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Abstract—Uncertainty principles present an important the-
oretical tool in signal processing, as they provide limits on
the time-frequency concentration of a signal. In many real-
world applications the signal domain has a complicated irregular
structure that can be described by a graph. In this paper, we
focus on the global uncertainty principle on graphs and propose
new connections between the uncertainty bound for graph signals
and graph eigenvectors delocalization. We also derive uncertainty
bounds for random d-regular graphs and provide numerically
efficient upper and lower approximations for the uncertainty
bound on an arbitrary graph.

I. INTRODUCTION AND BACKGROUND

In many modern signal processing applications, such as
social networks and co-authorship studies, brain imaging,
epidemiology, and traffic networks, data has complicated re-
lational structures. Such data can be naturally represented by
signals defined on a (possibly weighted) graph, edges of which
represent the relations between data points. The emerging field
of signal processing on graphs merges algebraic graph theory
and computational harmonic analysis with the purpose to build
tools for processing and analyzing such signals on graphs.
Even though the theory of signal processing on graphs is very
young, it develops rapidly [19, 14].

One of the cornerstone results in the classical time-
frequency signal processing and harmonic analysis is the
uncertainty principle. It limits the degree to which a func-
tion can be simultaneously localized in time and frequency.
Generalizations of such a principle to the graph setting, that
is, establishing a trade-off between the spread of a signal in the
vertex domain and in the frequency domain, is an important
problem in signal processing on graphs. In particular, graph
uncertainty bounds are used to study sampling properties on
graphs [16, 23] and to analyse space-frequency and wavelet
decompositions [1, 18].

In this paper, we study how the uncertainty principle for
signals on graphs is linked with the structure of the graph
eigenvectors. More specifically, we (a) show that more refined
localization results for the graph eigenvectors lead to better
estimates of the uncertainty bound, and (b) propose the ways to
quantify uncertainty bounds for particular graphs numerically.

To formally define uncertainty bound on graphs, we start
with reviewing some relevant definitions. Let G = (V,E) be a
connected graph with the set of vertices V , set of edges E, and
let A be its adjacency matrix. For simplicity, let us assume that

G is undirected and thus A is symmetric. All the discussion
(with slight modifications) can be extended to the case of
directed graphs.

Let Λ = {λj}|V |j=1 be the multiset of eigenvalues of the
graph adjacency matrix A. Since A is real and symmetric,
there exists an orthonormal basis Φ = {ϕ`}`∈Λ consisting
of eigenvectors ϕ` of A. By slight abuse of notation, we
identify a basis Φ with the matrix Φ that has basis vectors
as its columns. In some other works, Φ is chosen to be an
orthonormal eigenbasis of the (normalized) graph Laplacian,
see for instance [21].

Consider a signal f : V → C defined on the vertex set V
of the graph G. Treating f as a vector in C|V |, one can use
representation of f in the orthonormal eigenbasis Φ to define
the graph Fourier transform (see, for example, [19]).

Definition I.1. We define the graph Fourier transform f̂ of a
signal f : V → C as

f̂(`) = 〈f, ϕ`〉 =
∑
v∈V

f(v)ϕ∗` (v), ` ∈ Λ.

Since Φ is an orthonormal basis, the inverse Fourier transform
is given by f(v) =

∑
`∈Λ f̂(`)ϕ`(v), v ∈ V .

There are multiple ways to define uncertainty principle.
In the continuous setup when f ∈ L2(R), the Heisenberg
uncertainty principle is defined using the notion of time and
frequency spread [9], and for the finite dimensional signals
f ∈ RN , it uses the sizes of the supports of f and f̂ . Both
of these approaches can be generalized in the graph setup,
leading to local and global graph uncertainty principles [16].

A. Local uncertainty principle on graphs

In classical harmonic analysis, for f ∈ L2(R), the Heisen-
berg uncertainty principle states that ∆2

t∆
2
ω ≥ 1

4 , where
∆2
t = mint0∈R

1
‖f‖22

∫
R(t − t0)2|f(t)|2dt denotes the time

spread of f and ∆2
ω = 1

‖f‖22

∫
R ω

2|f̂(ω)|2 dt2π denotes the
frequency spread of f [9].

Developing on this idea, Agaskar and Lu [2, 1] defined
the graph spread ∆2

g(f) and spectral spread ∆2
s(f) of graph-

based signals f : V → R, f 6= 0 as

∆2
g(f) := min

u0∈V

1

‖f‖22
fTP 2

u0
f ; ∆2

s(f) :=
1

‖f‖22

∑
λ∈Λ

λ|f̂(λ)|2,



Pu0
= diag{d(u0, v)}v∈V where d(·, ·) is the graph distance.

It has been shown that the feasibility region
D = {(∆2

g(f),∆2
s(f))}f :V→C for a connected graph G is a

bounded convex set [1]. Moreover, bounds on ∆2
g(f)∆2

s(f)
has been established for trees in [2] and for full graphs, stars,
and Erdős-Rényi random graphs in [1].

B. Global uncertainty principle on graphs

In this paper we are going to focus on a different, global
version of the uncertainty principle that generalizes the one
proposed by Donoho and Stark [7]. They showed that a
signal and its Fourier transform cannot be simultaneously
sparse. More precisely, ‖f‖0‖f̂‖0 ≥ N , where ‖f‖0 denotes
the support size of f . A similar bound for graph signals,
however, does not hold for all graphs G and depends not
only on the graph structure, but also on the choice of Φ.
For example, it is easy to check that for a full graph KN ,
one can choose an eigenbasis Φ so that there exists a signal
f with ‖f‖0‖f̂‖0 = 2, while for a different eigenbasis Φ̃,
‖f‖0‖f̂‖0 ≥ N for all f . At the same time, for a cycle
graph CN , any choice of Φ leads to the uncertainty bound
‖f‖0‖f̂‖0 ≥ N/2.

Given the dependency of the graph uncertainty bounds on
the graph structure and the eigenbasis choice, this work is
motivated by the following two questions:

1) For which G do we have that ‖f‖0‖f̂‖0 ≥ h(|V |) for any
choice of Φ and some function h, s.t. h(n)→n→∞ ∞?

2) For given G and Φ, how can one estimate the bound for
‖f‖0‖f̂‖0?

The first question has been partially answered in [22]. In
particular, the following connection between the uncertainty
bound on a graph G and the properties of Φ has been shown.

Theorem I.2 ([22]). Let G = (V,E) be a weighted graph and
Φ be an orthonormal basis of the eigenvectors of its adjacency
matrix A. Then, for any graph signal f : V → C,

‖f‖0‖f̂‖0 ≥ ‖Φ‖−2
∞ , where ‖Φ‖∞ = max

`∈Λ, i∈V
|ϕ`(i)|.

This bound is only tight if Φ consists of the elements with
the same absolute values, although in some models it gives
correct asymptotic dependence on the size of the graph.

In Section II, we establish a better link between graph
uncertainty bound and the distribution of the eigenvectors
coefficients. In Section III, we discuss the uncertainty bound
on a well-studied model of random d-regular graphs. In
Section IV, we propose efficiently computable lower and upper
bounds for the global uncertainty bound on an arbitrary graph
and test their performance on different random graph models.

II. GLOBAL GRAPH UNCERTAINTY AND EIGENVECTOR
DELOCALIZATION

First, we give a generalization of Theorem I.2 that quantifies
global uncertainty via the subblocks of the eigenvector matrix.

Theorem II.1. Let G = (V,E) be a weighted graph and Φ be
an orthonormal eigenbasis of its adjacency matrix A. Then,
for any graph signal f : V → C,

‖f‖0‖f̂‖0 ≥ min
S⊂Λ,K⊂V

{|K||S| : ‖ΦK×S‖F ≥ 1} ,

where ΦK×S is the restriction of the matrix Φ to the rows
indexed by K and columns indexed by S, and ‖ · ‖F denotes
the Frobenius norm.

Proof. Without loss of generality, assume that the signal f
is normalized so that ‖f‖2 = 1. Then, since Φ forms an
orthonormal basis ‖f̂‖2 = ‖f‖2 = 1. Denote K = supp (f),
S = supp (f̂). Using Cauchy-Schwartz inequality, we obtain

‖f̂‖22 =
∑
`∈S

∣∣∣∣∣∑
i∈K

f(i)ϕ∗` (i)

∣∣∣∣∣
2

≤
∑
`∈S

[∑
i∈K
|f(i)|2

∑
i∈K
|ϕ∗` (i)|2

]
=

∑
`∈S,i∈K

|ϕ`(i)|2 = ‖ΦK×S‖2F .

That is, ‖Φsupp (f̂)×supp (f)‖F ≥ 1 for any graph signal
f : V → C. The claim follows.

Note that both Theorem I.2 and Theorem II.1 link the
global uncertainly bound on a graph to the distribution of the
coefficients of its eigenvectors. Informally, good uncertainty
bound requires the absolute values of an eigenvector entries
to be of similar order. This property is also known as the
delocalization of (graph) eigenvectors.

The eigenvector delocalization is one of the central topics
in modern random matrix theory. It is possible to show that
certain classes of random matrices exhibit eigenvector univer-
sality: their eigenvector matrices are distributed similarly to
those of the Gaussian Orthogonal Ensemble (i.e., like a sample
of Haar measure on the orthogonal group O(n)), see, e.g., [4,
13]. Various measures of distribution similarity were studied;
among the most popular ones in non-asymptotic context are
the following
• Supremum delocalization (studied in a variety of papers

staring from [8]) gives a bound of the largest coordinates
‖ϕ`‖∞ of the eigenvectors in Φ;

• No-gap delocalization (first introduced in [17]) ensures that
any sufficiently large set of coordinates of an eigenvector
carries a non-negligible portion of its Euclidean norm.

These two types of delocalization measure complementary
properties of the distribution of an eigenvector coefficients, as
one of them rules out peaks while the other one rules out gaps.
It is easy to see that neither of these two properties implies
the other. For example, presence of a few large outlier entries
in the matrix Φ fails supremum delocalization but a no-gap
localization can still hold.

While Theorem I.2 gives a direct link between supremum
delocalization and the uncertainty bound (see Corollary III.2
below), Theorem II.1 can be used to deduce the uncertainty
bound from other types of delocalization.

Corollary II.2. (Uncertainty from no-gap delocalization) Let
G = (V,E) be a graph. Suppose there exists a function



g : R2 → R, such that for any ε ∈ (0, 1) and any unit
eigenvector ϕ of G, ‖(ϕ)K‖2 ≥ ε implies |K| ≥ g(ε, |V |)
for any K ⊂ V . Then, for any signal f defined on G,

‖f‖0‖f̂‖0 ≥ min
S⊂Λ

g

(
1

|S|
, |V |

)
|S|.

Proof. Suppose that for K ⊂ V and S ⊂ Λ, ‖ΦK×S‖2F ≥ 1.
Then there exists ` ∈ S, such that ‖(ϕ`)K‖ ≥ 1

|S| . Choosing

ε = 1
|S| , we deduce that |K| ≥ g

(
1
|S| , |V |

)
, and the claim of

the corollary follows from Theorem II.1.

Note that no-gap delocalization results are restricted to
individual columns in the eigenvector matrix and do not
address how many eigenvectors can be localized on the
same index set. New non-asymptotic delocalization results
addressing submatrices of the eigenvector matrix would lead
to the tighter bounds for the uncertainty. An example of a
delocalization of this type is box delocalization we define in

Corollary II.3. (Uncertainty from box delocalization) Sup-
pose that the eigenvectors of a graph G = (V,E) have box
delocalization. That is, for ε ∈ (0, 1), k ∈ {1, . . . |V |}, and
any coordinate subset K ⊂ V with |K| ≤ k, we have∣∣{` ∈ Λ: ‖(ϕ`)K‖22 ≥ ε

}∣∣ ≤ L(k, ε), for some function L.
Then, for any signal f defined on G,

‖f‖0‖f̂‖0 ≥ max
k,ε
{kL(k, ε) : εL(k, ε) < 1} .

Proof. For each k ∈ {1, . . . |V |}, let us fix ε ∈ (0, 1), such that
εL(k, ε) < 1. Then, for each fixed K ⊂ V with |K| = k, the
box delocalization assumption implies that for any S ⊂ Λ with
|S| ≤ L(k, ε), we have ‖ΦK×S‖2F < 1. Thus, ‖ΦK×S‖2F ≥ 1
implies that |S||K| ≥ kL(k, ε), and the claim follows from
Theorem II.1.

III. UNCERTAINTY BOUNDS FOR d-REGULAR GRAPHS

In this section, show how some known (de)localization
results can be applied to obtain uncertainty bounds. Let Gn,d
denote a random d-regular graph chosen uniformly from all d-
regular graphs on |V | = n vertices. A variety of delocalization
properties of d-regular graphs were established over the recent
years (e.g., [6, 11, 10]) including the following

Theorem III.1 ([10]). For each d > 3, there exist a constant
ωd ∈ N and c ∈ (0, 1), such that any eigenvector ϕ of the
adjacency matrix of Gn,d satisfies

‖ϕ‖∞ ≤
logΩ(1) n√

n
‖ϕ‖2

with probability at least 1−O
(
n−(1−c)ωd

)
.

Using this result and Theorem I.2, we obtain the following
uncertainty principle for d-regular graphs.

Corollary III.2. For each d > 3, the following uncertainty
bound holds for any signal f on Gn,d with high probability

‖f‖0‖f̂‖0 ≥
n

logΩ(1) n
.

Remark III.3. We note that Theorem III.1 indicates strong
supremum delocalization of random d-regular graphs with
high probability. More precisely, the maximal coordinate of
the eigenvectors has the same, up to a poly-log factor, absolute
value as its average coordinate. For this reason, more refined
Theorem II.1 used together with different type delocaliza-
tion results would not allow to significantly improve the n-
dependence in the obtained uncertainty bound for Gn,d.

The following theorem shows that, while most of the d-
regular graphs have nice delocalization properties, there exist
infinite families of such graphs with localized eigenvectors.

Theorem III.4 ([3]). For every d = p + 1, with p prime,
and parameter α ∈ (0, 1/6), there are infinitely many integers
n, such that there exists a (d + 1)-regular graph Gn on n
vertices with the following property. There are sets Tn ⊂ Vn
with |Tn| = O(nα) and Sn ⊂ Λn with |Sn| = bα logd(n)c,
such that supp (ϕ`) ⊂ Tn for all ` ∈ Sn.

By selecting α = 1
logd(n) , so that |Sn| = 1, we obtain

that for any signal f defined on a graph Gn described in
Theorem III.4,

‖f‖0‖f̂‖0 & n
1

logd(n) = d,

and this bound is attained when f = ϕ` with ` ∈ Sn. We
note that the proof of Theorem III.4 produces eigenvectors
ϕ`, ` ∈ Sn with the additional property of partial localization
on the same index set. That is, these graphs also do not enjoy
box delocalization.

IV. NUMERICAL BOUNDS ON GRAPH UNCERTAINTY

Another approach to quantifying uncertainty via Theo-
rem II.1 is by directly estimating the quantity

B = min
S⊂Λ, K⊂V

{|K||S| : ‖ΦK×S‖F ≥ 1} (1)

for a given (non-random) graph. It is a binary non-convex
quadratic optimizartion problem that can be formulated as

min
xi,yj

n∑
i,j=1

xiyj

s.t.
n∑

i,j=1

Φ2
ijxiyj ≥ 1, xi, yj ∈ {0, 1}. (2)

Note that the problem above can be reduced to n2 decision
problems of the existence of a submatrix of given size with
Frobenious norm at least 1. In turn, this is equivalent to
the Weighted Edge Biclique Decision Problem on complete
bipartite graphs that is known to be NP-complete [15].

Below, we employ some simple relaxation techniques to
investigate empirically the dependence of B on the graph size
n for different graph models. These bounds serve two goals:
(a) they form hypotheses about the dependence B(n); and (b)
they provide a way to obtain estimates for uncertainty bound
for a given graph.
• Supremum lower bound. Clearly, the supremum-based

lower bound of Theorem I.2 is very weak – it would be



tight only if all the entries of the matrix have the same
absolute values. We still include it for comparison: for any
K×S ⊂ V ×Λ, we have ‖ΦK×S‖2F ≤ |K‖S‖|Φ‖2∞. Thus,

B ≥ ‖Φ‖−2
∞ .

• Greedy lower bound. Accounting for the sizes of the
elements but not their locations, we obtain

B ≥ min{m :

m∑
j=1

Φ̃2(j) ≥ 1},

where Φ̃2 ∈ Rn2

consists of the squared elements of Φ in
descending order.

• Linear lower bound. A standard linear relaxation of a
bilinear optimization problem on a bounded domain [12]
leads to the following problem

min
U,x,y

n∑
i,j=1

uij

s.t.
n∑

i,j=1

Φ2
ijuij ≥ 1, 0 ≤ xi, yj ≤ 1 (3)

max{0, xi + yj − 1} ≤ uij ≤ min{xi, yj}

for the decision variables U ∈ Rn×n and x, y ∈ Rn.
• Semidefinite lower bound. Our approach for an SDP relax-

ation follows [5], after symmetrization of the problem (2),
and leads to the following problem:

min
U,x

2n∑
i,j=1

Jijuij

s.t.
2n∑
i,j=1

Φ̄2
ijuij ≥ 1, (4)

uii − xi = 0, 0 ≤ xi ≤ 1, U − xxT < 0

max{0, xi + xj − 1} ≤ uij ≤ min{xi, xj}

for the decision variables U ∈ Sym(2n×2n) and x ∈ R2n.
The last constraint is semidefinite by a standard Schur
complements representation. The matrices J and Φ̄2 are
symmetrized versions of an all-ones matrix and the matrix
Φ2, respectively, e.g.,

Φ̄ = 0.5

[
0n×n Φ
ΦT 0n×n

]
, (Φ̄2)i,j = (Φ̄i,j)

2.

• k-width upper bound. We upper-bound the optimal solu-
tion of (2) by a solution of the problem with additional
constraint max{

∑
xi,
∑
yi} ≤ k. In other words, we

narrow down the set of submatrices in (1) to the submatrices
with at most k rows or columns and do an exhaustive
search. For each possible subset of k rows (columns), we
take as many of the largest partial row-sums as needed to
get at least 1 in total. The complexity of this problem is
O(knk+2 ln(n)), so it is feasible only for small fixed k.
Below, we take k = 3 to form an upper bound.

We consider two graph models to test the bounds described

Fig. 1: Upper and lower estimates for the uncertainty bound (1) on
Gn,2d

√
ne, averaged over 5 runs (semidefinite lower bound from 1

run). True value of B is in the cyan region. All the bounds suggest
linear growth of B with n.

above: a 2d
√
ne-regular graph on n vertices (Figure 1) and the

same regular graph modified by adding high-degree vertices.
More precisely, d0.5ne random edges are added to d0.1ne
random vertices (Figure 2). The first model satisfies theoretical
delocalization results outlined in Section III and we expect
linear in n (up to a logarithm) bound for uncertainty. The
second model is constructed to disrupt the “like-uniform”
structure of the entries in the adjacency eigenvector matrix.
We use it as an example where the uncertainty bound could
grow sublinearly with the graph size.

Asymptotically, our bounds support the conjecture of linear
growth of B(n) with n in Figure 1 and sublinear growth
of B(n) in Figure 2 for the non-regular (modified) graph.
For the individual uncertainty estimates, we see that there
is still a considerable gap between the lower and upper
bounds (illustrated as a cyan region in Figures 1 and 2), but
more sophisticated relaxations give better lower bounds. In
particular, a supremum-based lower bound, that is used for
known asymptotics (see Section III), is not competitive on
larger graphs.

Our code is available at https://github.com/erebrova/
uncertainty-delocalization.

V. DISCUSSION

The study of uncertainty principle is not only useful in graph
signal processing applications, but it also stems a variety of
interesting mathematical questions in spectral graph theory,
optimization, and random matrix theory, and promotes connec-
tions between these diverse areas. In particular, the findings
of this paper motivate the study of different, more refined,
types of eigenvector delocalization that rule out simultaneous
concentration of different eigenvectors on the same coordinate
subsets (see, for instance, Corollary II.3). Then, the study of
the eigenvector delocalization for new families of (random)
graphs with varying combinatorial properties, such as degree
distribution and girth (e.g. [20, 10]), would allow to establish
a link between these properties and graph uncertainty. Another



Fig. 2: Upper and lower estimates for the uncertainty bound (1) on
Gn,2d

√
ne modified by added high-degree vertices, averaged over 5

runs (semidefinite lower bound from 1 run). True value of B is in
the cyan region. The bounds suggest sublinear growth of B with n.

important problem is efficient numerical estimation of the un-
certainty bound for a given graph, including the development
of scalable approximations of the semidefinite program (4).
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