617

dency parsers, our methods might not offer benefits.618

Additionally, we restrict trees in our study to be in619

the Standard Dependency representation (de Marn-620

effe and Manning, 2008) and only consider non-621

labeled projective dependency trees at the sentence622

level. The investigation of other dependency repre-623

sentations, such as Universal Dependencies (Nivre624

et al., 2020), more complex trees and document-625

level settings is lefted for future research.626

For training and inference, DTGs cannot utilize627

some recent advancements for Transformers eas-628

ily, including rotary position embeddings (Su et al.,629

2021) and Flash attention (Dao et al., 2022), due630

to our attention mask patterns and relative position631

encodings. Moreover, evaluating a sentence’s prob-632

ability with DTGs requires marginalizing over all633

possible trees, which is intractable. In this study,634

we approximate this by sampling 300 trees. How-635

ever, this is still time-consuming and only provides636

an upper bound for the perplexity metric.637

References638

Tom Brown, Benjamin Mann, Nick Ryder, Melanie639
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind640
Neelakantan, Pranav Shyam, Girish Sastry, Amanda641
Askell, Sandhini Agarwal, Ariel Herbert-Voss,642
Gretchen Krueger, Tom Henighan, Rewon Child,643
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens644
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-645
teusz Litwin, Scott Gray, Benjamin Chess, Jack646
Clark, Christopher Berner, Sam McCandlish, Alec647
Radford, Ilya Sutskever, and Dario Amodei. 2020.648
Language models are few-shot learners. In Ad-649
vances in Neural Information Processing Systems,650
volume 33, pages 1877–1901. Curran Associates,651
Inc.652

Jan Buys and Phil Blunsom. 2015. Generative incre-653
mental dependency parsing with neural networks. In654
Proceedings of the 53rd Annual Meeting of the As-655
sociation for Computational Linguistics and the 7th656
International Joint Conference on Natural Language657
Processing (Volume 2: Short Papers), pages 863–658
869, Beijing, China. Association for Computational659
Linguistics.660

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,661
John Hale, and Mark Johnson. 2000. Bllip 1987-89662
wsj corpus release 1. Linguistic Data Consortium,663
36.664

Ciprian Chelba. 1997. A structured language model. In665
35th Annual Meeting of the Association for Compu-666

tational Linguistics and 8th Conference of the Euro- 667
pean Chapter of the Association for Computational 668
Linguistics, pages 498–500, Madrid, Spain. Associa- 669
tion for Computational Linguistics. 670

Do Kook Choe and Eugene Charniak. 2016. Parsing 671
as language modeling. In Proceedings of the 2016 672
Conference on Empirical Methods in Natural Lan- 673
guage Processing, pages 2331–2336, Austin, Texas. 674
Association for Computational Linguistics. 675

Shay B. Cohen, Carlos Gómez-Rodríguez, and Giorgio 676
Satta. 2011. Exact inference for generative proba- 677
bilistic non-projective dependency parsing. In Pro- 678
ceedings of the 2011 Conference on Empirical Meth- 679
ods in Natural Language Processing, pages 1234– 680
1245, Edinburgh, Scotland, UK. Association for 681
Computational Linguistics. 682

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car- 683
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019. 684
Transformer-XL: Attentive language models beyond 685
a fixed-length context. In Proceedings of the 57th 686
Annual Meeting of the Association for Computational 687
Linguistics, pages 2978–2988, Florence, Italy. Asso- 688
ciation for Computational Linguistics. 689

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and 690
Christopher R’e. 2022. Flashattention: Fast and 691
memory-efficient exact attention with io-awareness. 692
ArXiv, abs/2205.14135. 693

Marie-Catherine de Marneffe and Christopher D. Man- 694
ning. 2008. The Stanford typed dependencies repre- 695
sentation. In Coling 2008: Proceedings of the work- 696
shop on Cross-Framework and Cross-Domain Parser 697
Evaluation, pages 1–8, Manchester, UK. Coling 2008 698
Organizing Committee. 699

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 700
Kristina Toutanova. 2019. BERT: Pre-training of 701
deep bidirectional transformers for language under- 702
standing. In Proceedings of the 2019 Conference of 703
the North American Chapter of the Association for 704
Computational Linguistics: Human Language Tech- 705
nologies, Volume 1 (Long and Short Papers), pages 706
4171–4186, Minneapolis, Minnesota. Association for 707
Computational Linguistics. 708

Timothy Dozat and Christopher D. Manning. 2017. 709
Deep biaffine attention for neural dependency pars- 710
ing. In International Conference on Learning Repre- 711
sentations. 712

Brian DuSell and David Chiang. 2021. Learning hierar- 713
chical structures with differentiable nondeterministic 714
stacks. arXiv preprint arXiv:2109.01982. 715

Brian DuSell and David Chiang. 2023. Stack attention: 716
Improving the ability of transformers to model hier- 717
archical patterns. arXiv preprint arXiv:2310.01749. 718

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, 719
and Noah A. Smith. 2016. Recurrent neural network 720
grammars. In Proceedings of the 2016 Conference 721
of the North American Chapter of the Association 722

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.3115/v1/P15-2142
https://doi.org/10.3115/v1/P15-2142
https://doi.org/10.3115/v1/P15-2142
https://doi.org/10.3115/976909.979681
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://aclanthology.org/D11-1114
https://aclanthology.org/D11-1114
https://aclanthology.org/D11-1114
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://aclanthology.org/W08-1301
https://aclanthology.org/W08-1301
https://aclanthology.org/W08-1301
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024


for Computational Linguistics: Human Language723
Technologies, pages 199–209, San Diego, California.724
Association for Computational Linguistics.725

Martin BH Everaert, Marinus AC Huybregts, Noam726
Chomsky, Robert C Berwick, and Johan J Bolhuis.727
2015. Structures, not strings: Linguistics as part of728
the cognitive sciences. Trends in cognitive sciences,729
19(12):729–743.730

Ramón Fernandez Astudillo, Miguel Ballesteros, Tahira731
Naseem, Austin Blodgett, and Radu Florian. 2020.732
Transition-based parsing with stack-transformers. In733
Findings of the Association for Computational Lin-734
guistics: EMNLP 2020, pages 1001–1007, Online.735
Association for Computational Linguistics.736

John Hale, Chris Dyer, Adhiguna Kuncoro, and737
Jonathan Brennan. 2018. Finding syntax in human738
encephalography with beam search. In Proceedings739
of the 56th Annual Meeting of the Association for740
Computational Linguistics (Volume 1: Long Papers),741
pages 2727–2736, Melbourne, Australia. Association742
for Computational Linguistics.743

James Henderson. 2004. Discriminative training of744
a neural network statistical parser. In Proceedings745
of the 42nd Annual Meeting of the Association for746
Computational Linguistics (ACL-04), pages 95–102,747
Barcelona, Spain.748

Phu Mon Htut, Jason Phang, Shikha Bordia, and749
Samuel R. Bowman. 2019. Do attention heads750
in bert track syntactic dependencies? ArXiv,751
abs/1911.12246.752

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,753
and Roger Levy. 2020. A systematic assessment754
of syntactic generalization in neural language mod-755
els. In Proceedings of the 58th Annual Meeting of756
the Association for Computational Linguistics, pages757
1725–1744, Online. Association for Computational758
Linguistics.759

Armand Joulin and Tomas Mikolov. 2015. Inferring760
algorithmic patterns with stack-augmented recurrent761
nets. Advances in neural information processing762
systems, 28.763

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang goo764
Lee. 2020. Are pre-trained language models aware765
of phrases? simple but strong baselines for grammar766
induction. In International Conference on Learning767
Representations.768

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-769
der M. Rush. 2017. Structured attention networks.770
In International Conference on Learning Representa-771
tions.772

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,773
Chris Dyer, and Gábor Melis. 2019. Unsupervised774
recurrent neural network grammars. In Proceedings775
of the 2019 Conference of the North American Chap-776
ter of the Association for Computational Linguistics:777
Human Language Technologies, Volume 1 (Long and778

Short Papers), pages 1105–1117, Minneapolis, Min- 779
nesota. Association for Computational Linguistics. 780

Olga Kovaleva, Alexey Romanov, Anna Rogers, and 781
Anna Rumshisky. 2019. Revealing the dark secrets 782
of BERT. In Proceedings of the 2019 Conference on 783
Empirical Methods in Natural Language Processing 784
and the 9th International Joint Conference on Natu- 785
ral Language Processing (EMNLP-IJCNLP), pages 786
4365–4374, Hong Kong, China. Association for Com- 787
putational Linguistics. 788

Taku Kudo and John Richardson. 2018. SentencePiece: 789
A simple and language independent subword tok- 790
enizer and detokenizer for neural text processing. In 791
Proceedings of the 2018 Conference on Empirical 792
Methods in Natural Language Processing: System 793
Demonstrations, pages 66–71, Brussels, Belgium. 794
Association for Computational Linguistics. 795

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior- 796
gio Satta. 2011. Dynamic programming algorithms 797
for transition-based dependency parsers. In Proceed- 798
ings of the 49th Annual Meeting of the Association for 799
Computational Linguistics: Human Language Tech- 800
nologies, pages 673–682, Portland, Oregon, USA. 801
Association for Computational Linguistics. 802

John D. Lafferty, Andrew McCallum, and Fernando 803
C. N. Pereira. 2001. Conditional random fields: 804
Probabilistic models for segmenting and labeling se- 805
quence data. In Proceedings of the Eighteenth In- 806
ternational Conference on Machine Learning, ICML 807
’01, page 282–289, San Francisco, CA, USA. Morgan 808
Kaufmann Publishers Inc. 809

Chao Lou and Kewei Tu. 2023. AMR parsing with 810
causal hierarchical attention and pointers. In Pro- 811
ceedings of the 2023 Conference on Empirical Meth- 812
ods in Natural Language Processing, pages 8942– 813
8955, Singapore. Association for Computational Lin- 814
guistics. 815

Christopher Manning, Mihai Surdeanu, John Bauer, 816
Jenny Finkel, Steven Bethard, and David McClosky. 817
2014. The Stanford CoreNLP natural language pro- 818
cessing toolkit. In Proceedings of 52nd Annual Meet- 819
ing of the Association for Computational Linguis- 820
tics: System Demonstrations, pages 55–60, Balti- 821
more, Maryland. Association for Computational Lin- 822
guistics. 823

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 824
Marcinkiewicz. 1993. Building a large annotated cor- 825
pus of English: The Penn Treebank. Computational 826
Linguistics, 19(2):313–330. 827

Piotr Mirowski and Andreas Vlachos. 2015. Depen- 828
dency recurrent neural language models for sentence 829
completion. In Proceedings of the 53rd Annual Meet- 830
ing of the Association for Computational Linguistics 831
and the 7th International Joint Conference on Natu- 832
ral Language Processing (Volume 2: Short Papers), 833
pages 511–517, Beijing, China. Association for Com- 834
putational Linguistics. 835

10

https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=HkE0Nvqlg
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://doi.org/10.18653/v1/2023.emnlp-main.553
https://doi.org/10.18653/v1/2023.emnlp-main.553
https://doi.org/10.18653/v1/2023.emnlp-main.553
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.3115/v1/P15-2084
https://doi.org/10.3115/v1/P15-2084
https://doi.org/10.3115/v1/P15-2084
https://doi.org/10.3115/v1/P15-2084
https://doi.org/10.3115/v1/P15-2084


Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and836
Christopher Manning. 2023. Pushdown layers: En-837
coding recursive structure in transformer language838
models. In Proceedings of the 2023 Conference on839
Empirical Methods in Natural Language Processing,840
pages 3233–3247, Singapore. Association for Com-841
putational Linguistics.842

Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard843
Socher. 2020. Tree-structured attention with hierar-844
chical accumulation. In International Conference on845
Learning Representations.846

Joakim Nivre. 2003. An efficient algorithm for pro-847
jective dependency parsing. In Proceedings of the848
Eighth International Conference on Parsing Tech-849
nologies, pages 149–160, Nancy, France.850

Joakim Nivre. 2004. Incrementality in deterministic851
dependency parsing. In Proceedings of the Workshop852
on Incremental Parsing: Bringing Engineering and853
Cognition Together, pages 50–57, Barcelona, Spain.854
Association for Computational Linguistics.855

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-856
ter, Jan Hajivc, Christopher D. Manning, Sampo857
Pyysalo, Sebastian Schuster, Francis M. Tyers, and858
Daniel Zeman. 2020. Universal dependencies v2: An859
evergrowing multilingual treebank collection. In In-860
ternational Conference on Language Resources and861
Evaluation.862

Hao Peng, Roy Schwartz, and Noah A. Smith. 2019.863
PaLM: A hybrid parser and language model. In864
Proceedings of the 2019 Conference on Empirical865
Methods in Natural Language Processing and the866
9th International Joint Conference on Natural Lan-867
guage Processing (EMNLP-IJCNLP), pages 3644–868
3651, Hong Kong, China. Association for Computa-869
tional Linguistics.870

Jakob Prange, Nathan Schneider, and Lingpeng Kong.871
2022. Linguistic frameworks go toe-to-toe at neuro-872
symbolic language modeling. In Proceedings of the873
2022 Conference of the North American Chapter of874
the Association for Computational Linguistics: Hu-875
man Language Technologies, pages 4375–4391, Seat-876
tle, United States. Association for Computational877
Linguistics.878

Peng Qi and Christopher D. Manning. 2017. Arc-swift:879
A novel transition system for dependency parsing.880
In Proceedings of the 55th Annual Meeting of the881
Association for Computational Linguistics (Volume 2:882
Short Papers), pages 110–117, Vancouver, Canada.883
Association for Computational Linguistics.884

Peng Qian, Tahira Naseem, Roger Levy, and Ramón885
Fernandez Astudillo. 2021. Structural guidance for886
transformer language models. In Proceedings of the887
59th Annual Meeting of the Association for Compu-888
tational Linguistics and the 11th International Joint889
Conference on Natural Language Processing (Vol-890
ume 1: Long Papers), pages 3735–3745, Online. As-891
sociation for Computational Linguistics.892

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 893
Dario Amodei, Ilya Sutskever, et al. 2019. Language 894
models are unsupervised multitask learners. OpenAI 895
blog, 1(8):9. 896

Vinit Ravishankar, Artur Kulmizev, Mostafa Abdou, 897
Anders Søgaard, and Joakim Nivre. 2021. Atten- 898
tion can reflect syntactic structure (if you let it). In 899
Proceedings of the 16th Conference of the European 900
Chapter of the Association for Computational Lin- 901
guistics: Main Volume, pages 3031–3045, Online. 902
Association for Computational Linguistics. 903

Brian Roark. 2001. Probabilistic top-down parsing 904
and language modeling. Computational Linguistics, 905
27(2):249–276. 906

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro, 907
Miloš Stanojević, Phil Blunsom, and Chris Dyer. 908
2022. Transformer grammars: Augmenting trans- 909
former language models with syntactic inductive bi- 910
ases at scale. Transactions of the Association for 911
Computational Linguistics, 10:1423–1439. 912

Yikang Shen, Shawn Tan, Alessandro Sordoni, Peng 913
Li, Jie Zhou, and Aaron Courville. 2022. Unsuper- 914
vised dependency graph network. In Proceedings 915
of the 60th Annual Meeting of the Association for 916
Computational Linguistics (Volume 1: Long Papers), 917
pages 4767–4784, Dublin, Ireland. Association for 918
Computational Linguistics. 919

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald 920
Metzler, and Aaron Courville. 2021. StructFormer: 921
Joint unsupervised induction of dependency and con- 922
stituency structure from masked language modeling. 923
In Proceedings of the 59th Annual Meeting of the 924
Association for Computational Linguistics and the 925
11th International Joint Conference on Natural Lan- 926
guage Processing (Volume 1: Long Papers), pages 927
7196–7209, Online. Association for Computational 928
Linguistics. 929

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef- 930
fective inference for generative neural parsing. In 931
Proceedings of the 2017 Conference on Empirical 932
Methods in Natural Language Processing, pages 933
1695–1700, Copenhagen, Denmark. Association for 934
Computational Linguistics. 935

Emma Strubell, Patrick Verga, Daniel Andor, David 936
Weiss, and Andrew McCallum. 2018. Linguistically- 937
informed self-attention for semantic role labeling. 938
In Proceedings of the 2018 Conference on Empiri- 939
cal Methods in Natural Language Processing, pages 940
5027–5038, Brussels, Belgium. Association for Com- 941
putational Linguistics. 942

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng 943
Liu. 2021. Roformer: Enhanced transformer with 944
rotary position embedding. ArXiv, abs/2104.09864. 945

Ivan Titov and James Henderson. 2007. A latent vari- 946
able model for generative dependency parsing. In 947
Proceedings of the Tenth International Conference on 948
Parsing Technologies, pages 144–155, Prague, Czech 949
Republic. Association for Computational Linguistics. 950

11

https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=HJxK5pEYvr
https://aclanthology.org/W03-3017
https://aclanthology.org/W03-3017
https://aclanthology.org/W03-3017
https://aclanthology.org/W04-0308
https://aclanthology.org/W04-0308
https://aclanthology.org/W04-0308
https://doi.org/10.18653/v1/D19-1376
https://doi.org/10.18653/v1/2022.naacl-main.325
https://doi.org/10.18653/v1/2022.naacl-main.325
https://doi.org/10.18653/v1/2022.naacl-main.325
https://doi.org/10.18653/v1/P17-2018
https://doi.org/10.18653/v1/P17-2018
https://doi.org/10.18653/v1/P17-2018
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.18653/v1/2021.eacl-main.264
https://doi.org/10.18653/v1/2021.eacl-main.264
https://doi.org/10.18653/v1/2021.eacl-main.264
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://aclanthology.org/W07-2218
https://aclanthology.org/W07-2218
https://aclanthology.org/W07-2218


Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob951
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz952
Kaiser, and Illia Polosukhin. 2017. Attention is all953
you need. Advances in neural information processing954
systems, 30.955

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.956
2019. Tree transformer: Integrating tree structures957
into self-attention. In Proceedings of the 2019 Con-958
ference on Empirical Methods in Natural Language959
Processing and the 9th International Joint Confer-960
ence on Natural Language Processing (EMNLP-961
IJCNLP), pages 1061–1070, Hong Kong, China. As-962
sociation for Computational Linguistics.963

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-964
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.965
Bowman. 2020. BLiMP: The benchmark of linguis-966
tic minimal pairs for English. Transactions of the967
Association for Computational Linguistics, 8:377–968
392.969

Haoyi Wu and Kewei Tu. 2023. Probabilistic trans-970
former: A probabilistic dependency model for con-971
textual word representation. In Findings of the As-972
sociation for Computational Linguistics: ACL 2023,973
pages 7613–7636, Toronto, Canada. Association for974
Computational Linguistics.975

Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling,976
Adhiguna Kuncoro, Chris Dyer, and Phil Blunsom.977
2018. Memory architectures in recurrent neural net-978
work language models. In International Conference979
on Learning Representations.980

Ryo Yoshida and Yohei Oseki. 2022. Composition, at-981
tention, or both? In Findings of the Association982
for Computational Linguistics: EMNLP 2022, pages983
5822–5834, Abu Dhabi, United Arab Emirates. As-984
sociation for Computational Linguistics.985

Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng986
Duan, Hai Zhao, and Rui Wang. 2020. Sg-net:987
Syntax-guided machine reading comprehension. In988
Proceedings of the AAAI Conference on Artificial989
Intelligence, volume 34, pages 9636–9643.990

A Examples of DTG-eager and 991

DTG-swift 992

The example of DTG-eager is shown in Figure 4. 993

The main difference with DTGs is the new transi- 994

tion POP. It directly masks the top of the stack and 995

attends to other positions, denoted as POPSTACK 996

attention. 997

The example of DTG-swift is shown in Figure 5. 998

The newly introduced ARC number is represented 999

within []. 1000

B Other Experimental Details 1001

Using subword tokenizers Previously, we al- 1002

ways assume that each word corresponds to a single 1003

token. However, subword tokenizers (e.g., Senten- 1004

cePiece) may divide a word into several subtokens. 1005

In our work, we do not consider dependencies 1006

among subtokens within a word. All dependen- 1007

cies between words are converted to arcs between 1008

the last subtokens of these words. For masking, 1009

once a word should be masked, all of its subtokens 1010

are masked. For arc representation, we use the 1011

embedding of the last subtoken of the head word. 1012

Computational costs We spent one NVIDIA 1013

A6000 GPU for each training, which lasted ap- 1014

proximately 35 hours. 1015

C Discussion on the Results of BLiMP 1016

An example testcase in the QUANTIFIERS cat- 1017

egory of BLiMP is to judge whether “An actor 1018

arrived at at most six lakes” or “No actor arrived at 1019

at most six lakes” is acceptable. The correct answer 1020

is that the former is acceptable while the latter is 1021

not, because superlative quantifiers cannot embed 1022

under negation. A stardard Transformer language 1023

model could assign a lower probability to the sec- 1024

ond sentence because it could lower the probability 1025

of generating “at most” by attending to “No”. In 1026

DTG , however, “No” as a determiner is absorbed 1027

into “actor” and hence masked from the attention 1028

when generating “at most”. While doing this can 1029

be beneficial to syntactic generalization, it hinders 1030

semantic judgment in this case. 1031

12

https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2023.findings-acl.482
https://doi.org/10.18653/v1/2023.findings-acl.482
https://doi.org/10.18653/v1/2023.findings-acl.482
https://doi.org/10.18653/v1/2023.findings-acl.482
https://doi.org/10.18653/v1/2023.findings-acl.482
https://openreview.net/forum?id=SkFqf0lAZ
https://openreview.net/forum?id=SkFqf0lAZ
https://openreview.net/forum?id=SkFqf0lAZ
https://doi.org/10.18653/v1/2022.findings-emnlp.428
https://doi.org/10.18653/v1/2022.findings-emnlp.428
https://doi.org/10.18653/v1/2022.findings-emnlp.428


i Input Attn. Mask Label

0 <ROOT> STACK GEN(There)
1 There STACK GEN(is)
2 is STACK LEFTARC
3 LEFTARC + is COMPOSE -
4 LEFTARC2 + is STACK RIGHTARC
5 RIGHTARC + <ROOT> COMPOSE -
6 RIGHTARC2 + <ROOT> STACK GEN(a)
7 a STACK GEN(difference)
8 difference STACK LEFTARC
9 LEFTARC + difference COMPOSE -
10 LEFTARC2 + difference STACK RIGHTARC
11 RIGHTARC + is COMPOSE -
12 RIGHTARC2 + is STACK POP
13 POP STACK POP
14 POP STACK POP
15 POP STACK <END>

(a) Transition sequence after duplicating
LEFTARC/RIGHTARCs. We do not have to make pre-
dictions for positions 3, 5, 9, 11.

<ROOT>

There

LA

is

LA2

RA

RA2

a

diff.

LA

LA2

RA

RA2

<R
OO
T>

Th
ere is LA LA2 RA RA2 a diff. LA LA2 RA RA2

POP

POP

POP

POP POP POP

(b) Attention mask. Tokens are simplified for a tight view.
We use orange to represent COMPOSE and blue to represent
STACK and POPSTACK.

Figure 4: Arc-eager processing of an example sentence

i Input Attn. Mask Label

0 <ROOT> STACK GEN(There)
1 There STACK GEN(is)
2 is STACK LEFTARC
3 LEFTARC[1] + is COMPOSE -
4 LEFTARC2[1] + is STACK RIGHTARC
5 RIGHTARC[1] + <ROOT> COMPOSE -
6 RIGHTARC2[1] + <ROOT> STACK GEN(a)
7 a STACK GEN(difference)
8 difference STACK LEFTARC
9 LEFTARC[1] + difference COMPOSE -
10 LEFTARC2[1] + difference STACK RIGHTARC
11 RIGHTARC[1] + is COMPOSE -
12 RIGHTARC2[1] + is STACK .
13 . STACK RIGHTARC
14 RIGHTARC[2] + is COMPOSE -
15 RIGHTARC2[2] + is STACK <END>

(a) Transition sequence after duplicating
LEFTARC/RIGHTARCs. We do not have to make pre-
dictions for positions 3, 5, 9, 11, 14.

<ROOT>

There

LA[1]

is

LA2[1]

RA[1]

RA2[1]

a

diff.

LA[1]

LA2[1]

RA[1]

RA2[1]

<R
OO

T>

Th
ere is LA LA2 RA RA2 a diff. LA LA2 RA RA2

.

RA[2]

RA2[2]

. RA RA2

(b) Attention mask. Tokens are simplified for a tight view.
We use orange to represent COMPOSE and blue to rep-
resent STACK. The number in [] is the ARC number of
LEFTARC/RIGHTARC.

Figure 5: Arc-swift processing of an example sentence

13


	Introduction
	Preliminaries: Transition-based Dependency Parsing
	Model
	Arc-Standard via Attention Mask
	Relative Positional Encoding
	Arc Representation
	Other Transition Systems via Attention Mask
	Constraints on Inference

	Experiments
	Sentence-Level Language Modeling
	Syntactic Generalization
	Parse Reranking

	Analysis
	Arc Representation
	Dependency Parses for Training

	Related Work
	Conclusion
	Examples of DTG-eager and DTG-swift
	Other Experimental Details
	Discussion on the Results of BLiMP

