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Abstract001

Visually linking matching cues is a crucial abil-002
ity in daily life, such as identifying the same003
person in multiple photos based on their cues,004
even without knowing who they are. Despite005
the extensive knowledge that vision-language006
models (VLMs) possess, it remains largely un-007
explored whether they are capable of perform-008
ing this fundamental task. To address this,009
we introduce VLM2-Bench, a benchmark de-010
signed to assess whether VLMs can Visually011
Link Matching cues, with 9 subtasks and over012
3,000 test cases. Comprehensive evaluation013
across eight open-source VLMs and GPT-4o,014
along with further analysis of various language-015
side and vision-side prompting methods, leads016
to a total of eight key findings. We identify017
critical challenges in models’ ability to link018
visual cues, highlighting a significant perfor-019
mance gap where even GPT-4o lags 34.80%020
behind humans. Based on these insights, we021
advocate for (i) enhancing core visual capabili-022
ties to improve adaptability and reduce reliance023
on prior knowledge, (ii) establishing clearer024
principles for integrating language-based rea-025
soning in vision-centric tasks to prevent unnec-026
essary biases, and (iii) shifting vision-text train-027
ing paradigms toward fostering models’ ability028
to independently structure and infer relation-029
ships among visual cues.030

1 Introduction031

Humans constantly link matching visual cues to032

navigate and understand their environment. For033

instance, we can determine whether objects, indi-034

viduals are the same simply by comparing their035

distinguishing visual features (Bruce and Young,036

1986; Palermo and Rhodes, 2007; Treisman and037

Gelade, 1980). This ability, often without needing038

additional background knowledge, is fundamen-039

tal in our daily interactions with the world around040

us. However, while current vision-language models041

(VLMs) (Chen et al., 2024b; Li et al., 2024b; Zhang042

Figure 1: Previous benchmarks fail to assess the ability
to link matching visual cues, whereas our VLM2-Bench
explicitly tests this ability, as shown in the example
where the model need to identify the reappearance of the
same person by linking visual cues, like facial features
or clothing, across non-adjacent frames.

et al., 2024b; Team, 2025) have demonstrated ex- 043

tensive knowledge and expanded their capabilities 044

from single-image understanding to handling mul- 045

tiple images and videos, whether thay can effec- 046

tively link matching visual cues across images or 047

frames—an essential skill for coherent multimodal 048

reasoning—remains an open question. 049

As shown in Figure 1, existing benchmarks on 050

multiple images and videos fall short in explor- 051

ing this fundamental ability as they: (a) do not re- 052

quire explicitly linking visual cues across images or 053

frames (Liu et al., 2024c; Yu et al., 2019); (b) rely 054

on external knowledge rather than assessing mod- 055

els’ ability to link explicitly visual cues (Zhao et al., 056

2024; Liu et al., 2024a); (c) emphasize broad and 057

abstract visual comparisons rather than specific cue 058

matching (Wu et al., 2025; Liu et al., 2024b); and 059

(d) focus on retrieval-based tasks rather than eval- 060
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Figure 2: Overview of VLM2-Bench. The benchmark is categorized into three subsets based on visual cues: GC
(General Cue), OC (Object-centric Cue), and PC (Person-centric Cue), each comprising multiple subtasks. To
comprehensively evaluate VLMs’ ability to visually link matching cues, the benchmark includes diverse question
formats—T/F , multiple-choice , numerical , and open-ended —ensuring a comprehensive evaluation.

uating the direct association of visual cues across061

different visual contexts (Wang et al., 2024a).062

To bridge this gap, we introduce VLM2-Bench,063

a benchmark specifically designed to evaluate how064

well VLMs visually link matching cues. VLM2-065

Bench is structured around three types of visual cue066

connection: general cue, person-centric cue, and067

object-centric cue, encompassing a total of eight068

subtasks. To balance scalability and quality, we069

design a semi-automated pipeline with human ver-070

ification for further refinement. Additionally, our071

subtasks cover a variety of QA formats—including072

T/F, multi-choice, numerical, and open-ended ques-073

tions—totaling over 3,000 question-answer pairs.074

To better evaluate model performance, we also de-075

sign specific metrics tailored to various task.076

We conduct a comprehensive evaluation of 8077

open-source models and GPT-4o on our VLM2-078

Bench. Despite VLMs generally possessing exten-079

sive knowledge, some models perform on par with,080

or even worse than, the chance-level baseline on081

our vision-centric tasks. Notably, GPT-4o also un-082

derperforms, lagging behind human-level accuracy083

by 34.80%. This highlights the significant room for084

improvement in VLMs’ ability to link visual cues.085

Furthermore, we introduce various language-side086

and vision-side prompting techniques to explore087

whether they can enhance the models’ performance088

on the benchmark. Through experimental results089

and case studies, we present eight key observa-090

tions, hoping that these insights will guide future091

improvements in VLMs for vision-centric tasks. 092

2 VLM2-Bench 093

VLM2-Bench is a benchmark designed to assess 094

models’ ability to visually link matching cues 095

when processing multiple images or videos. This 096

section introduces the three main categories of 097

VLM2-Bench—general cue (§2.1), object-centric 098

cue (§2.2), and person-centric cue (§2.3)—detail- 099

ing their associated subtasks, data collection pro- 100

cess, and QA pair construction. 101

2.1 General Cue (GC) 102

GC is designed to assess a model’s ability to link 103

matching cues across diverse contexts, encompass- 104

ing a broad range of general cues. Given two 105

images containing both matched and mismatched 106

cues, an ideal model should accurately identify mis- 107

matched ones and associate matched ones. 108

Subtasks. Here we introduce two subtasks: (i) 109

Matching (Mat) evaluates a model’s ability to link 110

corresponding visual cues across two images to 111

determine whether they match. Instead of merely 112

identifying differences, the model must associate 113

identical visual elements in both images to recog- 114

nize what has remained the same and what has 115

changed. (ii) Tracking (Trk) focuses on a model’s 116

ability to track a specific visual cue that appears in 117

only one of the two images and determine how it 118

has changed. Rather than simply detecting a differ- 119
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Figure 3: Construction of GC: (i) We start by manually verifying the edited image data based on three key criteria.
(ii) A VLM is then prompted to generate captions for each image, followed by salient score-based filtering to retain
the challenging cases. (iii) Finally, visual cues are extracted from two sources and incorporated into a QA prompt,
guiding an LLM to generate both positive and negative answer pairs.

ence, the model must link the cue across contexts120

to understand the transformation process.121

Data Collection. We repurpose data from two122

image editing datasets (Wei et al., 2024; Ku et al.,123

2023), where each data sample includes an original124

image Iori, an edited image with subtle modifica-125

tions Iedit, and a corresponding edit instruction P126

describing the changes. Our data collection is car-127

ried out across two dimensions. First, to ensure128

diversity in the mismatched cues, GC encompasses129

various types of changes, such as instance-level130

modifications (e.g., add/remove, swap, attribute131

change), which focus on specific items, as well as132

environment-level changes.133

QA Construction. We predefine a T/F question134

template for Mat and Trk with a placeholder for the135

candidate answer (refer to Appendix E). Figure 3136

illustrates the construction process, which follows137

a three-stage approach.138

Manual Screening & Refinement: We ensure139

that P accurately reflects the changes (correctness),140

corresponds uniquely to the modified cues (unique-141

ness), and is unambiguous (clarity).142

Salient Sampling: Here, we automate the re-143

moval of overly simple cases (e.g., mismatched144

cues are too salient). To achieve this, a VLM first145

generates separate descriptions for Iori and Iedit,146

denoted as Capori and Capedit. These descrip-147

tions are then combined with P into a single pas-148

sage using a predefined template T (see Table 6 for149

details). The probability assigned by a language150

model (e.g., Llama3-8B (Dubey et al., 2024)) to P151

given this text-based information is used to com-152

pute the salient score, formulated as:153

Ssalient =
1

|P|

|P|∑
i=1

logPθ(pi | C ∪ p<i), (1) 154

where P = {p1, p2, ..., p|P|} represents the tok- 155

enized P , and C = T (Capori, Capedit) denotes 156

the context filled with template T . Samples with 157

scores below θ (-2.0 here) are retained, ensuring 158

that the benchmark includes more challenging ex- 159

amples requiring nuanced visual cue association. 160

Pair-wise Answer Generation: Finally, we ex- 161

tract visual cues using a dual-level approach. First, 162

cues parsed from VLM-generated descriptions 163

compensate for the limitations of open-set detectors 164

when handling out-of-distribution scenes. Mean- 165

while, the open-set detector (Wu et al., 2022) ex- 166

tracts fine-grained cues that VLMs might overlook. 167

With these extracted cues, we prompt an LLM to 168

generate a pair of answers for Mat and Trk, each 169

consisting of one positive and one negative answer. 170

2.2 Object-centric Cue (OC) 171

OC aims to assess a model’s ability to link match- 172

ing cues associated with everyday objects using 173

object-centric cues. Even when encountering an ob- 174

ject for the first time, a well-aligned model should 175

be able to leverage its unique visual cues to estab- 176

lish associations, enabling it to recognize and track 177

the object across different scenes. This capability 178

is essential for coherent perception and interaction 179

in real-world deployments. 180

Subtasks. Based on the complexity of linking 181

cues to solve the problem, we define three sub- 182

tasks in OC. (i) Comparison (Cpr) requires the 183

model to determine whether the objects appear- 184

ing in different images are the same. This task 185
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primarily assesses the model’s ability to perceive186

visual consistency or change. Notably, we observe187

that models exhibit significant model-specific bias188

when making a binary decision (Goyal et al., 2017;189

Ye et al., 2024b; Song et al., 2024; Li et al., 2024a),190

leading to discrepancies between results and their191

actual capabilities. To mitigate this, we introduce192

consistency-pair validation, where for each state-193

ment (e.g., “X is Y”, with the answer being T),194

we generate a corresponding negation (e.g., “X is195

not Y”, with the answer being F). The model is196

only considered correct if it correctly answers both197

statements, ensuring consistency in its decision-198

making. (ii) Counting (Cnt) involves identifying199

the number of unique objects, requiring the model200

not only to recognize variations or consistencies but201

also to track distinct cues to avoid double-counting202

the same object. (iii) Grouping (Grp), the most203

challenging one, requires the model to identify all204

instances of the same object, building on precise205

cue matching across multiple images.206

Data Collection. We manually collect various207

categories of everyday objects (e.g., pets, cups).208

For each category, we define multiple subcategories209

and collect a set of images IOi—four images that210

depict the same object in different scenarios. Ad-211

ditionally, we also collect a set I¬Oi , consisting of212

four images of different objects, each containing213

some matching visual cues with IOi , which are214

used as distractors.215

QA Construction. For each subtask, we define216

a question template that includes a placeholder for217

IOi , which allows us to tailor the question based on218

different objects (see Appendix E). For answer gen-219

eration, we first curate the multi-image sequences220

according to predefined rules. For each specific221

sequence, we generate the ground truth answers for222

the questions related to Cpr, Cnt, and Grp.223

2.3 Person-centric Cue (PC)224

PC aims to evaluate a model’s ability to link person-225

centric cues. While a model cannot memorize ev-226

ery individual, it should possess the capability to227

associate the same person across different images228

or frames by leveraging distinctive visual cues such229

as facial features, clothing, or body posture. This230

ability is essential for ensuring coherent perception231

of human actions and is a fundamental requirement232

for real-world VLM applications.233

Subtasks. Similar to OC’s subtasks (refer to 234

§2.2), PC includes (i) Comparison (Cpr), (ii) 235

Counting (Cnt), and (iii) Grouping (Grp). How- 236

ever, unlike objects, individuals can be observed 237

through their actions in videos. Therefore, we in- 238

troduce (iv) Video Identity Describing (VID). This 239

subtask assesses whether a model can correctly link 240

the same person by analyzing its description of a 241

video containing that person. 242

Data Collection. We manually select several in- 243

dividuals, each denoted as Pi. For each individual, 244

we collect IPi—4 images depicting the same in- 245

dividual. For each image Ii ∈ IPi , we select the 246

distractor images I¬i /∈ IPi that has the highest 247

CLIP similarity (Hessel et al., 2021). This allows 248

us to obtain images of different individuals where 249

most cues are matched. For the subtask of VID, we 250

collect videos of different individuals, denoted as 251

VPi , and pair each with another video V¬Pi featur- 252

ing a different individual with highly similar cues 253

(e.g., actions, scene, clothing). We then construct 254

two video sequences: (i) Pi −→ ¬Pi, assessing 255

the model’s ability to distinguish individuals. (ii) 256

Pi −→ ¬Pi −→ Pi, evaluating whether the model 257

detects changes and links the final occurrence of 258

Pi to its first appearance. 259

QA Construction. The construction for the over- 260

all QA in PC’s Cpr, Cnt, and Grp subtasks follows 261

a similar approach to OC. For the VID task, we em- 262

phasize the model’s ability to describe individuals 263

when designing open-ended questions, aiming to 264

better test the model’s capacity to link individuals 265

appearing in different scenes. 266

Figure 4: Statistical overview of VLM2-Bench. The
pie chart shows the distribution of 9 subtasks across the
3 main categories of visual cues. The bar plot illustrates
the percentage breakdown by question format.

2.4 Benchmark Statistics 267

Our benchmark is organized into three main cate- 268

gories, comprising a total of 9 subtasks. After care- 269

ful verification, it contains 3,060 question-answer 270
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Baselines or Models GC OC PC Overall*
Mat Trk Cpr Cnt Grp Cpr Cnt Grp VID Avg ∆human

Chance-Level 25.00 25.00 50.00 34.88 25.00 50.00 34.87 25.00 - 33.72 -61.44
Human-Level 95.06 98.11 96.02 94.23 91.92 97.08 92.87 91.17 100.00 95.16 0.00

LLaVA-OneVision-7B 16.60 13.70 47.22 56.17 27.50 62.00 46.67 37.00 47.25 39.35 -55.81
LLaVA-Video-7B 18.53 12.79 54.72 62.47 28.50 62.00 66.91 25.00 59.00 43.32 -51.84
LongVA-7B 14.29 19.18 26.67 42.53 18.50 21.50 38.90 18.00 3.75 22.59 -72.57
mPLUG-Owl3-7B 17.37 18.26 49.17 62.97 31.00 63.50 58.86 26.00 13.50 37.85 -57.31
Qwen2-VL-7B 27.80 19.18 68.06 45.99 35.00 61.50 58.59 49.00 16.25 42.37 -52.79
Qwen2.5-VL-7B 35.91 43.38 71.39 41.72 47.50 80.00 57.98 69.00 46.50 54.82 -40.34
InternVL2.5-8B 21.24 26.03 53.33 55.23 46.50 51.50 60.00 52.00 5.25 41.23 -53.93
InternVL2.5-26B 30.50 30.59 43.33 51.48 52.50 59.50 59.70 61.00 21.75 45.59 -49.57

GPT-4o 37.45 39.27 74.17 80.62 57.50 50.00 90.50 47.00 66.75 60.36 -34.80

Table 1: Evaluation results on VLM2-Bench, covering Mat (Matching), Trk (Tracking), Cpr (Comparison), Cnt
(Counting), Grp (Grouping), and VID (Video Identity Describing). The highest , second , and third highest
scores are highlighted. *: Overall excludes the VID due to the lack of a chance-level baseline for open-ended tasks.

pairs, with varying formats including T/F, multi-271

choice (MC), numerical (Nu), and open-ended (Oe).272

To ensure the quality of the annotations, we per-273

form an inter-annotator agreement (IAA) evalua-274

tion (Thorne et al., 2018) involving three annota-275

tors, resulting in a high Fleiss’ Kappa score (Fleiss,276

1971) of 0.983. Figure 4 presents the distribution277

of these subtasks across the three categories, along278

with the breakdown of different question formats.279

For additional details, refer to Appendix C.280

3 Evaluation281

3.1 Metric Design282

T/F (Matching, Tracking, Comparison): Accu-283

racy is computed based on paired evaluation, where284

a response is correct only if it answers T (ground-285

truth True) and F (ground-truth False) correctly.286

The overall accuracy across N test pairs is:287

Accpair =

∑N
i=1

(
T+
i ∩ F−

i

)
N

, (2)288

where T+ and F− denote correct predictions for289

T and F , respectively.290

Numerical (Counting): Absolute matching alone291

does not effectively reflect the severity of errors in292

numerical responses. To measure the extent of the293

error between the predicted count N̂i and ground294

truth Ni, we introduce Accnum. The first step is to295

calculate the normalized error:296

ϵi =

∣∣∣N̂i −Ni

∣∣∣
max

(
Ni − 1, N img

i −Ni

) , (3)297

where N img
i is the number of input images. We 298

define wi = max({N img
i }ni=1)/N

img
i to penalize 299

errors in cases with fewer images and introduce α 300

as an error amplification factor. The final accuracy 301

over n cases is: 302

Accnum = 1− 1

n

n∑
i=1

wi · ϵ−α
i . (4) 303

Multi-choice (Grouping): Accuracy is the pro- 304

portion of correctly predicted choices. 305

Open-ended (Video Identity Describing): We 306

use GPT-4o to score model’s descriptions, in com- 307

bination with rule-based scoring prompts. The final 308

accuracy Accoe is obtained by averaging the scores 309

of all open-ended responses and rescaling them 310

to the range of [0,1]. Additionally, we perform 311

manual verification of GPT-4o’s scoring. For each 312

model, we randomly sample 20 scored responses 313

for review, and find only 2 instances with discrep- 314

ancies, resulting in an accuracy rate of 98.89% 315

(178/180). Refer to Appendix F for more details. 316

3.2 Evaluation Setup 317

Evaluated Models. We evaluate eight open- 318

source VLMs that support multiple-image 319

or video input: LLaVA-OneVision (Li et al., 320

2024b), LLaVA-Video (Zhang et al., 2024b), 321

LongVA (Zhang et al., 2024a), mPLUG- 322

Owl3 (Ye et al., 2024a), Qwen2-VL (Wang 323

et al., 2024b), Qwen2.5-VL (Team, 2025), and 324

InternVL2.5 (Chen et al., 2024b). Additionally, 325

we include the commercial model GPT-4o (Hurst 326

et al., 2024) for comparison. 327
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Model Matching (Mat) Tracking (Trk)
A/R Swp Attr Env A/R Swp Attr Env

LV-OV 50.68 49.15 53.45 52.50 27.27 45.51 57.50 70.59
LV-Vid 56.08 49.15 53.45 51.25 46.75 48.88 52.50 67.65
LongVA 37.84 46.58 53.45 46.25 46.10 49.44 42.50 60.29
Owl3 54.73 52.56 55.17 50.00 41.56 48.88 55.00 73.53
Qw2-VL 53.68 52.56 55.17 68.75 65.58 62.90 77.50 63.93
Qw2.5-VL 64.19 55.62 74.14 67.50 61.69 69.10 55.00 64.71
In2.5-8B 64.86 51.28 52.07 66.25 54.55 67.42 62.50 60.65
In2.5-26B 60.81 51.71 58.62 61.25 56.49 62.92 47.50 66.18
GPT-4o 75.00 61.97 56.90 70.00 68.83 67.98 67.50 64.71

Table 2: Breakdown of four mis-matched cue types in
two subtasks of GC. For each model, the highest and

second highest error (%) per subtask are highlighted.

Baselines. We introduce chance-level and328

human-level baselines (details are in Appendix D).329

3.3 Results and Findings330

Results. Table 1 presents the comprehensive per-331

formance of various models across the three cat-332

egories – General Cue (GC), Object-centric Cue333

(OC), and Person-centric Cue (PC) – of our VLM2-334

Bench, covering a total of nine subtasks.335

Finding I: Simple tasks for humans pose sig-336

nificant challenges for VLMs. We observe that337

humans achieve near-perfect accuracy across most338

tasks in our VLM2-Bench. In contrast, even GPT-339

4o, a state-of-the-art model, performs significantly340

lower than humans, with an overall performance341

gap of 34.80%. For open-source models, many342

show performance comparable to the chance-level343

baseline or only slightly outperform it. Specifically,344

for the VID, humans can easily achieve 100% ac-345

curacy in distinguishing and linking individuals in346

a video. However, even the best-performing model,347

GPT-4o, reaches only 66.75%. Errors mainly arise348

from failing to recognize individuals after changes349

or misidentifying reappearing persons as new.350

Finding II: Relatively consistent error patterns351

in Mat and Trk of GC. Table 2 shows that mod-352

els struggle with mismatched cues due to swap in353

Mat, which requires linking two completely differ-354

ent cues. To identify what has changed, models355

must first link and match all the other cues in the356

context before they can determine that the swapped357

cue has been transformed. This task requires a358

deeper understanding of how cues relate to each359

other across different instances. In contrast, Trk360

challenges models with mismatched cues due to ad-361

d/remove, which focuses on tracking how a specific362

cue changes. This suggests that when there is a cue363

that appears only once, the model struggles to link364

the non-appearing cue with the appearing cue to 365

track the transformation process effectively. This 366

limitation reveals models’ difficulty in handling 367

cases where certain cues are missing but still need 368

to be linked to understand the dynamic changes. 369

Finding III: Models perform better in linking 370

person-centric cues than object-centric cues. 371

We selected the top three open-source models 372

(Qwen2.5-VL-8B, InternVL2.5-8B, InternVL2.5- 373

26B) and compared their performance on the three 374

shared tasks (Cpr, Cnt, Grp) in both OC and PC. 375

Results show that, on average, the performance 376

on PC is higher than on OC by 7.65%, 9.75%, 377

and 11.83% for the tasks of Cpr, Cnt, Grp, respec- 378

tively. This could be due to the fact that, during 379

training on person-related data, models are likely 380

provided with explicit person names as anchors to 381

person-centric cues, which helps the models better 382

distinguish different individuals. In contrast, ob- 383

jects are typically trained using general category 384

names, which may not provide such clear distinc- 385

tions. Additionally, these models might have been 386

specifically trained on large datasets that empha- 387

size differentiating and linking individuals (Pi et al., 388

2024a; Dai et al., 2024), thereby enhancing their 389

ability to link person-centric cues. 390

4 How Prompting Methods affect VLMs 391

In this section1, we investigate various prompting 392

methods (language-side and vision-side) to evalu- 393

ate their impact on performance in VLM2-Bench. 394

We select the top 3 performing open-source models 395

(Qwen2.5-VL-8B, InternVL2.5-8B, InternVL2.5- 396

26B), along with GPT-4o, and explore different 397

approaches of CoT (Kojima et al., 2022; Wei et al., 398

2023) and visual prompting (VP) (Lei et al., 2024; 399

Yang et al., 2023) (refer to Appendix F for de- 400

tails). The goal is to investigate whether these 401

techniques can improve performance across the 402

benchmark and to identify the underlying factors 403

that contribute to their success or failure. 404

4.1 Probing for General Cue (GC) 405

Methods. (i) CoT-normal (Table 23) encourages 406

the model to solve the task step by step, allowing 407

it to reason through the problem. (ii) CoT-special 408

(Table 24) guides the model to solve the task using 409

a thought process closer to how humans typically 410

approach it. (iii) VP-grid (Figure 11) is adapted 411

1Due to space limits, we reference most case studies, fig-
ures, and details in the Appendix within this section.
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(a) Results of CoT-normal, CoT-special, and VP-grid on GC.

(b) Results of CoT and VP-zoom-o on OC.

(c) Results of CoT and VP-zoom-p on PC.

Figure 5: Performance gains or losses (%) when apply-
ing different prompting methods on VLM2-Bench.

from previous work (Lei et al., 2024) for our tasks,412

overlaying a dot matrix on the image as visual an-413

chors to provide positional references and enhance414

the model’s performance.415

Finding IV: Reasoning in language aids models416

in logically linking visual cues. From Figure 5a,417

it is evident that both CoT-normal and CoT-special,418

which reasoning in language, positively impact419

model performance in most cases. As demonstrated420

in Figure 14, CoT-special improves performance by421

first having the model explicitly write out the cues422

present in each image, followed by using language423

to make inferences. This process helps reduce the424

model’s error rate by structuring the task and pro-425

viding clearer logical guidance. This suggests that426

when models are linking general visual cues, using427

language to help structure the logical flow of the428

process can be beneficial.429

Finding V: Effectiveness of visual prompting430

depends on models’ ability to interpret both431

prompting cues and the visual content. As432

shown in Figure 5a, VP-grid negatively impacts GC433

performance for QwenVL2.5, causing a significant434

drop compared to the vanilla approach. Figure 15435

reveals that this decline stems from the model’s dif-436

ficulty in interpreting the visual coordinates within437

the prompt, leading to misinterpretation of the cues438

and causing it to fail cases it originally answered439

correctly under the vanilla setting. However, as 440

shown in Figure 16, GPT-4o successfully resolves 441

a previously incorrect case by effectively leverag- 442

ing the cues introduced through visual prompting 443

while utilizing its strong visual perception abilities. 444

4.2 Probing for Object-centric Cue (OC) 445

Methods. (i) CoT (Table 23). (ii) VP-zoom-o 446

(Figure 12) uses an open-set detector (Ren et al., 447

2024) to obtain bounding boxes, which are then 448

cropped to focus the model’s attention on object- 449

centric cues. By eliminating irrelevant non-object 450

cues and emphasizing the object-centric cues, it 451

enhances the model’s ability to better focus on the 452

most relevant visual information. 453

Finding VI: The open-ended nature of language 454

may hinder object grouping. Unlike GC that 455

link instance-level cues, OC requires grouping sim- 456

ilar objects based on fine-grained visual details. As 457

shown in Figure 5b, InternVL2.5 using CoT strug- 458

gles with this task because the open-ended nature 459

of language leads to both limited coverage of subtle 460

visual cues (see Figure 17) and inconsistent repre- 461

sentations of the same cues, introducing ambiguity, 462

making it harder for models to reliably align and 463

group matching objects. 464

Finding VII: Amplifying object cues benefits 465

stronger models while having minimal impact 466

on others. From Figure 5b, we observe that for 467

models with strong vision capabilities like GPT-4o, 468

our VP-zoom-o method further enhances perfor- 469

mance. For other models, this method at least en- 470

sures that the performance remains on par with the 471

vanilla approach, without causing any degradation. 472

4.3 Probing for Person-centric Cue (PC) 473

Methods. (i) CoT (Table 23). (ii) VP-zoom-p 474

(Figure 13) utilizes a face detector (Geitgey, 2016) 475

to obtain bounding boxes of faces-the most distin- 476

guishing feature of different individuals. It then 477

crops the image to focus only on the face, thereby 478

minimizing the interference from distractor cues 479

such as clothing and other background elements. 480

Finding VIII: CoT and visual prompting fail 481

to improve linking on highly abstract person- 482

centric cues, leading to a performance drop. 483

From Figure 5c, we observe that for almost all mod- 484

els, neither CoT (language-based) nor VP-zoom-p 485

(vision-based) lead to improved performance. This 486

is because facial features are highly abstract, and 487
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CoT methods struggle to effectively describe them488

in words. Additionally, VP-zoom-p fails because489

current models’ visual capabilities are insufficient490

to accurately perceive facial features.491

5 Related Work492

Recent advancements in vision-language mod-493

els (Hurst et al., 2024; Team, 2025; Zhang et al.,494

2024a; Li et al., 2024b; Ye et al., 2024a; Chen495

et al., 2024b; Liang et al., 2024b) have significantly496

broadened their capabilities. Previously restricted497

to processing single-image inputs, many VLMs498

can now handle multi-image and even video in-499

puts, allowing them to capture richer and more500

dynamic visual contexts. Additionally, with access501

to a growing volume of high-quality visual-textual502

paired training data (Pi et al., 2024b; Garg et al.,503

2024; Chen et al., 2023; Zhang et al., 2024c; Wang504

et al., 2024c), these models have shown substan-505

tial improvements in perceiving subtle visual cues506

and their relationships, enabling them to engage507

in more nuanced reasoning about visual content.508

Furthermore, VLMs are increasingly applied in509

real-world scenarios, including navigation (Weer-510

akoon et al., 2024), planning (Yang et al., 2024),511

and autonomous driving (Jiang et al., 2024), solid-512

ifying their role in bridging vision and language513

for practical applications. However, to truly inte-514

grate into everyday life, VLMs still have significant515

room for improvement when it comes to more fun-516

damental but common visual tasks, such as those517

assessed in our benchmark.518

Benchmarking vision-language models plays519

a critical role in guiding their future develop-520

ment (Liang et al., 2024a; Yin et al., 2023; Chen521

et al., 2024a). These benchmarks typically focus on522

assessing the models’ fine-grained perception (Li523

et al., 2024a; Tong et al., 2024), reasoning abil-524

ities (Lu et al., 2022; Yu et al., 2023; Wu et al.,525

2024), commonsense knowledge (Yue et al., 2024).526

In addition, evaluations targeting multi-image and527

video inputs are designed to measure the new com-528

petencies that VLMs require as their visual context529

extends. These tasks include captioning (Yue et al.,530

2024; Yu et al., 2019), retrieval (Wang et al., 2024a;531

Li et al., 2025), comparison (Wu et al., 2025; Jiao532

et al., 2024), and temporal reasoning (Liu et al.,533

2024b). However, existing benchmarks focus on534

evaluating VLMs’ ability to interpret visual cues535

based on their knowledge. In contrast, humans typ-536

ically solve such tasks by explicitly matching vi-537

sual cues without relying on extensive background 538

knowledge. To better assess whether they can repli- 539

cate this human-like ability, we propose VLM2- 540

Bench, which focuses on linking and matching 541

explicit visual cues. 542

6 Takeaways 543

Based on our findings, we highlight three key areas 544

for future improvements: 545

• Strengthening Fundamental Visual Capa- 546

bilities. Improving core visual abilities not 547

only enhances overall performance but also 548

increases adaptability. A stronger visual 549

foundation maximizes the effectiveness of vi- 550

sual prompting and reduces reliance on prior 551

knowledge, enabling models to operate more 552

independently in vision-centric tasks. 553

• Balancing Language-Based Reasoning in 554

Vision-Centric Tasks. Integrating language 555

into vision-centric tasks requires careful cal- 556

ibration. Future research should establish 557

clearer principles on when language-based 558

reasoning aids visual understanding and when 559

it introduces unnecessary biases, ensuring 560

models leverage language appropriately. 561

• Evolving Vision-Text Training Paradigms. 562

Current training paradigms focus heavily 563

on emphasizing vision-language associations. 564

However, as models expand their visual con- 565

text window, their ability to reason purely 566

within the visual domain becomes increas- 567

ingly crucial. We should prioritize developing 568

models that can structure, organize, and infer 569

relationships among visual cues. 570

7 Conclusion 571

In summary, we introduce VLM2-Bench, a novel 572

benchmark designed to probe the capability of 573

vision-language models (VLMs) in visually link- 574

ing matching cues, an essential yet underexplored 575

skill for models in everyday visual reasoning. 576

Through extensive evaluations and further analysis 577

of prompting techniques applied on our benchmark, 578

we identify 8 key findings. Notably, even GPT-4o 579

falls 34.80% behind human performance. Based 580

on these insights, we advocate for advancements in 581

fundamental visual capabilities, better integration 582

of language-based reasoning, and the evolution of 583

vision-text training paradigms to improve VLMs’ 584

performance in vision-centric tasks. 585
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Limitations586

VLM2-Bench focuses on evaluating visual cue link-587

ing but does not cover all possible scenarios. Ad-588

ditionally, while it provides valuable insights, its589

scale is limited, and model performance may not590

fully generalize to all real-world settings. Auto-591

mated evaluation constraints limit the inclusion of592

open-ended questions in our benchmark, impacting593

the assessment of models’ vision-centric reason-594

ing abilities. Expanding task diversity and refining595

evaluation methods remain important directions for596

future work.597
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A Appendix Outline874

In the appendix, we provide:875

• Appendix B provides details on the licensing876

terms and usage rights for our benchmark.877

• Appendix C presents the statistical analysis878

of the VLM2-Bench.879

• Appendix D details on how we obtain the880

chance-level and human-level baselines.881

• Appendix E elaborates more details on the882

construction of the VLM2-Bench.883

• Appendix F provides a deeper dive into the884

various prompting techniques we use.885

• Appendix G a detailed breakdown and analy-886

sis of failure and success examples regarding887

different prompting methods.888

B Licencing and Intended Use889

Our VLM2-Bench is available under the CC-BY890

4.0 license for academic use with proper attribu-891

tion. The images, videos, and annotations in this892

benchmark are intended solely for research pur-893

poses. These data were sourced from publicly avail-894

able online platforms, and while efforts were made895

to use them responsibly, explicit permissions may896

not have been obtained for all content. Users are897

responsible for ensuring that their use of the data898

complies with applicable intellectual property laws899

and ethical guidelines. We encourage users to ver-900

ify the sources and ensure compliance with any901

terms of service or licensing agreements.902

C VLM2-Bench Statistics903

Here we provide additional details regarding the904

construction and statistics of our VLM2-Bench905

benchmark. As described in the main paper (§ 2.4),906

our benchmark comprises three main categories—907

General Cue (GC), Object-centric Cue (OC), and908

Person-centric Cue (PC)—with a total of 3,060909

visual-text query pairs. Below, we elaborate on910

the specific data composition, including the dis-911

tribution of question types (T/F, multiple-choice912

(MC), numerical (Nu), and open-ended (Oe)) and913

the rationale behind each subtask.914

Category Subtask T/F MC Nu Oe Total

GC Mat 520 – – – 520
Trk 440 – – – 440

Subtotal 960 – – – 960

OC
Cpr 720 – – – 720
Cnt – – 360 – 360
Grp – 200 – – 200

Subtotal 720 200 360 – 1,280

PC

Cpr 400 – – – 400
Cnt – – 120 – 120
Grp – 100 – – 100
VID – – – 200 200

Subtotal 400 100 120 200 820

Total 2,480 300 480 200 3,060

Table 3: Overview of query distribution across the three
categories of VLM2-Bench. T/F = True/False, MC =
multiple-choice, Nu = numerical, Oe = open-ended.

C.1 Overall Composition 915

Table 3 summarizes the total query counts within 916

each category and subtask. The benchmark is di- 917

vided as follows: 918

• General Cue (GC): 960 queries 919

- Matching (Mat): 260 T/F pairs → 520 920

queries 921

- Tracking (Trk): 220 T/F pairs → 440 queries 922

• Object-centric Cue (OC): 1,280 queries 923

- Comparison (Cpr): 360 T/F pairs → 720 924

queries 925

- Counting (Cnt): 360 numerical (counting) 926

queries 927

- Grouping (Grp): 200 multiple-choice ques- 928

tions 929

• Person-centric Cue (PC): 820 queries 930

- Comparison (Cpr): 200 T/F pairs → 400 931

queries 932

- Counting (Cnt): 120 numerical (counting) 933

queries 934

- Grouping (Grp): 100 multiple-choice ques- 935

tions 936

- Free-form (VID): 200 open-ended queries 937

Summing these yields a total of 3,060 visual-text 938

query pairs. 939
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C.2 Details per Subtask and Question Type940

General Cue (GC).941

Matching (Mat). We collect 260 True/False (T/F)942

pairs focused on verifying the alignment between943

a visual instance and a textual description (e.g.,944

object presence, basic attributes). Each T/F pair945

forms two distinct queries (one True, one False),946

yielding 520 queries in total.947

Tracking (Trk). We design 220 T/F pairs that948

test an understanding of object or entity continu-949

ity across frames. For example, a question might950

ask whether the same object reappears in subse-951

quent frames. Each T/F pair similarly results in952

two queries, totaling 440.953

Object-centric Cue (OC). All the visual query954

cases are built upon the 360 image sequences we955

construct. Details about image sequences can be956

found in Section E.2.957

Comparison (Cpr). This subtask examines the958

model’s ability to compare object properties (e.g.,959

size, color, quantity) across different frames. We960

produce 360 T/F pairs, each yielding two queries961

(720 total). Among these 360 pairs, we maintain a962

1:2 ratio of True to False for ground-truth answers963

(i.e., 120 True vs. 240 False).964

Counting (Cnt). We provide 360 numerical ques-965

tions, each asking for a count of objects in a given966

scene or sequence. Possible numeric answers are967

typically small integers (e.g., 1, 2, 3), reflecting the968

number of relevant objects.969

Grouping (Grp). We generate 200 multiple-choice970

(MC) questions that ask about grouping objects ac-971

cording to certain criteria (e.g., AAB, ABC, AAAB,972

AABC, ABCD). Each question presents multiple973

group-configuration options plus a “None” option,974

which can serve as either a correct or distractor975

choice. For image sequences of length 4, the op-976

tions include various plausible groupings (two-of-a-977

kind, three-of-a-kind, etc.) along with at least one978

additional distractor grouping that also involves979

three-of-a-kind to ensure sufficient challenge.980

Person-centric Cue (PC). Similar to OC, the981

construction of 260 image sequences as well as982

200 video clips for PC is detailed in Section E.3.983

Comparison (Cpr). We create 200 T/F pairs (400984

queries total) focusing on comparing attributes or985

actions related to one or more human individuals986

across multiple images in a sequence. The ground987

truth is balanced at 100 True vs. 100 False.988

Counting (Cnt). This subtask involves 120 nu-989

merical questions asking for the number of people 990

present or the frequency of certain actions in a se- 991

quence. Typical numeric answers range from 1 to 992

4, given the scope of each visual sequence. 993

Grouping (Grp). We provide 100 MC questions 994

based on sequences containing at least three im- 995

ages, with at least two images featuring the same 996

main “meta-human.” The goal is to identify correct 997

groupings of persons based on appearance, role, or 998

action. As with OC-Grp, each question includes a 999

“None” option as either the correct or a distractor 1000

choice. 1001

Free-form (VID). We introduce 200 open-ended 1002

queries that focus on various person-centric aspects, 1003

such as identifying roles or describing activities. 1004

These questions allow more flexibility in model 1005

responses and assess the ability to generate context- 1006

relevant answers. 1007

C.3 Annotation Quality and Agreement 1008

As noted in the main text, three annotators reviewed 1009

all 3,060 question-answer pairs. An inter-annotator 1010

agreement study showed a high consensus rate of 1011

98.74%, ensuring that the data is both accurate and 1012

consistent. 1013

C.4 Summary 1014

Our construction methodology ensures a balanced 1015

coverage of both object-centric and person-centric 1016

reasoning, as well as basic general cues such as 1017

element matching and tracking. The inclusion of 1018

multiple question types (T/F, MC, numerical, and 1019

open-ended) further promotes comprehensive eval- 1020

uation of vision-language models. Figure 4 in the 1021

main paper illustrates the distribution of these sub- 1022

tasks and their question-format breakdown. We 1023

believe that the richness and diversity of VLM2- 1024

Bench make it a robust platform for advancing 1025

multimodal research. 1026
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D Baselines1027

D.1 Chance-level1028

In this part, we explain the calculation of chance-1029

level accuracy for all tasks in our benchmark.1030

GC-Mat, GC-Trk. The Matching (Mat) and1031

Tracking (Trk) tasks in General Cue (GC) follow a1032

True-False (TF) paired-question format, where1033

each pair consists of a positive question and a1034

negative question:1035

• Positive Question: Derive from the correct1036

element or change. The ground truth (GT)1037

answer is True (T).1038

• Negative Question: Derive from the distrac-1039

tor element or change. The ground truth (GT)1040

answer is False (F).1041

A question pair example is shown in Table 4.1042

Positive Question:
"Is the answer ’the salad’ correct for the
given question: ’What object that was
present in the first image is no longer visible
in the second?’"
GT Answer: True (T)

Negative Question:
"Is the answer ’the ciabatta roll’ correct for
the given question: ’What object that was
present in the first image is no longer visible
in the second?’"
GT Answer: False (F)

Table 4: Example of True-False paired-question format
in GC tasks.

During the construction of these questions, we1043

ensure that the queried content originates from1044

either the correct answer or a distractor answer.1045

These elements are designed to be independent1046

and identically distributed. Since each question1047

in the pair has an independent 50% chance of being1048

answered correctly, the expected accuracy under1049

random guessing would be P (correct answer) =1050
1
2 × 1

2 = 1
4 = 25%.1051

OC-Cpr, PC-Cpr. The OC-Cpr and PC-Cpr1052

tasks utilize a True-False (TF) paired-question1053

format where both questions in a pair originate1054

from the same correct answer but are framed in1055

two different ways:1056

• Positive Question: A direct affirmative state- 1057

ment that correctly represents the ground 1058

truth. 1059

• Negative Question: A negated version of the 1060

positive question, often by inserting "not" af- 1061

ter the verb. 1062

An example is shown in Table 5. 1063

Positive Question:
"Given the images, the claim ’The pets in
these images are the same pet.’ is right."
GT Answer: True (T)

Negative Question:
"Given the images, the claim ’The pets in
these images are not the same pet.’ is right."
GT Answer: False (F)

Table 5: Example of TF paired-question format in OC-
Cpr and PC-Cpr tasks.

This construction aims to eliminate language 1064

bias by ensuring that the model does not favor 1065

one phrasing over another. For a language model 1066

that is free from bias, these two questions are log- 1067

ically equivalent—answering one correctly im- 1068

plies answering the other correctly as well. Conse- 1069

quently, under random guessing, the expectation is 1070

P (correct answer) = 1
2 = 50%. 1071

OC-Cnt, PC-Cnt. The calculation formulas for 1072

the accuracy of the chance-level accuracy are the 1073

same as in Section 3.1. 1074

Under a pure random guessing strategy, the pre- 1075

dicted answer N̂i is uniformly sampled from the 1076

set {1, 2, . . . , L}, where L is the number of images 1077

(i.e., the sequence length for that instance). For 1078

a fixed sequence length L, we can compute the 1079

expected normalized accuracy E(L) by averaging 1080

over all possible ground-truth and guess pairs: 1081

E(L) = 1− 1

L2

L∑
N=1

L∑
N̂=1

w(L) · ϵ(N, N̂)−α, 1082

where 1083

ϵ(N, N̂) =
|N̂ −N |

max(N − 1, L−N)
1084

and the weight is defined as 1085

w(L) =
Lmax

L
, 1086
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with Lmax = 4 being the maximum sequence1087

length in our dataset.1088

OC-Cnt Task: The OC-Cnt task exhibits the1089

following distribution:1090

• Length 2: 80 sequences (22.2%)1091

• Length 3: 120 sequences (33.3%)1092

• Length 4: 160 sequences (44.4%)1093

Thus, the overall chance level accuracy is ob-1094

tained as the weighted average: AccOC-Cnt =1095
80E(2)+120E(3)+160E(4)

360 ≈ 34.88%.1096

PC-Cnt Task: For the PC-Cnt task, the se-1097

quence distribution is:1098

• Length 2: 30 sequences (25.0%)1099

• Length 3: 25 sequences (20.8%)1100

• Length 4: 65 sequences (54.2%)1101

Accordingly, the overall chance level accuracy is1102

given by: AccPC-Cnt = 30E(2)+25E(3)+65E(4)
120 ≈1103

34.87%.1104

D.2 Human-level1105

To facilitate human participants in providing re-1106

sponses to our questions, we integrated all model-1107

prompted questions and answer choices into a1108

graphical user interface (GUI), as illustrated in Fig-1109

ure 6. This interface enabled participants to select1110

their answers conveniently, ensuring consistency1111

in data collection. We then gathered all responses1112

and conducted statistical analysis on the collected1113

human evaluations.1114
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Figure 6: GUI for human-level testing
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E More details on Benchmark1115

Construction1116

E.1 GC (General Cue)1117

Manual Screening and Refine. Figure 7 demon-1118

strates the Graphic User Interface (GUI) we build1119

for manually screening image editing data.1120

Salient Sampling. The Pseudocode in Figure 81121

and Table 6 displays the calculation process for the1122

salient sampling score mentioned in Section 2.1.1123

Prompts for Pair-wise Answer Generation. Ta-1124

ble 7 and 8 provides the complete prompts used1125

to generate pair-wise answers for our evaluation1126

tasks. The prompts were designed to instruct the1127

language model to produce two distinct answers—a1128

positive (T) answer and a negative (F) answer—for1129

each task. The dual-answer format is intended to1130

capture both the expected response and its direct1131

opposite, thereby offering a more balanced insight1132

into the model’s understanding.1133

Question Templates. Table 9 and 10 list de-1134

tailed standard question templates for General Cue -1135

Matching and Tracking tasks, including the format1136

instruction prompt.1137

E.2 OC (Object-centric Cue)1138

Data Collection. To construct the dataset, we fol-1139

low a structured approach to collect object-centric1140

images, as illustrated in Figure 9. In total, we man-1141

ually collected 320 images for objects.1142

Main Meta-Object Selection. We predefine 81143

types of common objects, with each type contain-1144

ing 5 meta-objects. For each meta-object, we col-1145

lect four images that represent the same object from1146

different angles and scene conditions.1147

Distractor Meta-Object Selection. To build1148

meaningful object image sequences, we introduce1149

visually distractive elements for each main meta-1150

object, referred to as “distractor meta-objects”.1151

Specifically, for each main meta-object, we col-1152

lect four additional images that belong to different1153

but visually similar meta-objects within the same1154

object category. These images are selected fol-1155

lowing predefined visual cue confusion principles,1156

ensuring that they provide meaningful challenges1157

for vision language models. We ensure that each1158

distractor image belongs to a different distractor1159

meta-object, fundamentally guaranteeing that the1160

count of different meta-objects in the final con- 1161

structed sequence strictly follows our design. The 1162

principle of selecting distractor meta-objects is il- 1163

lustrated in the outer ring of Figure 9. 1164

Image Sources. The images are gathered from 1165

various sources based on the nature of the objects: 1166

• Plush Objects: Images of plush toys are en- 1167

tirely sourced from the Jellycat website and its 1168

review sections, where diverse user-uploaded 1169

images provide a wide variety of object angles 1170

and scenes. 1171

• Pet Objects: For the pet category of meta- 1172

objects, we source images from a combina- 1173

tion of social media accounts of popular pet 1174

influencers’ pet photography. We also include 1175

images of a ragdoll cat owned by one of the 1176

authors. As a result, this approach guarantees 1177

that each pet meta-object within the dataset 1178

belongs to the same individual cat or dog, min- 1179

imizing variability unrelated to visual cue con- 1180

fusion. 1181

• Other Objects: Most images are collected 1182

from Amazon product listings and review sec- 1183

tions containing user-uploaded photos. A 1184

smaller portion of the dataset is curated us- 1185

ing Google Lens image search, where specific 1186

visual distractive cues are used to retrieve and 1187

manually select images. The detailed visual 1188

cue principles guiding this selection process 1189

can be found in Figure 9. 1190

Images Sequence Construction. The construc- 1191

tion of image sequences in OC (a total of 360 se- 1192

quences) follows the structure in Table 11. More 1193

specific details are listed below: 1194

Two-Image Sequences (image_seq_len = 2) 1195

1. Main Meta-Object Only (AA): Two images 1196

are randomly sampled from the same main 1197

meta-object. 40 sequences are constructed 1198

(one for each main meta-object). 1199

2. Main Meta-Object + Distractor Meta- 1200

Object (AB): One image is randomly selected 1201

from the main meta-object, and one from the 1202

corresponding distractor meta-object. 40 se- 1203

quences are constructed. 1204

Three-Image Sequences (image_seq_len = 3) 1205
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Figure 7: GUI.

Supposed you are looking at two images:
Image 1: <Cap_src>
Image 2: <Cap_edit>
From Image 1 to Image 2, the change can be summarized as: <P>

Table 6: Template for salient-score calculation.
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#Task Description
Given the change between the first image and the second image, you need to generate four choices
to the question "What new element can be observed in the second image that was not present in
the first?" (this question varies based on the editing task). Remember, the choices’ lengths should
be similar. Additionally, your response should start with "Choices".
#Pair Design
In these two choices, you need to contain *only* the names of objects, but be specific:
1. Correct Answer (You need to infer the *only* from the Editing Information)
2. Distractor (You need to pick a random object *only* in the ‘Description’, but differ from the
correct answer object)
#In-context example
Editing Information:
Add a katana held in the figure’s left hand, angled downwards.
Description:
The image depicts a person dressed in traditional Japanese armor, standing in a misty, snowy
landscape. The armor is detailed and appears to be made of metal, with various straps and
buckles. The person is wearing a black mask that covers their entire face, adding to the mysterious
and stealthy appearance. The background features stone lanterns and other traditional Japanese
structures, which are partially obscured by the mist. The overall atmosphere is serene yet somewhat
eerie, with the mist adding a sense of mystery and isolation. The scene suggests a historical or
fantasy setting, possibly a samurai or ninja in a snowy, misty environment.
Choices:
Correct Answer: katana held
Distractor: black mask
#Task
<Original Edit Prompt>
<VLM’s Description>

Table 7: Pair-aware answer generation prompt for OC-Mat
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Task Description
Given the change between the first image and the second image, you need to generate four choices
to the question "What key visual difference can be observed from the first image to the second
image?". Remember, the choices’ lengths should be similar. Additionally, your response should
start with "Choices: " and must contain Correct Answer and Direct Reverse Answer.
Pair Design
In the two choices, you need to contain:
1. Correct Answer (You need to infer from the Editing Information)
2. Direct Reverse Answer (You need to infer from the Editing Information and change it to the
opposite)
In-context example
Editing Information:
Swap the black ninja gloves with clean white gloves appropriate for serving.
Description:
The image depicts a person dressed in formal attire, standing in a doorway. The individual is
wearing a black tuxedo with a white dress shirt and a black bow tie. They are holding a tray
with several items on it. The tray contains a small glass container, a bottle, and a small white
object, possibly a salt shaker or a similar item. The person is also wearing black gloves, which are
typical for serving or formal dining scenarios. The background shows a wooden door with a brass
hinge and a light-colored wall. The setting appears to be indoors, possibly in a house or a formal
establishment.
Choices:
Correct Answer: The black ninja gloves were replaced with clean white gloves.
Direct Reverse Answer: The clean white gloves were replaced with black ninja gloves.
#Task
<Original Edit Prompt>
<VLM’s Description>

Table 8: Pair-aware answer generation prompt for OC-Trk
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Algorithm 1 Salient Score Computation

1 # cap_src: caption for the source image
2 # cap_edit: caption for the edited image
3 # T: template for constructing a paragraph
4 # P: editing prompt
5 input_text = concat(cap_src , cap_edit , T)
6 in_tokens = tokenizer.encode(input_text)
7 out_tokens = tokenizer.encode(P)
8 log_sum = 0
9 tokens = in_tokens

10
11 # Model Forward Pass
12 for i in range(1, len(out_tokens)):
13 outputs = model(tokens)
14 logits = outputs.logits
15
16 # Extract log probability of next token
17 probs = log_softmax(logits[0, -1, :])
18 prob = probs[out_tokens[i]]
19 log_sum += prob
20
21 # Update Input Sequence
22 tokens = concat(tokens , out_tokens[i])
23
24 # Normalize the total log probability as the

salient_score
25 salient_score = log_sum / len(out_tokens)
26
27 # Return: salient_score

Figure 8: Pseudocode for salient score computation.

1. Main Meta-Object Only (AAA): Three im-1206

ages are randomly sampled from the same1207

main meta-object. 40 sequences are con-1208

structed.1209

2. Main Meta-Object + Distractor Meta-1210

Object (AAB): Two images are selected from1211

the main meta-object, and one from the dis-1212

tractor meta-object. The order of images is1213

shuffled. 40 sequences are constructed.1214

3. Main Meta-Object + Distractor Meta-1215

Objects (ABC): One image is selected from1216

the main meta-object, while two are selected1217

from different distractor meta-objects. 40 se-1218

quences are constructed.1219

Four-Image Sequences (image_seq_len = 4)1220

1. Main Meta-Object Only (AAAA): All four1221

images are sampled from the same main meta-1222

object and shuffled. 40 sequences are con-1223

structed.1224

2. Main Meta-Object + Distractor Meta-1225

Object (AAAB): Three images are sampled1226

from the same main meta-object, while one1227

is selected from a distractor meta-object. 401228

sequences are constructed.1229

3. Main Meta-Object + Distractor Meta-1230

Objects (AABC): Two images are selected1231

GC-Mat Positive Question:
"Is the answer ’correct element’ correct for
the given question: ’What new element can
be observed in the second image that was
not present in the first?’"
GT Answer: True (T)

GC-Mat Negative Question:
"Is the answer ‘distractor element’ correct
for the given question: ’What new element
can be observed in the second image that
was not present in the first?’"
GT Answer: False (F)

Table 9: GC-Mat True-False paired-question

GC-Trk Positive Question:
"Is the answer ’correct change’ correct for
the given question: ’What key visual change
can be observed from the first image to the
second image?’"
GT Answer: True (T)

GC-Trk Negative Question:
"Is the answer ’distractor change (reversed
process)’ correct for the given question:

’What key visual change can be observed
from the first image to the second image?’"
GT Answer: False (F)

Table 10: GC-Trk True-False paired-question

from the main meta-object, while two are se- 1232

lected from different distractor meta-objects. 1233

40 sequences are constructed. 1234

4. Main Meta-Object + Distractor Meta- 1235

Objects (ABCD): One image is selected from 1236

the main meta-object, while three are selected 1237

from different distractor meta-objects. 40 se- 1238

quences are constructed. 1239

Question Templates. Table 12, 13 and 14 list 1240

detailed standard question templates (with format 1241

instructions) for the Object-centric Cue task, in- 1242

cluding 3 subtasks: Comparison (cpr), Counting 1243

(Cnt), and Grouping (Grp). 1244
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Amuseable-Object
distractive visual-cues:
· color
· shape
· emotion 

Animal-like-Object
distractive visual-cues:
· color
· posture
· expression 

Backpack
distractive visual-cues:
                · color
                · logo
                · buckle 
                · clip

Schoolbag
distractive visual-cues:
                · color
                · graphic
                · painting
                · texture

Fashion Bag
distractive visual-cues:
               · color
               · material
               · structure
               · style

Book (colored cover)
distractive visual-cues:
                · color
                · painting
                · series

Book (biography)
distractive visual-cues:
                · portrait
                · cover style
                · layout

Mug
             distractive 
             visual-cues:
               · text
               · shape
               · color

Paper Cup
              distractive 
              visual-cues:
               · painting
               · pattern
               · color
               · texture

Water Bottle
              distractive 
              visual-cues:
               · text
               · brand
               · handle
               · color

            distractive 
            visual-cues:
               · number
               · color
               · logo
               · text
               · player

High Heels

distractive 
visual-cues:
· heel 
· strap 
· bukcle
             

Leather 
Shoes

distractive visual-cues:
· style    · toe
· sole     · lace
             

Sneakers

distractive 
visual-cues:
· color    · logo
· lace     · sole
· tongue            

Action Figure

distractive 
visual-cues:
· color · outfit
· version · posing           

Toy Jet

distractive visual-cues:
· model · color
· wing · cockpit             

Toy Car / Train
distractive visual-cues:
· model
· color
· material
· tyre             

Cat
distractive visual-cues:
· fur color
· fur pattern
· eye
· ear 
· expression
· pose

Dog
distractive visual-cues:
· fur color & pattern
· coat
· expression
· pose
· head
· ear
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Figure 9: The overview of the structured design of the Object-centric Cue (OC) images. Central Layer (Main
Meta-Objects): The innermost circle represents the predefined 8 object categories, which serve as the foundation
for our dataset. These categories include Pet, Plush, Bag, Book, Cup, Shirt, Shoes, and Toy. Each category
consists of 4 main meta-objects. Middle Layer (Example Meta-Objects within Each Category): Each segment
surrounding the center showcases a representative main meta-object within its category. These meta-objects
serve as core instances for data collection. For example, the Pet category includes Cat and Dog, while the Bag
category includes Backpack, Schoolbag and Fashion Bag. Outer Layer (Distractor Meta-Objects & Visual Cue
Distraction Principles): The outermost ring presents 1 out of 4 distractor meta-objects specifically selected to
create challenging image sequences. Each distractor meta-object shares one or more distractive visual cues with its
corresponding main meta-object.
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Num Src Process of Image Sequences Construction Cpr cnt Grp

2 AA 2 images from the same object Oi, randomly sampled as
IOi = {Ii, Ij}, and shuffled.

T 2 -

2 AB 1 image Ii from IOi and 1 image I¬i from distractor set
I¬Oi , randomly shuffled.

F 1 -

3 AAA 3 images from the same object Oi, randomly sampled as
IOi = {Ii, Ij , Ik}, and shuffled.

T 3 -

3 AAB
2 images from the same object Oi, randomly sampled
as IOi = {Ii, Ij} and 1 I¬i from distractor set I¬Oi ,
randomly shuffled.

F 2 [Ii, Ij]

3 ABC
1 images from the same object Oi, randomly sampled as
IOi = {Ii} and 2 images {I¬i, I¬j} from distractor set
I¬Oi , randomly shuffled.

F 3 []

4 AAAA 4 images from the same object Oi, randomly sampled as
IOi = {Ii, Ij , Ik, Ip}, and shuffled.

T 4 -

4 AAAB
3 images from the same object Oi, randomly sampled as
IOi = {Ii, Ij , Ik} and 1 image I¬i from distractor set
I¬Oi , randomly shuffled.

F 2 [Ii, Ij , Ik]

4 AABC
2 images from the same object Oi, randomly sampled as
IOi = {Ii, Ij} and 2 images {I¬i, I¬j} from distractor
set I¬Oi , randomly shuffled.

F 3 [Ii, Ij]

4 ABCD
1 images from the same object Oi, randomly sampled as
Ii and 3 images {I¬i, I¬j , I¬k} from distractor set I¬Oi ,
randomly shuffled.

F 3 []

Table 11: Summary of Multi-Images Sequence Construction for Object-centric Cue (OC) Tasks

OC-Cpr Positive Question:
"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with ’T’ (True) or
’F’ (False). Only reply with ’T’ or ’F’. The
Question is: Given the images, the claim
’The {obj}s in these images are the same
{obj}.’ is right."
GT Answer: True (T)

OC-Cpr Negative Question:
"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with ’T’ (True) or
’F’ (False). Only reply with ’T’ or ’F’. The
Question is: Given the images, the claim
’The {obj}s in these images are not the same
{obj}.’ is right."
GT Answer: False (F)

Table 12: OC-Cpr True-False paired-question

OC-Cnt Question:
"Answer the following question according
to this rule: You only need to provide
*ONE* correct numerical answer. For ex-
ample, if you think the answer is ’1’, your
response should only be ’1’. The Question
is: How many different {obj}s are there in
the input images?"
GT Answer: "N" (e.g., "1", "2", etc.)

Table 13: OC-Cnt Numerical Counting Question
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OC-Grp Question:
"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with the correspond-
ing letter. For example, if you think the cor-
rect answer is ’B) 1 and 2’, your response
should only be ’B) 1 and 2’. The Question
is: Which images show the same {obj} in
the input images? Choices: A) 1 and 3; B)
None; C) 2 and 3; D) 1 and 2."
GT Answer: "A) 1 and 3" (Example An-
swer)

Table 14: OC-Grp Multiple-Choice Grouping Question

E.3 PC (Person-centric Cue)1245

Data Collection. We collect images of meta-1246

humans mainly from https://www.imdb.com/1247

and some are from the actor or actress’s social1248

media.1249

Main Meta-human Selection. Our dataset is1250

evenly distributed across different racial groups1251

(Asian, Black, and White) and genders (Male and1252

Female). For every race-gender combination, we1253

select five main meta-humans, each contributing1254

four images, yielding a total of 120 images.1255

To ensure consistency, all selected individuals1256

are within a similar age range, preventing signifi-1257

cant age-related facial changes that could interfere1258

with identity recognition. Additionally, each ac-1259

tor’s appearance remains relatively consistent in1260

terms of makeup and overall styling, ensuring that1261

different images of the same meta-human retain dis-1262

tinct yet comparable visual cues (e.g. face shape,1263

eye spacing, nose structure, and lip contours). By1264

preserving these features, we avoid manipulating a1265

single individual’s visual cues that could potentially1266

mislead VLMs. Rather, we ensure that the evalua-1267

tion genuinely tests whether the model can visually1268

link matching cues to recognize the same or differ-1269

ent individuals without prior identity knowledge.1270

Distractor Meta-human Selection. To intro-1271

duce challenging distractors in our sequences, we1272

compute the CLIP embedding for every image and1273

store these embeddings in a reference base. When1274

a distractor image is needed, we perform an image-1275

to-image similarity search within this base to iden-1276

tify the most visually similar image that originates1277

from a different meta-human. This fine-grained1278

matching ensures that the distractor image closely 1279

resembles the main meta-human’s image, leading 1280

to more challenging image sequences. 1281

Discussion on Why Objects Require Dedicated 1282

Distractors, While Humans Do Not. In object- 1283

centric tasks, objects are categorized into eight 1284

distinct types, with substantial differences among 1285

different types (e.g. pets and bags). Therefore, 1286

each main meta-object requires dedicated distrac- 1287

tors from the same object type to ensure meaningful 1288

comparisons. In contrast, humans belong to a sin- 1289

gle category, meaning that any meta-human can 1290

serve as a distractor for another. Given that we 1291

compute CLIP embeddings to select visually sim- 1292

ilar distractors, the constructed image sequences 1293

already present a significant challenge without the 1294

need for type-specific distractors. We also ensure 1295

diversity by selecting five main meta-humans for 1296

each race-gender pair, providing a sufficiently large 1297

pool from which to choose suitable distractors. Cor- 1298

responding to our hypothesis, in the final curated se- 1299

quences, most distractor meta-humans chosen were 1300

of the same race or gender as the main meta-human. 1301

Additionally, as shown in Table 1, these curated im- 1302

age sequences along with our designed questions 1303

effectively challenge tested models, revealing their 1304

limited performances in visually linking matching 1305

cues on person-centric data. 1306

Images Sequence Construction. The construc- 1307

tion of image sequences in PC (a total of 260 se- 1308

quences) follows the structure in Table 15. More 1309

specific details are listed below: 1310

Two-Image Sequences (image_seq_len = 2) 1311

1. Main Meta-Human Only (PP): Two images 1312

are randomly sampled from the same main 1313

meta-human. 50 sequences are constructed. 1314

2. Main Meta-Human + Distractor Meta- 1315

Human (PQ): One image is randomly se- 1316

lected from the main meta-human, and one 1317

from a distractor meta-human. The order of 1318

images is shuffled. 50 sequences are con- 1319

structed. 1320

Three-Image Sequences (image_seq_len = 3) 1321

1. Main Meta-Human Only (PPP): Three im- 1322

ages are randomly sampled from the same 1323

main meta-human. 20 sequences are con- 1324

structed. 1325
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2. Main Meta-Human + Distractor Meta-1326

Human (PPQ): Two images are selected from1327

the main meta-human, and one from a single1328

distractor meta-human. The order of images1329

is shuffled. 30 sequences are constructed.1330

3. Main Meta-Human + Distractor Meta-1331

Humans (PQR): One image is selected from1332

the main meta-human, while the other two1333

come from distinct distractor meta-humans.1334

The order is shuffled. 10 sequences are con-1335

structed.1336

Four-Image Sequences (image_seq_len = 4)1337

1. Main Meta-Human Only (PPPP): All four1338

images are sampled from the same main meta-1339

human. The order is shuffled. 30 sequences1340

are constructed.1341

2. Main Meta-Human + Distractor Meta-1342

Human (PPPQ): Three images are sampled1343

from the main meta-human, while one is se-1344

lected from a single distractor meta-human.1345

The order is shuffled. 20 sequences are con-1346

structed.1347

3. Main Meta-Human + Distractor Meta-1348

Humans (PPQR): Two images are selected1349

from the main meta-human, while two are se-1350

lected from distinct distractor meta-humans.1351

The order is shuffled. 20 sequences are con-1352

structed.1353

4. Main Meta-Human + Distractor Meta-1354

Humans (PQRS): One image is selected from1355

the main meta-human, while three are selected1356

from distinct distractor meta-humans. The or-1357

der is shuffled. 30 sequences are constructed.1358

Video Construction. The video data for this1359

benchmark is manually collected from Shutter-1360

stock2. We selected ten common activity categories1361

that an individual can perform: clean, cook, drink,1362

exercise, listen, play, read, ride, walk, and work.1363

For each category, we curated 10 sets of candidate1364

video pairs, and each set consists of two videos.1365

To ensure motion consistency and length diver-1366

sity, we carefully structured the final videos by con-1367

catenating clips while keeping the total duration1368

within the 0-100s time range. Figure 10 displays1369

the sketch of concatenated video length distribution.1370

The final compositions followed two formats:1371

2https://www.shutterstock.com

• P ->¬P format: A direct concatenation of 1372

two distinct clips (same length for each clip). 1373

• P ->¬P ->P format: A sequence where the 1374

first clip and the third clip are sampled from 1375

the same candidate video, while the second 1376

clip is sampled from the second candidate 1377

video. (same length for the three clips) 1378

Figure 10: Distribution of video duration.

Regardless of the different default sampling 1379

methods for our baseline models in Table 16, both 1380

P ->¬P and P ->¬P ->P formats ensure that ev- 1381

ery video clip has frames included in the sampling 1382

process: 1383

• Uniform Sampling (8/16 frame): Each clip 1384

contributes a proportionate number of frames 1385

based on the total video length. Since in one 1386

concatenated video, all the sampled clips are 1387

the same length, this method guarantees at 1388

least 2 frames for each clip can be sampled as 1389

model input frames. 1390

• FPS Sampling (1fps): Since frames are sam- 1391

pled at a fixed rate, the structure of P ->¬P 1392

and P ->¬P ->P ensures that each clip is 1393

present long enough for multiple frames to 1394

be captured, regardless of its placement in the 1395

sequence. 1396
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Num Src Process of Image Sequences Construction Cpr cnt Grp

2 PP 2 images from the same person Pi, randomly sampled as
IPi = {Ii, Ij}, and shuffled.

T 2 -

2 PQ 1 image Ii from IPi and 1 image I¬i from distractor set
I¬Pi , randomly shuffled.

F 1 -

3 PPP 3 images from the same person Pi, randomly sampled as
IPi = {Ii, Ij , Ik}, and shuffled.

T 3 -

3 PPQ
2 images from the same person Pi, randomly sampled
as IPi = {Ii, Ij} and 1 I¬i from distractor set I¬Pi ,
randomly shuffled.

F 2 [Ii, Ij]

3 PQR
1 image from the same person Pi, randomly sampled as
IPi = {Ii} and 2 images {I¬i, I¬j} from distractor set
I¬Pi , randomly shuffled.

F 3 []

4 PPPP 4 images from the same person Pi, randomly sampled as
IPi = {Ii, Ij , Ik, Ip}, and shuffled.

T 4 -

4 PPPQ
3 images from the same person Pi, randomly sampled
as IPi = {Ii, Ij , Ik} and 1 image I¬i from distractor set
I¬Pi , randomly shuffled.

F 2 [Ii, Ij , Ik]

4 PQQR
2 images from the same person Pi, randomly sampled as
IPi = {Ii, Ij} and 2 images {I¬i, I¬j} from distractor
set I¬Pi , randomly shuffled.

F 3 [Ii, Ij]

4 PQRV
1 image from the same person Pi, randomly sampled as
Ii and 3 images {I¬i, I¬j , I¬k} from distractor set I¬Pi ,
randomly shuffled.

F 3 []

Table 15: Summary of Multi-Images Sequence Construction for Person-centric Cue (PC) Tasks
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Model Name Uniform (8/16) FPS (1fps)

LLaVA-OneVision-7B ✓ ✗
LLaVA-Video-7B ✓ ✗
LongVA-7B ✓ ✗
mPLUG-Owl3-7B ✓ ✗
Qwen2-VL-7B ✗ ✓
Qwen2.5-VL-7B ✗ ✓
InternVL2.5-8B ✓ ✗
InternVL2.5-26B ✓ ✗

GPT-4o ✓ ✗

Table 16: Comparison of Different Sampling Methods

Thus, by maintaining the integrity of each clip’s1397

temporal structure, both P ->¬P and P ->¬P ->P1398

formats effectively ensure that every clip con-1399

tributes frames to the final sampled frame input1400

for all models.1401

Question Templates. Table 17, Table 18, Ta-1402

ble 19, and Table 20 present the detailed standard1403

question templates for the Person-centric Cue task,1404

covering the four subtasks: Comparison (PC-Cpr),1405

Counting (PC-Cnt), Grouping (PC-Grp), and Video1406

Identity Description (PC-VID).1407

PC-Cpr Positive Question:
"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with ’T’ (True) or
’F’ (False). Only reply with ’T’ or ’F’. The
Question is: The individuals in these images
are the same person."
GT Answer: True (T)

PC-Cpr Negative Question:
"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with ’T’ (True) or
’F’ (False). Only reply with ’T’ or ’F’. The
Question is: The individuals in these images
are not the same person."
GT Answer: False (F)

Table 17: PC-Cpr True-False paired-question

PC-Cnt Question:
"Answer the following question according
to this rule: You only need to provide
*ONE* correct numerical answer. For ex-
ample, if you think the answer is ’1’, your
response should only be ’1’. The Question
is: How many distinct individuals are in the
input images?"
GT Answer: 2 (Example Answer)

Table 18: PC-Cnt Numerical Counting Question

PC-Grp Question:
"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with the correspond-
ing letter. For example, if you think the cor-
rect answer is ’B) 2 and 3’, your response
should only be ’B) 2 and 3’. The Question
is: Which images correspond to the same
person in the input images? Choices: A)
None; B) 2 and 3; C) 1 and 3; D) 1 and 2."
GT Answer: D) 1 and 2 (Example Answer)

Table 19: PC-Grp Multiple-Choice Grouping Question

PC-VID Question:
"Give a comprehensive description of the
whole video, prioritizing details about the
individuals in the video."

Table 20: PC-VID Video Describing Question
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F More details on Prompting Approaches1408

F.1 Prompts for LLM-as-Evaluator1409

When models answer our free-form PC-VID ques-1410

tions, their responses are evaluated by GPT-4o us-1411

ing the scoring prompts detailed in Tables 21 and1412

22. Specifically, for videos following a P → ¬P1413

sequence, GPT-4o assesses whether the model ex-1414

plicitly distinguishes that the first individual (P)1415

and the second individual (¬P) are different. In1416

this case, if the model successfully makes this dis-1417

tinction, it receives a score of 1; otherwise, it is1418

given a score of 0.1419

For videos that exhibit a P → ¬P → P (PQP)1420

pattern, the evaluation is more nuanced. The eval-1421

uator model (GPT-4o) checks two aspects: (1)1422

whether the model correctly identifies that there1423

are two distinct individuals (i.e., P and ¬P), and1424

(2) whether the model explicitly recognizes that1425

the final appearance belongs to the same individual1426

as the first (P). A perfect identification of both1427

aspects yields a score of 2, while correctly distin-1428

guishing the individuals without explicitly linking1429

the final appearance to the first results in a score1430

of 1. If the model fails to distinguish between the1431

individuals, a score of 0 is assigned.1432

F.2 Prompting Approaches for Probing on1433

VLM2-Bench1434

CoT (CoT-normal). The normal version of the1435

Chain-of-Thought prompt is shown in Table 23.1436

We simply require the model to think ’step-by-step’1437

to ensure self-reflection and self-correction, as well1438

as the transparent thinking process.1439

CoT-special for GC. Table 24 shows a special1440

version of the Chain-of-Thought prompt. Accord-1441

ing to the task features, we carefully analyze how a1442

human being approaches and visually links match-1443

ing cues for questions in GC, then curate this1444

prompt as an imitation of the human visual linking1445

process.1446

VP-grid for GC. Figure 11 displays a complete1447

version of Visual Prompting with Grid assistance1448

(VP-grid). Here we follow (Lei et al., 2024) to1449

print a set of dot matrix onto the input image, ac-1450

companied by the image order dimension concate-1451

nated with Cartesian coordinates as (image order1452

index, colum index), row index). In the detailed tex-1453

tual prompt design, we also integrated references1454

and explanations for the grids, allowing VLMs to1455

leverage this visual assistance as spatial and visual 1456

matching references. 1457

VP-zoom-o for OC. In Figure 12, we demon- 1458

strate the visual prompting process for OC. We 1459

leverage the Grounded-SAM (Ren et al., 2024) 1460

model to detect bounding boxes for objects based 1461

on their types then crop the “zoomed-in” objects as 1462

the image input for further VQA pairs. 1463

VP-zoom-p for PC. The visual prompting pro- 1464

cess in similar to that of OC (Figure 13). We use a 1465

face detection model (Geitgey, 2016) to “zoom in” 1466

on the individual’s face and occlude other irrelevant 1467

information. 1468
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#Task
You are evaluating a model’s ability to accurately distinguish between two different individuals, P
and Q, who appear sequentially in a video (first P, then Q). Given a description, your task is to
determine if the model explicitly identifies that the first person (P) and the second person (Q) are
different individuals.
#Return Format
You only need return a number after "Score:". If you think the model correctly identifies that the
two appearances belong to different individuals, return "Score: 1". If you think the model fails to
explicitly state that there are two different individuals, return "Score: 0".
#Description
<Model’s Description>

Table 21: Scoring prompt for VID (when video belongs to category of P ->¬P ).

#Task
You are evaluating a model’s ability to accurately distinguish between two different individuals, P
and Q, who appear sequentially in a video following an PQP pattern (first P, then Q, then P again).
Given a description, your task is to determine whether the model explicitly identifies that: (1) P
and Q are different individuals, and (2) The person in the final scene is the same as the first (P).
#Return Format
You only need return a number after "Score:".
(1) If the model correctly describes that the video follows an PQP sequence, explicitly recognizing
that the first and last appearances belong to the same person (P), while the middle appearance is a
different person (Q), return "Score: 2".
(2) If the model correctly identifies that there are two different people in the video (P and Q) but
does not explicitly mention that the last scene returns to P, return "Score: 1".
(3) If the model fails to recognize that two different individuals appear (e.g., treats all appearances
as the same person or does not distinguish between P and Q), return "Score: 0".
#Description
<Model’s Description>

Table 22: Scoring prompt for VID (when video belongs to category of P ->¬P ->P ).

<Question>
Let’s think ‘step by step’ to answer this question, you need to output the thinking process of how
you get the answer.

Table 23: CoT prompt for GC (here we denote as CoT-normal to distinguish it from the CoT-special in Table 24 that
specifically designed for GC), OC, and PC.
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<Question>
Use the following 4 steps to answer the question:

Step 1. Understand the Question
- Identify the question’s purpose.
- Check for any format requirements.

Step 2. Perceive (List Elements)
- List every details in each image respectively.
- Note positions and attributes of elements.

Step 3. Connect (Compare & Reason)
- Compare corresponding elements in each image.
- List all the unchanged elements and the changed element.

Step 4. Conclude (Answer the Question)

Table 24: CoT-special specifically designed for GC.

Figure 11: An illustration of how VP-grid works for GC.
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Figure 12: An illustration of how VP-zoom-o works for OC.

Figure 13: An illustration of how VP-zoom-p works for PC.

G Case Study1469

This section focuses on how various prompting1470

techniques influence model performance, highlight-1471

ing their successes and limitations across different1472

models.1473

G.1 Case for CoT-special prompting in1474

General Cue (GC) Task1475

We observe that the CoT-special prompt boosts1476

InternVL2.5-8B’s performance by over 25% than1477

the standard query in both Matching and Track-1478

ing tasks for General Cue. While for the traditional1479

CoT-normal prompting technique, this boost is only1480

13%. The CoT-special prompt (Table 24) directs1481

the model through four explicit steps: understand-1482

ing the question, perceiving (listing elements), con-1483

necting (comparing and reasoning), and conclud-1484

ing. This structured approach mirrors the human1485

process of visual matching and is effective even for1486

a rather smaller model like InternVL2.5-8B, which1487

might otherwise struggle with the ambiguity of a1488

complex generic step-by-step instruction (which 1489

we will discuss later in the next Subsection G.2). 1490

For example, in the provided InternVL2.5-8B 1491

response Figure 14, the model correctly executes 1492

the following: In Step 2, it identifies critical details 1493

such as "Vase with flowers on the table" and "Chan- 1494

delier above" in Image 1, while noting the absence 1495

of the vase in Image 2. In Step 3, it systematically 1496

compares the two images, highlighting that while 1497

many elements remain unchanged (e.g., the chan- 1498

delier, kitchen area, bowl of fruit, window), the 1499

removal of the vase is the key difference. Finally, 1500

in Step 4, the model concludes that the statement 1501

"The vase on top of the table was removed" accu- 1502

rately describes the visual change, thereby arriving 1503

at the correct answer. 1504

This detailed, multi-step breakdown not only 1505

ensures that all pertinent visual cues are captured 1506

and processed but also reduces errors by structur- 1507

ing the logical flow of reasoning. The CoT-special 1508

prompt’s explicit instructions help InternVL2.5-8B 1509
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align visual information with textual descriptions1510

more effectively, thus enhancing overall perfor-1511

mance. Compared to the less specific CoT-normal1512

prompt—which may leave the model with gaps in1513

reasoning—the CoT-special prompt provides clear,1514

task-specific guidance that is essential for complex1515

visual reasoning tasks, as evidenced by the substan-1516

tial performance improvement.1517

G.2 Case for VP-grid in General Cue Task1518

The VP-grid (Visual Prompting with Grid as-1519

sistance) method enhances visual matching in1520

General Cue tasks by overlaying a dot matrix1521

grid onto the input image. Each dot is an-1522

notated with a three-dimensional coordinate tu-1523

ple, (image order index, column index, row index),1524

where the first dimension distinguishes the se-1525

quence of images (e.g., the first image is indexed1526

as 1 and the second as 2). This grid is further sup-1527

ported by detailed textual descriptions that clarify1528

the coordinate system, enabling Vision-Language1529

Models (VLMs) to use these cues for spatial and1530

visual matching.1531

A example failure case in VP-grid. However,1532

this approach does not yield consistent improve-1533

ments across all models. For instance, the1534

Qwen2.5-VL-7B model demonstrates a significant1535

performance drop—nearly 20%—when using VP-1536

grid. An example failure case is in Figure 15.1537

Our analysis reveals that although the model cor-1538

rectly identifies visual elements (e.g., a pedestrian1539

with a high-visibility vest at coordinates (2, 5, 3)),1540

it fails to properly interpret the image sequence.1541

Specifically, the model incorrectly associates the1542

coordinates (2, 5, 3) with the first image, rather1543

than the second, despite the explicit definition pro-1544

vided in the textual prompt. This misinterpretation1545

leads to erroneous linking of visual matching cues1546

and subsequent faulty reasoning. We suspect that1547

the underlying issue is the limited semantic com-1548

prehension capability of the relatively smaller 7B1549

model, which struggles with complex, predefined1550

spatial instructions and visual assistance.1551

A example of success case in VP-grid. In con-1552

trast to models that often misinterpret or neglect1553

spatial cues provided by VP-grid—leading to errors1554

such as mismatching image indices—GPT-4o suc-1555

cessfully leverages these visual prompts to achieve1556

correct visual-textual alignment. In the example at1557

Figure 16, the model identifies the cat’s nose at co-1558

ordinates (1, 2, 4) in the first image and at (2, 2, 4)1559

in the second image, enabling it to accurately cap- 1560

ture the change in the visual attribute (from a lighter 1561

pink to a darker black). 1562

This success stems from several key aspects of 1563

GPT-4o’s processing capabilities: 1564

1. Precise Disambiguation of Image Order: 1565

The VP-grid explicitly encodes image order, 1566

which GPT-4o uses to differentiate between 1567

multiple images. This prevents the common 1568

error of conflating spatial information from 1569

distinct images—a problem seen in smaller 1570

models. 1571

2. Robust Visual Matching in space: With 1572

clear coordinate annotations, the model effec- 1573

tively locates and compares the same physical 1574

regions across images. In this case, the exact 1575

correspondence between the cat’s nose in dif- 1576

ferent images is recognized, which is crucial 1577

for detecting subtle visual changes. 1578

3. Structured Reasoning Process: GPT-4o ad- 1579

heres to a well-defined reasoning sequence in 1580

our textual guidance(perception, connection, 1581

and conclusion). By systematically linking 1582

the provided grid coordinates with the textual 1583

descriptions, it is able to deduce the key visual 1584

change accurately. 1585

Implications on Model Scale. Our analysis sug- 1586

gests that the enhanced performance of GPT-4o 1587

with VP-grid can be attributed to its larger model 1588

capacity. Although the detailed architecture of 1589

GPT-4o is proprietary, its ability to process com- 1590

plex multi-modal prompts implies that: 1591

• Enhanced Semantic Understanding: Larger 1592

models are inherently better at comprehend- 1593

ing intricate, structured prompts that combine 1594

visual and textual information. This results in 1595

a more nuanced interpretation of spatial cues. 1596

• Superior Visual-Textual Alignment: With 1597

greater capacity, GPT-4o can integrate and 1598

correlate the detailed spatial data (visual assis- 1599

tance) from the VP-grid with the correspond- 1600

ing textual descriptions, minimizing the risk 1601

of mis-association or errors. 1602

• Effective Handling of Complexity: The ad- 1603

vanced reasoning capabilities of larger models 1604

enable them to navigate the additional com- 1605

plexity introduced by VP-grid without suffer- 1606

ing from the side effects seen in smaller mod- 1607

els. This ensures that the additional spatial 1608
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Question: Is the answer ‘The vase on top of the table was removed.’ correct 
for the given question: ‘What key visual change can be observed from the 
first image to the second image?'?

Image1 Image2

GT answer: T Vanilla Response: F 
CoT-Special Response:  Step 1. Understand the Question ...
Step 2. Perceive (List Elements)
Image 1: Vase with flowers on the table; Chandelier above...
Image 2: No vase on the table; Chandelier above...
Step 3. Connect (Compare & Reason)
Both images show a {chandelier, kitchen area, bowl of fruit, window...} 
The key visual change is the absence of the vase on the table in Image 2.
Step 4. Conclude (Answer the Question)
The statement “The vase on top of the table was removed” is correct  
  for the key visual change observed between the two images.

MY_ANSWER: T

internvl-8B general boost

Figure 14: Case study on why CoT-special leads to performance improvement.
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guidance improves performance rather than1609

causing confusion.1610

The success of GPT-4o in utilizing the VP-grid1611

approach demonstrates that model scale plays a crit-1612

ical role in effectively integrating complex visual1613

and textual cues. By accurately disambiguating im-1614

age order and performing precise spatial matching,1615

GPT-4o not only avoids the pitfalls encountered1616

by smaller models but also benefits significantly1617

from the additional visual assistance, leading to1618

an overall performance improvement of approxi-1619

mately 10%.1620

G.3 Case for CoT prompting in1621

Object-centric Cue Task1622

The task design for Object-centric cue (OC) and1623

person-centric cue (PC) requires multiple images1624

(more than 2) as sequence input. We observe that,1625

unlike General Cue (GC) tasks where models are1626

required to link instance-level cues, OC tasks de-1627

mand that models group similar objects based on1628

fine-grained visual features. As illustrated in Fig-1629

ure 5b, models using the CoT approach sometimes1630

struggle to provide a comprehensive overview of1631

vision-based cues across a sequence of images.1632

A detailed case in Figure 17 is provided by1633

InternVL2.5-26B’s response. The ground truth and1634

Vanilla responses correctly identify that there is1635

no grouping for the same meta-object in the se-1636

quence, with the answer ‘D) None’. In the C o T1637

response, the model states: "The second and third1638

images both have dinosaurs wearing sunglasses".1639

Although the description here is true, its ambiguity1640

and lack of detailed coverage lead the model to1641

incorrectly select option C) 2 and 3, rather than1642

the correct option D) None. Because if we take a1643

closer look at the design on the backpack in image1644

3, the dinosaur with sunglasses is actually holding1645

a keyboard instead of a skateboard in image 2. This1646

is a distractive visual matching cue we intend to1647

capture during the distractor meta-object selection.1648

This major difference should have prevented mod-1649

els from grouping image 2 and image 3 together.1650

According to our findings, this misgrouping oc-1651

curs for two main reasons:1652

1. Insufficient Overview of Visual Cues: The1653

CoT prompt does not force the model to sys-1654

tematically verify all critical details across1655

multiple images. As a result, the model over-1656

looks nuanced differences, such as the de-1657

sign discrepancy on the backpack in image1658

3, where the dinosaur holds a keyboard rather 1659

than a skateboard. 1660

2. Variability in Descriptive Language: The 1661

open-ended language generated by the CoT 1662

approach can lead to inconsistent descriptions. 1663

In this case, the model generalized the visual 1664

cue of a "dinosaur design" without capturing 1665

the specific attribute (i.e., the object the di- 1666

nosaur is holding), which is crucial for correct 1667

grouping. 1668

Thus, the lack of structured guidance in the CoT 1669

prompt leads to the dropping or misinterpretation 1670

of critical cues, resulting in incorrect grouping deci- 1671

sions for multi-image sequences in OC tasks. This 1672

analysis underscores the importance of more de- 1673

tailed structured intermediate reasoning strategies, 1674

such as those provided by a tailored CoT-special 1675

prompt, to ensure that all relevant visual details are 1676

captured and compared accurately. 1677
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Question: Is the answer 'A pedestrian was removed from the scene.' correct 
for the given question: 'What key visual change can be observed from the 
first image to the second image?'?

Image1 Image2

qwenvl2.5 std -> vlp drop

GT answer: F Vanilla Response: F 
VP-grid Response:  Step 1: Understand the Question ...
Step 2: Perceive: In the first image, there is a person wearing a high-
visibility vest near the yellow van at coordinates (2, 5, 3). In the second 
image, the person wearing a high-visibility vest is no longer present at 
coordinates (2, 5, 3).
Step 3: Connect: The coordinates (2, 5, 3) in the first image correspond to 
the person wearing a high-visibility vest. The same coordinates in the 
second image do not have that person present.
Step 4: Conclude: the key visual change is the removal of the person 
wearing a high-visibility vest from the scene.
       MY_ANSWER: T

Figure 15: Case study on why VP-grid leads to performance degradation.
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gpt4o vlp general boost - pc-c trk

Question: Is the answer ‘The cat's pink nose was turned black.’ correct for 
the given question: ‘What key visual change can be observed from the first 
image to the second image?'?

GT answer: T Vanilla Response: F 
VL-grid Response:  (Understanding question context...) ... focusing on the 
cat's nose color change.
(Perception step...) Identify cat's nose location:
Image 1: Cat's white/pink nose at coordinates (1, 2, 4)
Image 2: Cat's black nose at coordinates (2, 2, 4)
(Connecting step...) 
Compare cat's nose color at the same coordinates in both images:
Image 1: Nose appears lighter (likely pink).
Image 2: Nose appears darker (black).
(Concluding step...) The described change: "The cat's pink nose was turned 
   black," is indeed the key visual change.

MY_ANSWER: T

Figure 16: Case study on why VP-grid leads to performance improvement for GPT-4o
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internvl2.6-26B - pc-o grp; drop 2

Question: Which images show the same bag in the input images? 
Choices: A) 1 and 3; B) 1 and 2; C) 2 and 3; D) None

GT answer: D) None Vanilla Response: D) None
CoT Response:  
The first image shows a backpack with a green dinosaur design worn by a 
child standing in a classroom. The second image shows a close-up of a 
backpack with a similar green dinosaur design, including sunglasses, but 
without the context of a person wearing it. The third image shows another 
backpack with a design featuring a dinosaur with sunglasses. The second 
and third images both have dinosaurs wearing sunglasses, which suggests 
they are the same bag. 
MY_ANSWER: C) 2 and 3

Image1 Image2 Image3

Figure 17: Case study on why CoT leads to performance degradation.
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