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Abstract

Data fusion techniques integrate information from heterogeneous data sources to
improve learning, generalization, and decision-making across data sciences. In
causal inference, these methods leverage rich observational data to improve causal
effect estimation, while maintaining the trustworthiness of randomized controlled
trials. Existing approaches often relax the strong "no unobserved confounding"”
assumption by instead assuming exchangeability of counterfactual outcomes across
data sources. However, when both assumptions simultaneously fail—a common
scenario in practice—current methods cannot identify or estimate causal effects.
We address this limitation by proposing a novel partial identification framework
that enables researchers to answer key questions such as: Is the causal effect
positive/negative? and How severe must assumption violations be to overturn
this conclusion? Our approach introduces interpretable sensitivity parameters that
quantify assumption violations and derives corresponding causal effect bounds. We
develop doubly robust estimators for these bounds and operationalize breakdown
frontier analysis to understand how causal conclusions change as assumption
violations increase. We apply our framework to the Project STAR study, which
investigates the effect of classroom size on students’ third-grade standardized test
performance. Our analysis reveals that the Project STAR results are robust to
simultaneous violations of key assumptions, both on average and across various
subgroups of interest. This strengthens confidence in the study’s conclusions
despite potential unmeasured biases in the data.

1 Introduction

Modern evidence-based decision-making increasingly relies on combining information from various
sources — a practice known as data fusion. From integrating satellite imagery across multiple spatial
resolutions (Tang et al, [2016; |Yan et al.,|2021)) to merging genetic markers with electronic health
records (Hall et al., 2016} |Conroy et al., 2023 Zawistowski et al.,[2023)), data fusion enables more
robust, generalizable, and efficient analysis (Meng et al.l [2020). In causal inference, data fusion
has emerged as a popular paradigm, recently recognized as one of the top ten research directions
for advancing the field (Mitra et al., 2022 Bareinboim and Pearl, 2016)). Data fusion approaches in
causal inference have focused on generalizing or transporting evidence from experimental studies
(Degtiar and Rose, [2023; [Pearl, 2015} Dahabreh et al.,[2019; [Lu et al., 2019), precisely estimating
heterogeneous causal effects (Brantner et al., 2023 Yang et al.,[2023)), improving efficiency (Rosen
man et al.| [2023} [Lin et al.| 2025), and mitigating estimation bias (Kallus et al.,|2018}|Colnet et al.|
2024b), among other things.
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Consider the example of the Project STAR study, which investigated the impact of class size on
students’ academic performance. The dataset comprises both a randomized controlled trial (RCT) —
where students were randomly assigned to different classroom sizes — and an observational cohort
where students self-selected into classrooms (Mosteller, [1995; [Achilles et al., 2008). While the
experimental data likely ensures internal validity, it may suffer from limited external validity or
generalizability (von Hippel and Wagner; [2018; Justman), 2018]). Conversely, the observational data
better reflects real-world settings but may suffer from unobserved confounding (Athey et al.| [2020;
Parikh et al.| 2023)). Merging the two sources can yield more precise and externally valid treatment
effect estimates under milder, partially testable assumptions (Parikh et al.} 2023} |Wu and Yang, |2022).
Specifically, the average treatment effect (ATE) becomes identifiable if either the RCT generalizes
well to the target population or the observational data satisfies no unmeasured confounding (NUC)
(Lin et al.} 2025} |Yang et al., [2023]).

However, if both assumptions fail —i.e., the RCT lacks external validity and the observational data is
confounded — then the treatment effect is no longer point-identifiable, even in the limit of infinite
data. In such settings, classical estimators break down. Nevertheless, researchers may still answer
important questions like: Is the treatment effect positive? or How severe must assumption violations
be to overturn this conclusion? These are questions of partial identification, where the goal is
to estimate a plausible range or bounds on the treatment effect rather than a single point estimate
(Cornfield et al., [1959; [Manskail, [2003)).

While a rich literature on partial identification exists, many approaches rely on strong distributional
or parametric assumptions and often ignore opportunities to tighten bounds by leveraging multiple
datasets (Rosenbaum and Rubin, |1983; Blackwell, [2014; Ding and VanderWeele, | 2016} /[Bonvini and
Kennedy, 2022; |[Nguyen et al., 2017, [2018; |Nie et al., 2021} |Colnet et al.,2022; |Dahabreh et al.| 2023}
Huang| 2024)). This creates a critical gap in sensitivity analysis frameworks that are both flexible and
informative when combining experimental and observational data.

Contributions. We propose a general framework for partially identifying treatment effects by integrat-
ing complementary strengths of experimental and observational studies. Our key contributions are:

1. We introduce interpretable sensitivity parameters, v and p, that quantify the extent of external
validity violations and unmeasured confounding, respectively.

2. We develop a double machine learning estimator based on the efficient influence function (EIF) for
estimating treatment effect bounds as a function of (v, p), without relying on strong distributional
or parametric assumptions.

3. We operationalize an efficient breakdown frontier analysis, which characterizes regions in the
(v, p) space where the treatment effect remains conclusively positive (or negative) — allowing for
assessment of the robustness of causal conclusions under simultaneous assumption violations.

Our framework enables comprehensive sensitivity analyses in data fusion settings, helping researchers
transparently explore the consequences of assumption violations. By leveraging the internal validity
of RCTs and the representativeness of observational studies, our approach yields tighter, more
interpretable bounds on treatment effects and offers a principled way to assess robustness.

2 Preliminaries

We consider the setting where we have a sample D,, = {1,...,n} of n units across an experimental
cohort (D, ) and an observational study (D,) drawn identically and independently from P. For each
unit i € D,, = D, UD,, S; = 1[i € D.] is a binary experimental cohort indicator, T; € {0,1}
is the binary treatment indicator, Y; is the observed outcome, and X; is the vector of pretreatment
covariates. We assume the outcome space is bounded and positive, but note that, without loss of
generality, our approach can be applied to all bounded outcome scenarios by simply shifting the
outcome domain. Y;(0) and Y;(1) denote the two potential outcomes for unit i.

Typically, one is interested in using these datasets to estimate the following two standard estimands,
namely the average treatment effect (ATE): 7 = Ep[Y (1) — Y (0)], and the conditional average
treatment effect (CATE): 7(x) =Ep[Y (1) =Y (0) | X = x].

We assume the following standard conditions hold:



Assumption Al. [SUTVA and Consistency]. There is no interference between units, there is a single
version of each treatment, and for all units, Y; = T;Y;(1) 4+ (1 — T;)Y;(0).

Assumption A2. [Treatment Positivity]. For s € {0,1} and all x, 3¢ > 0 such that
c<P(T=1]X=x,S=s)<1-c

Assumption A3. [Study Positivity]. For all x, 3¢ > O suchthatc < P(S=1|X =x) <1
Assumption Ad4. [Internal Validity of the Experiment]. (Y (0),Y(1)) LT | X =x,5=1

However, we acknowledge the possibility of unobserved confounders that concurrently influence S,
T, and Y. Due to such unobserved confounding, the following exchangeability assumptions, which
are standard in the literature, may fail to hold:

Assumption AS. [No Unobserved Confounding (NUC) in the Observational Data].
Y(0),Y(1)LT|X=x,5=0

Assumption A6. [Study Exchangeability]. (Y (0),Y (1)) L S| X =x

In this paper, we explicitly consider scenarios in which[A5|and [A6|assumptions are simultaneously
violated, thereby challenging the point identifiability of 7 and 7(x).

Discussion of Assumptions. imposes the standard SUTVA and consistency conditions, ensuring
that potential outcomes are well-defined for each treatment level and that the observed outcome
corresponds to the treatment received. [A2]is the standard treatment positivity assumption, ensuring
overlap between treated and control groups. [A4]and are structurally equivalent, differing only
in the sample subset (experimental vs. observational units). Internal validity in RCTs is generally
accepted due to randomization, whereas NUC is stronger, as treatment may depend on unobserved
confounders.

Combining experimental and observational samples requires the additional [A3]and [A6assumptions.
states that each unit must have a nonzero probability of being an experimental unit and is necessary
to ensure overlap between the two study cohorts. [Af|is the study exchangeability assumption, which
states that, conditional on covariates, potential outcomes are exchangeable across studies. Like NUC,
it can be a strong assumption, as study participation may depend on unobservables.

2.1 Quantifying Assumption Violations

We introduce two additional terms, p and +, that separately quantify violations of [A3] and [A6]
respectively. The value of p > 0 quantifies the level of unobserved confounding in the observational
data, corresponding to a violation of [A5|when p > 0. The value of v > 0 quantifies the difference in
potential outcomes between the RCT data and the observational data, corresponding to a violation
of [A6| when v > 0. Both terms report the level of violation as relative measures of the observed
outcomes. For example, p = 0.2 corresponds to the setting that unobserved confounding in the
observational dataset affects outcomes by 20%. In Section ] we formally define p and ~, expand on
their interpretation, and employ them as sensitivity parameters for partial identification of 7 and 7(x).

2.2 Breakdown Frontiers

Masten and Poirier| (2020) introduce an approach for visualizing how conclusions about a parameter
of interest vary as a set of assumptions are relaxed. We leverage this framework to plot how treatment
effect conclusions change as we relax [A5]and[A6] via our sensitivity parameters p and ~.



Figure [T]illustrates a breakdown frontier plot constructed 20% B Conoilsive

by bounding the treatment effect for various (p,~y) pairs. = Tentative
The x-axis represents violations of [A5] expressed as per- g Inconclusive
centages corresponding to (100 x p)%. Likewise, the y- c 3 B Incompatible
axis represents violations of expressed as (100 x v)%. = &

As a result, the bottom-left of the plot corresponds to -2 gm%

stronger assumptions (small p,~), and the top-right to g 5

weaker assumptions (large p, ). For each (p, v) pair, we = 11

estimate upper and lower bounds on the treatment effect. e

These estimates divide the plot into four regions: (i) Con- 53)

clusive: The point estimates of the upper and lower bounds 0%

are both positive (or both negative), and both confidence in- 0% 10% 20%

Violation in NUC (p)

tervals exclude zero at the chosen confidence level (equiv-
alent to the robust region of [Masten and Poirier, [2020).
(ii) Tentative: The point estimates of the upper and lower
bounds are both positive (or both negative), but at least one
of the corresponding confidence intervals includes zero. (iii) Inconclusive: The point estimates of the
upper and lower bounds are not the same sign. (iv) Incompatible: The sensitivity parameter values
lie outside the admissible range for this dataset; they imply assumptions that contradict observed
discrepancies between the study groups (see Section ). We note that Figure [T]is an example for
illustration, and that the size and shape of the regions vary by dataset.

Figure 1: Example breakdown frontier
plot for p and ~.

3 Relevant Literature

Data Fusion for Causal Inference. Data fusion methods leverage randomized trials to mitigate
unmeasured confounding in observational data and have become central to causal inference. Broadly,
approaches differ based on whether treatments and outcomes are observed only in the trial
2023) or in both datasets (Brantner et al., 2023} [Lin et al., [2024). Our setting aligns with

the latter. A more detailed review is provided in Appendix

Partial Identification. Partial identification (ID) and sensitivity analysis frameworks are widely
used to assess robustness to assumption violations in observational studies (Cornfield et al,[1959;
Rosenbaum and Rubin| [T983; [Liu et al} 2013} [Ding and VanderWeele], 2016; [Bonvini and Kennedy,
2022)). In data fusion, most sensitivity approaches focus on violations of study exchangeability when
observational treatments or outcomes are missing (Nguyen et al., 2017} 2018}, [Nie et al, 2021}, [Colnet]

let al} 2022} [Dahabreh et al, 2023 [Huang}, [2024).

In settings where treatments and outcomes are available from the observational cohort (like ours), both
non-unmeasured confounding (NUC) and study exchangeability must be addressed. Most existing
work assumes exchangeability and focuses on NUC violations (Lin et al.} 2024], 2025} Triantafillou
et al, [Chen et al.} 2021}, [Oberst et al.} 2022} [Kallus et al.}, 2018} |Yang et al., 2024; Rosenman
et al.,[2023;Yang et al.,[2023). [Yang et al.| (2023) and|Parikh et al.|(2023) propose tests for assumption
violations: the former attributing test failures to NUC, the latter recognizing that failures may stem
from either assumption, though requiring knowledge of which one fails—a difficult task in practice.

Partial Id w/ Data Fusion. While partial ID and sensitivity methods are well-developed for fusion
without observational treatments/outcomes, they remain sparse when these are available. Related
work includes partial ID approaches in contextual bandits (Joshi et al.,[20244a) and structural causal
modeling with qualitative knowledge (Zhang et al}[2022). Most closely related,
develop a two-parameter sensitivity analysis for fusion settings, addressing NUC and study positivity,
but assuming study exchangeability.

4 Partial Identification

In this section, we present a general framework for partial identification of treatment effects under si-
multaneous violations of the no unmeasured confounding assumption (A3)) and study exchangeability
(AG). When either assumption fails, point identification of the average treatment effect (ATE) and
conditional average treatment effect (CATE) becomes impossible.



To quantify the degree of these violations, we introduce two interpretable parameters: p, capturing
the extent of unmeasured confounding in the observational cohort, and ~, capturing the extent of
study exchangeability violation between the experimental and observational populations. We define:

[Ep[Y(t) [ X=x,8=0,T=1-14] [Ep[Y(t) | X =x,5=0]|
:=sup |l — ,y:=sup|l —
P [Ep[Y(t) | X =x,8=0,T=1] TN [Ep[Y(t) | X =x,8=1]]

The blue denominator terms represent quantities point-identifiable without assumptions [A5]or[A6]
whereas the orange numerator terms involve counterfactual quantities that are not directly observed.
If [A5]or[A6] holds, then p = 0 or v = 0, respectively, and treatment effects are point-identifiable.
Conversely, dissimilarity between Ep[Y (t) | X =x,5=0,T=1—¢t]and Ep[Y(t) | X =x,5 =
0,T = t] reflects unobserved confounding (i.e., a violation of and leads to nonzero values of p.
Similarly, dissimilarity between Ep[Y () | X = x,5 = 0] and Ep[Y (¢) | X = x, 5 = 1] reflects
study selection bias (i.e. a violation of [A6) and corresponds to nonzero values of . Both p and
are relative measures of dissimilarity; for example, p = 1 implies a 100% difference between the
observed outcome expectation and the counterfactual counterpart. Note that while p and v could be
extended to functions of x and ¢, we conservatively treat p and +y as scalars, taking the supremum
over all covariate-treatment profiles (x, t). This enables tractable, worst-case sensitivity analyses.

We chose a ratio-based sensitivity model in part for its scale-invariance, which allows it to generalize
across different outcome scales and covariate profiles. While alternative approaches, such as a
difference-in-means model, could also be used, we see this as a modeling choice rather than a struc-
tural limitation, and our framework could accommodate such a formulation with mild adjustments.

We now focus on using p and 7 to bound 7 and 7(x) when[A5]and [A6|are simultaneously violated.
For parsimony, we define the following estimable quantities: (i) study selection score: gs(x) =
Pp(S = s | X = x), (ii) treatment propensity score: e;(x,s) = Pp(T = ¢ | X = x,5 = 3),
and (iii) expected outcome: u(x,s,t) = Ep[Y | X = x,S = 5, T = t]. Using the law of iterated
expectation over study selection, we express:

Ep[Y(t) | X =x] = i(x)Ep[Y (1) | X =%, 5 = 1]+ go(x)Ep[Y (1) | X = x,5 = (]

= gl(X)/l(X, 17t) + gO(X)E'P[Y(t) ‘ X = X, S = O}v

where we invoke [Ad]to replace the potential outcome expectation Ep[Y (t) | X = x, S = 1] with the
observed outcome expectation u(x, 1, t), since treatment is randomized in the experimental study
(S = 1). In contrast, without[A5|or[A6] the term Ep[Y (¢) | X = x, S = 0] remains unidentifiable.
However, we can leverage p and +y to construct sharp, identifiable bounds on Ep[Y (t) | X = x,5 =

0], and thereby obtain bounds on the overall potential outcome Ep[Y (¢) | X = x]. Towards this, we
define two estimable functions that upper bound Ep[Y (¢) | X = x,.5 = 0]:

v(x,t,y) = (1 +y)u(x,1,t), wx,t, p):=e(x,0)u(x,0,t)+e1—¢(x,0)(1 + p)u(x,0,1).

ey

The function v(x, ¢, ) is derived from experimental study data. It is based on the relative deviation
of Ep[Y (t) | X = x,S = 0] from the identifiable quantity Ep[Y (¢) | X = x, 5 = 1] = p(x, 1,1),
as governed by the parameter . Conversely, the function w(x, t, p) is derived from observational
study data. It combines the identifiable component Ep[Y(¢) | X = x,5 = 0,T = t] = u(x,0,1),
weighted by the treatment propensity, e;(x, 0), with a term that inflates the counterfactual component
Ep[Y(t) | X =x,5 =0,T =1 — t] according to the parameter p.

In Lemma|[1] we combine the upper bounds v(x, t,) and w(x, t, p), along with their lower bound
counterparts v(x,t, —y) and w(x, ¢, —p), to construct identifiable bounds on E»[Y (t) | X = x].
Specifically, we replace the unidentifiable term Ep[Y (¢) | X = x,.S = 0] in Equation [1| with the
min of the two upper bounds and the max of the two lower bounds.

Lemma 1 (Conditional Potential Outcome Bounds). Suppose hold. Then for anyt € {0, 1}

and given x, if v(x,t,—y) < w(x,t,p) and w(x,t,—p) < v(x,t,7), the conditional potential
outcome satisfies

Ep[Y (1) | X =

(%, 0,7) = g1 (X)u(x

u(x,t, p,y) = g1(x)p

x] € [l(x,t,p,7),u(x,t,p,7)], where
x, 1, )+go( )max{w(x,t, —p),v(x,t, _7)}7
(X )+go( )min{w(xvtp)vv(xvtv’}/)}'



A full derivation of the results leading to Lemmal(I]is provided in Appendix Building on this
results, we next derive bounds on the conditional and average treatment effects.

Theorem 1 (Treatment Effect Bounds). Suppose hold and that for each x and t € {0, 1},
v(x,t,—v) < w(x,t,p) and w(x,t,—p) < v(x,t,7). Then, the conditional average treatment

effeCt satisﬁes: Z(Xv 1, P 7) - U(X, Oa Ps ’7) < T(X) < u(X7 1, P 7) - Z(Xa 07 Ps ’Y)
Further, if this holds for all x such that Pp(X = x) > 0, then the average treatment effect satisfies:
EP [l(Xv 1a Ps '7) - U(X, 0, P ’Y)] <7< EP [U(X7 1a Ps '7) - l(Xv 07 Py ’7)]

We derive doubly robust estimators for the treatment effect bounds established in Theorem|I]in the
next section. Before proceeding, we discuss infeasibility conditions in Remark [T}

Remark 1 ((In)compatible p and ~.). Every (p,~y) pair corresponds to a data-generating pro-
cess that could, in principle, have produced the observed data. However, some values of (p,~)
imply assumptions that conflict with what we observe. To illustrate this, consider a scenario
where 3(x,t) such that the conditional expectations of the outcome differ across study groups,
ie. [ EplY | X=x,5=1,T=1] plYV | X =x,5=0,T =t]| = A(t) > 0. |Parikh et al.
(2023) shows that A(t) > 0 lmplzes that@and/or@]ls violated. Therefore, setting (p,~y) = (0,0)—
which implies both assumptions hold—contradicts the observed difference A(t) > 0.

More broadly, the bounds in Lemma |I| I and Theorem |I| l are valid only when both v(x,t,—y) <
w(x,t, p) and w(x,t, —p) < v(x,t,7); a violation makes the parameters incompatible. Because
checking the inequalities at every (x t) is infeasible in most settings, we test them in expectation
over X for each treatment arm. The null distribution is estimated with a resampling test that keeps
the fitted propensity and outcome models fixed, as generating resamples that satisfy the null and
re-estimate these models is non-trivial. This may label some pairs incompatible that a full bootstrap
would not. Intuition behind and estimation of (in)compatibility are discussed further in Appendix[D}

5 Semiparametrically Efficient Estimation

We now turn to the problem of estimating the bounds identified in Section[d Our goal is to construct
doubly robust estimators that offer both statistical efficiency and robustness to model misspecification
(Chernozhukov et al., 2018]). However, a key challenge arises: the presence of non-differentiable
max and min operators in our estimands makes it intractable to directly derive the efficient influence
functions (EIFs) needed for such estimators.

Recent work has shown that statistical functionals of this form arise in a range of modern causal
inference problems. Some papers establish necessary and sufficient conditions under which such
non-smooth functionals are pathwise differentiable and thus admit direct efficient estimation without
smoothing (Luedtke and Van Der Laan, 2016} Bonvini and Kennedy, |2022; |Kennedy et al.,[2019).
Other work studies smooth approximation-based strategies that replace non-differentiable operators
with smooth counterparts that converge to the target functional (Levis et al.l [2025}; Ben-Michael,
2025)). We follow the latter approach and introduce a smooth approximation based on the Boltzmann
operator (Section [5.1), which provides a unified and computationally tractable way to approximate
the bounds while enabling efficient estimation. This smoothing step allows us to derive the EIFs and
construct bias-corrected estimators in Section[5.2] While we focus on bounds for 7, the same strategy
applies to bounds on 7(x).

5.1 Smooth Bounds

For any x1, x5 € R, the Boltzmann operator is of the form A\yx; + Asxo where

exp(axy) exp(axs)
)\1 = ,/\2 = .
explazr) + explazz) > ' explaz:) + explaza)

This operator is similar to the popular softmax function in that \; + Ao = 1 and their relative
magnitudes are linked to 27 and x2. However, it differs in its incorporation of the hyperparameter o
which causes \jz1 + A222 to approach max(z1, x2) as @ — oo and min(xy, 2) as a — —oo.

In Lemma[2] we show that the Boltzmann operator can be used to construct smooth approximations of
our partial identification bounds. Specifically, we replace the functions I(X, ¢, p, ) and u(X, ¢, p,y)



from Lemmawith b(X,t, p, 7, ), which uses the Boltzmann operator in place of the max and min
functions. We then establish treatment effect bounds using these smooth approximations—analogous
to Theorem E}—and show that, as « increases, these estimates converge to the max and min bounds.

Lemma 2 (Smooth Bounds). Consider a setting where hold but[A3]and[A6lmay not. Define
b(X7 t, P57 Oé) =0 (X)M(Xy 17 t) + gO(X) {Al(X7 t, P57 OZ)U + /\2(X7 t, Py a)w} ’ where
exp(awv)

(Xt 0o, Ao(X, £, 0,7,
(X, t,p,7,0) = exp(awv) + exp(aw)’ (X tp,70) = exp(av) + exp(aw)’

and v = v(X,t,7), w = w(X,t, p). Then for any a > 0, p, and v such that Vt € {0, 1} and Vx for
which Pp(X = x) > 0, b(x,t,—p, —7, @) < b(x,t, p,7, —«), it follows that

EP [b(Xa 17 - P, 7, Oé) - b(Xa 07 P> —Oé)] S T S ]E'P [b(X7 17 P> —Oé) - b(Xa 07 —P, 7, Oé)],

exp(aw)

and
ah_{I;O ]Ep[b(x7 1, =P O[) - b(X7 0, P75 —Oé)] = ]EPU(Xa 1, Ps ’Y) - u(X7 0, P W)]?
lim EP [b(X7 17 P75 —Oé) - b(X7 07 =P = Oé)] = EP [U(X7 17 P 7) - Z(Xv 07 Ps ’Y)]

a—00

5.2 Efficient Estimators

Having established smooth, differentiable approximations of our bounds, we now derive their
corresponding EIFs, which form the basis for the bias-corrected estimators. We begin by defining
0(t, p,v,a) := Ep[b(X,t, p,7, a)]. Using this, we can express the bounds on 7 as

0(17 - _’7705) - e(oapv Y5 _a) § T S 9(17p777 —Oé) - 0(07 - —%Ol)a

where each bound is written as a difference between two instances of § with different parameter
settings. Therefore, once we establish an EIF for the general form 0(¢, p, v, @), we can obtain EIFs
for both the upper and lower bounds by leveraging the linearity of EIFs.

Following the approach of |Schuler and van der Laan| (2024), we derive the EIF for 0(¢, p, v, @),
denoted by ¢(Z;t, p,7y,a) with Z = (X, S,T,Y). The full, centered EIF is given below with each
term tagged by a superscript (-) for reference. For brevity, we omit the explicit arguments of v, w, A1,
and Ao, which match those of ¢.

®
SI(T = t)

AZ:t, p,y, ) = o (X.1)

(i)
Su(X,1,t) + (1 = S){ v+ how} {Y—u(XJ,t)}]

(iii)
S(1+9){M + A e (v — w)} H)((T)l) {Y—M(X,l,t)}‘|

1:(T)

* e(X, 0)

a—snh+ah&www»{ (Y — u(X, 0.0} (1 + per (X, 0))

(iv)
+ p,LL(X, Oﬂ t) (Hl—t(T) - el—t(Xa O)) }] - 9(t7 P75 a)(V)'

The five superscripted terms correspond to: (i) A plug-in term from the experimental and observational
samples. (ii) A correction term for g (X)u(X, 1, ), using experimental samples. (iii) A correction
term for go(X)A1v, using experimental samples. (iv) A correction term for go(X)Aow, using
observational samples. (v) A centering term, —6(t, p, 7, @), to ensure Ep[o(Z; ¢, p, v, @)] = 0.

We will use the EIF for the generic 6(¢, p,~, @) to obtain EIFs for the lower and upper bounds.
Denoting the lower bound estimand as 0.5 (p, v, «) = 6(1, —p, —7, «) — 0(0, p,7y, —a), and the
upper bound as 0y 5(p, v, &) = 0(1, p, v, —a) — 6(0, —p, —, «), their EIFs are given by

¢LB(Z;p777 CY) = ¢(Z7 17 2 _770[) - ¢(Z7 07;07% —O[),
duB(Z;p,y,0) = ¢(Z;1,p,7y, —a) — 9(Z;0, —p, =7, ).



We use these EIFs to construct bias-corrected estimators for the lower and upper bounds. Let g, é;,
and [ denote the estimated study selection, treatment propensity, and outcome regression functions
used to compute 01,5 and 0. These are commonly referred to as nuisance functions, as they
are not themselves of interest but are necessary for estimation. We collectively denote them by
7 = (gs, €, f1), where the hat symbol * indicates an estimated quantity. The bias-corrected estimator
allows these components to be estimated with flexible machine learning models, which helps protect
against model misspecification, while still enabling valid inference (Chernozhukov et al.,[2018). The
form of the lower bound estimator is

nbe ~ aplugin o 1 - . ~
055 (p, v, ;) = 075" (p, v, 0 ) + n > ors(Ziip, v, a59),
=1

where 82497 (p, v, o; 7)) is the plug-in estimate and ¢1,5(Zi; p, 7, o; 7)) is the corresponding centered
EIF evaluated at each sample Z; = (X, S;, T;,Y;). The estimator for the upper bound is defined
analogously using the corresponding plug-in and EIF components.

To ensure valid inference, we use K -fold cross-fitting and assume standard convergence rates on
nuisance functions, leading to asymptotic normality of the bias-corrected estimators (Kennedy, [2024;
Chernozhukov et al.l 2018} Rudolph et al.l 2025} Schuler and van der Laan 2024). We also enforce
that, in the observational arm, the estimated treatment propensities sum to one (¢ (X, 0)+¢é1(X,0) =
1). We present full implementation details in Algorithm [T] (Appendix [E) and formally state the
asymptotic properties of our estimators in Theorem [2]

Theorem 2 (Asymptotic Properties). Assume and bounded outcomes. Suppose we use
cross-fitting, for all s,t € {0, 1} the nuisance errors satisfy

(X, 5,8) — (X, s,8) |2, [[66(X, ) — (X, 8)]l2s [1G5(X) — g5(X)|J2 = 0,(n~/4),

where || - || is the Lo norm, and éy(X,0) + é1(X,0) = 1. Let « > 0 be fixed,
and take any (p, 7y) such that ¥t € {0,1} and Vx for which Pp(X = x) > 0,

A ~ d
b(x,t, —p, =7, ) < b(x,t,p,7, —a). Then, \/n (9%%(/)7%04;77) - 9LB(,0,%04)) = N(0,0%p)

and /1 (05 (p. 7, 0:7) 005 (p.7.0) ) 5 N(0.0%5), where 0% = Varlops(Z:p.7,0)]
and o5 = Varlpus(Z; p, 7, @)).

Theorem [2] leverages results on estimators derived from EIFs (Kennedyl, 2024} |(Chernozhukov et al.,
2018) and establishes that our estimators for the partial identification bounds are asymptotically
unbiased under standard regularity conditions. Variance can be estimated using the sample variance
of the estimated influence functions or via resampling methods such as the bootstrap, enabling valid
confidence interval construction. We note that while larger values of « yield closer approximations
to the non-smooth bounds, they may also lead to estimator instability in small samples due to the
increasingly steep gradients of the smoothed function near the max/min crossover point.

6 Experimental Results

In this section, we bring together the partial identification bounds developed in Section |4 the estima-
tors derived in Section@ and the breakdown frontier plots from|Masten and Poirier| (2020) introduced
in Section [2.2]to demonstrate how our sensitivity parameters, p and +, enable comprehensive sen-
sitivity analysis. We begin with synthetic data to illustrate key properties of our framework under
varying data generating processes. We then return to the Project STAR study from the Introduction,
examining the robustness of treatment effect estimates in the presence of unobserved confounding.
Relevant source code to implement our algorithm and replicate these results can be found in the
accompanying GitHub repositorym

6.1 Simulation Study

We consider a data generating process with an unobserved confounder, U, which simultaneously
affects study selection (S), treatment assignment among observational units (7'|,S = 0), and outcomes

"https://github.com/harsh-parikh/Partial-Identification-Data-Fusion
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(Y). We generate a baseline dataset with a positive treatment effect, as well as four variants where
we (a) increase the treatment effect, (b) decrease the treatment effect, (c) increase the amount of
unobserved confounding, and (d) decrease the amount of unobserved confounding. We plot the
breakdown frontiers for each of these datasets in Figure[2}

I Conclusive Tentative Inconclusive B [ncompatible
> 00 a) Larger 7 ) Smaller 7 c) Larger U ) Smaller U
3 X 20%
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c 8
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Figure 2: Breakdown frontier plots for various synthetic datasets. Figure titles indicate the relation
between the data used to generate that plot to the data used to generate the Base plot. Conclusive
and tentative regions are distinguished using 95% confidence intervals, computed from the sample
variance of the efficient influence function.

We observe that the conclusive region (dark green) expands as the magnitude of the treatment effect
increases. Conversely, weaker effects lead to a smaller conclusive region. We also observe that as the
amount of unobserved confounding shrinks, so does the incompatible region (black), while greater
confounding enlarges it. This behavior demonstrates how the breakdown frontier plot effectively
summarizes the strength of evidence for a conclusive treatment effect by incorporating both the effect
size and the observed discrepancies between observational and experimental data.

Specific details of the data generating process are provided in Appendix [F and the algorithm used to
construct the breakdown frontier plot is presented in Appendix|[E.2} The procedure involves a handful
of hyperparameters, including the minimum and maximum values of p and +, the confidence level,
and the « scale used in the Boltzmann operator. Guidance for selecting these hyperparameters is
provided in Appendix [E} Additional simulation results, examining different sample sizes, choices
of the o parameter, and cases where model assumptions are moderately violated, are reported in

Appendix

6.2 Project STAR

Project STAR was a large-scale study conducted in Tennessee to investigate the effect of class size on
student learning outcomes (Mosteller| [1993}; [Achilles et al., 2008)). The experimental cohort included
11,601 students randomly assigned to one of two groups: small classes (13—17 students) (I' = 0)
and regular classes (22-25 students) (7' = 1). An observational cohort of 1,780 students—assigned
to the same class size types but without randomization—was also available. Demographic data,
including gender, race, birth year, birth month, and free lunch eligibility, were collected for both
groups. Learning outcomes were measured using standardized test administered from kindergarten
through third grade. Our analysis focuses on test scores from third grade.

Figure[3a) presents a breakdown frontier analysis of the Project STAR ATE, varying the sensitivity
parameters p and . The incompatible region at small values of both parameters aligns with prior
findings on unmeasured confounding in the dataset (von Hippel and Wagner], 2018}, Justman| 2018},

Athey et al.}[2020; |Parikh et al.,2023). In contrast to existing estimation approaches, which require

assuming either [A6|or[A5|holds, our framework enables investigation of causal effects under simulta-
neous violations of both. The analysis show that as long as study exchangeability violations remain
below 5%, there is conclusive evidence of a positive ATE—even under substantial NUC violations.
Given that scores range from 486—745 (mean 618), this suggests that study selection bias would need
to shift outcomes by over 30 points on average to render the results inconclusive.

Beyond the population ATE, our framework supports subgroup comparisons. Figure [3[b) shows
breakdown frontier plots for students who enrolled in kindergarten before age six (left) and at six
or older (right). Consistent with simulation insights, the positive treatment effect is more robust
to assumption violations for the older subgroup, suggesting a larger benefit for older entrants.
Developmental Psychology describes significant changes in cognitive development around the typical



kindergarten entry age [1964), and education research has shown that students who begin
kindergarten at an older age tend to experience early learning advantages 2006). While
neither directly addresses class size, these findings provide context for why older students may be
better positioned to benefit from the learning environment of smaller classes—a hypothesis further
supported by our analysis. The older subgroup also exhibits a larger incompatible region, potentially
reflecting additional unmeasured confounding related to delayed school entry (ages six to eight) and
its influence on study participation, class assignment, and outcomes.

(a) (b)
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Figure 3: Breakdown frontier plots for Project STAR (a) population ATE and (b) subgroup-specific
CATE:s for students enrolled before age six (left) and at age six or older (right). Conclusive and
tentative regions are based on 95% confidence intervals computed via bootstrap resampling.

7 Conclusion

Causal inference methods for data fusion typically assume either study exchangeability or NUC. Our
work addresses settings where both assumptions may be violated, filling a gap in partial identification
and sensitivity analysis. We introduce interpretable sensitivity parameters— ~ for external validity
violations and p for unmeasured confounding—that enable transparent robustness assessments.
We derive treatment effect bounds under these parameters and develop double machine learning
estimators. We use breakdown frontier plots to visualize regions where treatment effects remain
conclusively positive or negative. Applications to synthetic data and Project STAR highlight our
method’s utility. In the Project STAR analysis, we find that the positive effect of small class sizes is
robust under substantial violation of both[A6]and[A3] Subgroup analysis further reveals heterogeneity
in this robustness, with stronger conclusions for students who enrolled at older ages.

Alternative Estimands. We focused on the CATE over the combined RCT and observational
population. This perspective aligns with the generalizability framework outlined by
(2023)), where the objective is to extend findings from an RCT to a larger cohort, rather than transport
them to an external population. That said, in many settings the observational population (S = 0) may
represent the target of interest. Our methodology is flexible with respect to the estimand, and can be
adapted to this case. This involves adjusting the marginal covariate distribution in the estimand from
P(X) to P(X | S = 0), with corresponding modifications to the breakdown frontier calculation.

Limitations & Future Work. Our framework currently does not accommodate multiple experimental
or observational datasets, continuous treatments, or dynamic treatment regimes. Extending our
methodology to these settings is an important direction for future research. In addition, sharper
bounds may be attainable by incorporating known outcome support and we view this as a promising
direction for future research. While the Boltzmann smoothing approach provides valid and practical
approximations to the sharp bounds, with Lemma 2] guaranteeing convergence as ov — 00, a formal
characterization of the approximation error for finite & > 0, similar to analyses in (2025)
and Ben-Michael| (2025)), would further strengthen theoretical results.

Our procedure for detecting incompatible (p, ) pairs relies on a resampling test that does not account
for uncertainty in nuisance function estimation (Appendix [D). Improving this test is a direction for
future work. Finally, our framework supports sensitivity analysis across (p, ) values but does not
prescribe how to select them. Although our use of relative measures helps, domain expertise is needed
to interpret plausible violation levels. Appendix [E.2]discusses guidance and considerations here.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions are clearly outlined at the end of our Introduction. We
introduce interpretable sensitivity parameters to enable partial identification of treatment
effects in Section[d] We proceed to develop a double machine learning estimator for the
bounds in Section[5] We introduce breakdown frontier plots in Section[2.2]and operationalize
them for our framework in Section

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a limitations and future work section in the Conclusion (Section 7).
We reference the potential issue with small sample sizes and instability at the end of Section[5]
We reference limitations with the test we use to determine incompatible sensitivity parameter
values in Remark [T] and discuss this concept in detail in Appendix D. We also discuss
considerations when it comes to selecting parameters for constructing breakdown frontier
plots in Appendix E.2.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each lemma and theorem includes the necessary assumptions and the full
proofs are all included in Appendix B. The derivation of the efficient influence function is
in Appendix C

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All algorithms and experimental details are included in the Appendix. In
particular, Appendix E has algorithms for our estimators and constructing breakdown frontier
plots values. Appendix F has details on the data generation process for the simulated data.
Appendix H has implementation details for Section [f]

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:  Link to GitHub repo: |https://github.com/harsh-parikh/
Partial-Identification-Data-Fusion.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Included in Appendix H.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: While we do not use traditional error bars, we quantify uncertainty through
confidence regions in the breakdown frontier plots. We clearly explain how variance of
our estimators can be estimated in Section [5|and Appendix H includes specific details on
variance estimation for the breakdown frontier plots in Section [6}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Information on compute resources used is included in Appendix H.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research does not involve human subjects or confidential data. As a
sensitivity analysis framework, our method poses minimal risk of societal harm. We have
taken care to ensure that our results are clear, reproducible and in full alignment with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: We discuss the potential positive societal impacts of encouraging greater
exploration of the robustness of causal conclusions to standard assumptions. However,
we do not explicitly discuss potential negative societal impacts. As a methodological
contribution in partial identification and sensitivity analysis, we view the risk of harm to be
minimal.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As a methodological contribution in partial identification and sensitivity
analysis, our paper does not pose such a risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The Project STAR study and dataset are properly cited (Mosteller, [1995}
Achilles et al., 2008)) and no license is needed to use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release code implementing our estimation procedure and experiments.
We include experimentation details in Appendix H and provide documentation of the code
repository.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Data Fusion for Partial Identification of
Causal Effects: Appendix

A Extended Literature Review on Data Fusion for Causal Inference

In data fusion for causal inference, it is helpful to organize prior work by the information each source
contributes, the assumptions that enable transport across sources, and the inferential target (point
identification, partial identification, or decision-making under uncertainty). For broad syntheses on
combining randomized and observational data, external validity, efficiency/heterogeneity gains, and
practical guidance, see|Degtiar and Rose|(2023)); (Colnet et al.|(2024b)); Brantner et al.|(2023)); Lin
et al.[(2024).

In certain scenarios randomized trial (RCT) data provide treatment 7" and outcome Y, while the
real-world data (RWD) only has pre-treatment covariates X . Typically, the task, here, is to extend
internally valid trial findings to a target population whose X -distribution may differ. Two closely
related targets are generalization (trial sample drawn from the target) and transportation (trial-eligible
differs from the target) (Degtiar and Rosel |2023)). Estimators typically fall into three families:
reweighting/matching—most often via inverse probability of sampling weighting (IPSW) built from
inclusion propensities (Cole and Stuart, |2010; [Stuart et al., 2011} Buchanan et al., 2018}, [Colnet;
et al.| 2024a)); outcome-regression plug-in estimators fit in the trial and marginalized over the target
X-distribution (Kern et al., 2016; Lesko et al.,[2017); and doubly-robust hybrids (augmented [IPSW)
that achieve consistency if either the inclusion model or the outcome model is correct and are efficient
when both are well-specified (Glynn and Quinn, [2010; |Dahabreh et al., 2020; |Colnet et al., 2024b).
Identification can also be characterized graphically via selection diagrams and transport formulas
(Pearl and Bareinboim, |2014; |Bareinboim and Pearl, [2016). Practical diagnostics focus on limited
support/overlap—when the target X -region is not covered by the trial (Huang et al., [2024)—and on
sensitivity of transported estimates to unmeasured effect modifiers that differ across settings (Huang,
2024; Nie et al.,[2021).

Additionally, data fusion literature considers the case where both the RCT and the RWD contain T’
and Y. This unlocks efficiency gains and learning of heterogeneity, but raises the risk of unmeasured
confounding in the observational cohort. One line of work combines separate estimators—e.g.,
shrinkage or entropy approaches that blend high-variance unbiased trial estimators with low-variance
but potentially biased observational estimators (Rosenman et al.| 2023} |Oberst et al., [2022; |Chen
et all |2021). A complementary line bias-corrects observational learners using experimental in-
formation—examples include variants that learn CATEs in RWD and estimate/adjust confounding
bias using RCT data (Kallus et al., 2018} |Yang et al., 2024} Hatt et al.,|2022). A third line trains
integrative estimators jointly on both sources, using experimental data for identification and observa-
tional data for efficiency, e.g., the Adaptive-TMLE (van der Laan et al.|[2024), integrative R-learner
(Wu and Yang} 2022) and power-likelihood methods that temper the observational contribution via a
data-adaptive learning rate (Lin et al., 2025). Several of these approaches also contribute tests that
decide when and how to borrow from RWD (Yang et al., [2023} |Parikh et al., 2023).

Beyond this setup, another line integrates mismatched outcomes or time horizons. When long-term
outcomes are unavailable in the RCT but short-term surrogates exist (or vice versa), one can combine
experimental and observational information to identify or estimate effects on the long-term endpoint
under additional structural assumptions (Athey et al.l2020; \Ghassami et al., 2022). Relatedly, the
surrogate-index literature develops conditions and estimators that use multiple short-term proxies to
stand in for a long-term causal target (Athey et al.|[2019} [Kallus and Mao, |2020). A recent cautionary
note shows that integrating studies with disparate outcome measures can help only under strong cross-
study measurement assumptions and may otherwise incur bias; articulating and stress-testing these
assumptions is crucial (Parikh et al.,[2025). Finally, when the aim is to predict heterogeneous effects
for a new target setting—rather than to point-identify them—multi-trial integration with uncertainty-
conscious prediction intervals helps translate trial-learned heterogeneity to new populations (Brantner
et al.l [2025)).

A complementary thread tackles proximal/negative-control identification, in which measured proxies
enable recovery of causal effects despite unmeasured confounding. Although conceptually distinct
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from transportability, proximal methods can be paired with data fusion when proxy variables are
available in at least one source (Miao et al.| 2018 [Tchetgen Tchetgen et al., 2020). These ideas
intersect with “validation-study” designs that combine a large main dataset lacking some confounders
with a smaller validation set (Yang et al.| 2024).

Spanning all of these settings is a growing literature on sensitivity analysis and partial identification.
Historically, sensitivity analysis has focused on evaluating the robustness of causal conclusions in
purely observational studies, for example to unmeasured confounding, while more recent work extends
these ideas to settings with multiple datasets or other complex observational designs (Cornfield et al.|
1959; Rosenbaum and Rubin| (1983} |[Liu et al., 2013} Ding and VanderWeelel [2016; |Bonvini and
Kennedyl, 2022} Schweisthal et al.,[2024). In trial-to-target settings without 7', Y in RWD, most
sensitivity frameworks quantify departures from conditional exchangeability between study and
target (Nguyen et al., 2017} 2018};|Dahabreh et al.| 2023} |Colnet et al.,[2022; |Nie et al.,2021; [Huang,
2024)). For fusion with 7', Y observed in the RWD, sensitivity analysis must simultaneously confront
no-unmeasured-confounding (NUC) violations in the observational sample and non-exchangeability
across studies. Much of the efficiency-focused work implicitly assumes exchangeability and models
violations of NUC (Lin et al., 2024, 2025} Triantafillou et al.l 2023} |Chen et al., {2021} |Oberst et al.,
2022; Kallus et al., 2018} Yang et al.| [2024} Rosenman et al., 2023} Yang et al., [2023)), with recent
contributions proposing tests for whether borrowing from RWD is safe (Yang et al.,|2023; |Parikh et al.,
2023). Two-parameter sensitivity frameworks that jointly benchmark internal and external validity
are emerging (Yu et al.| 2024b). In parallel, structural approaches provide partial counterfactual
identification from arbitrary mixtures of observational and experimental data under qualitative model
knowledge (Zhang et al., 2022). Finally, decision-making under partial identifiability—e.g., safe
policy learning that maximizes guaranteed performance across feasible models—offers a principled
way to act with bounds rather than point estimates (Joshi et al., [2024b).

Our contribution sits here: when both NUC and study exchangeability may fail simultaneously,
we introduce interpretable sensitivity parameters, sharp bounds, doubly-robust estimators for those
bounds, and breakdown-frontier analyses that characterize how conclusions evolve as the two forms
of violation increase.

B Theoretical Results

B.1 Section[d Proofs: Lemma[I] & Theorem[I]

Lemma 1 (Conditional Potential Outcome Bounds). Suppose hold. Then for any t € {0, 1}

and given x, if v(x,t,—y) < w(x,t,p) and w(x,t,—p) < v(x,t,7), the conditional potential
outcome satisfies

Ep[Y(t) | X =

(%1, p,7) = gr(x)p(x

u(x, ta P ) =0 (X)

x] € [l(x,t,p,7),u(x,t,p,7)], where
,1 )+90( )max{w(x,t, 7p),U(X,t, 77)}7
(X )+90( )min{w(x,t,p),v(x,t,'y)}.

Proof. Start by rewriting
Ep[Y(t) | X = x] = Ep[Y(t) | X =x, 5 = 1]Pp(S = 1|X = x)
+Ep[Y(#) | X=x,5=0](1 -Pp(S=1X=x))

using the law of iterated expectation over study selection. By the internal calidity of the RCT
treatment randomization (Assumption [A4), we have that

EplY(t) | X=x,S=1]=Ep[Y(?) | X=x,5=1,T=¢t]|=Ep]Y | X=x%x,5=1,T =1].
Plugging this in, we get
Ep[Y(t) | X=x]=E[Y | X=x,5=1,T =t]Pp(S = 1|X =x)
+Ep[Y(t) | X=x,5=0](1-Pp(S =1X=x))
= p(x, L)g1(x) + Ep[Y (1) | X =x,5 = 0](1 — g1(x)),

where p(x,1,t) and g1 (x) are the shorthand notation for these identifiable quantities. Our attention
now turns to bounding Ep[Y'(¢) | X = x,.S = 0]. Recall that +y is defined as
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7 = sup

x,t

Eﬂﬂmx—xS—ﬂEﬂﬂmX—Xﬁ—m‘
Ep[Y ()X =x,5 = 1] '

We again use Assumption [A4]to replace Ep[Y (¢)|X = x,S = 1] with its identifiable shorthand
notation /(x, 1,¢). Then, for any x and ¢ € {0, 1} we have that

u(x,1,t) —Ep[Y(t) | X =x, 5 = 0]

2 wix,1,t
’ (x,1,2) ’
cp(x,1,t) > |pu(x,1,t) —Ep[Y(t) | X =x,5 = 0]

where we use the fact that the outcome space is positive to multiply each side by p(x, 1,¢). We can
bound the quantity inside the absolute value using the positive and negative versions of the left-hand
side, and then rearrange terms to establish identifiable lower and upper bounds on Ep[Y'(t) | X =
x, S = 0], as shown below:

(x,1,t) —Ep[Y(¥) | X =x%x,5=0] < v-pu(x,1,t)

=y ux,1,t) < p
Ep[Y(t) [ X =x,5=0] < (14+7)u(x,1,t)

(1 =)u(x,1,1)
We then define v(x, ¢ fy) (1 4+ v)u(x,1,t) and have that
[ ()|X*XS*O] [ (X,t,*’y),’l)(x,t,’)/)].

<
<

Now, we turn our objective to using p to bound E5 [V (¢)|X = x, .S = 0]. Recall that p is defined as

o [P OIX =%, = 0.T =] —Ep[Y ()X =x, 5 = 0.7 =1 —1]
=5 Ep[Y()X =x,5S=0,T =]

x,t
u(x,0,t) —Ep[Y (1) X =x,8 = 0,T =1 — ]
= sup 5
Xt /J(X, 0, t)

where 1i(x, 0, t) is the shorthand notation for the identifiable quantity Ep[Y (¢)|X = x, S = 0,T = t].
Then, for any x and ¢ € {0, 1}, using the fact that the outcome space is positive, we have that

>‘ wu(x,0,t) —Ep[Y (t)X:x,S:O,T:l—t]‘
- p(x,0,1)
w(x,0,t) > |u(x,0,t) —Ep[Y(#)|X =x,5=0,T =1—1]].

Just as before, we bound the quantity inside the absolute value using the positive and negative
versions of the left-hand side and rearrange terms to establish identifiable lower and upper bounds on
EpY()X=x%x,5=0T=1-1].

—p~,u(x,0,t) < N’(X,Ovt) _EP[Y(t)|X:X7S: 0,T=1 _t] < ,O'M(X,O,t)
(1— p)ulx,0,1) < Ep[Y (X = x,8 = 0,7 =1 — ] < (1+ p)u(x, 0,1).

From here, we note that the bound established from p is for the incorrect quantity. Namely, we have
thus-far used p to bound Ep[Y (¢)|X = x,5 = 0,7 =1 — ], not Ep[Y(¢)|X = x,5 = 0]. To
reconcile this, first observe that we can use the iterated expectation over treatment selection in the
RWD to decompose Ep[Y (¢)|X = x,.5 = 0] as
EpY()[X=x,5=0=Ep[Y(¥) | X=x%x,5=0,T=¢|P(T=t|X=x,5=0)
+Ep[Y(#) | X=%x,5=0,T=1-t]P(T=1-t|X=x%x,5=0)
=EplY | X=x%x,5=0,T=t]P(T=t]|X=x,5=0)
+Ep[Y(#) | X=%,5=0,T=1-t]P(T=1-t|X=x%x,5=0)
= u(x,0,t)e:(x,0) + Ep[Y(t) | X =x%x,5=0,T =1 —t](1 — e:(x,0)),
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where e;(x, 0) are the shorthand notation for the propensity score in the RWD. Then, we can simply
plug in our above bound for Ep[Y () | X =x,5 = 0,7 = 1 —t]tobound Ep[Y (¢)|X = x, S = 0]:

,U/(X7 0, t)et(xa 0) + (1 - [))M(X7 0, t)(l - et(xa O))
<Ep[Y(t) | X =x,8 = 0]
< p(x,0,8)er(x,0) + (1 + p)p(x, 0, ) (1 — e4(x, 0)).

We then define w(x,t, p) = (1 + p)u(x,0,t)(1 — er(x,0)) and have that
Ep[Y (1) | X = x,8 = 0] € [w(x,t, ~p), w(x,t, p)].

Now, we have used our sensitivity parameters « and p to construct two intervals around Ep[Y (¢) |
X = x,S = 0]. Namely,
Ep[Y (1) | X =x,5 = 0] € [v(x, £, =), v(x,1,7)], and
Ep[Y(t) | X =x,5 =0] € [w(x,t,—p), w(x,t,p)].

We can use these two separate interval to construct a tightest interval by simply taking the maximum
of the two lower bounds and the minimum of the two upper bounds. In particular, we have that

Ep[Y(t) | X =x,5 = 0] € max{v(x,t,—7), w(x,t, —p)}, min{v(x, t,7v), w(x,t,p)}]

From here, we note that this interval is valid if and only if max{v(x,t, =), w(x,t,—p)} <
min{v(x,t,7v),w(x,t,p)}. Since v(x,t,—7y) < v(x,t,7) and w(x,t, —p) < w(x,t, p) (because
the outcome space is strictly positive), max{v(x, t, —v), w(x,t,—p)} < min{v(x,t,v), w(x,t,p)}
is equivalent to the condition in the lemma that v(x, t, —v) < w(x,t, p) and w(x,t, —p) < v(x,t,7).

We can then use these bounds on Ep[Y'(¢) | X = x, S = 0] to establish that Ep[Y'(¢) | X = x] €
[L(x,t, p,7), u(x,1, p,7)] where

l(X, i, p, ’Y) =0 (X)M(Xv 1, t) + gO(X) max {U)(X, t, _p)7 U(Xv t, _7)} )

u(x,t, p,y) = g1(x)u(x, 1,1) + go(x) min {w(x, ¢, p), v(x,£,7)} .

O

Theorem 1 (Treatment Effect Bounds). Suppose hold and that for each x and t € {0, 1},
v(x,t,—y) < w(x,t,p) and w(x,t,—p) < v(x,t,v). Then, the conditional average treatment
eﬁéCt satisﬁes: Z(X7 17 P ’Y) - U(Xv Oa P ’7) < T(X) < U(X7 17 P ’Y) - Z(Xa 07 P ’Y)
Further; if this holds for all x such that Pp(X = x) > 0, then the average treatment effect satisfies:

Ep (X, 1,p,7) —u(X,0,p,7)] <7 < Ep[u(X, 1, p,7) — (X0, p,7)].

Proof. We first provide a proof for the bound on the CATE. Start by noting that
7(x) =Ep[Y(1) =Y (0) | X =x] = Ep[Y(1) | X = x] = Ep[Y(0) | X = x]

by the linearity of expectation. Given that for both ¢ = 0 and ¢ = 1, v(x,t, —y) < w(x,t, p) and
w(x,t,—p) < v(x,t,7), we have from Lemma [1] that

Ep[Y(1) | X =x] € [I(x,1,p,7),u(x,1,p,7)], and
Ep[Y(0) | X =x] € [I(x,0,p,7),u(x,0,p,7)].
From here, we note that the maximum possible value of 7(x) is the difference between the maximum
value of Ep[Y (1) | X = x] (i.e. u(x,1, p,7)) and the minimum value of Ep[Y (0) | X = x] (i.e.
l(x,0,p,7)). And coversely, the minimum possible value of 7(x) is the difference between the

minimum value of Ep[Y'(1) | X = x] (i.e. I(x, 1, p,y)) and the maximum value of Ep[Y(0) | X =
x] (i.e. u(x,0, p,7)). Summarizing, we can bound the conditional average treatment effect at x as

Z(X, 17p57) - U(X707P7 ’Y) < T(X) < u(x, lapa’y) - l(xvoapa ’7)
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We now turn to proving the bound on the ATE. We start by using the law of iterated expectation to
write

T=Ep[Y(1) - Y(0)]

= /Ep[yu) - Y (0)[X = x|dPx(x)

— [ rodex(x)

where Px is the probability measure induced by X over P.

Then, for any x where Px (x) > 0, because for both ¢t = 0 and t = 1, v(x,t, —y) < w(x,t, p) and
w(x,t,—p) < v(x,t, ), we have from the above result that

Z(X, 17p57) - U(X707P7 ’Y) < T(X) < U(X, lapa’}/) - l(xvoapa ’7)
Thus,

/(Z(X, 1apa7) - U(X,O,p, 7)) dPX(X) <7< /(U(X, 17 Ps ’Y) - l(X,O,p, 7)) dPX(X)'

Since, for t € {0,1}, I(x,t,p,7) and u(x,t, p,v) depend on x, we can express the bounds in
expectation notation as

Ep[l(x, 1707 7) - U(X7Oap7 7)] S T S ]EP[U(Xv va 7) - Z(Xa 07p57)]

B.2 Section[5]Proofs: Lemma[2] & Theorem

Lemma 2 (Smooth Bounds). Consider a setting where hold but[A3|and|A6may not. Define
b(X7 ta P> Oé) =01 (X):u(Xa 17 t) + gO(X) {Al(X7 ta P> Oé)U + /\2(X7 ta P> Oé)U)} 5 where
exp(av) exp(aw)
M(X,t =
1(Xtp,7,0) exp(av) + exp(aw)’ exp(awv) + exp(aw)’

andv =v(X,t,7), w = w(X,t, p). Then for any o > 0, p, and 7y such that ¥t € {0, 1} and Vx for
which Pp(X =x) > 0, b(x,t, —p, —y, &) < b(x,t, p, 7y, —), it follows that

E'P [b(Xa 17 =P a) - b(Xﬂ 07 P *O‘)] <7< EP [b(Xv 17 P57 70‘) - b(Xa 07 =P OL)],

and

AQ(ZXT t’ p7 FY’ Oé) =

lim E'P [b(X7 1, =P a) - b(X7 0, P75 —Oé)] =Ep [Z(Xa 1, Ps 7) - U(Xv 0, P ’Y)];

a—00

lim ]Ep[b(X7 1ap7’77 —Oé) - b(X707 =P, Oé)] = ]EP[’U/(X7 17pa 7) - Z(X»07P> ’Y)]

a—00

Proof. As we did using the hard max and min functions in Lemma [I] we can use the weighted
Boltzmann operator quantities to bound

]EP [Y<t) | X = X, S = 0] € [)\1 (X7 t,—=p, =7, O[) U(Xa L, P) + )\2<Xa b, =0, =7, Oé) w(Xa L, 7)7
>\1 (X, ta P75 70‘) U(Xa ta p) + )‘2 (Xv t» P57, *a) w(x, tv PY) ] .

so long as

)\1 (X7 i, =Py Ol) ’U(X7 t, P) + )\Q(X, t, =P, Oé) w(xv t, 7) < )‘l(Xv t, P75 —0[) ’U(X, t, P)

+ )\2(X7 ta P75 —OZ) ’U}(X, t7 ’7)
Because x and ¢ are constant in this inequality, this is equivalent to the condition that
b(X7 ta - P = Ot) S b(X7 ta P57 70‘)'

Then, under these conditions we have that

Ep [Y(t> ‘ X = X] € [b(X, t,—=p, =7, O‘)a b(X7 L, P s —Oz)].
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Then, we can proceed as we did in the proof for Theorem |1 to bound 7(x), and subsequently,
7. Namely, we note that we can bound 7(x) between (i) the difference of the lower bound on
Ep[Y (1) | X = x] and the upper bound on Ep[Y(0) | X = x] and (ii) the difference between the
upper bound on Ep[Y (1) | X = x] and the lower bound on E»[Y(0) | X = x]. Concretely, we have
that

b(X7 13 =P, = 0[) - b(X7 Oa Py —O[) < T(X) < b(X, ]-7 P57 —0[) - b(X7 03 =P, = a)'

Then, since for any x where Px (x) > O and ¢t € {0,1}, b(x,t,—p, —y, @) < b(x,t, p,v, —a), we
can take the expectation over the upper and lower 7(X) bounds as we did in the proof for Theorem
to conclude that

Ep[b(X,1,—p, =7, @) —=b(X,0,p,7, )] < 7 < Ep[b(X, 1, p,7, —a) = b(X,0, —p, =7, )]
We now prove the convergence of these smooth bounds to their sharp counterparts as @ — oo. By
the properties of the Boltzmann operator, we have that for any p, v, x, and ¢t € {0, 1}

A (x,t, p, 7, @)v(X, T, p) + Aa (X, E, p, v, @)w(x, t,v) = max{v(x,t, p), w(x,t,7)} as a = oo,

AL(x,t, p, 7y, @)v(X,t, p) + Aa(X, T, p, 7, @)w(x, t,v) = min{v(x,t, p), w(x,t,v)} as a = —oo.
Then, note that

g90(X) min{v(x,t, p), w(x,t,7)} < go(X)[M (X, p,7, @) v(X,t, p)
+ X (X, t, p, 7, ) w(X, £,7)]
< go(X) max{v(x, t, p), w(x,t,7v)}
and
—00 < Elgo(X) min{v(x, 1, p), w(x,t,7)}] < Elgo(X) max{uv(x,t, p), w(x,t,7)}] < o0

because the outcome space is bounded. We then have by linearity of expectation and the dominated
convergence theorem that

lim ]E’P [b(X7 ]-7 —pP, —7, a) - b(X7 07 P> —Oé)]

= O}LH;OEP [gl X)u(X,1,1) + gO(X){Al(X7 L —p, =y, a)v(X,1,—p)
+ )\2(X7 17 =P = a) ’UJ(X, la _'7)}
- gl(X).u(Xa 17 O) - gO(X){)‘l(X7 07 P57 70‘) ’U(X, 07 p)
+ X2(X,0,p,7, —a) w(X,0, 'y)}]
= Ep [gl (X),U,(X, L, 1)] +Ep [alggo gO(X){Al(Xv L=p, =, a) 'U(Xv 1, —P)
+ >\2(X7 ]-7 =P =7 a) w(Xv 1a _’7)}]
—Ep [gl (X)N(X’ L, 0)] —Ep [ahj%o gO(X){)‘l(Xv 0,07, _a) U<X7 0, p)
+ (X, 0, p,7, —a) w(X, 0, 7)}]
= E’P [gl (X)N(X’ 17 1)] + E’P [90 (X) max{v(x, 17 _p)’ w(X7 17 _’Y)}]
— Ep[91(X)u(X, 1,0)] = Ep [go(X) min{u(x, 0, p), w(x,0,7)}]
= Ep[I(X,1,p.7)] — Ep [u(X,0,p,7)]
= Ep [l(Xa L p, '7) - U(X, 0,p, ’7)} :

The same steps can be done to show that

ozh—>Héo E'P[b(xv 17/)7% —O{) - b(X707 =P Oé)] = EP[U/(X7 1ap7 'Y) - Z(X707p7 ’7)]

O

Theorem 2 (Asymptotic Properties). Assume and bounded outcomes. Suppose we use
cross-fitting, for all s, t € {0, 1} the nuisance errors satisfy

1A(X,5,8) = p(X, 5,012, [lee(Xs8) = (X, s)llz, 195(X) = g5 (X) 2 = 0p(n~ 1),
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where || - || is the Lo norm, and éy(X,0) + é1(X,0) = 1. Let « > 0 be fixed,
and take any (p, 7y) such that ¥t € {0,1} and Vx for which Pp(X = x) > 0,

Abe A d
b(X, ta —Ps = a) < b(X7 t7 Py _a)' Then’ \/ﬁ (Q%LB(pv s QG 77) - QLB(pa s a)) - N(O7 U%B)

and i (05 (0.7 ) by (p.7.0) ) % N(0.0Fp), where 0} = Varlors(Z:p.7.a)
and o5 = Varlpus(Z; p, 7, @)).

Proof. We prove the result for é% z and note that the case of 91[’] 5 1s analogous. We start by writing

the standard decomposition é%‘)g — 0 =Pnédrp+ (Pn— P)(QASLB — ¢rp) + Rrp where P is the
true distribution and P, is the empirical distribution (Schuler and van der Laan, 2024). By the central

limit theorem, \/n (Pr¢LB) LN (0,02 5). Therefore, what is left to show is that the remaining
two terms are o, (n~1/2).

The second term, (P,, — P) (g{) LB —dLB), is referred to as the empirical process term. Previous results

have shown that this term is always op(n_l/ 2) when K-fold cross-fitting is used (Chernozhukov
et al., 2018} |Schuler and van der Laan| [2024).

Lastly, Ry is referred to as the second-order remainder. This term can be decomposed as Ry 5 (7)) =

é’zlggi" —0rg+P [(/A)LB} for nuisance estimates 7} = (s, €, ft). In Appendix [B.2.1| we decompose

Ry 5(7) and show that under bounded outcomes, study positivity (Assumption |A3)), treatment
positivity (Assumption [A2)), and the condition éy(X,0) = 1 — é(X,0), this term is a sum of
products/squares of nuisance errors. Then using the assumption that for all s,¢ € {0, 1} the nuisance
errors satisfy

1A(X,5,8) = p(X, 5,012, [lee(X,8) = (X, s)llz, 195(X) = g5 (X) |2 = 0p(n~1*),

we obtain Ry p (7)) = o0,(n~/?) O

B.2.1 Decomposition of the second-order remainder term

Similar to the proof for Theorem[2] we focus here on the decomposition of the second-order remainder
term for 6249'™ The steps are analogous for Hzl}lgg ",

Recall that the second-order remainder term is of the form

075" (0,7, ) — OB(p, v, @) + Ep [éLB(Z; P> a;ﬁ)} :
We can expand this as
{éplugin(:[’ —P, —7, O[) - éplugin(O’ P> _a)}
- {0(17 -0, =7, Oé) - 0(07 P57 705)}
+Ep {45(2; 1, —p, =y, a59) — $(Z30,p, 7, *a;ﬁ)}
and then group the treatment arm specify terms, with the ¢ = 1 terms being
éplugin(l’ -0 =7 OZ) - 9(17 =P, Oé) + ]EP |:¢A)(Za 17 —pP, =7, &5 ’f)):|

and ¢t = 0 terms being

_éplugin(o, P> —Oé) + 9(07 P> —Oé) - EP |:<E(Z7 07 P, Q4 ﬁ):| .

Note that if we can show each group of terms are o, (n~'/2), then the sum of them is also o0, (n~/2).
The derivation of the second-order remainder term for both treatment arms is similar, so we show the
form for ¢ = 1 and note that similar steps can be taken for ¢ = 0. Towards this, we plug in the full
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form of qAS(Z; L, —p, =, ;1),
gPrugin (1, —p, —v, ) — (1, —p, —, @)
+E{

SAX,1,1) + (1= $){A(X)5(X) + x2<x>w<x>}] ey A 1)}]

(S D0) + A (R0 — 00 £ 1R (X1 1)}]
I,(T)

+

(1 $)(3a(X) + k1 (X)(X)(0(X) ~ 50 5110 (1 = 4K, 0, 1HL = (X, 0)

—pP /:L(Xa 0, 1)(]IO(T) - éO(X7 0))}] - éplugin(]_’ =P = a)} :

We dropped the P subscript from the expectation notation and omit the ¢, p, 7y, and o parameter values
from v, w, A1, A2 (given they are constant throughout) for simplicity going forward. We cancel out

éplugi"(l, —p, —7, «) and write the full form of 8(1, —p, —v, a):

“

+

(X, 1,1) + (1 = S{AUX)3(X) + Ae(X)(X)}

S = N{A(X) + A (X)Ae(X) (5(X) — ﬂ?(X))}i

1 (1= $){3a(X) + ady(X)ha(X) (@(X) — @(X))}{

61 (X 0)

7p/L(X01 HO 760X0 }‘|}
E{g1(X)u(X, 1,1) + go(X) [ (X)v(X) + A

Let’s group these terms into four groups for easier analysis.

(X)w(X)]}

(6]
E{[S (X,1,1) + :](I;é )){Y— (X,l,l)}—gl(X)u(X,l,l)]

(i)
+] (1= S){A(X)0(X) + A2 (X)d(X)} — go(X) M (X)o(X) + A2(X)w(X)]]

(iii)
+[S0= D) + k(KR — 00 5 ERTCAY = (X1, 1)}]
I (T)

+ (1= 9 {Aa(X) + i (X) Ao (X) (0(X) — @(X))}{ {Y = (X, 0,1)}(1 = péo(X, 0))

el(X )
(iv)
—p (X, 0,1)(Io(T) — éo(X»O))H }

For readability, going forward we suppress explicit arguments from the nuisance functions when

analyzing each block. In particular, we let g, = g5(X), e§5> =e:(X,8), us = u(X, s,1), v = v(X),
w = w(X), and A, = A\,(X) (and similarly for all * equivalents). Starting with (i), note that by the
law of iterated expectation we have that

E{Sp1} =E{E[S|X] i1} =E{g1/u}
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and

E { SH}(E)T) {v - ﬂl}} =
€1

E{A}DE[S|X]E[L(T) | X, S=1](E[Y | X,5=1,T =1] ﬂ1)} =
€1

ge
E — (1 — fin)
€1

Therefore, we have that the second-order remainder of this portion can be expressed as

é

(1)
. _gqie R g . R
E{Gi)} =E {glm + 1(711){#1 — i1} — gwl} =E {A(i) (6?) - egl)) (11 — Ml)}
1 €1

Turning our attention term (ii), we continue to use the law of iterated expectation, but show less steps
for brevity’s sake. We can rewrite (ii) as:

E {go(h - h)}
where h = A\v + Aow and h = 5\10 + 5\21?). From here, define § = w — v, which allows us to

write h = v + m(d) where m(d) = \pd = m. Further, define Av = 0 — v, Aw = @ — w,
and A6 = § — 0 = Aw — Av. Then, we can rewrite h — h = (6 — v) + (m(8) — m(8)) =
Av +m(6 + Ad) —m(9).

Using Taylor’s theorem with remainder, for some ¢ € (§,d + AJ),

m(8+ AS) — m(8) = m’ (5) A8 + %m”(()(Aé)Q
where m/(8) = Aa + @A A28 and m”(¢) = 2ar1Aa + a? A Aa(1 — 2X2)(. Therefore, we can write
h—h=Av+m(6)AS + %m”(g)(mf
=M1+ adde(v—w)] Av+ [A2 + adi Az (w — v)] Aw + %m"(C)(A(S)Q
= BiAv + ByAw + %m”(()(AzS)Q

where By = A1 + aXAa(v — w) and By = Ag + A A2 (w — v). The expectation of (ii) is then

E {(iD)} = E {go (B1Av + BaAw)} + %]E Lgom"(Q) (Aw — Aw)?)

The first expectation above contains two linear components, E {goB; Av} and E {gg B2 Aw}, that
we will subsequently show cancel out from components of terms (iii) and (iv), leaving us with

E ()} = 5E {gom"(O) (dw -~ 20)*)

Focusing now on (iii), we apply the law of iterated expectation to rewrite this portion as

A (D)
~ ~ ~ R " e "
E {91(1 = P){A + @A Ao (0 — 0) %%1) {pr = Nl}} =
e

s (1) . )
A e R . e

R ] E R S 0t
g1 [ a1 &
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where the last equality comes from the fact that (1 — v)[u1 — fi1] = —Awv. We can rewrite the last
three components of this term as

go er”) 9o et et
glg*l OB <91g1 - 90) éTl) +90é(T)

Plugging this in, we get
R 7 6(1) ) e R
EJ{ —goB1Av — ( - 1) 0 — go % — 1| BiAv ; =
9 € €
. 5 6(1) (1) )
E —goBlA’U — 3o (Bl - Bl) Av — -~ — 1 BlAU -1 BlA’U
a1 A(l) (1)
The first term then cancels with E { 9031 Av} from term (ii), leaving us with
) 6(1) ey )
E{(iii)} = —E{ go (Bl ) Aot (8 1) A BiAvtgo| D —1) Biaw
a1 (1) égl)

Now, applying the law of iterated expectation to term (iv), we get

E{go {5\2 +a5\15\2(w—ﬁ)} ZEZ; [0 — fio] [1 —pé((JO)} — piio [ 0 (0>} ] } =
1

E{%B? [A (1o — fio] + PﬂergO)} }

where A = [ pééo)] (0) and Ae Ags) egs).

With the objective of canceling out E {goBsAw} from term (ii), define k = 6(10) +(1- p)eéo)

and & = é§°) + (1 - p)é é ) and note that w = fwo and W = Rjig. Then, —Aw = kug — kflg =

K(po — fio) — fio(Rk — k) = K(po — fig) — uo(Ael 04 (1- )Ae(()o)). From here, add and subtract
K(po — flo) to get

E{(iv)} =E {9032 {H(ﬂo = fo) + (A = £)(po — fio) + PﬂoAB(()O)} }
and then replace k(uo — fig) with —Aw + ﬂo(Aeg(’) +(1- p)Ae(()O)) to get
E{@)} = E{g0Bs [~Aw + fig(Ae” + (1= p)Ael’) + (A = 1) (o — fio) + pirorel’ | }
= E{ goB2Aw + go By [Mo(Aego) + Aef”) + (A — #) (o — ﬂo)} }
=K {—goBzﬁw — go(B2 — B2)Aw + goBo {Mo(Ael +Aef”) + (A~ K)(no — ﬂo)] }
As before, the first term cancels with E {gg BoAw} from term (ii), leaving us with
E{(iv)} = ]E{ 90(Ba — B2)Aw + go By {Mo(Ae + Ae ) (A —&)(po — ﬂo)} } :

Further observe that because ego) =(1- (O)) and é A(O) =(1- é§°)), we have that Aego) + Ae(()o) =

0. Therefore,
E{iv)} =E {*90(32 — Bo)Aw + goBa(A — k) (o — ﬂo)} .
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Gathering all of these terms together, we have that the second-order remainder term can be expressed

as
@) 1 (ii)
~gom” (¢) (Aw — Av)?

E
2

+

g1 (1) A(1) ~
I (o) 60 (1 — )
é(ll) < 1 1 )

(iii)

(1) 0
g (31 _ Bl) Av + (?1 - 1) L BiAv + go (eél) - 1) BrAwv
g1 e h

(iv)
+| = 90(B2 — Ba)Aw + goBa(A — k) (1o — ﬂo)]

We will show that each of these components is op(n’l/ 2) under our assumption that for s, ¢ € {0, 1}
each nuisance function satisfies

14X, 5,8) = n(Xos, D)2, 16X, s) —e(Xos)ll20 1135(X) = g5(X) |2 = 0p(n™"*).

We will repeatedly use the following consequences of boundedness/positivity:

(s)

21, < Clge — gallz = 0p (07", |5 = 1], < ClE — el = 0, (07", @)

1Av]ls < Clln — ll2 = 0p(n~24), 3)
1Awlls < C(Jlio — poll2 + 1168 — ef?[la + 168 — efVl2) = op(n~2/4). )
forj € {1,2}, || B;— Bjll2 < C(|Av]l2 + [|Aw]|2) = o,(n~ /), Q)
Im” (¢)| < C, (©6)
1A — &l < C(I1E7 — e o + 185 — e |l2) = 0p(n2/1). @)

For (i), by Cauchy—Schwarz and treatment positivity (Assumption [AZ),

g1 1 (1 ~ (1 1 N _
B[ (e = &) = )| < Cllel” = ez ia = mallz = op(n™12).

el
For (ii), using (3), @), and (6) along with the fact that (a — b)? < 2(a? + b?), we get
[SEloom"(O)(Aw — Av?]| < C(lawl} + |A0]3) = 0,(n~7).
For (iii), there are three pieces. By (3) and (3)
Bloo(B: — Bi)aw]| < 1B~ Billa [8vl < O(180l + [Awl) Al = op(n=2).
Then, by (@), (@), treatment positivity (Assumption[A2), and study positivity (Assumption[A3)

e

B[(g - )95 BiaY | <|

)
o 1H2 ' ||Z%71)31AUH2 < Cllgr — g1l | Av]l2 = 0,(n™1?),
1

and

5(1) > ~ —
[Elso(Sy ~ DBi1d0]| < C I - ef 2 | Avllz = 0y (n ™).

Finally, for (iv), there are two pieces. By (@) and (5)
’E[Qo(Bz — Bs)Aw] ‘ < 1Bz = Balla[|Awlls < C([|Av]l2 + [|Aw]|2) [Aw]2 = 0p(n "),
and, then using (7)),

~ ~ ~ ~(0 0 (0 0 —
[Elg0B2(A — m) (10 — 10)]| < Cliio = pol2 (65 = e 2 + 16§ = e 12) = op(n"2).
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Combining (i)—(iv) gives | Rona| < C R2 + 0,(n~1/?) with

=

),

Ry, = |lfin — pall2 + |0 — poll2 + [[é1 — exll2 + [|€0 — eoll2 + |91 — g1ll2 = op(n™

hence Ra,q = 0,(n~1/2).

Assume: (a) bounded outcomes so |u| < M; (b) positivity, i.e., for some ¢ € (0,1/2), ¢ <
et(X, s), gs(X) < 1 — ca.s.; (c) cross-fitting; (d) propensity normalization in the observational arm:
é0(X,0) =1 —¢1(X,0); (e) fixed a.

C EIF Derivation

C.1 Setup Recap
We start by reiterating our setup and relevant notation. Recall that we have the following variables,

* X: A vector of pretreatment covariates.

* S €{0,1}: A binary variable indicating study assignment (RWD vs RCT data).

» T € {0,1}: A binary treatment indicator.

¢ Y € R": The outcome of interest.
The distribution of the population is denoted by P over (X, S,T,Y"), which we assume admits a
probability density function, denoted by p(X, S, T,Y").

Pp(S = s | X = x), (i)

We then defined the quantities (i) study selection score: g¢,(x) =
S = s), and (iii) expected outcome:

treatment propensity score: e;(x,s) = Pp(T =1t | X = x,
wx,s,t) =EplY | X =x,5=35,T=t].

And, using our sensitivity parameters -y and p we constructed the following terms:

UJ(X, t7p) = et(Xv O)H’(X7O7t) + (1 - et(X7O))(1 + p),u(X,O,t),

v(X, ) = (1 + )X, 1,1),
B exp(av(X,t,7))
(Xt py, @) = exp(av(X, t,7)) + exp(aw(X,t, p))’
explaw X7t7
A2(X7tapa’y,a) = p( ( p))

exp(av(X,t,7)) + explaw (X, t, p))

Our goal is to derive an efficient influence function for 6(t, p, v, ), where

0(t,p,v, ) =
EP [gl (X)M(Xv 2 1) + gO(X) {)‘I(Xv L, P a)U(Xa i, ’7) + /\Q(X’ t, P75 a)w(X’ L, p)}] :

Note that we can write
0(t, p, 7y, ) = 01(t) + 02(t, p, 7, @),
where:
01(t) = B |91 (X)u(X,1,1)], and

(. p. 7. @) = E[go(X){ M1 (X, £, 7 @)0(X,1,7) + Aa(X, t po 7 @)w(X, 1)}

C.2 Efficient Influence Function

We use point mass contamination to derive a candidate EIF, ¢(Z;t, p,~, a), for our estimand,
0(t, p,7, ). We proceed to verify that the candidate is indeed a valid influence function, and
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subsequently the efficient influence function because we are in a fully-saturated model space, by
confirming that for any generic score, h, we have

Vhe(ta P75 a) =Ep [QS(Za t, 07, a)h]
We start by letting ® be an EIF operator which "takes a parameter and returns its efficient influence
function" (Schuler and van der Laan, 2024). In our case, ®(0(t, p,v, @) = &(Z; t, p,7, ).

Using this notation, we can break our estimand of interest into separate components for easier
derivation. We start by noting that thanks to the linearity property of the EIF

(I)(a(t’ P75 CV)) = (I)(gl (t)) + (I)(92(t7 P57y a))

Before proceeding to derive ®(6;(¢)) and ®(02(¢, p, v, @)), we first compute ®(-) for various sub-
components that make up our estimand.

B(gu(x)) = H;((ff)) 1.(8) — g:()],
D(es(x,8)) = Hx;}(izﬂ‘;gs> [L(T) — e:(x,8)],
Bt 5.0) = = Ry s

In the equations above, and throughout the remainder of this section, I,(A) denotes an indicator
function that equals 1 when the random variable A takes the value a, and 0 otherwise.

C.2.1 Candidate EIF for 6,

Taking the point mass contamination approach, we first rewrite ¢ (¢) assuming all of our covariates
are discrete. Namely,

01 (t) = Zgl (X)M(X’ 1, t)p(X).

We apply the product rule and plug in values to calculate ®(6; (t)) below.

®(01() = Y P(g1(x))u(x, 1, 1)p(x) + g1 (x)@(pu(x, 1,1))p(x) + g1 (x) u(x, 1, 1)@ (p(x))

=3 0 (5 ) e 1, ()

=~ P(x)

+ Z SH;(Q()I]I;()T) [Y - M(X, 1, t)] g1 (X)p(x) 4 [Hx(X) _ p(x)] " (x)u(x’ y t)
= SHZ%( HI)(T) IV — u(x, 1, 8)] + Le(X)Su(x, 1, 8) — g (x)pa(x, 1, £)p(x)
_efgé’Tl)) Y — (X, 1,6)] + Su(X, 1,t) — 61(¢)

In summary, the candidate EIF for 6, (t) is:

_ SI(T =t)

s SIS 1] + Su(X,1,) — 6:(0).

We drop the arguments for ¢ and simply denote the portion of EIF for 0, (t) as ¢y, for simplicity.
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C.2.2 Candidate EIF for 0,

Since v, p, and « are predefined hyperparameters, while deriving the candidate EIF for 6> we omit
them as arguments to w, v, A\; and Ag for brevity. Importantly, these hyperparameters will become
relevant when deriving the EIF, so they are still present in each function - just omitted for notational
brevity.

We again start by rewriting 2 assuming all of our covariates are discrete.

Zgo ) {Ar(x)v(x) + Az (x) Zgo ) + Ao (%) [w(x) — v(x)]} p(x).

Then, we can apply the product rule to see that

02) :Z@ go(x {v(x) + A2 (x) [w(x) —v(x)[}
+Z¢ x)p() {1 = Aa(x)}
+Z<I> x)p(x) A2 (%)
+Z(I>A2 x)p(x) {w(x) — v(x)}

—i—Z(I)pX go(x) {v(x) + A2(x) [w(x) — v(x)]}.

We already know ®(go(x)) and ®(p(x)). But we need to calculate ¢(v(x)), ®(w(x)), and (A2(x)).
First, note that we can rewrite

w(x) = w(x, £, p) = ex(x, 0)p(x, 0, 6) +e1_(x, 0) (14 p)a(x, 0, 1) = pu(x,0,) [L + pes_y(x, 0)]

Then,
Q(v(x)) =0 (v(x,t,7))
=0 ((1+v)u(x,1,1))
=1 +7)® (u(x,1,1))
—14+9) I 1,0,
O (w(x)) =w(x,t,p)
=P (u(x,0,t) [1 + pe1—4(x,0)])
P (u(x,0,t)) [1 + pe1—(x,0)] + pu(x,0,t)@(e1-¢(x,0))
~ 11 peritx 0 (2D 0,0 )
+ pu(x,0.1) ((12110)@ Lo (T) el_t(x,on) ,
and

36



P(A2(x)) =P

( exp(aw(x)) )
exp(av(x)) + exp(aw(x))
—a explaw(x)) {exp(av(x)) + exp(aw(x))} 2

x {@(w(x)) [exp(av(x)) + exp(aw(x))] -

B(v(x)) exp(av(x)) — B(w(x)) explaw(x))}

—a exp(aw(x)) {explav(x)) + exp(aw(x))} 2

x {@(w(x)) exp(av(x)) — B(v(x)) exp(av(x))}
—aa(x) (1 — o)) [B(w(x)) — B(v(x))]
—ah () de(x) [B(w(x)) — B(v(x)].

Now, we plug ®(A2(x)) in to the full $(6;) and, because P(A2(x)) is composed of ®(v(x)) and
®(w(x)), combine like terms.

A\_/

Z P(go(x {v(x) + A2 (x) [w(x) — v(x)]}

+Xew (%) {1 — Aa(x)}

+ Z ®(w (x)A2(x)

+ Z {adi(x [©(w(x)) — @(v(x))]} go(x)p(x) {w(x) — v(x)}
+ Zx: ®(p(x))g0(x) {v(x) + Aa(x) [w(x) — v(x)]}

= Z; (g0(x {v(x) + A2 (x) [w(x) —v(x)]}

+ Z ®(v(x))go(x)p(x) {A1(x) + @i (x) A2 (x) [v(x) — w(x)]}

+ Z P (w (%) {A2(x) + A1 (%) A2 (x) [w(x) — v(x)]}
+zx:<1> {v(x) + A2 (x) [w(x) —v(x)]} .

We now plug in the corresponding values for the remaining ®(-)’s in ®(6s).

(62) =3 {H;((f)) -5 — go(x) } p(x) (o) + Aa(x) [w(3x) — v(x)]}

+ { e T - e, 0] gn o

X {)\1 (X) + al (X))\g X)

+ 2}; {[1 + pe1—+(x,0)] <( p(x,0, t))

p(x,0,) (“;(‘iﬂf‘) s (T) — e1-alx, o>]>}

X go(X)p(x) {A2(x) + adi (%) Az (%) [w(x) — v(x)]}
+ Z {Ix(X) = p(x)} 9o (%) {v(x) + A2(x) [w(x) — v(x)]} -
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By applying the indicator function and simplifying, we get

D(02) =[1 = 5 = go(X)] {v(X) + A2(X) [w(X) — v(X)]}

SI,(T)

Ly w(g Y — u(X,1,1)] go(X
)

Dg1(X)
x I (X) + ah (X)Ae(X) [0(X) — w
(1= ) DalX) + 0 (X)DAa(X) [w(X)  v(X)]}
L(T)
iy I = K00+ pero(X,0)
Fon(X.0.0) [L(T) — o1, (X.0))
Fa0(X) {0(X) + 2a(X) [w(X) ~ (X))}
— 05.

Then, reorganizing the order of terms and canceling, we arrive at the final form of a candidate EIF for
92Z

D(02) =S(1 4 7) {M(X) + ari (X)A2(X) [(X) — w(X)]}

I (T)
X {et(X,l)m(X) Y — (X, 1,1)] QO(X)}
+[1 = SH{AM(X)v(X) + A(X)w(X) }
+[1 = ST {A2(X) + el (X)A2(X) [w(X) — v(X)]}

X { (T) [Y - M(Xv 0, t)] [1 + pelft(Xv 0)]

et(X, O)

+ p:u(Xv 0, t) []Ilft(T) —C1—t (X7 0)] }

— 0s.
As we did for ¢g,, we drop the arguments and simply denote the EIF for 6, as ¢y, for simplicity.

C.2.3 Checking Candidate EIF for 6,

We start by rewriting

601 :/gl(x)y(x,l,t)p(x)dx

=//yp(ylxalvt)dy p(1x)p(x)dx

by replacing u(x, 1,t) with fy yp(y|x, 1,t)dy and ¢; (x) with p(1]x).

Recall that we need to show that V0, = Ep[¢g, h] for any generic score, h. To compute the
directional derivative for 6; and h, V61, we introduce the notation p. = (1 + eh)p. Then, for any
generic h we have that

7] . _ _
Vitr = 5 [ [ upcube 1, 0dy 5107 o)
xJYy

e=0

For the expectation Ep ¢y, h] we forego denoting the P for the remainder of this section for brevity.
Then, we take the following steps to rewrite this expectation.
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E[¢o, h] =E[(¢g, + 01)h] — E[01h]
-, 2 Z/ [Sf t;_l Uy = wtox1,0)] + S 1, t)}
X hplylx, s, t')dy p(E'|x, $)p(s|x)p(x)da
_ / / by — (. 1,8)] hp(ylx, 1, )y p(1x)p(x)de

+ [ 103 [ oyl 1#)dy p(e b Dp(1 (0 da

In the above, we leveraged the fact that E[0; 4] = O for any valid score function h.

It is easier to prove this equality by decomposing h = hyx,s,7 + hrjx,s + hs;x + hx and showing
that

th\X,S,Tel + th\x,sel + vhs|x01 + thal =
E[pg, hy|x,s,7] + Elpe, hrx,s] + Elpe, hsx] + Elgs, hx].

In particular, we will show that
Vix 01 = E[dg, hx],
vhs\x = E[¢o, hsx],
Virx,s0h = Eldg, hrix s],
VhY\X,ST E[¢01hY|XST]

We start with Vj,, 61 = E[¢g, hx]. For V;,, 61 we replace the corresponding term in the factorized
distribution function, p.(x) = (1 + ehx(x))p(x), and set the other conditional probability density
functions to their normal p form.

Vix 01 = % /x /1, yp(ylx, 1, t)dy p(1x)(1 + ehx (x))p(x)dz .

- / / yp(ylx, 1, £)dy p(11x)hx (x)p(x)dz
- / u(x, 1,2) p(1x)hx (x)p(x)da
:]E[M(Xv 1, t)gl (X)hX(X)]
Then we are left to show that E[¢g, hx] = E[u(X, 1,%) g1 (X) hx (X)]:
Blon,hoe) = | [ v o 1)) i (9p(ulx. 1. Oy p(1x)p(x)c

/ x,1,1) Z/hx p(ylx, 1,8)dy p(t'|x, 1)p(1]x)p(x)dx

*/hx( )(/[yu(xvlvt)]p(ylx,lyt)dy> p(1|x)p(x)dz
/hX w(x, 1,t) (Z/ (ylx, 1,t")dy p(t'|x, 1)>p(1|x)p(x)dx

0+ / hx (%), 1, 1) (1) p(1[x)p(x) dac
:E[IU'(X7 17 t)gl (X)hx (X)]
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Similarly, for Vi, , 01 = E[pg, hgx]. we first simplify Vg xth by replacing the corresponding
term in the factorized distribution function, pe(1|x) = (1 + ehgx(1]x))p(1]x), and set the other
conditional probability density functions to their normal p form.

0
vhS|X91 - &/

- / / yp(ylx, 1, )dy hsx (1)p(1x)p(x)da

/ yp(ylx, 1, )dy (1 + ehgx (1%))p(1[x)p(x)de
Yy e=0

- / (%, 1, )b (1)p(1x)p() da
:E[M(Xv L, t)g (X)hSIX(HX)]'

We then show that E[¢g, hgx]| = E[u(X, 1,1)g1(X)hgx (1]1X)]:

Elg, hsix] = / / [y — (1, 8)] hspx (s0p(l, 1, H)dy p(1x)p(x)da

xJy

+ / 1,0y / hsix (s10p(ylx, 1, £)dy p(t'x, Dp(11x)p(x)dec
_ / hsix (1) ( / by — (x, Lt)]p(yx,l,t)dy) p(Lx)p(x)de

+ [ hsx(sxntx 1) (Z [ ptaix 1,8y o0, 1>>p<1|x>p<x>da:
=0+ [ hopx(sbxnGe, L) (1)p(1Op(x)da

- / hsix (L), 1, p(Lx)p(x)dz

Moving on to Vi, 0 = E[%lh.TP?vS]’. we start by simplifying Vy,,., ;61 by replacing the
corresponding term in the factorized distribution function and setting the other conditional probability
density functions to their normal p form. We note here that there is no p.(¢|x, s) in the integral, so
this term simplifies to zero.

/ yp(ylx, 1, £)dy p(1]x)p(x)dac
Yy e=0

We show too that E[¢g, hrx 5] is equal to zero.
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El¢e, hrx,s] =/ / [y — n(x 1, 6)) hx s (Hx, $)p(ylx, 1, t)dy p(1x)p(x)dz
+

[ 61,03 [ by (€ s)ptyb. 1t )dy w0, Dp(1x)p(x)ds

:/ hrix,s(t]x, s)(/ [y — p(x,1,t)] p(y|x, 1,t)dy>p(1|x)p(x)dx

Y

+ [ e 1.0 Y i st ( [ plalx 1 t')dy)p@/x, Dp(1x)p(x)d

Y

=0+ / pu(x,1,t) (thx,s(t’lx, s)p(t'|x, 1)>p(1|X)p(X)dx

0+ [ o 1,8) (0)p(1p(x)da
=0.

Similarly, for Vp,, y 5 .61 = E[¢o, hy|x,s,7], we simplify Vhy x50 by replacing the correspond-
ing term in the factorized distribution function, p.(y|x, 1,t) = (14 €ehy|x s,7(y[x, 1,1))p(y|x, 1,1),
and set the other conditional probability density functions to their normal p form.

Vivent = o | [ o0+ e sl 10wl 10y p(1pop s
e=0

- / / yhy x50 (%, 1, Dp(ylx, 1, t)dy p(1[x)p(x)dz
XJY
:E[gl(X)E[YhY\X,S,T(Y|X7 1at)|X7 S = 17T = t”

We finish validating the EIF for #; by showing that
Elgo, hy|x,5,7] = Elg1 (X)E[Y hyx,s5,7(Y[X,1,8)[X, 5 =1,T = t]].

Elgo, hy x.5.7] = / / ly — (s, 1,6)] by s (1%, 5, Dp(ylx, 1, 6)dy p(11x)p(x)da
xJy

4 / 1,0y / hy .. (1%, 5, )p(ylx, 1, € )dyp(t'|x, )p(1[x)p(x)de
X + Yy

=E[I(S = DE[(Y — (X, 1,t)hy x5 (VIX, 1,8)[X, 8 = 1,T = 1]
+E[p(X,1,1)I(S = 1)E[hyx 5,7V X, 1,T)|X, S = 1]]
=E[I(S = DE[Y hy|x 5,7 (Y|X,1,8)|X,5 = 1,T = 1]
—E[I(S = Du(X, 1,)E[hyx 57(Y[X,1,8)[X,8 = 1,T = t]]
+ E[p(X,1,1)I(S = 1)E[hyx,s,7(Y[X,1,T)|X, S = 1]]
=E[I(S = DE[Y hy|x 57 (Y|X,1,8)|X,5 = 1,T = 1]
—IE[H(S— Dp (X 1,t) x 0]
+ E[p(X, 1,1)I(S = 1) x 0]
=E[g1(X)E [YhY|XST(Y|X>Lt)|X S=1T=t]

C.2.4 Checking Candidate EIF for 0,

We perform the same steps to check the candidate EIF for >. We first write 65 as shown below:
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02 Z/go(X) {AM()v(x) + A (x)w(x)} p(z)de

:/ [ exp (04(1 +7) J, yp(ylx, 17t)dy)
x | exp (a(l +7) fy yp(ylx, 17t)dy) + exp (a fy yp(y|x, 0, t)dy[1 + pp(1 — t|x, 0)])

x (1 +7)/yp(ylx, 1,t)dy1p(0|X)p(ff)dx

exp (a0 f, yp(ylx, 0. )dy[L + pp(1 — t}x,0)})

exp (a(l +7) J, yp(ylx. 1, t)dy) + exp (a J, yp(ylx,0,t)dy[1 + pp(1 — t]x, 0)})

o,

X /yp(ylx,07t)dy[1+pp(1 —tlx70)]]p(0l><)p(w)dx7

where we replace go(x) with p(0|x), p(x,1,t) with fy yp(ylx, 1,t)dy, p(x,0,t) with
fy yp(y|x,0,t)dy, e;(x,0) with p(t|x,0) and e; _¢(x, 0) with p(1 — t|x,0).

We then have that for any generic h that V6 can be written as

Vpbs =
9 exp (a(l +7) J, ype(ylx, 1, t)dy)

oe / pr (a1 +9) f, wbelyix, 1,6)dy) + exp ( f, ybeylx, 0, 0)dy[1 + pp. (1 — tx, 0)])

x(1 +7)/yﬁe(ylx71,t)dy] Pe(0[x)pe () dx

e=0
0 /l exp (o f, ype(ylx, 0, )dy[L + ppc(1 = tx,0)])
O S Lexp (a1 +7) [, yie(ylx, 1, )dy) +exp (o f, ype(ylx, 0, )dy[1 + ppe(1 — tx,0)])

X /yﬁe(y‘xa 0, t)dy[l + ppe(1 — t‘xv O)}]ﬁe(mx)ﬁe(l’)dm
Yy e=0

and E[¢g, h] can be written as

El¢g,h] =E[(¢6, + b2)h] — E[021]

[z /{

s(1+7) {A1(x) + adi(x) A2 (x) [v(x) — w(x)]}
L. ()
X {61&()(71).%()() [y — p(x, 1,1)] QO(X)}
+ [1 = s {M(x)v(x) + Az (x)w(x)}
+ [1 = s]{Aa(x) + aA1(x)A2(x) [w(x) — v(x)]}
)

(
x {eféf:m [y — pu(x, 0, )] [1 + pe1—+(x, 0)] + ppa(x, 0, 8) [ (') — e1—e(x, 0)1}

} x hp(ylx, s, t")p(t'[x, s)p(s|x)p(x)dydz.
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‘We can distribute terms to write this as

E[0, 1] //1+w () + ah () [o(x) — w(x)]}
[y M(X717t)] ( |X717t) (O‘X) ( )dydw
+ / S [ D0 + Aa(0)w(x)} hplylx, 0, €)p(t |x, 0)p(0x)p(x)dydz

v vy

[ [ 1000 + anexa(0) [w0) = 06} [y = 1, 0.0] 1+ perelx,0)
% hp(ylx, 0, Dp(Ox)p(x)dydz
0> / a3 + @ (Ao () [w(x) — v(3)]} ppx, 0,) [l _o(t') — e14(x,0)]

x hp(y|x, 0,t")p(t'|x,0)p(0[x)p(x)dyd:.

And then write in expectation notation as

E[go, h] =(1 +7)E | g0(X) {M(X) + ali (X)A2(X) [v(X) — w(X)]}
X E[(Y — u(X,1,)h|X, S = 1,7 =1]]
+E[50(X) P (X)u(X) + 2a(X)uw(X)} EBIX, S = 0]
+E :go(X) [1+ per—e(X, 0)] {A2(X) + adi (X)A2(X) [w(X) — v(X)]}

< E[(Y — u(X,0,£))h|X,S =0 T_t}

+]E:go(X)pu(X,0,t){/\z( ) + adi(X)Ae(X) [w(X) = v(X)]}

X E[lLo(T) - e14(X,0)] AIX, S = 0]].

‘We now show equality of the separate decomposed components of the generic score. In particular
just like we did for 0, we will show that

Vix 02 = E[¢pg, hx],
Vhs\x92 = E[pg, hsx],
Virx.s02 = El¢e, hrix 5],

[

VhY\X,ST =E ¢92hY|XST]

Starting with V,, 02 = E[¢pg, hx]|, we first simplify V. 62 by replacing the corresponding term
in the factorized distribution function, p.(x) =

= (1 + ehx(x))p(x), and set the other conditional
probability density functions to their normal p form.
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v, 0,0 / [ exp (a(1+7) [, yp(ylx, 1, t)dy)
0 Uy | exp (a(l +7) [, up(ylx, 1,t)dy) +exp (a [, up(ylx, 0, t)dy[1 + pp(1 — tlan)])

x(1 +7)/yp(yX71,t)dy]p(0l><)(1 + ehx (x))p(z)dz

e=0

0 exp (a J, yp(ylx, 0. Ody[1 + pp(1 — t}x,0)])
86/x pr(

+ JE—
a(l+7) [, yp(yx.1, t)dy) + exp (a J, yp(yl=,0,£)dy[1 + pp(1 — t]x, 0)])

/yp(ylx 0,t)dy[1 + pp(1 — t|x,0)] | p(0]x)(1 + ehx (x))p(x)dz

e=0

/ D(X) + Xa(X)(X)) p(0pe)hx (x)p(x)da
90(X) {1(X ><X>+A2<X>w<X>}hx<X>]

We now show that E[¢, hx] = E [go(X) M (X)0(X) + A (X)w(X)} hx(X)}:

Elpg,hx] =(1+7)E [go(X) {A(X) + ar (X)X (X) [o(X) — w(X)]}
< E[(Y — u(X,1,)hx(X)|X, S =1,T = t]}
+ [ g0(X) {41 00)(X) + Ao (X)w(X)} [ (X)X, 5 = 0]
+E[g0(X) [1 4 pe1-4(X, 0)] Pa(X) + ah (X)Aao(X) [10(X) — v(X)]}
< E[(Y — u(X,0,8)hx(X)|X,S = 0,T = t]}
+E {go(X)pu(X, 0,) {A2(X) + aAr(X)A2(X) [w(X) — v(X)]}

X E[li-o(T) = e1-o(X, 0)] hx(X)[X, 5 = 0]].

We can pull the hx outside of all of the inner expectations to write as

Elgo ] =(1+7)E[0(X) {A1(X) + ahi (X)Ao(X) [p(X) — w(X)]}
X hx (X)E[(Y = p(X,1,0)X, 8 = 1,T = 1]
+E[g0(X) {21 (X)o(X) + Ao(X)uw(X)} hx (X))
+E[90(X) [1+ per—e(X,0)] {Aa(X) + ad (X)e (X) [w(X) — v(X)]}

x hx (X)E[(Y — u(X,0,8))[X,S = 0,T = t]}

+ E[g0(X)pa(X. 0,8) {22(X) + adi (X)A(X) [w(X) — o(X)]}

% hx (X[ (T) — e14(X,0)][X, § = 0]].
And then, applying the inner conditional expectations and cancelling like terms, we get
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Efgo ] =(1+7)E [0(X) {A1(X) + a1 (X)Ao(X) [p(X) = w(X)]}
X I (X) ((X, 1,8) = (X, 1,1))]
+E[g0(X) {21 (X)0(X) + Ao (X)w(X)} hx (X))
+E[g0(X) [1 + per—+(X, 0)] Dra(X) + aki (X)Aa(X) [w(X) = v(X)]}

+ E[g0(X)pu(X, 0,8) {Aa(X) + ahi (X)Ae(X) [w(X) = v(X)]}
x hx(X) [e1-4(X,0) = e1 (X, 0)] |
=E[5o(X) {1 (X)o(X) + Aa(X)w(X)} hx (X))
Next, we show V., 0y = E[pg,hsx]. We start this by simplifying V. 6> by replacing the

corresponding term in the factorized distribution function, p.(0|x) = (1 + ehgx (0[x))p(0]x), and
set the other conditional probability density functions to their normal p form.

v, g, 2 / l exp (a(l +7) J, yp(ylx, lyt)dy)
sx”2 ¢ | exp (a(l +7) J, yp(ylx. 1, t)dy) + exp (a J, yp(ylx,0,t)dy[1 + pp(1 — t|x, 0)})

x(1+7) / yp(ylx, 1,8)dy | (1 + ehsix (01%))p(0x)p(x)dz

e=0

0 [ [ exp (o f, yp(ylx, 0,8)dy[L + pp(1 — t}x,0)])
x [exp (a(l +7) J, yp(ylx, 1, t)dy) + exp (a J, up(ylx, 0, t)dy[1 + pp(1 — t]x, 0)])

/ yp(ylx, 0, dy[L + pp(1 — tx, 0)] | (1 + ehsyx (01x))p(O[x)p(x)d

e=0

/ P(X)0(X) + Ao(X)w(X)} A O3x)p(O)p(x)d
90(X) {1 (X)v(X) + A2 (X)w(X)} hs|x(0|X)} :
We proceed to show that E[¢y, hsx] = E [go(X) M (X)u(X) + Ao (X)w(X)} h5|x(O|X)]. First,
plugging in hg|x,
El¢g, hsix] =(1+7)E {go(X) {A(X) + aA (X)A2(X) [v(X) — w(X)]}
< E[(Y — p(X, 1,8))hgx (S|X)[X, § = 1,T = t]}
+E[g0(X) {1 (X)0(X) + Ao(X)w(X)} Elhsix (S1X)[X, § = 0]
+E {go(X) [1+ pe1—+(X, 0)] {A2(X) + a1 (X) A2(X) [w(X) — v(X)]}
< E[(Y = u(X,0,8))hsx (S|X)[X, § = 0,T = t]}
+E|g0(X)pn(X, 0,1) {2(X) + adi (X)Ao (X) [w(X) = v(X)]}

X E[[L_(T) — e1_¢(X, 0)] husx (S|X)|X, S = O]]
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Then, pulling hgx out of the inner expectation where possible

Eloa hsix] =(1+7)E |0(X) {1 (X) + adi (X)a(X) [o(X) - w(X)]}
X hsix (X)EIY — u(X, 1,8)1X, 5 = 1,7 = 1]
+ E[90(X) {0 (X)0(X) + Ao(X)0(X)} hisix (01X)|
+E[g0(X) [1+ per—o(X, 0)] {1a(X) + adi (X)Aa(X) [w(X) — v(X)]}

< hsx (OXEIY - u(X,0,1)1X, S = 0, = 1]

+ E[g0(X)pa(X, 0, ) Pa(X) + aa (X)Aa(X) [w(X) — v(X)]}

% hsx (OX)E(L+(T) — e14(X,0)][X, § = 0]].

And then applying the inner expectations, cancelling terms, and simplifying,

Ela hsix] =(1+7)E [0(X) Di(X) + ai (X)Aa(X) [0(X) = w(X)]}
X sy (LX) (X, 1,8) = (X, 1,8))]
+ E[g0(X) D (X)0(X) + Ae(X)w(X)} A (0X)|
+E[g0(X) [1 + per—+(X, 0)] Dra(X) + ai (X)Aa(X) [w(X) —v(X)]}
X hsx (0%) (5(X, 0,1) = (X, 0,1))]
+ E[g0(X)pn(X, 0, ) Pa(X) + aa (X)Aa(X) [w(X) — v(X)]}
X hspx(01X) [e1-4(X, 0) — e1-¢(X; 0)]

=E [90 (%) {M(X)0(X) + Ao (X)w(X) } hsixc (0X)]

Nearly there, we now show V... .02 = Elgg, hrx s]. We simplify V., (02 by replacing the
corresponding term in the factorized distribution function, p.(1 — t|x,0) = (1 + ehpx,5(1 —
t|x,0))p(1 — t|x,0), and set the other conditional probability density functions to their normal p
form. We have to format V. . .02 slightly differently to allow it to stay within the page margins.
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)
Vigx.st2 =a/e><p <a(1+7)/yp(ylx,l,t)dy>
x Yy

x { exp <a/yp(y|><»0,t)dy[1 + p(1+ ehrx,s(1 —t[x,0))p(1 — tlx,0)1>

+ exp (a(l +7)/yyp(ylx,17t)dy> }

yp (ylx, 1>t)dy> (0]x)p(x)dz

e=0

/ ( / yp(ylx, 0, dy[L + p(1 + chayx.s(1 — tx, 0))p (1—t|x,o>1)
{exp up(l, 0. )dy[1 + p(1 + ehr.s(1 tx,o»p(lux,on)

+exp (a(l _5_7)/yyp(y|x,17t)dy> }

X </yp(y|xa 0,t)dy[1 + p(1 + ehpx s(1 — tx,0))p(1 — t|X»0)]>

Y

p(Ox)p(z)dx

e=0

To simplify, we plug in exp (av(x)) for exp (a(l +7) fy yp(y|x, 1,t)dy) and p(x,0,t) for
fy yp(y|x, 0,t)dy. We also replace p(1 — t|x, 0) with e;_;(x,0) simply for clarity in the following
steps. Then, V., .02 is equal to

o exp (0v(30)
¢ Jx exp (av(x)) 4 exp (ap(x,0,¢)[1 + p(1 + ehpx,s(1 — t]x,0))e1—¢(x, 0)])
xo(x)p(0]x)p(x)d|
ﬁ exp (oz,u(x, 0,6)[1+ p(1+ ehT|X7S(1 —t|x,0))e1—¢(x, O)])
¢ Jx exp (av(x)) + exp (ap(x,0,t)[1 + p(1 + ehpx s (1 — t[x, 0))61 (%, 0)])
xp(x,0,t)[1 4 p(1 + ehpix,s(1 — t]x,0))e1—¢(x,0)]p(0]x)p dac‘

This is a rather complex partial derivative. To proceed, we will let
Wey (x) = p1(x,0,8)[1 + p(1 + ehryx,s(1 = t]x, 0))e1—¢(x, 0)]

and rewrite the above as

p(Ox)p(z)dz.
e=0

_ / 0 [exp : v(x) exp (av(x)) 4 Wer (x) exp (qwe, (%)) }

s D¢ av(x)) + exp (awe, () exp (aw(x)) + exp (qwe, (%))

Note that

0
&weT (X) = hT|X,S(1 - t‘X, O)PM(Xv 0, t)el—t (Xa O)
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and we, (x)|._, = w(x). From here, we evaluate the partial derivative piece by piece. First the left
fraction:

0 v(x) exp (av(x)) —v(x) exp (av(x)) exp (awe, (X)) X aZwe, (x)

de exp (av(x)) + exp (atwep ()

- [exp (av(x)) + exp (e, (0) |

e=0

_ —aw(x) 5 Wey (X) exp (aw(x)) exp (aw(x))

- {exp (av(x)) + exp (aw(x)) } i

Second the right fraction:

a( Wep (X) exp (awe (X)) )

de \ exp (av(x)) + exp (aw,, (x))

e=0

= { [exp (av(x)) + exp (Qwe, (X))]

y [8w€T (x) ( OWe, (%) }

5 OXP (ater (X)) + e (%) exp (W, (X)) X @ B¢

Owe, (%)
Oe

— Wep (X) exp (20w, (X)) X @

} [exp (aw(x)) + exp (awe, (x))]
Qwe (%) -

T x [exp (av(x)) exp (aw(x)) + aw(x) exp (av(x)) exp (cw(x)) + exp (2aw(x)) }

[exp (av(x)) + exp (aw(x))]”
Putting these two terms together, we have

aw(x)) + exp (2aw(x))
) + exp (aw(x))]?

OWe,p (X) " [exp (av(x)) exp
Oe [exp (av(

(
)

aw(x) exp (av(x)) exp (cw(x)) — av(x) exp (av(x)) exp (aw(x))]
[exp (aw(x)) + exp (aw(x))]?

OWerp (X)
Oe

X [Ag(x) + aAi (%) Aa(x) [w(x) — ”(X)]]

hrix,s(1 =%, 0)pp(x, 0, t)e1—(x, 0) [Az(X) + a1 (x)Aa(x) [w(x) — v(X)]}

Now, we can plug this partial derivative evaluated at e = 0 back into our integral, to get that

Vi o = [ B (1= . 0)on(x,0.)er-(x.0)
o« [ra() 0 (0)Aa ) ) — v() | pl0x)p(o)

= [ D)o, 0,8) {Aalo0) + ada )2 ) () — 0]
x e1-4(x,0)hpix,s(1 —t|x,0)p(z)dx
—E | g0(X)pu(X, 0,) {X2(X) + aAs (X)A2 (X) [w(X) — o(X)]}

x e1-1(X, 0 hrix.s(1 — t|x,0)]
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We proceed to show that E[¢g, hrx 5] equals the above value. First, plugging in hpx g,

E[¢e, hrx 5] =(1 + 7)E[go(X) {A1(X) + aAi(X)A2(X) [v(X) — w(X)]}
x E[(Y — u(X, 1, 1)) hrx s(T1X, S)[X, 5 = 1,T = 1]
+ E[go(X) {M(X)v(X) + A2(X)w(X) } E[hrx s (T'X, 5)[X, S = 0]]
+ E[go(X) [1 + pe1—¢(X, 0)] {A2(X) + @A (X)A2(X) [w(X) — v(X)]}
x E[(Y — u(X,0,1))hrx,s(T1X, 9)[X, 5 =0,T = 1]]
+ E[go(X)pu(X, 0,1) {X2(X) + a1 (X)A2(X) [w(X) — v(X)]}
x E[[Ii—+(T) — e1-¢(X, 0)] hrpx,s (T']X, )X, S = 0]].

Then we pull hpx s out of the inner expectation where possible

E[pg, hrix,s] =(1 +7)E[go(X) {A1(X) + aA1 (X)A2(X) [v(X) — w(X)]}
x hpix,s(t1X, DE[(Y — u(X,1,1))[X, 5 =1,T = t]]
+ E[g0(X) {M(X)v(X) + A2 (X)w(X) } E[hrx s(T'X, 5)[X, S = 0]]
+ E[go(X) [1 + pe1—¢(X, 0)] {A2(X) + @A (X)A2(X) [w(X) — v(X)]}
X hypx,s(tX, 0)E[(Y — u(X,0,1))|X, 5 =0,T = t]]

{E [go<x>pu<x, 0.1) (Aa(X) + A (X)Ao(X) [w(X) — o(X)]}
% (Bl (T)hrix 5(T1X, S)[X, 5 = 0]

- 1K, OB (71X, S)IX, 5 = 0]) |

and use the mean zero property of the score function to set all terms multiplied by
Elhrx,s(TX, S)|X, S = 0] equal to zero:

Elo, hrix,s] =(1 4+ 7)E[go(X) {A1(X) + aA1(X)A2(X) [v(X) — w(X)]}
X hpx,s(HX, DE[(Y — u(X,1,1))X, 5 =1,T = t]]
+ Elgo(X) [1 + pe1—+(X, 0)] {A2(X) + A1 (X) A2(X) [w(X) — v(X)]}
X hpx,s(HX, 0)E[(Y — u(X,0,1))|X, 5 =0,T = t]]
+ Efgo(X)pu(X, 0, 1) {A2(X) + ari(X)A2(X) [w(X) — v(X)]}
X ]E[Hl—t(T)hT\X,S(T‘Xv S)IX, S = 0]].

Then applying the inner expectations and canceling like terms we get

Elpo, hrix,s] =(1 + 7)E[go(X) {A1(X) + a1 (X)A2(X) [v(X) — w(X)]}
x hrx,s (X, 1) (0(X,1,8) — (X, 1,1))]

+ Elgo(X) [1 + pe1—+(X, 0)] {A2(X) + a1 (X) A2(X) [w(X) — v(X)]}
x hrix,s(tX, 0)((X,0,t) — u(X,0,t))]

+ Efgo(X)pu(X, 0, 1) {A2(X) + ari(X)A2(X) [w(X) — v(X)]}
X ]E[Hl—t(T)hT\X,S(T‘Xa S)|IX, S =0]]

=E[g0(X)pp(X,0,t) {A2(X) + a1 (X)A2(X) [w(X) — v(X)]}

X ]E[Hl—t(T)hT\X,S(T‘Xv S)IX, S = 0]].

Now, notice that
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El—o(T)hrx,s(TIX,8)X, 5 =0 =E| Y L_,(t)hrx.s(t'[X,0)ex (X,0)
t'e{t,1—-t}
=E [el,t(X, O)hT|X,S(1 - t|X, 0)} .

Therefore,

E[¢g, hrix,s] =E [go(X)pﬂ(X, 0,8) {A2(X) + @A (X)A2(X) [w(X) — v(X)]}

X el—t(X70)hT\X75(1 - t|Xa O) ’

and we have shown that V), . 02 = E[dg, hrx 5]

Finally, we show that V,, , ;0> = E[po, hy|x,s,7]. As always, we start by simplifying
Vhy x.s.r02 by replacing the corresponding terms in the factorized distribution function. This
time we set pc(y|x,1,t) = (1 + ehyx, 57X, 1,1)p(yx,1,t) and pc(y|x,0,t) = (1 +
ehyx,s,7(y[x,0,t))p(y|x,0,t). We set the other conditional probability density functions to their
normal p form. We again have to format V., . ,.02 slightly differently to allow it to stay within
the page margins.

)
Virx,sf2 :&/exp (a(l +7)/y(1 +ehyx,s,T(ylx,Lt))p(ylx,l,t)dy>

Y

X {eXP (a/y(l + ehy x,5,7(y[x, 0,1))p(y[x, 0, t)dy[1 + pp(1 — t|x, 0)])

Y

-1
T exp (a<1 +9) [ 00+ i sir ol 1 0)plolx Lt)dy) }
Yy

( (1+ 7 y(1 + ehyx, 5,7 (ylx, 1,1))p(ylx, 1, t)dy>p(0|><)p(w)d$
e=0

( / (1 + ehy (1%, 0.1)p <y|x,o,t>dy[1+pp<1—t|x,o>])

X {eXp (a/y(l + ehyx,5,7(y[%,0,))p(y[x, 0,t)dy[1 + pp(1 — t|x, 0)])
+ exp (a(l +7) / y(1 + ehyx 5,7 (ylx, 1,1))p(ylx, 17t)dy> }
X (/y(l + ehy x,5,7(y[x,0,1))p(y[x, 0, t)dy[1 + pp(1 — t|x, 0)])

p(Ox)p(z)dx
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We define the following terms to substitute in above:

Vey (X) = (1 +7) / y(1+ ehyx s,7(ylx, 1,1))p(ylx, 1,t)dy
Yy

= o(x) +e(1+7) / yhy x5 (y]%, 1, O)p(y[x, 1, £)dy, and
Yy

We,, (X) = /y(l + ehyx,5,7(y[%,0,1))p(ylx,0,t)dy[1 + pp(1 — t|x,0)]
Yy

’LU(JJ) + 6[1 + pelft(xa 0)] / th\X,S,T(y‘X7 Oa t)p(y|X7 0) t)dy
Y

Note that

v, (x

56( ) = (1 + ’Y) / th|X,S,T(y|xa 15 t)p(y|X, 17 t)dy7
y
Ow,,, (x
0B 14 per- o 0)] [ whvisi o, 0. 0p(ol. 0. ),
y

and ve, (X)]._y = v(X), Wey (X)]—g = w(x). Then,

p(0[x)p(z)dz.

Viyx,s002 = / a lvey (%) exp (Qvey (X)) + Wey (X) €xp (Qwe, (X))]
X .

Oe exp (e, (X)) + exp (Qwe, (X))

Like above, we evaluate the partial derivative piece by piece for clarity. First, the left term of the
fraction:

9 Vey (X) exp (avey (X))
Oe exp (e, (X)) + exp (Qwe,. (X))

e=0

= { [exp (e, (X)) + exp (QWe, (X))]

y {80556&) exp (e, (%)) + vey (%) exp (e, (%)) X aavgge(x)
— ey (%) exp (e (x)) [exp (Qey (%)) X aaveaye(x) + exp (awe,, (x)) X a@wgg(x)} }

X [exp (@vey (x)) + exp (awe, (x))]

8”%(") X [exp (av(x)) exp (cw(x)) + av(x) exp (av(x)) exp (cw(x)) + exp (2av(x)) }

e=0

[exp (av(x)) + exp (aw(x))]”

8w‘aye(x) x av(x) exp (av(x)) exp (aw(x))

[exp (aw(x)) + exp (aw(x))]”
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The right fraction partial derivative looks similar:

9 we (X)exp (awe, (X))
e exp (aey, (X)) + exp (Qwe, (X))

e=0

= { [exp (awey (X)) + exp (qwe, (X))]

x [aw;e(x) exXp (QWey (X)) + Wey (%) exp (awe, (x)) X aawéiye(x)
— Wey (X) exp (awey (X)) [GXP (avey (x)) x aﬁ'veaye(x) + exp (Qwe, (%)) X aawge(x)} }

-2

X [exp (e, (X)) + exp (Qwe,, (x))]

aw};(x) X [exp (av(x)) exp (cw(x)) + aw(x) exp (av(x)) exp (cw(x)) + exp (2aw(x)) }

e=0

[exp (aw(x)) + exp (aw(x))]?
Ovege(x) x aw(x) exp (aw(x)) exp (aw(x))
[exp (av(x)) + exp (aw(x)))”

avsy (x)

Now, we combine terms and group by those multiplied to —2—— and O

dve o ().

6‘“ () . First,

+

ey (X) " lexp (av(x)) exp (aw(x)) + exp (2av(x))
Oc [exp (av(x)) + exp (aw(x))]”
av(x) exp (av(x)) exp (aw(x)) — aw(x) exp (av(x)) exp (aw (X))l

[exp (aw(x)) + exp (aw(x))]”

auegg(x) x lAl(x) + aXi (%) A2 (x) [v(x) — w(x)]l

(1+7) / yhy x50y 1,0)p(y[x, 1,t)dy x lMX) +adi (%) Az (x) [v(x) — w(X)]] :

Owey, (x)
e .

Next,

dwe, (%) [exp (av(x)) exp (aw(x)) + exp (2aw(x))
De [exp (av(x)) + exp (aw(x))]

aw(x) exp (aw(x)) exp (aw(x)) — av(x) exp (av(x ))exp(aw(X))l
)+

[exp (av(x)) + exp (aw(x))]”

8w3,€(x) X [Az(x) + ar (x) A2 (x) [w(x) — v(x)]]

[1 + pelft(x7 0)] / thlX,S,T(ylxv 0, t)p(y|x, 0, t)dy |ﬁ‘2 (X> + a)‘l(x)/\Q (X) [w(x) - U(X)] ‘| .

Yy

We plug both of these components that make up the partial derivative evaluated at e = 0 back into
our integral:
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Vhy|x,S,T92 :/(1 + 7) / th|X,S,T(y|X’ 1’ t)p(y|x, 17 t)dy
X [ A(x) + e (x)Ae(x%) [v(x) — wX)] | p(0]x)p(z)dz

+/[1+pel—t(xao)]/th|X,S,T(y|X707t)p(y‘xaoat)dy
x Y

X | Ag(x) + aX (x) A2 (x) [w(x) — v(x)] |p(0]x)p(x)dx.

Reorganizing terms and writing in expectation form, we get

Vi =(142)E 00 (A1) + s (X)2a(X) () ~ (X))}
X E[Yhy‘styT(Yp(, S, X, S=1,T = t]}
| g0(X) 1+ pea(X,0) {2aX) + ah (XDNa() [0(X) — o(X)])
X E[Y hy x.5.0(Y|X, $,T)[X, 8 = 0,T = t]} .

We finish by showing that this equals E[¢g, hy|x s 7| First, setting it up,

E[¢o, hyx,s,7] =(1 +7)E[go(X) {A1(X) + a1 (X)A2(X) [v(X) — w(X)]}
xE[(Y — (X, 1, 1)) hy x50 (YX, 5, T)|X, S =1,T = t]]
+ E[go(X) { A1 (X)v(X) + A (X)w(X)} Elhyx, 5,7 (YX, S, T)[X, S = 0]]
+ E[go(X) [1 + pe1—+(X, 0)] {A2(X) + aA(X)A2(X) [w(X) — v(X)]}
x E[(Y — u(X,0,1))hy x50 (YX, 5, T)|X, S =0,T =]
+ E[go(X)pu(X, 0, 1) {X2(X) + ari(X)A2(X) [w(X) — v(X)]}
X E[[l - T — e1—(X,0)] hyx.s.2(YX, 8, T)X, 5 = 0]].

Then, we use linearity of expectation to separate terms,

Efo,hy x,5.7] =(1+7)E [50(X) {21 (X) + ads (X) A (X) [o(X) — w(X)]}
X ElY hyx 570 (Y[X,8,T)|X,S =1,T = t]
— 1K, DE Ry x 50 (Y X, 8, T) X, 8§ = 1,T = 1]
+ E[go (X) {21 (X)v(X) + Ao (X)w(X)} Elhy x, 5,0 (V]X, S, T)[X, S = 0]
+ [ go(X) [1+ per-o(X, 0)] {22(X) + ks (X)a(X) [w(X) ~ v(X)]}
X E[Y hyx 7YX, 8,T)|X,S =0,T = t]
— (X, 0,t)E[hyx 5,7 (Y[X,5,T)X,S =0,T =t
+ E[go (X) (X, 0, 1) {Ao(X) + adi (X)ha(X) [w(X) — v(X)]}
X E[[1 =T —e1-+(X,0)] hyx,s,7(YX,S,T)|X, S = 0]].

Now, we use the mean zero property of the score function to remove several of the terms,
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E[¢g, hyx,5,7] =(1+7)E [QO(X) {A(X) + aAi (X)A2(X) [v(X) — w(X)]}
X E[Y hyx.s7(V|X, 8, T)[X, 8 =1,T = t]}
+E [go(X) [1+ pe1—+(X, 0)] {A2(X) + a1 (X) A2 (X) [w(X) — v(X)]}
X EY by x5, (Y X, S, T)|X, 5 = 0,7 = 1].

This confirms that V. ¢ .02 = E[¢s,hy|x s 7] The verification of the candidate EIF for 05 is
complete.

C.3 EIF for 0(t, p, v, @)

Having derived and validated the candidate EIFs for 6; and 65, we simply use the linearity property
of EIFs to write the full form the EIF for 6(¢, p, 7y, @) as:

SI(T = t)
er(X, 1)
150143 PA(X) + e (X)Aa(X) [o(X) — w(X)])
x{qofﬁLXﬂY—MXwadxﬁ

L8] P (X)o(X) + Aa(X)u(X)}
L 8] (a(X) + @ (A(X) [w(X) — w(X)]}

6(Z3t,p,7,0) = Y = u(X, 10| + (X, 1)+

" {efg)(?()) Y = (X, 0,8)] [1 + per (X, 0)]

+pu(X,0,8) [l —(T) — e1-+(X, 0)] }

- a(t,P»%a)-

D (In)compatible p and ~

In Remark [T} we briefly discussed the reasoning behind the Lemma [I] and Theorem [T| conditions
that v(x,t, —y) < w(x,t,p) and w(x,t, —p) < v(x,t,v). We referred to (p, ) pairs that lead to
violations in these conditions as incompatible, which we visually represented as one of the four
regions in our breakdown frontier plots. In this Appendix section, we aim to provide more context on
this concept and discuss how we estimate the (in)compatibility of a given (p,~y) in practice.

D.1 Further Discussion of Incompatibility
We define a pair (p, ) as incompatible if they do not sufficiently relax the assumptions to allow
overlap between the bounds produced by  and p. We elaborate on this idea in this subsection.

Incompatibility stems from the fact that there must be some source of unmeasured confounding
affecting either study selection or treatment assignment if the observed potential outcomes in the
experimental and observational studies are different. In other words, as discussed in Remark
if 3(x,t) such that |Ep[Y | X =x,5=1,T =t —-Ep[Y | X =x,5=0,T =t]| = A(t) > 0,
then Assumption[A6and/or Assumption[A5|must be violated.

Recall that in our partial identification framework

v(x,t,7y) = (1 +y)u(x,1,t), wx,t p):=e(x,0)u(x,0,t)+e1—¢(x,0)(1 + p)u(x,0,1),
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serve as two upper bounds on Ep[Y'(t) | X = x, S = 0]. Analogously, v(x, ¢, —) and w(x,t, —p)
serve as two lower bounds. In particular, we showed in the proof of Lemma [I]in Appendix that
Ep[Y(t) | X =x,5 =0] € [v(x,t,—7),v(x,t,7)], and
Ep[Y(t) | X =x,5 =0] € [w(x,t,—p), w(x,t,p)].

We then took the max over the two lower bounds and the min over the two upper bounds to get the

tightest possible bounds on Ep[Y (t) | X = x,S = 0] that we subsequently use to upper bound
Ep[Y(t) | X = x.
Consider the case that p and ~y are both set to zero and A(¢) > 0. In this case, we have that the two
intervals bounding Ep[Y (¢) | X = x,5 = 0] are
EplY(t) | X =%,5 =0] € [u(x,t,—0),v(x,t,0)] = u(x,1,t), and
Ep[Y(t) | X =x,5 =0] € [w(x,t,—0), w(x,t,0)] = u(x,0,t).

But, as we established earlier, if A(t) > 0, then u(x, 1,t) # p(x,0,t). This leads to a contradiction
as the bounds based on p = 0 and v = 0 assume no differences in potential outcomes across studies
or treatment groups. But if u(x, 1,t) # u(x,0,t) is observed, then some violation of assumptions
must be present. Hence, (p,~) = (0, 0) is incompatible with the data.

1

Yy bounds
p bounds

=0]

X, S

~

ELY(t)]X

X

Figure 4: Bounds on Ep[Y(t) | X = x,§ = 0] from [v(x,t,—0),v(x,t0)] and
[’U)(X, t, _0)7 w(x7 L, 0)] when :U’(X7 11 t) 7é /J“(Xv 07 t)

Towards building up an understanding through a series of visuals, we depict this scenario in a
toy example using Figure | where p(x,1,t) # pu(x,0,t). Here, it is clear that the bounds on
Ep[Y(t) | X = x,S = 0] do not intersect—leading us to call this an incompatible choice for p
and 7. Conversely, consider the scenario where we keep p = 0 but we increase -y sufficiently so
that v(x,t, —y) = (1 — y)u(x, 1,t) < w(x,t,0) = pu(x,0,t). This scenario is depicted in Figure|[3]
Here, we see that the bounds on Ep[Y (t) | X = x,.5 = 0] do intersect—leading us to call this
choice of p and v a compatible pair of parameters.

Connecting this back to the conditions in Lemma [I] and Theorem [T} in Figure ] we violated the
condition that v(x,t, —y) < w(x,t,p) whereas in Figure [5| both v(x,t,—y) < w(x,t,p) and
’LU(X, ta _p) S U(Xv ta ,)/)

When v and p are both greater than zero, they can still be incompatible if either v(x, ¢, —y) >
w(x,t, p) or w(x,t,—p) > v(x,t,7). Continuing with our example, consider the case depicted in
Figure [6[(a) where the lower bound on the v bound is larger than the upper bound on the p bound,
ie. v(x,t,—v) > w(x,t, p). This is an example where A(¢) > 0 and the values of p and +y are not
sufficiently large to explain this discrepency. Conversely, in Figure[6(b), the values of p and  are
increased, making v(x, t, —y) < w(X,t, p), and leading to compatible parameter values. In this plot,
we also show how we take the max of the two lower bounds and the min of the two upper bounds to
get the tightest bounds—corresponding to how we constructed the tightest bounds in Lemma|[T]and
Theorem[1]

D.2 Estimating Incompatibility

In practice, we do not observe the true values of v(x, t, v)w(x, t, p) and w(x, t, p) and must estimate
them from data. As a result, determining whether a given (p, 7y) pair is incompatible must account for
estimation uncertainty.
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Figure 5: Bounds on Ep[Y(t) | X = x,§ = 0] from [v(x,t,—7),v(x,t,7)] and
[w(x,t,—0),w(x,t,0)] when u(x,1,t) # p(x,0,t) and v is large enough that v(x,t, —v) <
w(x,t,0).
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Figure 6: Bounds on Ep[Y(t) | X = x,§ = 0] from [v(x,t,—7),v(x,t,7)] and

[w(x,t,—p), w(x,t, p)] when u(x,1,t) # u(x,0,t). In (a), p and + are not large enough for
the bounds to intersect. Whereas, in (b), p and ~ are made large enough for the bounds to intersect.

Ideally, for any given (p, ), we would test at each (x,t) whether the estimated bounds based on
p and ~y intersect, indicating compatibility. However, this is intractable with finite samples in high-
dimensional covariate spaces. To address this challenge, we assess compatibility at the level of the
target estimand, rather than at individual covariate profiles. Specifically, we evaluate whether the
bounds intersect on average over X, separately for each treatment arm ¢ € {0, 1}. When focusing
on the CATE, this expectation is taken over the subpopulation of interest, whereas for the ATE, this
expectation is taken over the full population.

As shown in the proof of Lemmal[l]in Appendix the condition max{v(x,t, —v), w(x,t,—p)} <
min{v(x,t,v), w(x,t,p)} is equivalent to checking that both v(x,t,—v) < w(x,t,p) and
w(x,t,—p) < v(x,t,7). Both conditions ensure that the p and + intervals overlap. To make
this condition testable, we assess whether the average size of the overlap region is nonnega-
tive. Specifically, we check whether the expected difference of min{v(x,t,7), w(x,t,p)} —
max{v(x,t,—y), w(x,t,—p)} > 0. We define G(t) = E[min{v(x,t,7v),w(x,t,p)} —
max{v(x,t,—7), w(x,t, —p)}]. This expectation is taken over the relevant covariate distribution
and is evaluated separately for each treatment arm ¢ € {0, 1}.

Because generating resamples that both satisfy the null and re-estimate the nuisance functions is
non-trivial, we adopt a simplified resampling approach that treats these functions as fixed. We
describe the full procedure below and return to its limitations at the end of this section.

For each treatment arm ¢, we conduct a one-sided hypothesis test where the null hypothesis is that
the average size of the overlap region is nonnegative, Hy : G(t) > 0, and the alternative is that
the average size is negative, H 4 : G(t) < 0. Rejecting the null corresponds to concluding that the
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specified parameter pair is incompatible. Given a dataset D,,, parameter values (p’,y") and treatment
arm ¢’, we construct a resampling-based test as follows. We first compute the observed test statistic
as the sample mean of overlap sizes:

1 n
Tops = — Z min{v(xi, t/a ’}/)7 U)(Xi, tlv Pl)} - maX{U(Xiv t/a _7/)5 U)(XZ‘7 tlv _pl)}
n
i=1

To simulate the null distribution where G(¢') = 0, we subtract T, from each individual overlap
value, producing a centered dataset that has mean zero. We denote these centered values as 0; =
min{v(x;, t',v"), w(x;, t', p')} — max{v(x;, ', =), w(x;,t', —p')} — Tops. We then perform R
resampling iterations. In each iteration, r, we randomly draw n values with replacement from
the centered overlap size set {0;,...,0,}, and compute the mean of the resampled values 7, =
% > jeu, 0> where J;. is the set of indices sampled in iteration 7. Finally, we compute the one-sided p-
value as the proportion of 7;. values that are greater than or equal to Tpps: p = % Zle 0T, > Tops)-
We write this testing procedure as an algorithm in Appendix[E.3] We also note two primary limitations
of this approach.

First, as stated above, we do not test this condition at each (x, ¢) pair. This is primarily a practical
limitation, as checking compatibility pointwise across the full covariate-treatment domain is infeasible
in high dimensions or with continuous covariates. However, in settings with only discrete covariates
and sufficiently large datasets, such a pointwise test could be applied to each covariate profile.

Second, as briefly mentioned above, our resampling-based procedure operates on estimated overlap
values rather than resampling at the dataset level. This differs from a formal bootstrap test, which
would involve resampling full observations and re-estimating the functions e;(x, 0) and p(x, s,t)
each time, propagating the uncertainty in estimating these quantities. In our setting it is extremely
difficult to generate new datasets that satisfy the null G(¢') = 0 while preserving the original data
generation process. We therefore center the empirical distribution of the overlap values to satisfy the
null and perform hypothesis testing relative to that.

While our approach captures part of the sampling uncertainty—namely, the variance in the derived
overlap values—it treats the estimates of e;(x,0) and u(x, s,t) for s € {0, 1} as fixed. Ignoring
the uncertainty in these nuisance functions understates the true variability of G(¢). Consequently,
the reference distribution of G(t) under the null is too narrow, causing the test to reject the null,
and classify (p,~y) pairs as incompatible, more often than a fully bootstrap-based procedure that
re-estimates e;(x,0) and p(x, s,t) in every resample. For our sensitivity analysis framework, this
potential for an inflated incompatible region is an acceptable (albeit not desirable) behavior. We
prefer to label (p, ) pairs as incompatible that may, in fact, be compatible rather than risk retaining
ones that do not sufficiently explain differences between the study types. Nevertheless, developing a
testing scheme that fully accounts for nuisance-estimation uncertainty is an important direction for
future work and would strengthen the overall framework.

E Algorithms

In this section, we include algorithms for the various components of our paper. We begin with the
bias corrected estimator from Section [5] followed be procedures for constructing breakdown frontier
plots, like those in Section[6] and for estimating the (in)compatibility of parameter pairs, described
in Appendix D] For each algorithm, we also discuss hyperparameter choice considerations and note
relevant computational considerations.

E.1 Bias corrected Estimator

Algorithm [T] outlines the cross-fitting procedure used to implement the bias-corrected estimators
defined in Section[5] When estimating population-level ATE, the algorithm is applied to the full
dataset. For CATE estimation, the dataset is first filtered to include only those samples whose
covariate profiles X; fall within the subgroup of interest.

There are two hyperparameters beyond our sensitivity parameters p and v, namely « and the number
of folds k. Larger values of o will more closely approximate the hard minimum and maximum
operators. However, especially in small sample sizes, large o values can lead to instability in the
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bias-correction term. This occurs in regions where the maximum or minimum function switches
between its arguments, as the Boltzmann operator exhibits steep gradients at these transitions. For
this paper, we use a moderate value of a = 10, which balances stability and approximation quality.
This choice may be increased in larger datasets.

The value of k controls the number of splits to use for the cross-fitting procedure. Larger k values
provide more training data per fold but also increase computational demand. A suitable choice should
consider the type of model used to estimate the nuisance functions, the dataset size, and the available
computational resources.

Lastly, the choice of model used to estimate the nuisance functions /() is another implicit hyper-
parameter. Flexible machine learning models are commonly used, though choices should consider
sample size and computational constraints.

In Algorithm we omit the specifics of calculating the uncentered EIF value éi,t/7 o o fOragiven
sample 4, treatment indicator ¢ and parameter values p’, " and o given the length and complexity
of the term. We include that full form in Equation E where we dropped the arguments from AU ),

ng ), W), and 0@ for brevity, but note that they correspond to those functions evaluated at x; and
parameter values (¢', p’, 7', o).

. s I(t: = t')
¢i,t/, RN = 17

P égf)(xi,l) [
+si(1+9) {07 + o APAP [60) - 00|}

I(t; =) () NP
X N yi — 070 (x5, 1,8) | g5 (x4)

{QE?)(Xi,l)Qy)(Xi) { }

+(1—s) {Xﬁj)ﬁ(j) + ng)w@} (8)

+ (1= 5) {AY +aAPAP [0 - 50)] }

Yi — ,a(]) (X’ia 17 t/):l + Si ,[L(]) (Xiv 1a t/)

I(t; =) 20) / e
X Q=" \y; — AV (x4,0,t) | |1+ p" - &7, (x4,0)
{ég)(xiao) [ } [ o }

+ 0 19 (x;,0,t) {]I(ti —1-t)—é?, (xi,O)} }

E.2 Breakdown Fontier Plot

Algorithm 2] outlines the procedure for constructing a breakdown frontier plot like those in Section 6}
As with the algorithm for the bias-corrected estimator, when estimating population-level ATE, the
algorithm is applied to the full dataset. Whereas, for CATE estimation, the dataset is first filtered to
include only those samples whose covariate profiles X; fall within the subgroup of interest.

The hyperparameters used are as follows: « and £ are inputs to the bias-corrected estimator, R
specifies the number of resampling iterations in the incompatibility test, and ¢ denotes the confidence
level used throughout the algorithm. The most critical design choice is the grid of (p,~y) values.
Large grids that include many (p, ) pairs yield more detailed breakdown frontiers, but increase
computational cost. A reasonable approach is to select maximum values of p and « based on
what a domain expert deems plausible, and then construct a grid of evenly spaced pairs of (p, )
between (0, 0) and those maximum values. In our experiments, we consistently cap p and y at 0.2,
corresponding to a 20% relative violation. While this choice reflects a substantial but interpretable
level of assumption violation, selecting a plausible range involves subjective judgment based on the
context and domain knowledge.
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Algorithm 2 Breakdown Frontier Plot Construction

Require: Dataset D,,, grid of (p,~) values, confidence level ¢ € (0,1), Boltzmann smoothing
parameter « > 0, number of cross-fitting folds &, number of resampling iterations R
Ensure: Heatmap assigning each (p, ) pair to one of four regions
1: Estimate nuisance functions once via cross-fitting (see Algorithm [I] Steps 1-7) to obtain

ﬁ = (97 éta /-Aj/)
2: for each (p, ) in the grid do
3: Compute bias-corrected bounds (6%, 0%¢;) and variances (6% 5,67 ) using Algorithm
4: Construct 100(1—c)% confidence intervals:
“be OLB  pe oLB
Clrp = {HbLB — Z1-cj2" i 07% + Z1-c/2" \/ﬁ}
fbe OUB  jbe ouUB
Clyp = [ebUB —Z1-cj2" n 05 + Z1—cj2- \/ﬁ]

Run incompatibility test (Algorithm[3) for t = 0 and ¢ = 1 using R resamples
if p-value < c for either ¢ then
Assign region: Incompatible
else if both bounds are strictly > 0 or strictly < 0, and both intervals exclude O then
9: Assign region: Conclusive

A

10: else if both point estimates have the same sign, but at least one CI includes O then
11: Assign region: Tentative

12: else if point estimates have opposite signs then

13: Assign region: Inconclusive

14: end if

15: end for

16: Render heatmap over the grid with regions color-coded

E.3 (In)compatible p and ~ Test

Finally, we include include Algorithm [3|to outline the steps of the (in)compatibility test. We refer to
Appendix [D|for a detailed explanation and discussion of this procedure.

Algorithm 3 Resampling-based Test for Parameter Compatibility

Require: Dataset D,, = {(X;,T;, Si, Y;)}™,, parameter values (p’,~’), treatment arm ¢, number
of resamples R
Ensure: p-value for testing Hy : G(¢') > 0vs. Hy : G(t') <0
1: Compute observed test statistic:

n

1
Ty = = 3 min{o(Xe,#',7), w(X, ¥ p')} — maxf{o(X, ', —), w(Xi ¥, —)}]
n

i=1
2: Center overlap values to simulate null:

0; = min{v(X;, t',7"), w(X;, ', p') }—max{v(X;, ', =), w(X;, t', —p') }—Tops fori=1,...

3: for k =1to Rdo
4: Sample n indices J, = {j1, ..., jn} with replacement from {1,...,n}
5: Compute resampled statistic:

1
TT:EZOj

JE€Jr
6: end for
7: Compute p-value:

R
1
p=7> 1T > T
r=1

8: return p
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F Simulation Setup
Each synthetic dataset in Section [6.1]is composed of 2500 i.i.d. samples where for each sample i, we
start by generating three observable covariates and one unobserved confounder,
X1, Xig, Xiz ~ N(1, 1),
U ~N(1,1).
We then define C; = (1 — )X, 1 + SU;, where (3 is a hyperparameter passed to the data generating
process (DGP). This parameter controls the level of unobserved confounding, with larger values of 5

corresponding to more unobserved confounding. Using this, we generate the study and treatment
indicators as

S; ~ Bernoulli (expit(fCi)), and
T; ~ Bernoulli(Si x 0.5+ (1-5;) % expit(C’,»)),

where expit is the logistic sigmoid: expit(x) =
are then generated as

H%' The potential outcomes and observed outcome
Y:(0) = 100 + X o,
Y;(l) = }/2(0) +12C; — 10Xi,3 + 7, and
Y; =T x Yi(1) + (1 = T;) x Y;(0) + ¢,
where €; ~ A(0,1) and 7 is another hyperparameter passed to the DGP that controls the size of the
constant treatment effect. Therefore, a larger 7 corresponds to a larger treatment effect.
There are five different breakdown frontier plots in Section[6.1] Each plot is generated from a different
dataset that is created from the above DGP by varying the two hyperparameters, 5 and 7. In particular,
* Base: =04 and 7 =5.
e Larger7: f =04 and 7 = 8.
e Smaller 7: § = 0.4and 7 = 2.
e LargerU: f =0.6 and 7 = 5.
e Smaller U: f =0.2 and 7 = 5.
Note that in the plots, "Larger U" and "Smaller U" refer to higher a lower levels of unobserved
confounding induced by the hyperparameter (3, not to the values of the unobserved confounder U
itself. With full knowledge of the DGP, more accurate labels would be "Larger 8" and "Smaller 3".

But given that the full DGP was not introduced in the main text, we use "Larger U" and "Smaller U"
for simplicity and accessibility.

G Additional Simulation Results

We extend the analysis in Section[6.1] by presenting breakdown frontier plots under a variety of data
generating scenarios. Specifically, we highlight
» Sample size performance at n = 250, 500, 1000, 5000, and 10000.

* Sensitivity to the o parameter in the Boltzmann estimator, examining how its effects vary
with sample size.

* Robustness to moderate violations of model assumptions.
Sample Size Figure [/| presents breakdown frontier plots across these sample sizes. The DGP
corresponds to the Base case described in Section[H with 8 = 0.4 and 7 = 5.

The results show the instability of the estimator at smaller sample sizes, reflected in wider and
inconsistent tentative regions. However, the general takeaways from the breakdown frontier plot
remain consistent, and estimator performance stabilizes quickly as the sample size increases.
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Figure 7: Breakdown frontier plots across various sample sizes (n). Figure titles indicate the number
of samples in the dataset. All plots are generated under the Base DGP settings. Conclusive and
tentative regions are distinguished using 95% confidence intervals, computed from the sample
variance of the efficient influence function.

« values Figure 8] presents breakdown frontier plots across different sample sizes and choices of the
« parameter in the Boltzmann estimator. Again, the DGP corresponds to the Base case described in

Section[] with 8 = 0.4 and 7 = 5.

The results show that larger values of « tend to produce wider conclusive regions, which is consistent
with the Boltzmann operator more closely approximating the max and min operators as « increases.
The estimates stabilize for o > 10, suggesting this as a generally reliable default choice.

Model misspecification To evaluate the robustness of our methodology when model assumptions are
violated, we consider a nonlinear DGP but continue to estimate the nuisance functions using linear
models. Specifically, we modify the data-generating process in Section ?? as follows:

X1, Xi2,Xi3~N(0.5,1.5),
U; ~ N(0.5,1.5),
Ci=1—-p0)X;1 %24 BU; %2 — 1,

S; ~ Bernoulli (expit(—C’i)) , and

ﬂrvBammn(Six054-u-&)xemchg)ng):100+Ag2**z

Y;(l) = Y;(O) — C,L +Xi,3 * k2 4+ T, and
Yi=T; xY;(1)+ (1 —=T;) x Y;(0) + €, € ~N(0,1),

and, as before, we vary § and 7 to generate five variants of this DGP.

Figure 9] displays breakdown frontier plots under this misspecified setting. As expected, the fron-
tiers are less stable near the boundaries, indicating increased noise due to model misspecification.
Nonetheless, the plots still recover informative structure as they delineate regions of compatible and
incompatible confounding levels and preserve the qualitative shape of the conclusive and inconclu-
sive regions. This demonstrates that the breakdown frontier can remain informative even when the
nuisance models are misspecified.

Figure [I0] presents the same designs but with nuisance functions estimated using nonparametric
machine learning models (specifically, random forests). In this case, the boundaries are noticeably
more stable and the conclusive region expands, consistent with improved approximation of the
nonlinear nuisance components. These results suggest that flexible models are advantageous when
model assumptions are uncertain and sufficient sample size is available. However, when the analyst
is willing to impose parametric structure and sample sizes are limited, parametric models may be
preferred due to improved efficiency.

In summary, our findings highlight that the breakdown frontier approach is robust to moderate
misspecification and that the choice of nuisance estimator provides a practical trade-off between
robustness and efficiency.
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Figure 8: Breakdown frontier plots across various sample sizes (n) and « values. Subplot captions
indicate the number of samples and individual figure titles indicate the value of a used to generate
that plot. All plots are generated under the Base DGP settings. Conclusive and tentative regions are
distinguished using 95% confidence intervals, computed from the sample variance of the efficient
influence function.

H Experimental Details

This section provides implementation specifics for the results presented in Section[6 We outline the
hyperparameters and other relevant experimental settings used to generate each of the breakdown
frontier plots shown in Section[6] Appendix [E|includes the algorithm for constructing breakdown
frontier plots (Algorithm [2), as well as algorithms for the double machine learning estimator (Al-
gorithm|T) and the procedure for determining (in)compatible sensitivity parameters (Algorithm 3).
These components together form the full procedure used to construct a breakdown frontier plot.

All experiments were conducted in Python. We reference relevant packages and classes were neces-
sary. The source code can be found in our GitHub repo: https://github.com/harsh-parikh/
Partial-Identification-Data-Fusion.

Datasets. For details on the data-generating process used to create the synthetic datasets in Sec-
tion[6.1] see Appendix [F} For the Project STAR dataset, the outcome of interest was defined as the
average score across standardized tests on math, reading, language, and social science. The objective
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Figure 10: Breakdown frontier plots for various non-linear synthetic datasets generated using
nonparametric models to estimate the nuisance functions. Figure titles indicate the relation between
the data used to generate that plot to the data used to generate the Base plot. Conclusive and tentative
regions are distinguished using 95% confidence intervals, computed from the sample variance of the

efficient influence function.

was to assess the effect of small class sizes from kindergarten through third grade on this outcome.
Measured covariates included gender, race, and age at the start of kindergarten.

For the ATE plot in Figure[3[a), the analysis was conducted on the full dataset. For the CATE plots in
Figure 3{b), we restricted the dataset to two subgroups: students who began kindergarten before age
six, and students who were at least six years old at the start of kindergarten.

Further details on the Project STAR dataset, including the raw dataset files and cleaning scripts, can
be found in the accompanying code.

Hyperparameter Settings. Several hyperparameters are held constant across all breakdown frontier
plots. Specifically, the following settings are used throughout:

* Grid of (p,~): We construct a grid over the (p,~y) parameter space by taking all pairwise
combinations of values sampled uniformly from the intervals [0,0.2]. Specifically, we

define:
~ € linspace(0,0.2,50), p € linspace(0, 0.2, 50)

where linspace(a, b, n) denotes a sequence of n evenly spaced values from a to b, inclusive.
The resulting grid contains 50 x 50 = 2500 (p, 7y) pairs.

* Confidence level c: 0.95
* Boltzmann smoothing parameter o:: 10
* Models used to estimate the nuisance functions:
- gﬁj) (x): sklearn.linear_model.LogisticRegressionCV(n_jobs=1)
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- égj) (x,5): sklearn.linear_model.LogisticRegressionCV(n_jobs=1)

- Y (x,s,t): sklearn.linear_model.RidgeCV()

The remaining hyperparameters—namely the number of cross-fitting folds to use for the double
machine learning estimators, k, and the number of resampling iterations to use for the (in)compatible
test, R—are set according to the data type. For all breakdown frontier plots based on simulated
(Section[6.1)), we use k = 2 and R = 100. For plots based on the Project STAR data (Section|[6.2),
we use k = 5 and R = 1000. The larger values for the Project STAR dataset were chosen to generate
more precise results.

Uncertainty Estimation. As discussed at the end of Section|5|and in the double machine learning
estimator Algorithm|I] the variance of the bounds can be estimated either using the sample variance
of the estimated efficient influence functions (EIF) or through resampling methods. For the simulated
datasets, we used the sample variance of the EIFs. For the Project STAR dataset, however, we used a
bootstrap resampling procedure with 1000 iterations.

The bootstrap approach was chosen for Project STAR due to the relatively small dataset size,
specifically in the observational study arm, and the extreme nuisance function estimates it produced—
which led to large and unstable variance estimates when relying solely on the EIFs. In contrast, the
bootstrap procedure produced more consistent and stable variance estimates.

Computational Setting and Details. All experiments were run on a Slurm-managed cluster using
VMware virtual machines, each equipped with an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz.
No GPU or specialized hardware was used.

For the simulated datasets, we constructed breakdown frontier results by submitting a single Slurm
job with 1 CPU core and 32 GB of RAM. Each breakdown frontier plot dataset was generated in a
just a few minutes, and compatible region tests (Algorithm [3) were run within the same job.

For the Project STAR dataset, where we estimated uncertainty using 1000 bootstrap resamples, we
distributed the work across 20 Slurm jobs, each allocated the same compute resources as the simulated
dataset setup. Each job ran 50 iterations with distinct random seeds. The compatible region tests for
Project STAR were run in a separate Slurm job using the same resources.

Each job completed in approximately 1-2 minutes, and the overall compute cost was low. The primary
limiting factor was the number of bootstrap iterations. All scripts can be run on a local machine with
sufficient memory to store the breakdown frontier grids.
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Algorithm 1 Bias-corrected estimators for lower and upper bounds

Require: Dataset D,, with n samples, sensitivity parameters p,y > 0, Boltzmann operator hyperpa-
rameter « > 0, number of folds k € IN, with (2 < k < n).

1: Split data into & folds {&; };?:1, where &; is the set of indices for the samples in the hold-out set
for fold j, and 7; = {1,...,n} \ &, is the corresponding training set indices.

2. forj=1,...,kdo

()

3: Estimate the set of nuisance function, /1) = (§\4), &,”’, (7)), using training data 7;:
4: 39 (x): study propensity function
5: éff )(x7 s): treatment propensity functions for s € {0, 1}
6: [19)(x, s,t): expected outcome functions for (s, t) € {0,1}>
7: foric &; do
8: for (t/, p/a ’y/a O/) € {(1; =P =" a)? (07 P75 _a)v (]—7 P57 —Oé), (07 —P, = O‘)} do
9: Calculate the following values at x;:
09 (i, 9') = (144 (i, 1, 1),
@) (i, 1, pf) = &) (. 0)A9) (6,0.8) + (1= &7 (3,0)) (1 + )il (x,0,),
xgj)(xht/vp/?’}/aa,) = N exp(alﬁ(J)(Xi’t/’VI,)\)' )
exp(a/0\9) (x;,t,7")) + exp(a/w9) (x4, ', p'))
X;j)(xi,tlvp/?’}/aa/) = 7 exp(a/w(j)(X“t/’pl})» .
exp(a/9) (x;,', ")) + exp(a’w ) (x;, 1, p'))
10: Compute and store the plug-in term value, b; ¢/ .0 = 93 (x:) 0 (x:,1,8) +
g(()]) (Xl) {5\5]) (Xi7 tlv p/a ’Y/a O/)@(J) (Xia t/a ’}/) + ng) (Xi7 t/7 Pl7 ’y/a 0/)@(]) (Xi7 t/7 p/)}
11: Compute and store the (uncentered) EIF value ¢; 1/, .o (see Equation .
12: end for
13: end for
14: end for

15: Compute the lower and upper bound plug-in estimates:

N . 1 N ~ . ~
plugin AN plugin AN
9LB (pa v & 77) - ﬁ E bl}lv—p,—%a - bivomm—a’ HUB (pa v & 77) = bi717Pa’Y7—(¥ - biyo»—/’»—%ot'
7

16: Compute and store the lower and upper bound (centered) EIF values for each unit ¢:

~ ~ ~ ~lugi R
d)i,LB,p,'y,oz - (¢i,1,7p,7'y,o¢ - ¢i,0,p,'y,7a) - giggm(P»% Q; 77),
~ ~ ~ o luai .

i, UB.py,0 = (d’i,l,pm—a - ¢i70,—p,—%a) - Q@Jggm(ﬂ%am)-

17: Compute the lower and upper bound bias corrected estimates:
1 n
Abo Al . .
0is(p, v ) =07 57" (p v, i) + > biLBpras
i

R N 1 <A -
. ~ l ~
05 (0. 05 ) =055 (07, 007) + — D " divBpva
7

18: Compute bound variance estimates via the sample variance of the EIFs:

1 e~ 1 o= -~ 2
~2
01 == E ®i,LB,pya — = E ®j.LB.pyal
n - n X
? J
n

1 - 1 = - 2
~2 o
ouB = § [¢i,UB,p,7,a T n § :¢j,UB,pma} .
J

?

19: return 0% (p, v, s 0), 05 (p, v, a; 1)), 62 5, 6% .
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