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Abstract

Visually linking matching cues is a crucial abil-
ity in daily life, such as identifying the same
person in multiple photos based on their cues,
even without knowing who they are. Despite
the extensive knowledge that vision-language
models (VLMs) possess, it remains largely un-
explored whether they are capable of perform-
ing this fundamental task. To address this,
we introduce VLMZ2-Bench, a benchmark de-
signed to assess whether VLMs can Visually
Link Matching cues, with 9 subtasks and over
3,000 test cases. Comprehensive evaluation
across eight open-source VLMs and GPT-4o,
along with further analysis of various language-
side and vision-side prompting methods, leads
to a total of eight key findings. We identify
critical challenges in models’ ability to link
visual cues, highlighting a significant perfor-
mance gap where even GPT-4o0 lags 34.80%
behind humans. Based on these insights, we
advocate for (i) enhancing core visual capabili-
ties to improve adaptability and reduce reliance
on prior knowledge, (ii) establishing clearer
principles for integrating language-based rea-
soning in vision-centric tasks to prevent unnec-
essary biases, and (iii) shifting vision-text train-
ing paradigms toward fostering models’ ability
to independently structure and infer relation-
ships among visual cues.

1 Introduction

Humans constantly link matching visual cues to
navigate and understand their environment. For
instance, we can determine whether objects, indi-
viduals are the same simply by comparing their
distinguishing visual features (Bruce and Young,
1986; Palermo and Rhodes, 2007; Treisman and
Gelade, 1980). This ability, often without needing
additional background knowledge, is fundamen-
tal in our daily interactions with the world around
us. However, while current vision-language models
(VLMs) (Chen et al., 2024b; Li et al., 2024b; Zhang
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Figure 1: Previous benchmarks fail to assess the ability
to link matching visual cues, whereas our VL.M?-Bench
explicitly tests this ability, as shown in the example
where the model need to identify the reappearance of the
same person by linking visual cues, like facial features
or clothing, across non-adjacent frames.

et al., 2024b; Team, 2025) have demonstrated ex-
tensive knowledge and expanded their capabilities
from single-image understanding to handling mul-
tiple images and videos, whether thay can effec-
tively link matching visual cues across images or
frames—an essential skill for coherent multimodal
reasoning—remains an open question.

As shown in Figure 1, existing benchmarks on
multiple images and videos fall short in explor-
ing this fundamental ability as they: (a) do not re-
quire explicitly linking visual cues across images or
frames (Liu et al., 2024c; Yu et al., 2019); (b) rely
on external knowledge rather than assessing mod-
els’ ability to link explicitly visual cues (Zhao et al.,
2024; Liu et al., 2024a); (c) emphasize broad and
abstract visual comparisons rather than specific cue
matching (Wu et al., 2025; Liu et al., 2024b); and
(d) focus on retrieval-based tasks rather than eval-
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Figure 2: Overview of VLM?2-Bench. The benchmark is categorized into three subsets based on visual cues: GC
(General Cue), OC (Object-centric Cue), and PC (Person-centric Cue), each comprising multiple subtasks. To
comprehensively evaluate VLMs’ ability to visually link matching cues, the benchmark includes diverse question
formats—T/F dﬁ, multiple-choice ¢, numerical @, and open-ended “—ensuring a comprehensive evaluation.

uating the direct association of visual cues across
different visual contexts (Wang et al., 2024a).

To bridge this gap, we introduce VLM?-Bench,
a benchmark specifically designed to evaluate how
well VLMs visually link matching cues. VLM?-
Bench is structured around three types of visual cue
connection: general cue, person-centric cue, and
object-centric cue, encompassing a total of eight
subtasks. To balance scalability and quality, we
design a semi-automated pipeline with human ver-
ification for further refinement. Additionally, our
subtasks cover a variety of QA formats—including
T/F, multi-choice, numerical, and open-ended ques-
tions—totaling over 3,000 question-answer pairs.
To better evaluate model performance, we also de-
sign specific metrics tailored to various task.

We conduct a comprehensive evaluation of 8
open-source models and GPT-40 on our VLM?-
Bench. Despite VLMs generally possessing exten-
sive knowledge, some models perform on par with,
or even worse than, the chance-level baseline on
our vision-centric tasks. Notably, GPT-4o0 also un-
derperforms, lagging behind human-level accuracy
by 34.80%. This highlights the significant room for
improvement in VLMs’ ability to link visual cues.
Furthermore, we introduce various language-side
and vision-side prompting techniques to explore
whether they can enhance the models’ performance
on the benchmark. Through experimental results
and case studies, we present eight key observa-
tions, hoping that these insights will guide future

improvements in VLMs for vision-centric tasks.

2 VLMZ?-Bench

VLMZ2-Bench is a benchmark designed to assess
models’ ability to visually link matching cues
when processing multiple images or videos. This
section introduces the three main categories of
VLM?2-Bench—general cue (§2.1), object-centric
cue (§2.2), and person-centric cue (§2.3)—detail-
ing their associated subtasks, data collection pro-
cess, and QA pair construction.

2.1 General Cue (GC)

GC is designed to assess a model’s ability to link
matching cues across diverse contexts, encompass-
ing a broad range of general cues. Given two
images containing both matched and mismatched
cues, an ideal model should accurately identify mis-
matched ones and associate matched ones.

Subtasks. Here we introduce two subtasks: (i)
Matching (Mat) evaluates a model’s ability to link
corresponding visual cues across two images to
determine whether they match. Instead of merely
identifying differences, the model must associate
identical visual elements in both images to recog-
nize what has remained the same and what has
changed. (ii) Tracking (Trk) focuses on a model’s
ability to track a specific visual cue that appears in
only one of the two images and determine how it
has changed. Rather than simply detecting a differ-
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Figure 3: Construction of GC: (i) We start by manually verifying the edited image data based on three key criteria.
(i) A VLM is then prompted to generate captions for each image, followed by salient score-based filtering to retain
the challenging cases. (iii) Finally, visual cues are extracted from two sources and incorporated into a QA prompt,
guiding an LLM to generate both positive and negative answer pairs.

ence, the model must link the cue across contexts
to understand the transformation process.

Data Collection. We repurpose data from two
image editing datasets (Wei et al., 2024; Ku et al.,
2023), where each data sample includes an original
image I,,;, an edited image with subtle modifica-
tions I.4;¢, and a corresponding edit instruction P
describing the changes. Our data collection is car-
ried out across two dimensions. First, to ensure
diversity in the mismatched cues, GC encompasses
various types of changes, such as instance-level
modifications (e.g., add/remove, swap, attribute
change), which focus on specific items, as well as
environment-level changes.

QA Construction. We predefine a T/F question
template for Mat and Trk with a placeholder for the
candidate answer (refer to Appendix E). Figure 3
illustrates the construction process, which follows
a three-stage approach.

Manual Screening & Refinement: We ensure
that P accurately reflects the changes (correctness),
corresponds uniquely to the modified cues (unique-
ness), and is unambiguous (clarity).

Salient Sampling: Here, we automate the re-
moval of overly simple cases (e.g., mismatched
cues are too salient). To achieve this, a VLM first
generates separate descriptions for I,,; and g4,
denoted as Cap,,; and Cap.q;+. These descrip-
tions are then combined with P into a single pas-
sage using a predefined template 7 (see Table 6 for
details). The probability assigned by a language
model (e.g., Llama3-8B (Dubey et al., 2024)) to P
given this text-based information is used to com-
pute the salient score, formulated as:

P

> log Py(pi | CUp<i), (1)
i=1

Ssahent |,P|
where P = {p1, po, ...,p|7>‘} represents the tok-
enized P, and C' = T (Capori, Capegir) denotes
the context filled with template 7. Samples with
scores below 6 (-2.0 here) are retained, ensuring
that the benchmark includes more challenging ex-
amples requiring nuanced visual cue association.
Pair-wise Answer Generation: Finally, we ex-
tract visual cues using a dual-level approach. First,
cues parsed from VLM-generated descriptions
compensate for the limitations of open-set detectors
when handling out-of-distribution scenes. Mean-
while, the open-set detector (Wu et al., 2022) ex-
tracts fine-grained cues that VLMs might overlook.
With these extracted cues, we prompt an LLM to
generate a pair of answers for Mat and Trk, each
consisting of one positive and one negative answer.

2.2 Object-centric Cue (OC)

OC aims to assess a model’s ability to link match-
ing cues associated with everyday objects using
object-centric cues. Even when encountering an ob-
ject for the first time, a well-aligned model should
be able to leverage its unique visual cues to estab-
lish associations, enabling it to recognize and track
the object across different scenes. This capability
is essential for coherent perception and interaction
in real-world deployments.

Subtasks. Based on the complexity of linking
cues to solve the problem, we define three sub-
tasks in OC. (i) Comparison (Cpr) requires the
model to determine whether the objects appear-
ing in different images are the same. This task



primarily assesses the model’s ability to perceive
visual consistency or change. Notably, we observe
that models exhibit significant model-specific bias
when making a binary decision (Goyal et al., 2017;
Ye et al., 2024b; Song et al., 2024; Li et al., 2024a),
leading to discrepancies between results and their
actual capabilities. To mitigate this, we introduce
consistency-pair validation, where for each state-
ment (e.g., “X is Y, with the answer being T),
we generate a corresponding negation (e.g., “X is
not Y”, with the answer being F). The model is
only considered correct if it correctly answers both
statements, ensuring consistency in its decision-
making. (ii) Counting (Cnt) involves identifying
the number of unique objects, requiring the model
not only to recognize variations or consistencies but
also to track distinct cues to avoid double-counting
the same object. (iii) Grouping (Grp), the most
challenging one, requires the model to identify all
instances of the same object, building on precise
cue matching across multiple images.

Data Collection. We manually collect various
categories of everyday objects (e.g., pets, cups).
For each category, we define multiple subcategories
and collect a set of images Zp,—four images that
depict the same object in different scenarios. Ad-
ditionally, we also collect a set Z,, consisting of
four images of different objects, each containing
some matching visual cues with Zp,, which are
used as distractors.

QA Construction. For each subtask, we define
a question template that includes a placeholder for
Zo,, which allows us to tailor the question based on
different objects (see Appendix E). For answer gen-
eration, we first curate the multi-image sequences
according to predefined rules. For each specific
sequence, we generate the ground truth answers for
the questions related to Cpr, Cnt, and Grp.

2.3 Person-centric Cue (PC)

PC aims to evaluate a model’s ability to link person-
centric cues. While a model cannot memorize ev-
ery individual, it should possess the capability to
associate the same person across different images
or frames by leveraging distinctive visual cues such
as facial features, clothing, or body posture. This
ability is essential for ensuring coherent perception
of human actions and is a fundamental requirement
for real-world VLM applications.

Subtasks. Similar to OC’s subtasks (refer to
§2.2), PC includes (i) Comparison (Cpr), (ii)
Counting (Cnt), and (iii) Grouping (Grp). How-
ever, unlike objects, individuals can be observed
through their actions in videos. Therefore, we in-
troduce (iv) Video Identity Describing (VID). This
subtask assesses whether a model can correctly link
the same person by analyzing its description of a
video containing that person.

Data Collection. We manually select several in-
dividuals, each denoted as P;. For each individual,
we collect Zp,—4 images depicting the same in-
dividual. For each image I; € Zp,, we select the
distractor images I; ¢ Zp, that has the highest
CLIP similarity (Hessel et al., 2021). This allows
us to obtain images of different individuals where
most cues are matched. For the subtask of VID, we
collect videos of different individuals, denoted as
Vp,, and pair each with another video V_p, featur-
ing a different individual with highly similar cues
(e.g., actions, scene, clothing). We then construct
two video sequences: (i) P; — —P;, assessing
the model’s ability to distinguish individuals. (ii)
P; — —P; — 'P;, evaluating whether the model
detects changes and links the final occurrence of
P; to its first appearance.

QA Construction. The construction for the over-
all QA in PC’s Cpr, Cnt, and Grp subtasks follows
a similar approach to OC. For the VID task, we em-
phasize the model’s ability to describe individuals
when designing open-ended questions, aiming to
better test the model’s capacity to link individuals
appearing in different scenes.
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Figure 4: Statistical overview of VLM?-Bench. The
pie chart shows the distribution of 9 subtasks across the
3 main categories of visual cues. The bar plot illustrates
the percentage breakdown by question format.

2.4 Benchmark Statistics

Our benchmark is organized into three main cate-
gories, comprising a total of 9 subtasks. After care-
ful verification, it contains 3,060 question-answer



Baselines or Models GC ocC PC Overall*
Mat Trk Cpr Cnt Grp Cpr Cnt Grp VID Aveg  Apuman
Chance-Level 25.00 25.00 | 50.00 34.88 25.00 | 50.00 34.87 25.00 - 3372 -61.44
Human-Level 95.06 98.11 | 96.02 9423 91.92|97.08 92.87 91.17 100.00 | 95.16  0.00
LLaVA-OneVision-7B || 16.60 13.70 | 47.22 56.17 27.50 | 62.00 46.67 37.00 47.25 | 3935 -55.81
LLaVA-Video-7B 18.53 1279 | 5472 6247 2850 | 6200 66.91 2500 59.00 |43.32 -51.84
LongVA-7B 1429 19.18 | 26.67 42.53 1850 | 21.50 3890 18.00 3.75 | 2259 -72.57
mPLUG-OwI3-7B 17.37 1826 | 49.17 6297 31.00 | 6350 5886 26.00 13.50 | 37.85 -57.31
Qwen2-VL-7B 27.80 19.18 | 68.06 4599 3500 | 61.50 58.59 49.00 1625 | 4237 -52.79
Qwen2.5-VL-7B 3591 4338|7139 41.72 47.50 | 80.00 57.98 69.00 4650 | 54.82 -40.34
InternVL2.5-8B 2124 2603 | 5333 5523 46.50 | 51.50 60.00 52.00 525 |41.23 -53.93
InternVL2.5-26B 30.50 3059 | 4333 5148 52.50 | 59.50 59.70 61.00 21.75 | 4559 -49.57
GPT-4o | 3745 39.27 | 7417 80.62 57.50 | 50.00 90.50 47.00 66.75 | 60.36  -34.80

Table 1: Evaluation results on VLM?2-Bench, covering Mat (Matching), Trk (Tracking), Cpr (Comparison), Cnt
(Counting), Grp (Grouping), and VID (Video Identity Describing). The highest, second , and third highest
scores are highlighted. *: Overall excludes the VID due to the lack of a chance-level baseline for open-ended tasks.

pairs, with varying formats including T/F, multi-
choice (MC), numerical (Nu), and open-ended (Oe).
To ensure the quality of the annotations, we per-
form an inter-annotator agreement (IAA) evalua-
tion (Thorne et al., 2018) involving three annota-
tors, resulting in a high Fleiss’ Kappa score (Fleiss,
1971) of 0.983. Figure 4 presents the distribution
of these subtasks across the three categories, along
with the breakdown of different question formats.
For additional details, refer to Appendix C.

3 Evaluation

3.1 Metric Design

T/F (Matching, Tracking, Comparison): Accu-
racy is computed based on paired evaluation, where
a response is correct only if it answers T" (ground-
truth True) and F' (ground-truth False) correctly.
The overall accuracy across N test pairs is:

N —
Y (TN E7)
N Y
where T and F'~ denote correct predictions for
T and F, respectively.

2

Accpair =

Numerical (Counting): Absolute matching alone
does not effectively reflect the severity of errors in
numerical responses. To measure the extent of the
error between the predicted count N; and ground
truth V;, we introduce Accpym,. The first step is to
calculate the normalized error:
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Multi-choice (Grouping): Accuracy is the pro-
portion of correctly predicted choices.

Open-ended (Video Ildentity Describing): We
use GPT-40 to score model’s descriptions, in com-
bination with rule-based scoring prompts. The final
accuracy Acc,e is obtained by averaging the scores
of all open-ended responses and rescaling them
to the range of [0,1]. Additionally, we perform
manual verification of GPT-40’s scoring. For each
model, we randomly sample 20 scored responses
for review, and find only 2 instances with discrep-
ancies, resulting in an accuracy rate of 98.89%
(178/180). Refer to Appendix F for more details.

3.2 Evaluation Setup

Evaluated Models. We evaluate eight open-
source  VLMs that support multiple-image
or video input: LLaVA-OneVision (Li et al,
2024b), LLaVA-Video (Zhang et al., 2024b),
LongVA (Zhang et al, 2024a), mPLUG-
Owl3 (Ye et al.,, 2024a), Qwen2-VL (Wang
et al., 2024b), Qwen2.5-VL (Team, 2025), and
InternVL2.5 (Chen et al., 2024b). Additionally,
we include the commercial model GPT-40 (Hurst
et al., 2024) for comparison.



Model ‘ Matching (Mat) Tracking (7rk)

| AR Swp Attr Env | AR Swp Attr  Env

LV-OV 50.68 49.15 5345 5250 | 2727 4551 57.50 70.59

LV-Vid ‘56.08 49.15 5345 5125 | 46.75 48.88 5250 67.65

LongVA 37.84 46.58 5345 4625 | 46.10 49.44 4250 60.29
Oowl3 J 54.73 5256 55.17 50.00 | 41.56
Qw2-VL 53.68 52.56 55.17 68.75 ‘ 65.58 6290 77.50 63.93

48.88 55.00 73.53

Qw2.5-VL | 64.19 5562 7414 6750 | 61.69 69.10 55.00 64.71

In2.5-8B 6486 5128 52.07 66.25 | 5455 6742 62.50 60.65

In2.5-26B || 60.81 51.71 58.62 6125 | 5649 6292 47.50 66.18

GPT-40 75.00 61.97 56.90 70.00 ‘68.83 6798 67.50 64.71

Table 2: Breakdown of four mis-matched cue types in
two subtasks of GC. For each model, the highest and

second highest error (%) per subtask are highlighted.

Baselines. We introduce chance-level and
human-level baselines (details are in Appendix D).

3.3 Results and Findings

Results. Table 1 presents the comprehensive per-
formance of various models across the three cat-
egories — General Cue (GC), Object-centric Cue
(OC), and Person-centric Cue (PC) — of our VLM?-
Bench, covering a total of nine subtasks.

Finding I: Simple tasks for humans pose sig-
nificant challenges for VLMs. We observe that
humans achieve near-perfect accuracy across most
tasks in our VLM?-Bench. In contrast, even GPT-
40, a state-of-the-art model, performs significantly
lower than humans, with an overall performance
gap of 34.80%. For open-source models, many
show performance comparable to the chance-level
baseline or only slightly outperform it. Specifically,
for the VID, humans can easily achieve 100% ac-
curacy in distinguishing and linking individuals in
a video. However, even the best-performing model,
GPT-40, reaches only 66.75%. Errors mainly arise
from failing to recognize individuals after changes
or misidentifying reappearing persons as new.

Finding II: Relatively consistent error patterns
in Mat and Trk of GC. Table 2 shows that mod-
els struggle with mismatched cues due to swap in
Mat, which requires linking two completely differ-
ent cues. To identify what has changed, models
must first link and match all the other cues in the
context before they can determine that the swapped
cue has been transformed. This task requires a
deeper understanding of how cues relate to each
other across different instances. In contrast, Trk
challenges models with mismatched cues due to ad-
d/remove, which focuses on tracking how a specific
cue changes. This suggests that when there is a cue
that appears only once, the model struggles to link

the non-appearing cue with the appearing cue to
track the transformation process effectively. This
limitation reveals models’ difficulty in handling
cases where certain cues are missing but still need
to be linked to understand the dynamic changes.

Finding III: Models perform better in linking
person-centric cues than object-centric cues.
We selected the top three open-source models
(Qwen2.5-VL-8B, InternVL2.5-8B, InternVL2.5-
26B) and compared their performance on the three
shared tasks (Cpr, Cnt, Grp) in both OC and PC.
Results show that, on average, the performance
on PC is higher than on OC by 7.65%, 9.75%,
and 11.83% for the tasks of Cpr, Cnt, Grp, respec-
tively. This could be due to the fact that, during
training on person-related data, models are likely
provided with explicit person names as anchors to
person-centric cues, which helps the models better
distinguish different individuals. In contrast, ob-
jects are typically trained using general category
names, which may not provide such clear distinc-
tions. Additionally, these models might have been
specifically trained on large datasets that empha-
size differentiating and linking individuals (Pi et al.,
2024a; Dai et al., 2024), thereby enhancing their
ability to link person-centric cues.

4 How Prompting Methods affect VLMs

In this section!, we investigate various prompting
methods (language-side and vision-side) to evalu-
ate their impact on performance in VLM?2-Bench.
We select the top 3 performing open-source models
(Qwen2.5-VL-8B, InternVL2.5-8B, InternVL2.5-
26B), along with GPT-40, and explore different
approaches of CoT (Kojima et al., 2022; Wei et al.,
2023) and visual prompting (VP) (Lei et al., 2024;
Yang et al., 2023) (refer to Appendix F for de-
tails). The goal is to investigate whether these
techniques can improve performance across the
benchmark and to identify the underlying factors
that contribute to their success or failure.

4.1 Probing for General Cue (GC)

Methods. (i) CoT-normal (Table 23) encourages
the model to solve the task step by step, allowing
it to reason through the problem. (ii) CoT-special
(Table 24) guides the model to solve the task using
a thought process closer to how humans typically
approach it. (iii) VP-grid (Figure 11) is adapted

"Due to space limits, we reference most case studies, fig-
ures, and details in the Appendix within this section.
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Figure 5: Performance gains or losses (%) when apply-
ing different prompting methods on VLM?2-Bench.

from previous work (Lei et al., 2024) for our tasks,
overlaying a dot matrix on the image as visual an-
chors to provide positional references and enhance
the model’s performance.

Finding I'V: Reasoning in language aids models
in logically linking visual cues. From Figure 5a,
it is evident that both CoT-normal and CoT-special,
which reasoning in language, positively impact
model performance in most cases. As demonstrated
in Figure 14, CoT-special improves performance by
first having the model explicitly write out the cues
present in each image, followed by using language
to make inferences. This process helps reduce the
model’s error rate by structuring the task and pro-
viding clearer logical guidance. This suggests that
when models are linking general visual cues, using
language to help structure the logical flow of the
process can be beneficial.

Finding V: Effectiveness of visual prompting
depends on models’ ability to interpret both
prompting cues and the visual content. As
shown in Figure 5a, VP-grid negatively impacts GC
performance for QwenVL2.5, causing a significant
drop compared to the vanilla approach. Figure 15
reveals that this decline stems from the model’s dif-
ficulty in interpreting the visual coordinates within
the prompt, leading to misinterpretation of the cues
and causing it to fail cases it originally answered

correctly under the vanilla setting. However, as
shown in Figure 16, GPT-40 successfully resolves
a previously incorrect case by effectively leverag-
ing the cues introduced through visual prompting
while utilizing its strong visual perception abilities.

4.2 Probing for Object-centric Cue (OC)

Methods. (i) CoT (Table 23). (ii) VP-zoom-o
(Figure 12) uses an open-set detector (Ren et al.,
2024) to obtain bounding boxes, which are then
cropped to focus the model’s attention on object-
centric cues. By eliminating irrelevant non-object
cues and emphasizing the object-centric cues, it
enhances the model’s ability to better focus on the
most relevant visual information.

Finding VI: The open-ended nature of language
may hinder object grouping. Unlike GC that
link instance-level cues, OC requires grouping sim-
ilar objects based on fine-grained visual details. As
shown in Figure 5b, InternVL2.5 using CoT strug-
gles with this task because the open-ended nature
of language leads to both limited coverage of subtle
visual cues (see Figure 17) and inconsistent repre-
sentations of the same cues, introducing ambiguity,
making it harder for models to reliably align and
group matching objects.

Finding VII: Amplifying object cues benefits
stronger models while having minimal impact
on others. From Figure 5b, we observe that for
models with strong vision capabilities like GPT-4o,
our VP-zoom-o method further enhances perfor-
mance. For other models, this method at least en-
sures that the performance remains on par with the
vanilla approach, without causing any degradation.

4.3 Probing for Person-centric Cue (PC)

Methods. (i) CoT (Table 23). (ii) VP-zoom-p
(Figure 13) utilizes a face detector (Geitgey, 2016)
to obtain bounding boxes of faces-the most distin-
guishing feature of different individuals. It then
crops the image to focus only on the face, thereby
minimizing the interference from distractor cues
such as clothing and other background elements.

Finding VIII: CoT and visual prompting fail
to improve linking on highly abstract person-
centric cues, leading to a performance drop.
From Figure 5c, we observe that for almost all mod-
els, neither CoT (language-based) nor VP-zoom-p
(vision-based) lead to improved performance. This
is because facial features are highly abstract, and



CoT methods struggle to effectively describe them
in words. Additionally, VP-zoom-p fails because
current models’ visual capabilities are insufficient
to accurately perceive facial features.

5 Related Work

Recent advancements in vision-language mod-
els (Hurst et al., 2024; Team, 2025; Zhang et al.,
2024a; Li et al., 2024b; Ye et al., 2024a; Chen
et al., 2024b; Liang et al., 2024b) have significantly
broadened their capabilities. Previously restricted
to processing single-image inputs, many VLMs
can now handle multi-image and even video in-
puts, allowing them to capture richer and more
dynamic visual contexts. Additionally, with access
to a growing volume of high-quality visual-textual
paired training data (Pi et al., 2024b; Garg et al.,
2024; Chen et al., 2023; Zhang et al., 2024c; Wang
et al., 2024c¢), these models have shown substan-
tial improvements in perceiving subtle visual cues
and their relationships, enabling them to engage
in more nuanced reasoning about visual content.
Furthermore, VLMs are increasingly applied in
real-world scenarios, including navigation (Weer-
akoon et al., 2024), planning (Yang et al., 2024),
and autonomous driving (Jiang et al., 2024), solid-
ifying their role in bridging vision and language
for practical applications. However, to truly inte-
grate into everyday life, VLMs still have significant
room for improvement when it comes to more fun-
damental but common visual tasks, such as those
assessed in our benchmark.

Benchmarking vision-language models plays
a critical role in guiding their future develop-
ment (Liang et al., 2024a; Yin et al., 2023; Chen
et al., 2024a). These benchmarks typically focus on
assessing the models’ fine-grained perception (Li
et al., 2024a; Tong et al., 2024), reasoning abil-
ities (Lu et al., 2022; Yu et al., 2023; Wu et al.,
2024), commonsense knowledge (Yue et al., 2024).
In addition, evaluations targeting multi-image and
video inputs are designed to measure the new com-
petencies that VLMs require as their visual context
extends. These tasks include captioning (Yue et al.,
2024; Yu et al., 2019), retrieval (Wang et al., 2024a;
Li et al., 2025), comparison (Wu et al., 2025; Jiao
et al., 2024), and temporal reasoning (Liu et al.,
2024b). However, existing benchmarks focus on
evaluating VLMs’ ability to interpret visual cues
based on their knowledge. In contrast, humans typ-
ically solve such tasks by explicitly matching vi-

sual cues without relying on extensive background
knowledge. To better assess whether they can repli-
cate this human-like ability, we propose VLM?2-
Bench, which focuses on linking and matching
explicit visual cues.

6 Takeaways

Based on our findings, we highlight three key areas
for future improvements:

* Strengthening Fundamental Visual Capa-
bilities. Improving core visual abilities not
only enhances overall performance but also
increases adaptability. A stronger visual
foundation maximizes the effectiveness of vi-
sual prompting and reduces reliance on prior
knowledge, enabling models to operate more
independently in vision-centric tasks.

* Balancing Language-Based Reasoning in
Vision-Centric Tasks. Integrating language
into vision-centric tasks requires careful cal-
ibration. Future research should establish
clearer principles on when language-based
reasoning aids visual understanding and when
it introduces unnecessary biases, ensuring
models leverage language appropriately.

* Evolving Vision-Text Training Paradigms.
Current training paradigms focus heavily
on emphasizing vision-language associations.
However, as models expand their visual con-
text window, their ability to reason purely
within the visual domain becomes increas-
ingly crucial. We should prioritize developing
models that can structure, organize, and infer
relationships among visual cues.

7 Conclusion

In summary, we introduce VLM?-Bench, a novel
benchmark designed to probe the capability of
vision-language models (VLMs) in visually link-
ing matching cues, an essential yet underexplored
skill for models in everyday visual reasoning.
Through extensive evaluations and further analysis
of prompting techniques applied on our benchmark,
we identify 8 key findings. Notably, even GPT-40
falls 34.80% behind human performance. Based
on these insights, we advocate for advancements in
fundamental visual capabilities, better integration
of language-based reasoning, and the evolution of
vision-text training paradigms to improve VLMs’
performance in vision-centric tasks.



Limitations

VLM?2-Bench focuses on evaluating visual cue link-
ing but does not cover all possible scenarios. Ad-
ditionally, while it provides valuable insights, its
scale is limited, and model performance may not
fully generalize to all real-world settings. Auto-
mated evaluation constraints limit the inclusion of
open-ended questions in our benchmark, impacting
the assessment of models’ vision-centric reason-
ing abilities. Expanding task diversity and refining
evaluation methods remain important directions for
future work.
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A Appendix Outline

In the appendix, we provide:

* Appendix B provides details on the licensing
terms and usage rights for our benchmark.

* Appendix C presents the statistical analysis
of the VLM?2-Bench.

* Appendix D details on how we obtain the
chance-level and human-level baselines.

* Appendix E elaborates more details on the
construction of the VLM?2-Bench.

* Appendix F provides a deeper dive into the
various prompting techniques we use.

* Appendix G a detailed breakdown and analy-
sis of failure and success examples regarding
different prompting methods.

B Licencing and Intended Use

Our VLMZ2-Bench is available under the CC-BY
4.0 license for academic use with proper attribu-
tion. The images, videos, and annotations in this
benchmark are intended solely for research pur-
poses. These data were sourced from publicly avail-
able online platforms, and while efforts were made
to use them responsibly, explicit permissions may
not have been obtained for all content. Users are
responsible for ensuring that their use of the data
complies with applicable intellectual property laws
and ethical guidelines. We encourage users to ver-
ify the sources and ensure compliance with any
terms of service or licensing agreements.

C VLMZ2-Bench Statistics

Here we provide additional details regarding the
construction and statistics of our VLM?-Bench
benchmark. As described in the main paper (§ 2.4),
our benchmark comprises three main categories—
General Cue (GC), Object-centric Cue (OC), and
Person-centric Cue (PC)—with a total of 3,060
visual-text query pairs. Below, we elaborate on
the specific data composition, including the dis-
tribution of question types (T/F, multiple-choice
(MC), numerical (Nu), and open-ended (Oe)) and
the rationale behind each subtask.

Category Subtask T/F MC Nu Oe Total
Mat 520 - - - 520
Ge Trk 440 - - — 440
Subtotal 960 - - - 960
Cpr 720 - - - 720
oC Cnt - - 360 - 360
Grp - 200 - - 200

Subtotal 720 200 360 - 1,280
Cpr 400 - - - 400
Cnt - - 120 - 120
pC Grp - 100 - - 100
VID - - - 200 200
Subtotal 400 100 120 200 820

Total 2,480 300 480 200 3,060

Table 3: Overview of query distribution across the three
categories of VLM?2-Bench. T/F = True/False, MC =
multiple-choice, Nu = numerical, Oe = open-ended.

C.1 Overall Composition

Table 3 summarizes the total query counts within
each category and subtask. The benchmark is di-
vided as follows:

* General Cue (GC): 960 queries

- Matching (Mat): 260 T/F pairs — 520
queries

- Tracking (Trk): 220 T/F pairs — 440 queries

* Object-centric Cue (OC): 1,280 queries

- Comparison (Cpr): 360 T/F pairs — 720
queries

- Counting (Cnt): 360 numerical (counting)
queries

- Grouping (Grp): 200 multiple-choice ques-
tions
* Person-centric Cue (PC): 820 queries

- Comparison (Cpr): 200 T/F pairs — 400
queries

- Counting (Cnt): 120 numerical (counting)
queries

- Grouping (Grp): 100 multiple-choice ques-
tions

- Free-form (VID): 200 open-ended queries

Summing these yields a total of 3,060 visual-text
query pairs.



C.2 Details per Subtask and Question Type

General Cue (GO).

Matching (Mat). We collect 260 True/False (T/F)
pairs focused on verifying the alignment between
a visual instance and a textual description (e.g.,
object presence, basic attributes). Each T/F pair
forms two distinct queries (one True, one False),
yielding 520 queries in total.

Tracking (Trk). We design 220 T/F pairs that
test an understanding of object or entity continu-
ity across frames. For example, a question might
ask whether the same object reappears in subse-
quent frames. Each T/F pair similarly results in
two queries, totaling 440.

Object-centric Cue (OC). All the visual query
cases are built upon the 360 image sequences we
construct. Details about image sequences can be
found in Section E.2.

Comparison (Cpr). This subtask examines the
model’s ability to compare object properties (e.g.,
size, color, quantity) across different frames. We
produce 360 T/F pairs, each yielding two queries
(720 total). Among these 360 pairs, we maintain a
1:2 ratio of True to False for ground-truth answers
(i.e., 120 True vs. 240 False).

Counting (Cnt). We provide 360 numerical ques-
tions, each asking for a count of objects in a given
scene or sequence. Possible numeric answers are
typically small integers (e.g., 1, 2, 3), reflecting the
number of relevant objects.

Grouping (Grp). We generate 200 multiple-choice
(MC) questions that ask about grouping objects ac-
cording to certain criteria (e.g., AAB, ABC, AAAB,
AABC, ABCD). Each question presents multiple
group-configuration options plus a “None” option,
which can serve as either a correct or distractor
choice. For image sequences of length 4, the op-
tions include various plausible groupings (two-of-a-
kind, three-of-a-kind, etc.) along with at least one
additional distractor grouping that also involves
three-of-a-kind to ensure sufficient challenge.

Person-centric Cue (PC). Similar to OC, the
construction of 260 image sequences as well as
200 video clips for PC is detailed in Section E.3.
Comparison (Cpr). We create 200 T/F pairs (400
queries total) focusing on comparing attributes or
actions related to one or more human individuals
across multiple images in a sequence. The ground
truth is balanced at 100 True vs. 100 False.
Counting (Cnt). This subtask involves 120 nu-
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merical questions asking for the number of people
present or the frequency of certain actions in a se-
quence. Typical numeric answers range from 1 to
4, given the scope of each visual sequence.
Grouping (Grp). We provide 100 MC questions
based on sequences containing at least three im-
ages, with at least two images featuring the same
main “meta-human.” The goal is to identify correct
groupings of persons based on appearance, role, or
action. As with OC-Grp, each question includes a
“None” option as either the correct or a distractor
choice.

Free-form (VID). We introduce 200 open-ended
queries that focus on various person-centric aspects,
such as identifying roles or describing activities.
These questions allow more flexibility in model
responses and assess the ability to generate context-
relevant answers.

C.3 Annotation Quality and Agreement

As noted in the main text, three annotators reviewed
all 3,060 question-answer pairs. An inter-annotator
agreement study showed a high consensus rate of
98.74%, ensuring that the data is both accurate and
consistent.

C.4 Summary

Our construction methodology ensures a balanced
coverage of both object-centric and person-centric
reasoning, as well as basic general cues such as
element matching and tracking. The inclusion of
multiple question types (T/F, MC, numerical, and
open-ended) further promotes comprehensive eval-
uation of vision-language models. Figure 4 in the
main paper illustrates the distribution of these sub-
tasks and their question-format breakdown. We
believe that the richness and diversity of VLM?2-
Bench make it a robust platform for advancing
multimodal research.



D Baselines

D.1 Chance-level

In this part, we explain the calculation of chance-
level accuracy for all tasks in our benchmark.

GC-Mat, GC-Trk. The Matching (Mat) and
Tracking (Trk) tasks in General Cue (GC) follow a
True-False (TF) paired-question format, where
each pair consists of a positive question and a
negative question:

¢ Positive Question: Derive from the correct
element or change. The ground truth (GT)
answer is True (T).

* Negative Question: Derive from the distrac-
tor element or change. The ground truth (GT)
answer is False (F).

A question pair example is shown in Table 4.

Positive Question:

"Is the answer 'the salad’ correct for the
given question: 'What object that was
present in the first image is no longer visible
in the second?’"

GT Answer: True (T)

Negative Question:

"Is the answer ’'the ciabatta roll’ correct for
the given question: What object that was
present in the first image is no longer visible
in the second?’"

GT Answer: False (F)

Table 4: Example of True-False paired-question format
in GC tasks.

During the construction of these questions, we
ensure that the queried content originates from
either the correct answer or a distractor answer.
These elements are designed to be independent
and identically distributed. Since each question
in the pair has an independent 50% chance of being
answered correctly, the expected accuracy under
random guessing would be P(correct answer) =
L l=o1_ 959

OC-Cpr, PC-Cpr. The OC-Cpr and PC-Cpr
tasks utilize a True-False (TF) paired-question
format where both questions in a pair originate
from the same correct answer but are framed in
two different ways:

* Positive Question: A direct affirmative state-
ment that correctly represents the ground
truth.

* Negative Question: A negated version of the
positive question, often by inserting "not" af-
ter the verb.

An example is shown in Table 5.

Positive Question:
"Given the images, the claim 'The pets in

these images are the same pet.’ is right."”
GT Answer: True (T)

Negative Question:

"Given the images, the claim 'The pets in
these images are not the same pet.’ is right."
GT Answer: False (F)

Table 5: Example of TF paired-question format in OC-
Cpr and PC-Cpr tasks.

This construction aims to eliminate language
bias by ensuring that the model does not favor
one phrasing over another. For a language model
that is free from bias, these two questions are log-
ically equivalent—answering one correctly im-
plies answering the other correctly as well. Conse-
quently, under random guessing, the expectation is
P(correct answer) = 3 = 50%.

OC-Cnt, PC-Cnt. The calculation formulas for
the accuracy of the chance-level accuracy are the
same as in Section 3.1.

Under a pure random guessing strategy, the pre-
dicted answer N is uniformly sampled from the
set {1,2,..., L}, where L is the number of images
(i.e., the sequence length for that instance). For
a fixed sequence length L, we can compute the
expected normalized accuracy E'(L) by averaging
over all possible ground-truth and guess pairs:

L L

E(L)=1- w(L) - e(N,N)™ ¢,
1

1
2
N=1 §—

N - N
max(N —1, L — N)

e(N,N) =

and the weight is defined as




with L.y = 4 being the maximum sequence
length in our dataset.

OC-Cnt Task: The OC-Cnt task exhibits the
following distribution:

* Length 2: 80 sequences (22.2%)
* Length 3: 120 sequences (33.3%)
* Length 4: 160 sequences (44.4%)

Thus, the overall chance level accuracy is ob-

tained as the weighted average: Accoc.cnt =
80 E(2)+120 E(3)+160 E(4) ._
5 ~ 34.88%.
PC-Cnt Task: For the PC-Cnt task, the se-

quence distribution is:

* Length 2: 30 sequences (25.0%)
* Length 3: 25 sequences (20.8%)
* Length 4: 65 sequences (54.2%)

Accordingly, the overall chance level accuracy is
30 E(2)+25 E(3)+65 E(4)
120

~
~

given by: Accpc.cnt =
34.87%.

D.2 Human-level

To facilitate human participants in providing re-
sponses to our questions, we integrated all model-
prompted questions and answer choices into a
graphical user interface (GUI), as illustrated in Fig-
ure 6. This interface enabled participants to select
their answers conveniently, ensuring consistency
in data collection. We then gathered all responses
and conducted statistical analysis on the collected
human evaluations.
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TF Question Answering Interface

The individuals in these images are not the same persan,

Cuigstion 182 of 400

Counting Question Answering Interface

s

How many different pets are there in the input images?

Your Answer (1-10): 1| Submit

Question 264 of 360

Grouping Question Answering Intsrface

Which IMAGRS CamRSpON 10 tha $AMA pANEON in th INput mages?

)1, Eand & Bl1,2and3 Gi1,dand 4 D02, 3and

‘Question 38 of 100

Figure 6: GUI for human-level testing
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E More details on Benchmark
Construction

E.1 GC (General Cue)

Manual Screening and Refine. Figure 7 demon-
strates the Graphic User Interface (GUI) we build
for manually screening image editing data.

Salient Sampling. The Pseudocode in Figure 8
and Table 6 displays the calculation process for the
salient sampling score mentioned in Section 2.1.

Prompts for Pair-wise Answer Generation. Ta-
ble 7 and 8 provides the complete prompts used
to generate pair-wise answers for our evaluation
tasks. The prompts were designed to instruct the
language model to produce two distinct answers—a
positive (T) answer and a negative (F) answer—for
each task. The dual-answer format is intended to
capture both the expected response and its direct
opposite, thereby offering a more balanced insight
into the model’s understanding.

Question Templates. Table 9 and 10 list de-
tailed standard question templates for General Cue -
Matching and Tracking tasks, including the format
instruction prompt.

E.2 OC (Object-centric Cue)

Data Collection. To construct the dataset, we fol-
low a structured approach to collect object-centric
images, as illustrated in Figure 9. In total, we man-
ually collected 320 images for objects.

Main Meta-Object Selection. We predefine 8
types of common objects, with each type contain-
ing 5 meta-objects. For each meta-object, we col-
lect four images that represent the same object from
different angles and scene conditions.

Distractor Meta-Object Selection. To build
meaningful object image sequences, we introduce
visually distractive elements for each main meta-
object, referred to as “distractor meta-objects”.
Specifically, for each main meta-object, we col-
lect four additional images that belong to different
but visually similar meta-objects within the same
object category. These images are selected fol-
lowing predefined visual cue confusion principles,
ensuring that they provide meaningful challenges
for vision language models. We ensure that each
distractor image belongs to a different distractor
meta-object, fundamentally guaranteeing that the

count of different meta-objects in the final con-
structed sequence strictly follows our design. The
principle of selecting distractor meta-objects is il-
lustrated in the outer ring of Figure 9.

Image Sources. The images are gathered from
various sources based on the nature of the objects:

* Plush Objects: Images of plush toys are en-
tirely sourced from the Jellycat website and its
review sections, where diverse user-uploaded
images provide a wide variety of object angles
and scenes.

* Pet Objects: For the pet category of meta-
objects, we source images from a combina-
tion of social media accounts of popular pet
influencers’ pet photography. We also include
images of a ragdoll cat owned by one of the
authors. As a result, this approach guarantees
that each pet meta-object within the dataset
belongs to the same individual cat or dog, min-
imizing variability unrelated to visual cue con-
fusion.

* Other Objects: Most images are collected
from Amazon product listings and review sec-
tions containing user-uploaded photos. A
smaller portion of the dataset is curated us-
ing Google Lens image search, where specific
visual distractive cues are used to retrieve and
manually select images. The detailed visual
cue principles guiding this selection process
can be found in Figure 9.

Images Sequence Construction. The construc-
tion of image sequences in OC (a total of 360 se-
quences) follows the structure in Table 11. More
specific details are listed below:

Two-Image Sequences (image_seq_len = 2)

1. Main Meta-Object Only (AA): Two images
are randomly sampled from the same main
meta-object. 40 sequences are constructed
(one for each main meta-object).

2. Main Meta-Object + Distractor Meta-
Object (AB): One image is randomly selected
from the main meta-object, and one from the
corresponding distractor meta-object. 40 se-
quences are constructed.

Three-Image Sequences (image_seq_len = 3)


https://us.jellycat.com/
https://www.amazon.com/

Image Filter App

ID: 182759_3
Progress: Item 68/227 (Remaining: 160)

Edit Prompt:

keep () Sk (0

Edit Prompt: swap the dog's closed mouth with a yawning mouth
Select Task: swap
Saliency of change (1-5):
Location of change (1-5):
Background complexity (1-5):
Time of spotting (1-5):

From coco (T/F):

Submit Scores

Figure 7: GUL

Supposed you are looking at two images:

Image 1:

Image 2:

From Image 1 to Image 2, the change can be summarized as:

Table 6: Template for salient-score calculation.
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#Task Description

Given the change between the first image and the second image, you need to generate four choices
to the question "What new element can be observed in the second image that was not present in
the first?" (this question varies based on the editing task). Remember, the choices’ lengths should
be similar. Additionally, your response should start with "Choices".

#Pair Design

In these two choices, you need to contain *only* the names of objects, but be specific:

1. Correct Answer (You need to infer the *only* from the Editing Information)

2. Distractor (You need to pick a random object *only* in the ‘Description’, but differ from the
correct answer object)

#In-context example

Editing Information:

Add a katana held in the figure’s left hand, angled downwards.

Description:

The image depicts a person dressed in traditional Japanese armor, standing in a misty, snowy
landscape. The armor is detailed and appears to be made of metal, with various straps and
buckles. The person is wearing a black mask that covers their entire face, adding to the mysterious
and stealthy appearance. The background features stone lanterns and other traditional Japanese
structures, which are partially obscured by the mist. The overall atmosphere is serene yet somewhat
eerie, with the mist adding a sense of mystery and isolation. The scene suggests a historical or
fantasy setting, possibly a samurai or ninja in a snowy, misty environment.

Choices:

Correct Answer: katana held

Distractor: black mask

#Task

<Original Edit Prompt>

<VLM’s Description>

Table 7: Pair-aware answer generation prompt for OC-Mat
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Task Description

Given the change between the first image and the second image, you need to generate four choices
to the question "What key visual difference can be observed from the first image to the second
image?". Remember, the choices’ lengths should be similar. Additionally, your response should
start with "Choices: " and must contain Correct Answer and Direct Reverse Answer.

Pair Design

In the two choices, you need to contain:

1. Correct Answer (You need to infer from the Editing Information)

2. Direct Reverse Answer (You need to infer from the Editing Information and change it to the
opposite)

In-context example

Editing Information:

Swap the black ninja gloves with clean white gloves appropriate for serving.

Description:

The image depicts a person dressed in formal attire, standing in a doorway. The individual is
wearing a black tuxedo with a white dress shirt and a black bow tie. They are holding a tray
with several items on it. The tray contains a small glass container, a bottle, and a small white
object, possibly a salt shaker or a similar item. The person is also wearing black gloves, which are
typical for serving or formal dining scenarios. The background shows a wooden door with a brass
hinge and a light-colored wall. The setting appears to be indoors, possibly in a house or a formal
establishment.

Choices:

Correct Answer: The black ninja gloves were replaced with clean white gloves.

Direct Reverse Answer: The clean white gloves were replaced with black ninja gloves.

#Task

<Original Edit Prompt>

<VLM’s Description>

Table 8: Pair-aware answer generation prompt for OC-Trk
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Algorithm 1 Salient Score Computation

)

16
17
18
19
20
21
o)

23

24

25

26

27 # Return:

#
#
#

#

input_text =
in_tokens =
out_tokens =

cap_src: caption for the source image
cap_edit: caption for the edited image
T: template for constructing a paragraph
P: editing prompt

concat(cap_src, cap_edit, T)
tokenizer.encode(input_text)
tokenizer.encode (P)

log_sum = @

tokens =

#

for i in range(1,

#

salient_score =

in_tokens

Model Forward Pass
len(out_tokens)):
outputs = model (tokens)

logits = outputs.logits

# Extract log probability of next token
probs = log_softmax(logits[0, -1, :])
prob = probs[out_tokens[i]]

log_sum += prob

# Update Input Sequence

tokens = concat(tokens, out_tokens[i])

Normalize the total log probability as the
salient_score

log_sum / len(out_tokens)

salient_score

Figure 8: Pseudocode for salient score computation.

. Main Meta-Object Only (AAA): Three im-

ages are randomly sampled from the same
main meta-object. 40 sequences are con-
structed.

Main Meta-Object + Distractor Meta-
Object (AAB): Two images are selected from
the main meta-object, and one from the dis-
tractor meta-object. The order of images is
shuffled. 40 sequences are constructed.

Main Meta-Object + Distractor Meta-
Objects (ABC): One image is selected from
the main meta-object, while two are selected
from different distractor meta-objects. 40 se-
quences are constructed.

Four-Image Sequences (image_seq_len = 4)

1.

Main Meta-Object Only (AAAA): All four
images are sampled from the same main meta-
object and shuffled. 40 sequences are con-
structed.

Main Meta-Object + Distractor Meta-
Object (AAAB): Three images are sampled
from the same main meta-object, while one
is selected from a distractor meta-object. 40
sequences are constructed.

. Main Meta-Object + Distractor Meta-

Objects (AABC): Two images are selected
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for the given question: What new element

GC-Mat Positive Question:

"Is the answer "correct element’ correct for
the given question: 'What new element can
be observed in the second image that was
not present in the first?’"

GT Answer: True (T)

GC-Mat Negative Question:
"Is the answer ‘distractor element’ correct

can be observed in the second image that
was not present in the first?’"
GT Answer: False (F)

Table 9: GC-Mat True-False paired-question

from the first image to the second image?’"

GC-Trk Positive Question:

"Is the answer "correct change’ correct for
the given question: 'What key visual change
can be observed from the first image to the
second image?’"

GT Answer: True (T)

GC-Trk Negative Question:

"Is the answer ’distractor change (reversed
process)’ correct for the given question:
"What key visual change can be observed

GT Answer: False (F)

Question Templates.
detailed standard question templates (with format
instructions) for the Object-centric Cue task, in-
cluding 3 subtasks: Comparison (cpr), Counting
(Cnt), and Grouping (Grp).

Table 10: GC-Trk True-False paired-question

from the main meta-object, while two are se-
lected from different distractor meta-objects.
40 sequences are constructed.

. Main Meta-Object + Distractor Meta-
Objects (ABCD): One image is selected from
the main meta-object, while three are selected
from different distractor meta-objects. 40 se-
quences are constructed.

Table 12, 13 and 14 list
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Figure 9: The overview of the structured design of the Object-centric Cue (OC) images. Central Layer (Main
Meta-Objects): The innermost circle represents the predefined 8 object categories, which serve as the foundation
for our dataset. These categories include Pet, Plush, Bag, Book, Cup, Shirt, Shoes, and Toy. Each category
consists of 4 main meta-objects. Middle Layer (Example Meta-Objects within Each Category): Each segment
surrounding the center showcases a representative main meta-object within its category. These meta-objects
serve as core instances for data collection. For example, the Pet category includes Cat and Dog, while the Bag
category includes Backpack, Schoolbag and Fashion Bag. Outer Layer (Distractor Meta-Objects & Visual Cue
Distraction Principles): The outermost ring presents 1 out of 4 distractor meta-objects specifically selected to
create challenging image sequences. Each distractor meta-object shares one or more distractive visual cues with its

corresponding ma

in meta-object.

~

22

~ -
S -
-~ -
=



Num

Src

Process of Image Sequences Construction

Cpr

cnt

Grp

AA

2 images from the same object O;, randomly sampled as
To, = {1;,1;}, and shuffled.

AB

1 image I; from Zp, and 1 image I-; from distractor set
Z-0,, randomly shuffled.

AAA

3 images from the same object O;, randomly sampled as
Ioi = {IZ, Ij, Ik}, and shuffled.

AAB

2 images from the same object O;, randomly sampled
as Zo, = {1;,1;} and 1 I-; from distractor set Z—,,
randomly shuffled.

ABC

1 images from the same object O;, randomly sampled as
Zo, = {I;} and 2 images {/-;, I-;} from distractor set
1-0,, randomly shuffled.

AAAA

4 images from the same object O;, randomly sampled as
To, = {1i,1;, I, I,}, and shuffled.

AAAB

3 images from the same object O;, randomly sampled as
To, = {1;,I;,1}} and 1 image I-; from distractor set
1-0,, randomly shuffled.

(L, I, Ix]

AABC

2 images from the same object O;, randomly sampled as
Zo, = {1i,I;} and 2 images {I;, I;} from distractor
set Z-p,, randomly shuffled.

(L, I;]

ABCD

1 images from the same object O;, randomly sampled as
I; and 3 images {I-;, I-;, I} from distractor set Z_o,,

randomly shuffled.

Table 11: Summary of Multi-Images Sequence Construction for Object-centric Cue (OC) Tasks

OC-Cpr Positive Question:

"Answer the following question according
to this rule: You only need to provide
*ONE™* correct answer with T’ (True) or
'F’ (False). Only reply with *T” or "F’. The
Question is: Given the images, the claim
"The {obj}s in these images are the same
{obj}. is right.”

GT Answer: True (T)

OC-Cpr Negative Question:

"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with T’ (True) or
'F’ (False). Only reply with 'T’ or 'F’. The
Question is: Given the images, the claim
"The {obj}s in these images are not the same
{obj}.” is right."”

GT Answer: False (F)

Table 12: OC-Cpr True-False paired-question
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OC-Cnt Question:

"Answer the following question according
to this rule: You only need to provide
*ONE* correct numerical answer. For ex-
ample, if you think the answer is ’1’, your
response should only be ’1’. The Question
is: How many different {obj}s are there in
the input images?"

GT Answer: "N" (e.g., "1", "2", etc.)

Table 13: OC-Cnt Numerical Counting Question




OC-Grp Question:

"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with the correspond-
ing letter. For example, if you think the cor-
rect answer is 'B) 1 and 2’, your response
should only be °B) I and 2°. The Question
is: Which images show the same {obj} in
the input images? Choices: A) 1 and 3; B)
None; C) 2 and 3; D) I and 2."

GT Answer: "A) 1 and 3" (Example An-
swer)

Table 14: OC-Grp Multiple-Choice Grouping Question

E.3 PC (Person-centric Cue)

Data Collection. We collect images of meta-
humans mainly from https://www.imdb.com/
and some are from the actor or actress’s social
media.

Main Meta-human Selection. Our dataset is
evenly distributed across different racial groups
(Asian, Black, and White) and genders (Male and
Female). For every race-gender combination, we
select five main meta-humans, each contributing
four images, yielding a total of 120 images.

To ensure consistency, all selected individuals
are within a similar age range, preventing signifi-
cant age-related facial changes that could interfere
with identity recognition. Additionally, each ac-
tor’s appearance remains relatively consistent in
terms of makeup and overall styling, ensuring that
different images of the same meta-human retain dis-
tinct yet comparable visual cues (e.g. face shape,
eye spacing, nose structure, and lip contours). By
preserving these features, we avoid manipulating a
single individual’s visual cues that could potentially
mislead VLMs. Rather, we ensure that the evalua-
tion genuinely tests whether the model can visually
link matching cues to recognize the same or differ-
ent individuals without prior identity knowledge.

Distractor Meta-human Selection. To intro-
duce challenging distractors in our sequences, we
compute the CLIP embedding for every image and
store these embeddings in a reference base. When
a distractor image is needed, we perform an image-
to-image similarity search within this base to iden-
tify the most visually similar image that originates
from a different meta-human. This fine-grained
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matching ensures that the distractor image closely
resembles the main meta-human’s image, leading
to more challenging image sequences.

Discussion on Why Objects Require Dedicated
Distractors, While Humans Do Not. In object-
centric tasks, objects are categorized into eight
distinct types, with substantial differences among
different types (e.g. pets and bags). Therefore,
each main meta-object requires dedicated distrac-
tors from the same object type to ensure meaningful
comparisons. In contrast, humans belong to a sin-
gle category, meaning that any meta-human can
serve as a distractor for another. Given that we
compute CLIP embeddings to select visually sim-
ilar distractors, the constructed image sequences
already present a significant challenge without the
need for type-specific distractors. We also ensure
diversity by selecting five main meta-humans for
each race-gender pair, providing a sufficiently large
pool from which to choose suitable distractors. Cor-
responding to our hypothesis, in the final curated se-
quences, most distractor meta-humans chosen were
of the same race or gender as the main meta-human.
Additionally, as shown in Table 1, these curated im-
age sequences along with our designed questions
effectively challenge tested models, revealing their
limited performances in visually linking matching
cues on person-centric data.

Images Sequence Construction. The construc-
tion of image sequences in PC (a total of 260 se-
quences) follows the structure in Table 15. More
specific details are listed below:

Two-Image Sequences (image_seq_len = 2)

1. Main Meta-Human Only (PP): Two images
are randomly sampled from the same main
meta-human. 50 sequences are constructed.

Main Meta-Human + Distractor Meta-
Human (PQ): One image is randomly se-
lected from the main meta-human, and one
from a distractor meta-human. The order of
images is shuffled. 50 sequences are con-
structed.

Three-Image Sequences (image_seq_len = 3)

1. Main Meta-Human Only (PPP): Three im-
ages are randomly sampled from the same
main meta-human. 20 sequences are con-
structed.


https://www.imdb.com/

Main Meta-Human + Distractor Meta-
Human (PPQ): Two images are selected from
the main meta-human, and one from a single
distractor meta-human. The order of images
is shuffled. 30 sequences are constructed.

Main Meta-Human + Distractor Meta-
Humans (PQR): One image is selected from
the main meta-human, while the other two
come from distinct distractor meta-humans.
The order is shuffled. 10 sequences are con-
structed.

Four-Image Sequences (image_seq_len =4)

1. Main Meta-Human Only (PPPP): All four
images are sampled from the same main meta-
human. The order is shuffled. 30 sequences

are constructed.

Main Meta-Human + Distractor Meta-
Human (PPPQ): Three images are sampled
from the main meta-human, while one is se-
lected from a single distractor meta-human.
The order is shuffled. 20 sequences are con-
structed.

Main Meta-Human + Distractor Meta-
Humans (PPQR): Two images are selected
from the main meta-human, while two are se-
lected from distinct distractor meta-humans.
The order is shuffled. 20 sequences are con-
structed.

Main Meta-Human + Distractor Meta-
Humans (PQRS): One image is selected from
the main meta-human, while three are selected
from distinct distractor meta-humans. The or-
der is shuffled. 30 sequences are constructed.

Video Construction. The video data for this
benchmark is manually collected from Shutter-
stock?. We selected ten common activity categories
that an individual can perform: clean, cook, drink,
exercise, listen, play, read, ride, walk, and work.
For each category, we curated 10 sets of candidate
video pairs, and each set consists of two videos.

To ensure motion consistency and length diver-
sity, we carefully structured the final videos by con-
catenating clips while keeping the total duration
within the 0-100s time range. Figure 10 displays
the sketch of concatenated video length distribution.
The final compositions followed two formats:

Zhttps://www.shutterstock. com
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e P->—=P format: A direct concatenation of
two distinct clips (same length for each clip).

e P->-P->P format: A sequence where the
first clip and the third clip are sampled from
the same candidate video, while the second
clip is sampled from the second candidate
video. (same length for the three clips)

# Videos

0 10 20 30 40 50 60 920 100

Video Duration (seconds)

70 80

Figure 10: Distribution of video duration.

Regardless of the different default sampling
methods for our baseline models in Table 16, both
P->-P and P->—P->P formats ensure that ev-
ery video clip has frames included in the sampling
process:

* Uniform Sampling (8/16 frame): Each clip
contributes a proportionate number of frames
based on the total video length. Since in one
concatenated video, all the sampled clips are
the same length, this method guarantees at
least 2 frames for each clip can be sampled as
model input frames.

FPS Sampling (1fps): Since frames are sam-
pled at a fixed rate, the structure of P->—P
and P->—P->P ensures that each clip is
present long enough for multiple frames to
be captured, regardless of its placement in the
sequence.


https://www.shutterstock.com

Num

Src

Process of Image Sequences Construction

Cpr

cnt

Grp

PP

2 images from the same person F;, randomly sampled as
ZIp, = {1;,1;}, and shuffled.

PQ

1 image I; from Zp, and 1 image /-; from distractor set
1 p,, randomly shuffled.

PPP

3 images from the same person F;, randomly sampled as
Ipi = {Iu Ij, Ik}, and shuffled.

PPQ

2 images from the same person P;, randomly sampled
asZp, = {I;,1;} and 1 I-; from distractor set 7 p,,
randomly shuffled.

PQR

1 image from the same person F;, randomly sampled as
ZIp, = {I;} and 2 images {/-;, I-;} from distractor set
1-p,, randomly shuffled.

PPPP

4 images from the same person P;, randomly sampled as
Ip, = {1;, 1}, I, I}, and shuffled.

PPPQ

3 images from the same person F;, randomly sampled
as Zp, = {I;,1;, I} and 1 image I-; from distractor set
1 p,, randomly shuffled.

[L;, 1, 1]

PQQR

2 images from the same person F;, randomly sampled as
Zp, = {I;,I;} and 2 images {I-;, I-;} from distractor
set Z p,, randomly shuffled.

[L;, I;]

PQRV

1 image from the same person F;, randomly sampled as
I; and 3 images {I-;, I-;, I} from distractor set Z_,p,,
randomly shuffled.

Table 15: Summary of Multi-Images Sequence Construction for Person-centric Cue (PC) Tasks
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Model Name

LLaVA-OneVision-7B
LLaVA-Video-7B
LongVA-7B
mPLUG-OwI3-7B
Qwen2-VL-7B
Qwen2.5-VL-7B
InternVL2.5-8B
InternVL2.5-26B

GPT-40

Uniform (8/16)  FPS (1fps)

AN NN I N NN
| 3 X NN X X X X

Table 16: Comparison of Different Sampling Methods

Thus, by maintaining the integrity of each clip’s
temporal structure, both P->—P and P->-P->P
formats effectively ensure that every clip con-
tributes frames to the final sampled frame input
for all models.

Question Templates. Table 17, Table 18, Ta-
ble 19, and Table 20 present the detailed standard
question templates for the Person-centric Cue task,
covering the four subtasks: Comparison (PC-Cpr),
Counting (PC-Cnt), Grouping (PC-Grp), and Video
Identity Description (PC-VID).

PC-Cpr Positive Question:

"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with T’ (True) or
'F’ (False). Only reply with T’ or 'F’. The
Question is: The individuals in these images
are the same person."

GT Answer: True (T)

PC-Cpr Negative Question:

"Answer the following question according
to this rule: You only need to provide
*ONE* correct answer with T’ (True) or
'F’ (False). Only reply with T’ or 'F’. The
Question is: The individuals in these images
are not the same person.”

GT Answer: False (F)

Table 17: PC-Cpr True-False paired-question
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PC-Cnt Question:

"Answer the following question according
You only need to provide
*ONE* correct numerical answer. For ex-
ample, if you think the answer is ’1’, your
response should only be ’1’. The Question
is: How many distinct individuals are in the
input images?"

GT Answer: 2 (Example Answer)

to this rule:

Table 18: PC-Cnt Numerical Counting Question

PC-Grp Question:

"Answer the following question according
to this rule:
*ONE¥* correct answer with the correspond-
ing letter. For example, if you think the cor-
rect answer is 'B) 2 and 3’, your response
should only be "B) 2 and 3°. The Question
is: Which images correspond to the same
person in the input images? Choices: A)
None; B) 2 and 3; C) 1 and 3; D) I and 2."
GT Answer: D) 1 and 2 (Example Answer)

You only need to provide

Table 19: PC-Grp Multiple-Choice Grouping Question

PC-VID Question:

"Give a comprehensive description of the
whole video, prioritizing details about the
individuals in the video."

Table 20: PC-VID Video Describing Question



F More details on Prompting Approaches

F.1 Prompts for LLM-as-Evaluator

When models answer our free-form PC-VID ques-
tions, their responses are evaluated by GPT-40 us-
ing the scoring prompts detailed in Tables 21 and
22. Specifically, for videos following a P — —P
sequence, GPT-40 assesses whether the model ex-
plicitly distinguishes that the first individual (P)
and the second individual (—P) are different. In
this case, if the model successfully makes this dis-
tinction, it receives a score of 1; otherwise, it is
given a score of 0.

For videos that exhibita P — =P — P (PQP)
pattern, the evaluation is more nuanced. The eval-
uator model (GPT-40) checks two aspects: (1)
whether the model correctly identifies that there
are two distinct individuals (i.e., P and —7P), and
(2) whether the model explicitly recognizes that
the final appearance belongs to the same individual
as the first (P). A perfect identification of both
aspects yields a score of 2, while correctly distin-
guishing the individuals without explicitly linking
the final appearance to the first results in a score
of 1. If the model fails to distinguish between the
individuals, a score of 0 is assigned.

F.2 Prompting Approaches for Probing on
VLM?-Bench

CoT (CoT-normal). The normal version of the
Chain-of-Thought prompt is shown in Table 23.
We simply require the model to think ’step-by-step’
to ensure self-reflection and self-correction, as well
as the transparent thinking process.

CoT-special for GC. Table 24 shows a special
version of the Chain-of-Thought prompt. Accord-
ing to the task features, we carefully analyze how a
human being approaches and visually links match-
ing cues for questions in GC, then curate this
prompt as an imitation of the human visual linking
process.

VP-grid for GC. Figure 11 displays a complete
version of Visual Prompting with Grid assistance
(VP-grid). Here we follow (Lei et al., 2024) to
print a set of dot matrix onto the input image, ac-
companied by the image order dimension concate-
nated with Cartesian coordinates as (image order
index, colum index), row index). In the detailed tex-
tual prompt design, we also integrated references
and explanations for the grids, allowing VLMs to
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leverage this visual assistance as spatial and visual
matching references.

VP-zoom-o for OC. In Figure 12, we demon-
strate the visual prompting process for OC. We
leverage the Grounded-SAM (Ren et al., 2024)
model to detect bounding boxes for objects based
on their types then crop the “zoomed-in” objects as
the image input for further VQA pairs.

VP-zoom-p for PC. The visual prompting pro-
cess in similar to that of OC (Figure 13). We use a
face detection model (Geitgey, 2016) to “zoom in”
on the individual’s face and occlude other irrelevant
information.



#Task

You are evaluating a model’s ability to accurately distinguish between two different individuals, P
and Q, who appear sequentially in a video (first P, then Q). Given a description, your task is to
determine if the model explicitly identifies that the first person (P) and the second person (Q) are
different individuals.

#Return Format

You only need return a number after "Score:". If you think the model correctly identifies that the
two appearances belong to different individuals, return "Score: 1". If you think the model fails to
explicitly state that there are two different individuals, return "Score: 0".

#Description

<Model’s Description>

Table 21: Scoring prompt for VID (when video belongs to category of P->—P).

#Task

You are evaluating a model’s ability to accurately distinguish between two different individuals, P
and Q, who appear sequentially in a video following an PQP pattern (first P, then Q, then P again).
Given a description, your task is to determine whether the model explicitly identifies that: (1) P
and Q are different individuals, and (2) The person in the final scene is the same as the first (P).
#Return Format

You only need return a number after "Score:".

(1) If the model correctly describes that the video follows an PQP sequence, explicitly recognizing
that the first and last appearances belong to the same person (P), while the middle appearance is a
different person (Q), return "Score: 2".

(2) If the model correctly identifies that there are two different people in the video (P and Q) but
does not explicitly mention that the last scene returns to P, return "Score: 1".

(3) If the model fails to recognize that two different individuals appear (e.g., treats all appearances
as the same person or does not distinguish between P and Q), return "Score: 0".

#Description

<Model’s Description>

Table 22: Scoring prompt for VID (when video belongs to category of P->—P->P).

<Question>
Let’s think ‘step by step’ to answer this question, you need to output the thinking process of how
you get the answer.

Table 23: CoT prompt for GC (here we denote as CoT-normal to distinguish it from the CoT-special in Table 24 that
specifically designed for GC), OC, and PC.
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<Question>

Use the following 4 steps to answer the question:

Step 1. Understand the Question
- Identify the question’s purpose.
- Check for any format requirements.

Step 2. Perceive (List Elements)
- List every details in each image respectively.

- Note positions and attributes of elements.

Step 3. Connect (Compare & Reason)

- Compare corresponding elements in each image.
- List all the unchanged elements and the changed element.

Step 4. Conclude (Answer the Question)

Table 24: CoT-special specifically designed for GC.

Add Coordinates

<Question>

Here's the instruction you need to strictly follow to approach this
question:

Two images are provided, each overlaid with a grid of dots
arranged in a matrix with dimensions h by w. Each dot on this grid
is assigned a unique set of three-dimensional coordinates labeled
as (t, x, y). The first coordinate, "t" distinguishes the two
images— "1” for the firstimage, "2" for the second. The
remaining coordinates, “x” and “y" specify each dot’ s
location, where within any column x increases from top to bottom,
and within any row y increases from left to right.

This labeling system is intended to help you identify, reference,
connect, and compare objects across both images. Now, use the
following 4 steps to answer the question.

Step 1. Understand the Question - Identify the question’ s purpose.
- Check for any format requirements.

Step 2. Perceive (List Elements and coordinates) - For all the objects
in the 'Options’ of the question, identify them in each image
separately, double check their existence. If the object exists then
output its nearest coordinates. - Output format like 'Image1: apple
at coordinates (1, 2, 3).. Image2: banana at coordinates (2, 4, 5)'

Step 3. Connect (Compare & Reason) - Use the grid coordinates to
connect objects across the two images, observing any similarities or
differences at the same (x, y) positions.

Step 4. Conclude (Answer the Question) - If a specific output format
is required (e.g,, "MY_ANSWER:..." ), follow it exactly. Include the
transparent thinking process in your answer, and make sure you
output the final *ONE* answer after '"MY_ANSWER!', just like
'MY_ANSWER: D) *

Figure 11: An illustration of how VP-grid works for GC.
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Original Images

Bounding Boxes

Cropped Objects

Figure 12: An illustration of how VP-zoom-o works for OC.

Original Images

Bounding Boxes

Cropped Faces

Figure 13: An illustration of how VP-zoom-p works for PC.

G Case Study

This section focuses on how various prompting
techniques influence model performance, highlight-
ing their successes and limitations across different
models.

G.1 Case for CoT-special prompting in
General Cue (GC) Task

We observe that the CoT-special prompt boosts
InternVL2.5-8B’s performance by over 25% than
the standard query in both Matching and Track-
ing tasks for General Cue. While for the traditional
CoT-normal prompting technique, this boost is only
13%. The CoT-special prompt (Table 24) directs
the model through four explicit steps: understand-
ing the question, perceiving (listing elements), con-
necting (comparing and reasoning), and conclud-
ing. This structured approach mirrors the human
process of visual matching and is effective even for
a rather smaller model like InternVL2.5-8B, which
might otherwise struggle with the ambiguity of a
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complex generic step-by-step instruction (which
we will discuss later in the next Subsection G.2).

For example, in the provided InternVL2.5-8B
response Figure 14, the model correctly executes
the following: In Step 2, it identifies critical details
such as "Vase with flowers on the table" and "Chan-
delier above" in Image 1, while noting the absence
of the vase in Image 2. In Step 3, it systematically
compares the two images, highlighting that while
many elements remain unchanged (e.g., the chan-
delier, kitchen area, bowl of fruit, window), the
removal of the vase is the key difference. Finally,
in Step 4, the model concludes that the statement
"The vase on top of the table was removed" accu-
rately describes the visual change, thereby arriving
at the correct answer.

This detailed, multi-step breakdown not only
ensures that all pertinent visual cues are captured
and processed but also reduces errors by structur-
ing the logical flow of reasoning. The CoT-special
prompt’s explicit instructions help InternVL2.5-8B



align visual information with textual descriptions
more effectively, thus enhancing overall perfor-
mance. Compared to the less specific CoT-normal
prompt—which may leave the model with gaps in
reasoning—the CoT-special prompt provides clear,
task-specific guidance that is essential for complex
visual reasoning tasks, as evidenced by the substan-
tial performance improvement.

G.2 Case for VP-grid in General Cue Task

The VP-grid (Visual Prompting with Grid as-
sistance) method enhances visual matching in
General Cue tasks by overlaying a dot matrix
grid onto the input image. Each dot is an-
notated with a three-dimensional coordinate tu-
ple, (image order index, column index, row index),
where the first dimension distinguishes the se-
quence of images (e.g., the first image is indexed
as 1 and the second as 2). This grid is further sup-
ported by detailed textual descriptions that clarify
the coordinate system, enabling Vision-Language
Models (VLMs) to use these cues for spatial and
visual matching.

A example failure case in VP-grid. However,
this approach does not yield consistent improve-
ments across all models. For instance, the
Qwen2.5-VL-7B model demonstrates a significant
performance drop—nearly 20%—when using VP-
grid. An example failure case is in Figure 15.
Our analysis reveals that although the model cor-
rectly identifies visual elements (e.g., a pedestrian
with a high-visibility vest at coordinates (2, 5, 3)),
it fails to properly interpret the image sequence.
Specifically, the model incorrectly associates the
coordinates (2,5,3) with the first image, rather
than the second, despite the explicit definition pro-
vided in the textual prompt. This misinterpretation
leads to erroneous linking of visual matching cues
and subsequent faulty reasoning. We suspect that
the underlying issue is the limited semantic com-
prehension capability of the relatively smaller 7B
model, which struggles with complex, predefined
spatial instructions and visual assistance.

A example of success case in VP-grid. In con-
trast to models that often misinterpret or neglect
spatial cues provided by VP-grid—leading to errors
such as mismatching image indices—GPT-40 suc-
cessfully leverages these visual prompts to achieve
correct visual-textual alignment. In the example at
Figure 16, the model identifies the cat’s nose at co-
ordinates (1,2, 4) in the first image and at (2, 2,4)
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in the second image, enabling it to accurately cap-
ture the change in the visual attribute (from a lighter
pink to a darker black).

This success stems from several key aspects of
GPT-40’s processing capabilities:

1. Precise Disambiguation of Image Order:
The VP-grid explicitly encodes image order,
which GPT-4o0 uses to differentiate between
multiple images. This prevents the common
error of conflating spatial information from
distinct images—a problem seen in smaller
models.

Robust Visual Matching in space: With
clear coordinate annotations, the model effec-
tively locates and compares the same physical
regions across images. In this case, the exact
correspondence between the cat’s nose in dif-
ferent images is recognized, which is crucial
for detecting subtle visual changes.

. Structured Reasoning Process: GPT-40 ad-
heres to a well-defined reasoning sequence in
our textual guidance(perception, connection,
and conclusion). By systematically linking
the provided grid coordinates with the textual
descriptions, it is able to deduce the key visual
change accurately.

Implications on Model Scale. Our analysis sug-
gests that the enhanced performance of GPT-40
with VP-grid can be attributed to its larger model
capacity. Although the detailed architecture of
GPT-4o0 is proprietary, its ability to process com-
plex multi-modal prompts implies that:

* Enhanced Semantic Understanding: Larger
models are inherently better at comprehend-
ing intricate, structured prompts that combine
visual and textual information. This results in
a more nuanced interpretation of spatial cues.

Superior Visual-Textual Alignment: With
greater capacity, GPT-40 can integrate and
correlate the detailed spatial data (visual assis-
tance) from the VP-grid with the correspond-
ing textual descriptions, minimizing the risk
of mis-association or errors.

Effective Handling of Complexity: The ad-
vanced reasoning capabilities of larger models
enable them to navigate the additional com-
plexity introduced by VP-grid without suffer-
ing from the side effects seen in smaller mod-
els. This ensures that the additional spatial
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Imagel Image?2

Question: Is the answer ‘The vase on top of the table was removed.’ correct
for the given question: ‘What key visual change can be observed from the
first image to the second image?'?

3 GT answer: T Vanilla Response: F

CoT-Special Response: Step 1. Understand the Question ...

Step 2. Perceive (List Elements)

Image 1: Vase with flowers on the table; Chandelier above...

Image 2: No vase on the table; Chandelier above...

Step 3. Connect (Compare & Reason)

Both images show a {chandelier, kitchen area, bowl of fruit, window...}

The key visual change is the absence of the vase on the table in Image 2.

Step 4. Conclude (Answer the Question)

The statement “The vase on top of the table was removed” is correct

\ for the key visual change observed between the two images. /

\\ MY _ANSWER: T ,/

~ -
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Figure 14: Case study on why CoT-special leads to performance improvement.
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guidance improves performance rather than
causing confusion.

The success of GPT-4o in utilizing the VP-grid
approach demonstrates that model scale plays a crit-
ical role in effectively integrating complex visual
and textual cues. By accurately disambiguating im-
age order and performing precise spatial matching,
GPT-40 not only avoids the pitfalls encountered
by smaller models but also benefits significantly
from the additional visual assistance, leading to
an overall performance improvement of approxi-
mately 10%.

G.3 Case for CoT prompting in
Object-centric Cue Task

The task design for Object-centric cue (OC) and
person-centric cue (PC) requires multiple images
(more than 2) as sequence input. We observe that,
unlike General Cue (GC) tasks where models are
required to link instance-level cues, OC tasks de-
mand that models group similar objects based on
fine-grained visual features. As illustrated in Fig-
ure 5b, models using the CoT approach sometimes
struggle to provide a comprehensive overview of
vision-based cues across a sequence of images.

A detailed case in Figure 17 is provided by
InternVL2.5-26B’s response. The ground truth and
Vanilla responses correctly identify that there is
no grouping for the same meta-object in the se-
quence, with the answer ‘D) None’. Inthe Co T
response, the model states: "The second and third
images both have dinosaurs wearing sunglasses".
Although the description here is true, its ambiguity
and lack of detailed coverage lead the model to
incorrectly select option C) 2 and 3, rather than
the correct option D) None. Because if we take a
closer look at the design on the backpack in image
3, the dinosaur with sunglasses is actually holding
a keyboard instead of a skateboard in image 2. This
is a distractive visual matching cue we intend to
capture during the distractor meta-object selection.
This major difference should have prevented mod-
els from grouping image 2 and image 3 together.

According to our findings, this misgrouping oc-
curs for two main reasons:

1. Insufficient Overview of Visual Cues: The
CoT prompt does not force the model to sys-
tematically verify all critical details across
multiple images. As a result, the model over-
looks nuanced differences, such as the de-
sign discrepancy on the backpack in image
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3, where the dinosaur holds a keyboard rather
than a skateboard.

2. Variability in Descriptive Language: The
open-ended language generated by the CoT
approach can lead to inconsistent descriptions.
In this case, the model generalized the visual
cue of a "dinosaur design" without capturing
the specific attribute (i.e., the object the di-
nosaur is holding), which is crucial for correct

grouping.

Thus, the lack of structured guidance in the CoT
prompt leads to the dropping or misinterpretation
of critical cues, resulting in incorrect grouping deci-
sions for multi-image sequences in OC tasks. This
analysis underscores the importance of more de-
tailed structured intermediate reasoning strategies,
such as those provided by a tailored CoT-special
prompt, to ensure that all relevant visual details are
captured and compared accurately.
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Imagel Image2
Question: Is the answer 'A pedestrian was removed from the scene.' correct
for the given question: 'What key visual change can be observed from the
first image to the second image?'?

GT answer: F  Vanilla Response: F

VP-grid Response: Step 1: Understand the Question ...

Step 2: Perceive: In the first image, there is a person wearing a high-
visibility vest near the yellow van at coordinates (2, 5, 3). In the second
image, the person wearing a high-visibility vest is no longer present at
coordinates (2, 5, 3).

Step 3: Connect: The coordinates (2, 5, 3) in the first image correspond to
the person wearing a high-visibility vest. The same coordinates in the
second image do not have that person present.

Step 4: Conclude: the key visual change is the removal of the person
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\
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Figure 15: Case study on why VP-grid leads to performance degradation.
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I Question: Is the answer ‘The cat's pink nose was turned black’ correct for
I the given question: ‘What key visual change can be observed from the first
I image to the second image?'?

GT answer: T Vanilla Response: F

VL-grid Response: (Understanding question context...) ... focusing on the

cat's nose color change.

(Perception step...) Identify cat's nose location:

Image 1: Cat's white/pink nose at coordinates (1, 2, 4)

Image 2: Cat's black nose at coordinates (2, 2, 4)

(Connecting step...)

Compare cat's nose color at the same coordinates in both images:

Image 1: Nose appears lighter (likely pink).

Image 2: Nose appears darker (black).

\ (Concluding step...) The described change: "The cat's pink nose was turned /
N black," is indeed the key visual change. ,,

N
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Figure 16: Case study on why VP-grid leads to performance improvement for GPT-40
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Image3
Question: Which images show the same bag in the input images?
Choices: A) 1 and 3; B) 1 and 2; C) 2 and 3; D) None
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GT answer: D) None  Vanilla Response: D) None
CoT Response:
The first image shows a backpack with a green dinosaur design worn by a
child standing in a classroom. The second image shows a close-up of a
backpack with a similar green dinosaur design, including sunglasses, but
without the context of a person wearing it. The third image shows another
backpack with a design featuring a dinosaur with sunglasses. The second
and third images both have dinosaurs wearing sunglasses, which suggests
they are the same bag.
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Figure 17: Case study on why CoT leads to performance degradation.
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