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ABSTRACT

We propose a simple yet novel data augmentation method for general data modal-
ities based on energy-based modeling and principles from information geometry.
Unlike most existing generative models, which rely on learning latent represen-
tations with black-box models, our proposed framework enables constructing a
geometrically aware latent space that depends on the structure of the data itself,
which further supports efficient and explicit encoding and decoding procedures.
We then present and discuss how to design latent spaces that will subsequently
control the augmentation with the proposed algorithm. Empirical results demon-
strate that our data augmentation method achieves competitive downstream task
performance compared to other baselines, while offering fine-grained controlla-
bility that is lacking in other baselines.

1 INTRODUCTION

Data augmentation has advanced considerably in recent years, driven largely by the increasing use
of generative models (Kingma & Welling, 2014; Chadebec et al., 2022; Antoniou, 2017; Trabucco
et al., 2024) to meet the demand for larger and more diverse datasets (Feng et al., 2021; Wong et al.,
2016). Beyond traditional domains such as images, these methods have been extended to a wide
range of modalities. Despite their promise, however, generative-model-based augmentation faces
several fundamental challenges. First, data augmentation is most valuable when training data is
scarce, yet in such cases, we typically lack a pre-trained foundational model for the target domain.
This creates a paradox: before we can augment the data, we must first train a generative model—
reintroducing the very problem of limited data. Second, even when suitable foundational models are
available, the computationally intensive nature of deep generative methods poses practical obstacles.
Since effective augmentation often requires generating data that is several times larger than the orig-
inal dataset, the cost of large-scale generation can quickly become prohibitive. Third, augmenting
data with generative models raises concerns about their interpretability and controllability (Guidotti
et al., 2018). Consequently, even when these models perform well, the lack of understanding of the
underlying transformations of the augmented data makes it difficult to control the generated outputs,
which poses a significant risk in the case of high-stakes scenarios (Rudin, 2019).

In this work, we propose a new data augmentation framework that addresses the challenges out-
lined above by providing a learning-free, efficient, and controllable algorithm applicable across
diverse data modalities. Our approach builds on the well-established theory of energy-based mod-
els (Xie et al., 2016), together with recent advances in log-linear models on partially ordered sets
(posets) (Sugiyama et al., 2016; 2017) and information geometry (Amari, 2016; Amari & Nagaoka,
2000; Ay et al., 2017). Conceptually, our framework resembles an autoencoder (Kingma & Welling,
2014). We begin by parametrizing data as discrete probability distributions on a curved statistical
manifold S. The data is then encoded into a chosen “latent space” B ⊆ S via forward projec-
tion. Within this latent space, simple augmentation procedures informed by the encoded data are
applied. Finally, the resulting “augmented representation” is backward projected to the local data
space D ⊆ S, yielding new augmented data. Because our approach combines the linearity of
projection with the nonlinearity induced by the curved structure of S, we describe it as a form of
pseudo-nonlinear data augmentation.

This design offers three key advantages. First, it is learning-free: the submanifold structure is con-
structed explicitly, allowing direct control over the properties of the augmented data without the
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need to train a generative model. Second, it is computationally efficient: both forward and back-
ward projections can be formulated as convex programs and solved with efficient first-order methods
such as gradient descent. Third, it provides controllability: leveraging prior knowledge about rela-
tionships among features, one can adjust the choice of S and the submanifold of projection to tailor
the statistical properties of the augmented data. Our contributions are summarized as follows:

• We propose a novel framework for modeling structured data (e.g., tensors) within a statistical
manifold using energy-based models. This framework captures the intrinsic geometry of data and
enables the design of geometry-aware algorithms.

• We develop the pseudo-nonlinear data augmentation algorithm under this framework. The method
is learning-free, efficient, and controllable, and it applies broadly across different data modali-
ties.

• We empirically validate the effectiveness of our approach, showing that it achieves competitive
or superior performance compared to both generative-model-based baselines (e.g., autoencoders)
and classical augmentation methods across multiple datasets and modalities.

2 RELATED WORK

2.1 DATA AUGMENTATION

Data augmentation has proven to be effective in enhancing deep learning training by increasing
dataset size, improving model robustness (Rebuffi et al., 2021), and introducing implicit regulariza-
tion (Hernández-Garcı́a & König, 2018). These techniques have been applied across various modal-
ities, including text (Shorten et al., 2021; Feng et al., 2021; Li et al., 2022a) and images (Shorten
& Khoshgoftaar, 2019; Mumuni & Mumuni, 2022; Wang et al., 2017). Although there are data
augmentation methods that do not rely on generative models (Maharana et al., 2022; Zhang et al.,
2018), these often depend on the knowledge of the underlying data generation mechanisms, which
are typically unknown for uncommon modalities. As a result, much of the recent progress in
data augmentation for general modalities has been driven by advancements in generative models,
such as autoencoders (Kingma & Welling, 2014; Chadebec et al., 2022), generative adversarial net-
works (Antoniou, 2017), as well as diffusion models (Trabucco et al., 2024). Despite the progress,
to date, there is no fully satisfactory solution for the two challenges (efficient and controllable)
mentioned for generative-model-based data augmentation. For example, the design of controllable
GANs is still evolving (Li et al., 2022b; She et al., 2021), and efficient flow-based models remain
an active area of research (Geng et al., 2025). Moreover, these methods remain largely limited to
specific domains, such as images, where classical data augmentation methods already exist.

2.2 DIMENSION REDUCTION AS DATA AUGMENTATION

Classical dimension reduction techniques, such as Principal Component Analysis (PCA) (Wold
et al., 1987) and Singular Value Decomposition (SVD) (Stewart, 1993), work by identifying the
optimal linear subspace that minimizes reconstruction error, typically through the orthogonal pro-
jection of data onto this subspace. These methods are straightforward, explicit, and also provide
valuable geometric insights. For instance, PCA highlights the principal directions that capture the
most variance in the data, uncovering important structural patterns.

However, one of the challenges in applying linear dimension reduction methods to data augmen-
tation is the inverse problem, where reconstructing the original data from the space of reduced di-
mension is highly non-trivial. While some studies have explored indirect approaches to using linear
dimension reduction for data augmentation (Abayomi-Alli et al., 2020; Sirakov et al., 2024), they
are often application-specific and hard to generalize, limiting their broader applicability.

The non-linear generalizations, often called manifold learning (Meilă & Zhang, 2024), offer an
alternative approach to dimension reduction. Popular methods like t-SNE (Hinton & Roweis, 2002;
Van der Maaten & Hinton, 2008), Isomap (Tenenbaum et al., 2000), and UMAP (McInnes et al.,
2018) are based on the manifold hypothesis, which suggests that high-dimensional data lie on a
lower-dimensional manifold within the ambient space. The goal is to uncover this manifold and
develop a smooth embedding that captures the intrinsic low-dimensional structure of the data.
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In theory, manifold learning avoids the inverse problem by aiming to recover the underlying low-
dimensional manifold of the data with near-zero information loss, making it conceptually appealing
for data augmentation. However, this is rarely achieved in practice (Han et al., 2022); hence, solving
the inverse problem is still necessary to generate realistic augmented data. Additionally, classical
manifold learning methods are often limited to providing fixed embeddings for training data and
cannot perform out-of-sample extensions (Duque et al., 2020), further limiting their ability to aug-
ment data. Recent approaches to address this limitation via either a more complicated algorithm
or learning-based methods (Coifman & Lafon, 2006; Williams & Seeger, 2000; Vladymyrov &
Carreira-Perpinán, 2013; Duque et al., 2020),

3 PRELIMINARY

3.1 DUALLY-FLATNESS IN INFORMATION GEOMETRY

Information geometry studies the structure of statistical manifolds S within the space of probability
distributions. In this paper, we are primarily concerned with the space of an exponential family
{pθ(x) | θ ∈ RD}, where each pθ denotes a probability density function parameterized by θ. We
focus on the key concept in this field, dually-flatness, in this preliminary, while directing readers to
Appendix A and Amari (2016) for more comprehensive details.

The starting point is the observation that the log-partition function ψ(θ) (also known as the cumulant
generating function in statistics and free energy in physics) of an exponential family with density pθ
is convex in the natural parameter θ ∈ RD. This convexity induces a natural coordinate system,
θ, on S, defining both the Riemannian metric g = ∇2ψ(θ) and the Bregman divergence (Bregman,
1967) Dψ(pθ, pθ′). With these structures, the manifold (S, g) is flat, meaning that any curve θ(t) =
at + b (where a, b ∈ RD are constants) is a geodesic and lies entirely within S. This flatness is
known as e-flatness, and the geodesics are referred to as e-geodesics or primal-geodesics.

The dual structure arises from the Legendre transform (Legendre, 1787), which generates the dual
function ψ∗(η), where η ∈ RD is the expectation parameter. This dual function is also convex,
giving rise to the expectation coordinate system η, the dual Riemannian metric g∗, and also the dual
Bregman divergence Dψ∗ which is the well-known Kullback-Leibler divergence DKL (Eq.(3)). The
corresponding flatness is termed m-flatness, with m-geodesics or dual-geodesics as its geodesics.

Remark 3.1. An e-flat (m-flat) sub-manifold can be defined by forcing linear constraints on the θ
coordinates (η coordinates) (Amari, 2016, Chapter 2).

Dually-flatness emerges from the interplay between these two structures. Specifically, for any point
(distribution) p in S, there is a unique point p∗ on an e-flat sub-manifold B ⊆ S that minimizes
the dual Bregman divergence Dψ∗(p, q) = DKL(p, q) (Amari, 2016, Theorem 1.5). This process,
known as the m-projection, can be efficiently solved via convex optimization (Appendix A.2). The
dual holds when switching e and m. Projection is a central tool in information geometry with
profound implications for understanding the geometry of S, which we will use later.

3.2 STATISTICAL MANIFOLD ON POSETS

A set Ω is a partially ordered set (poset) if it is equipped with a partial order “≤”, a relation
satisfying the following for all x, y, z ∈ Ω: 1.) x ≤ x (reflexivity); 2.) x ≤ y and y ≤ x implies
x = y (antisymmetry); 3.) x ≤ y and y ≤ z implies x ≤ z (transitivity). We focus on finite posets
Ω with a bottom element ⊥ such that ⊥ ≤ x for all x ∈ Ω.

Given such a poset Ω, consider a discrete random variable X with finite support Ω with its prob-
ability mass function p : Ω → R≥0, p(x) = Pr(X = x) for x ∈ Ω. For a discrete probability
distribution p over a poset Ω, the log-linear model on posets recursively defines θ : Ω → R as
log p(x) =:

∑
y≤x θ(y) for all x ∈ Ω (Sugiyama et al., 2017). Intuitively, one can think of θ(x)

for each x ∈ Ω as specifying the energy for x that correctly represents p(x), where the dependence
between θ’s on different elements depends on the poset structure. This model belongs to the ex-
ponential family, with θ corresponding to the natural parameters, except for θ(⊥) which coincides
with the partition function. Thus, all discrete probability distributions over Ω form a (|Ω| − 1)-
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dimensional dually-flat statistical manifold S := {p : Ω → R≥0 |
∑
x∈Ω p(x) = 1}, with dual

coordinate systems (θ, η) defined by the poset structure.

Prior studies (Sugiyama et al., 2017; 2018; Ghalamkari et al., 2024) have shown that log-linear
models on posets provide an effective way to represent data. In particular, by incorporating the un-
derlying geometric relationships among features, these models yield a meaningful curved statistical
space that captures the structure of the data more faithfully than flat representations.

4 PSUEDO-NONLINEAR DATA AUGMENTATION

We first present our proposed framework in Section 4.1 and the projection algorithms in Section 4.2,
then we combine and apply them to data augmentation in Section 4.3. Finally, we discuss two
important features of the proposed method regarding controllability and efficiency in Section 4.4.
Throughout this section, we will use positive tensors as our running example (Example 4.1).

4.1 LOG-LINEAR MODEL ON POSETS FRAMEWORK

Given a dataset {zi}ni=1, our proposed framework embeds the data into a statistical manifold S
by leveraging the log-linear model on posets, which provides a geometric structure induced by the
energy-based modeling. The process works in three steps: 1.) models each zi as a real-valued
poset; 2.) embeds the real-valued poset into the statistical manifold S by viewing it as a probability
distribution; 3.) computes the corresponding two coordinate representations using the log-linear
model on posets. See Figure 1 for an illustration. We now explain each step in detail below.

Structured Data
5
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−3 8.10.1

21

6

0

1
pθ(x)

Real-Valued Poset ∈ ΩR

Poset Ω ∑
=1

Probability Distribution pθ ∈ S

Embedding φ
(θ, η)

Design
Poset

Log-Linear
Model

Figure 1: Given structured data, we design a poset Ω that reflects the structure and embed the
resulting real-valued poset as a discrete probability distribution pθ(x) via a natural embedding φ into
the statistical manifold S. Then the log-linear model on posets provides the dually-flat coordinates
(θ, η) for pθ, which can be efficiently calculated (Section 3.2).

Real-Valued Poset. In the usual machine learning pipeline, inputs are often constrained to be
vectors or matrices, failing to deal with more complex data. In contrast, posets are flexible enough
to capture data with structures, including vectors, matrices, or tensors. For instance, given a D-
dimensional vector z ∈ RD (i.e., 1st-order tensor), the underlying data structure obtained by omitting
the feature associated with each entry (dimension) can be modeled by the poset Ω := [D] with
the partial order being the natural order between positive integers. Similarly, other common data
structures, such as matrices or tensors, can be treated in the same way. In general, any data structure
that admits a natural partial order can be modeled by a poset.

With the features associated with each entry in the data structure, we can define the real-valued poset,
which is a mapping from the poset Ω to the set of real numbers R such that each entry (element) of
the data structure (poset) x ∈ Ω is associated with a feature in R. We denote the set of real-valued
posets as ΩR. In the D-dimensional vector example, Ω = [D], each element x ∈ Ω corresponds to
one of the D dimensions. Associating a real number to each dimension clearly corresponds to an
element in ΩR.

Natural Embedding. To embed the data {zi ∈ ΩR}ni=1, which are now modeled as real-valued
posets, to the statistical manifold S which concerns with discrete probability distributions, we want
an embedding φ : ΩR → S such that

∑
x∈Ω(φ(zi))x = 1 for all zi with dim(S) = D − 1.1 In

1One can also consider the manifold of positive measures of dimension D and avoid the potential scaling
issues. For simplicity, we omit this trivial extension in the presentation.
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other words, φ(zi) gives a probability mass function of a discrete random variable over the poset,
where (φ(zi))x is the probability of sampling x ∈ Ω when sampled from φ(zi). From the perspec-
tive of energy-based modeling, φ is oftentimes naturally induced, e.g., for tabular frequency data.
Moreover, φ often admits a natural inverse φ−1, or an empirical approximation based on the data.
Dually-Flat Coordinates. From the log-linear model on posets introduced in Section 3.2, for each
z′i := φ(zi) ∈ S, we can associate the dually-flat coordinates θ(z′i) ∈ RD−1 and η(z′i) ∈ RD−1.
Such coordinate systems are with respect to the underlying poset structure Ω and give a non-trivial,
energy-based geometric structure of the dataset.
Example 4.1 (Positive tensor). A dth-order tensor T ∈ RI1×···×Id =:
RD is a multidimensional array with real entries for every index vector
v = (i1, . . . , id) ∈ [I1] × · · · × [Id] =: Ω where for each k, [Ik] :=
{1, 2, . . . , Ik} for a positive integer Ik. Tensors with entries all being
positive are called positive tensors, denoted as P ∈ RI1×···×Id

≥0 .

Figure 2: Natural poset
structure of 3rd-order
tensors in R3×3×3.

For tensors, a natural partial order “≤” one can impose on Ω between
two index vectors v = (i1, . . . , id), w = (j1, . . . , jd) is that v ≤ w if
and only if ik ≤ jk for all k = 1, . . . , d. Finally, for positive tensors,
a simple embedding φ : RI1×···×Id

≥0 → S where P ′ := φ(P ) : Ω → R≥0

such that P ′
v := Pv/

∑
w∈Ω Pw for all v ∈ Ω can be defined with a natural

empirical inverse (see Remark 4.3).

Example 4.1 illustrates how the framework applies to common data modalities. For example, a color
image can be represented as a 3rd-order tensor, where the first two dimensions correspond to height
and width and the third dimension encodes color channels. More generally, the log-linear model
on posets can represent a wide range of “structured data,” including 2-dimensional matrices (2nd-
order tensors), vector-valued data (1st-order tensors), or, more broadly, any data where relationships
among features exhibit a structured form. While this flexibility is a strength, it is also important to
clarify a structural limitation of the framework to delineate the boundaries of its applicability.
Remark 4.2. A key limitation of the framework is its reliance on a partial order over the index set.
This dependence makes it difficult to model invariances under index permutations, which introduces
bias into the model. However, a key advantage is that we can explicitly recognize how this bias
arises and, if desired, control it by adjusting the partial order. Moreover, when data inherently have
a partial (or total) order, as in directed graphs, images, or time series, this dependence is not a
limitation but a natural advantage.

4.2 FORWARD AND BACKWARD PROJECTION

z′1

w1

w2
w∗

z′2 z′∗

z′n S

B

wn

Backward

Generated Dataz1
z2

znz∗

φ−1

D

ΩR

φ

Forward

Figure 3: Illustration of forward and backward
projection. Here, wi: latent representation; of
the original data zi, obtained from forward pro-
jection to B; w∗: generated latent representa-
tion; Here, w∗ 7→ z′∗: backward projection to
D, obtained from the original data of the near-
est neighbor(s) of w∗ in the latent space.

We now demonstrate how to incorporate projec-
tion theory to conduct data augmentation. Our al-
gorithm mimics the architecture of autoencoders,
focusing on two of the central building blocks:
the encoder Enc(·) and the decoder Dec(·). First,
for the encoding step, we formally explain how
projection theory can be applied to perform di-
mension reduction and obtain compact represen-
tations within our framework. Next, for the de-
coding step, we introduce our proposed algo-
rithm, termed backward projection, which serves
as the inverse of dimension reduction. Figure 3
gives an intuitive geometric picture for our pro-
posed algorithms.
Forward Projection. The embedding from ΩR
to the statistical manifold S introduced in Sec-
tion 4.1 maintains the dimensionality. To achieve
dimension reduction, we leverage the projection
theory: by projecting z′i = φ(zi) onto a low-
dimensional flat sub-manifold called base sub-
manifold B ⊆ S with dim(B)≪ dim(S), we obtain the desired encoding Enc := ProjB ◦φ : ΩR →

5
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B that maps the data to a low-dimensional latent representation manifold. Note that the encoding
Enc(·) is smooth and well-defined as the projection is unique when B is flat and minimizing either
the primal or the dual Bregman divergence, depending on either B is e- or m-flat.

Backward Projection. One of the technical burdens is that the encoding Enc(·) is not invertible,
hence a perfect decoding Dec(·) is mathematically impossible, even when Enc(·) only involves a
simple linear projection in Euclidean space. Here, we propose a simple, geometrically intuitive, and
data-centric solution that aims to find the inverse of the projection with theoretical guarantees.

The high-level intuition is simple: we assume that similar data will result in similar projections.
Hence, given a point in the low-dimensional latent representation space, we try to “project it back”
to approximate the original dataset by exploiting the fact that we have access to the inverse of the
dataset’s projection, which is the dataset itself. Specifically, we can artificially create a sub-manifold
D around a subset of the dataset that captures the local geometric structure of the dataset around the
latent representation, and backward project onto it.

Formally, assuming that we have access to the embedded dataset {z′i = φ(zi)}ni=1 and their pro-
jected result {wi = ProjB(z

′
i)}ni=1 for some flat base sub-manifold B. To find the inverse of some

given point w∗ ∈ B assuming it comes from the projection on B, we first find w∗’s k-nearest
neighbors among wi’s, obtaining a size k index set N ⊆ [n] with |N | = k. Then we create a
flat sub-manifold D called local data sub-manifold based on the pre-images z′i’s of these wi’s, and
project w∗ on D to obtain the inverse z′∗ = Proj−1

B (w∗) := ProjD(w
∗).

The construction of D can be arbitrary, in particular, one can easily control the degree of freedom of
the resulting z′∗: for instance, from Remark 3.1, given the nearest neighbor z′i⋆ , one can define an
e-flat D := {θ ∈ Rdim(S) | (θ)x =

(
θ(z′i⋆)

)
x

for some x ∈ Ω} by fixing some indexes of θ to be
the corresponding θ-coordinate values of z′i∗ .

Algorithm 1 in Appendix B summarizes this procedure, which we termed backward projection.
With access to Proj−1

B (·), decoding is simply Dec := φ−1 ◦ Proj−1
B : B → ΩR. Algorithm 1

is a geometrically intuitive, data-centric algorithm with desirable theoretical guarantees such as
divergence minimizing when projecting on the constructed local data sub-manifold D.

4.3 PSUEDO-NONLINEAR DATA AUGMENTATION

With all the building blocks in place, we can now formally describe the proposed data augmentation
algorithm, which consists of: 1.) encoding, 2.) augmenting, and 3.) decoding.

Encoding. As described in Section 4.2, the encoding Enc := ProjB ◦φ is simply a combination
of the natural embedding followed by a projection. Notation-wise, we write wi := Enc(zi).

Augmenting. To generate an augmented data z∗, we first generate a new representation w∗ in the
latent space, which in our case, is a pre-specified flat base sub-manifold B. Thisw∗ can be generated
in various ways, such as controlled perturbations of the original representations or a linear mixture
of two arbitrary original representations.

Decoding. As described in Section 4.2, the decoding Dec := φ−1◦Proj−1
B is simply a combination

of backward projection (Algorithm 1) with the inverse of the natural embedding. Notation-wise, we
write z∗ := Dec(w∗) = φ−1(z′∗) where z′∗ := Proj−1

B (w∗) := ProjD(w
∗).

The proposed method integrates the nonlinear forward and backward projections as encoding and
decoding, which we summarize the above in Algorithm 2 in Appendix B with an illustration given
by Figure 3.
Remark 4.3 (Positive tensor). With Algorithm 2, the empirical inverse φ−1 for the positive tensors
in Example 4.1 can be naturally defined as the inverse of the average of original scaling among the
nearest neighbors.

4.4 SUB-MANIFOLDS FOR POSITIVE TENSORS

It is evidence that the proposed method is learning-free. In this section, we describe how to con-
struct flat sub-manifolds (for B andD) to control the augmentation process, and how these subman-
ifolds naturally admit efficient projection algorithms. For clarity and concreteness, we focus our

6
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discussion on the case of positive tensors, while noting that the general principles and arguments
extend to broader settings.

Designing Sub-Manifolds. We start by discussing an intrinsic trade-off of choosing the dimension
of B ⊆ S we aim to forward project on. It is clear that more information of the data is preserved
after forward projection onto B as dim(B) increases. Hence, the quality of the backward projec-
tion Proj−1

B (·) (Algorithm 1) increases along with dim(B). However, in the extreme case when
dim(B) ≈ dim(S), Algorithm 2 becomes less effective as the augmenting step now suffers from
the curse of dimensionality. Previous studies on such a trade-off of choosing dim(B) (Sugiyama
et al., 2018; Ghalamkari et al., 2024) reveal how one should construct flat base sub-manifolds. In
particular, the many-body tensor approximation (Ghalamkari et al., 2024; Derun & Sugiyama, 2025)
aims to capture a hierarchy of mode interactions with different dim(B) for positive tensors within
the log-linear model on posets. Specifically, the ℓ-body approximation considers projection on the
following sub-manifold:

Mℓ := {θ ∈ Rdim(S) | θx = 0 for all non ℓ-body parameters x ∈ Ω}, (1)

where the ℓ-body parameter corresponds to ℓ non-one indices, acting as a generalization of one-
body and two-body parameters (Ghalamkari et al., 2024). Intuitively speaking, an ℓ-body parameter
captures the interaction among ℓ different modes. Hence, when B =Mℓ, all interactions between
modes of orders higher than ℓ are neglected. This approach provides a principled way of designing
the latent space with a clear understanding of what each dimension signifies.

On the other hand, a dual-like trade-off exists for the local data sub-manifoldD. Recall that the goal
of backward projection is to project back to the “local data” space D given by a set N of k nearest
neighbors of a generated latent representation. When dim(D) increases, backward projecting ontoD
has a higher degree of freedom, which is desirable for data augmentation. However, in the extreme
case when dim(D) ≈ dim(S), the backward projection becomes unconstrained and potentially
generates gibberish results. Hence, a natural construction of D is to consider the “dual” notion of
Mℓ, where we now allow all non ℓ-body parameters to vary while fixing every ℓ-body parameter to
be the average of the θ values among N :

M∗
ℓ (N) :=

{
θ ∈ Rdim(S) | θx =

1

k

∑
i∗∈N

(
θ(z′i∗)

)
x

for all ℓ-body parameters x ∈ Ω

}
. (2)

These two constructions offer a practical design choice for Algorithm 2 while providing the desired
properties. For instance, By choosing an appropriate ℓ, both Mℓ and M∗

ℓ can capture specific
information with desired degree of freedom.

Efficient Projection. For sub-manifolds Mℓ designed for many-body approximation with B
many non-fixed indexes (i.e., ℓ-body parameters), the projection can be efficiently computed via
formulating the projection as a convex program that can be solved via gradient descent in poly-
nomial time. Note that the gradient of the convex program has a closed-form, which makes the
optimization extremely efficient Appendix A.2. Finally, we note that the projection admits other
desirable theoretical guarantees (e.g., minimizing the KL-divergence and ensuring uniqueness) and
efficient algorithmic implementation. We refer the reader to Appendix A.2 for a detailed discussion.

5 EXPERIMENTS

We conduct a series of experiments to demonstrate the efficacy of our proposed method.

5.1 SETUP

We consider classification task on the image (MNIST (LeCun, 1998) and CIFAR-10 (Krizhevsky
& Hinton, 2009)), speech (Speech Commands (Warden, 2018)), and tabular data (Connection-
ist Bench (Sejnowski & Gorman, 1988), Taiwanese Bankruptcy (Journal, 2020), and Wine Qual-
ity (Cortez et al., 2009)). For Algorithm 2, we first apply the log-linear model on posets for positive
tensors (Example 4.1) by normalizing features to be positive and reshaping the features as a tensor
of suitable dimensions. More details and explanations can be found in Appendix C.1.

7
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5.2 CONTROLLABILITY WITH CHOICES OF SUB-MANIFOLDS

As discussed in Section 4.4, constructing the sub-manifold carefully provides the essential control-
lability. We demonstrate this with MNIST and CIFAR due to their simplicity. 1.) For MNIST, we let
B =M1 and D =M∗

1, which correspond to preserving shape information. 2.) For CIFAR, on the
other hand, we first carefully reshape the colored images to higher-order tensors, and let B =M5

and D =M∗
4, which correspond to preserving fine-grained collective shape and color information.

Figures 4(a) and 4(d) show the results of the forward projection, while Figures 4(b) and 4(e) show
the results of the backward projection of the latent representations sampled from the kernel density
model M fitted on the results (θ-coordinates) of Figures 4(a) and 4(d), respectively.

For MNIST, we see that the augmentation results (Figure 4(b)) with backward projection success-
fully reconstruct the digit structures, indicating that the essential shape information is indeed pre-
served and separated in the latent space B to provide non-trivial neighbor information for construct-
ing a sufficiently good D for backward projection. Note that the local data sub-manifold D has a
dimension of 767, indicating a high degree of freedom for backward projection.

(a) Forward projection on B with dim(B) = 17.

(b) Backward projection on D with dim(D) = 767.

(c) The closest training data of Figure 4(b).

(d) Forward projection on B with dim(B) = 1410.

(e) Backward projection on D with dim(D) = 2334.

(f) The closest training data of Figure 4(e).

Figure 4: Results of MNIST (Left) and CIFAR-10 (Right) for Algorithm 2.2

More interesting results for CIFAR-10 are shown in Figures 4(d) to 4(f). By our proposed projection-
based augmentation method, the fine-grained shape and color information is preserved. For in-
stance, the third image, ostrich, successfully preserves the fine-grained shape and color relationship
(e.g., colors for eyes and beak, and small pink flowers in the background), while the crude shape-
to-color information is lost (e.g., colors for the background without shape details shift noticeably).
The same trend can be observed consistently, validating the proposed method’s efficacy.

In practice, by carefully reshaping the data into higher-order tensors such that some modes of the ten-
sors contain the essential relationship between features that one wishes to control, with many-body
approximation, it is possible to construct suitable sub-manifolds that preserve the chosen informa-
tion, providing a controllable augmentation of the original data via simple projection operations.

5.3 CLASSIFICATION PERFORMANCE

We evaluate our method on downstream classification tasks. For each dataset, we train a classifier
on both the original training set and an augmented training set, where the augmented portion corre-
sponds to 20% of the original training size and is generated from the training data. The classifiers
used are ResNet-18 (He et al., 2016) for CIFAR-10, M5 (Dai et al., 2017) for SpeechCommands, and
a simple MLP for the remaining datasets. Details of the training setup are provided in Appendix C.1.

We compare our approach against two baselines: a generative-model-based method and classical
learning-free methods. Specifically, the compared methods are: 1.) pseudo-nonlinear (PNL, ours),
2.) autoencoder-based augmentation (AE),3 and 3.) standard augmentation (STD). For images, STD
includes standard techniques such as random cropping, flipping, rotations, and affine transforma-

2We remark that the forward projection (first row) is different from the augmentation result (second row):
the backward projection is from a sampled latent representation, while the first row shows some representative
latent representations from the dataset.

3More sophisticated generative-model-based methods (e.g., diffusion-based augmentation (Trabucco et al.,
2024)) are generally computationally infeasible at our scale, where we target around 10,000 augmented samples
per experiment. For reference, diffusion-based approaches are typically applied in a “few-shot” setting with

8
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tions. For speech, STD combines random volume scaling, time stretching, MelSpectrogram con-
version, frequency masking, and time masking (Park et al., 2019). For other data types, STD is
implemented as Gaussian noise perturbation.

We denote the original dataset as OG, and the augmented version using a method AG as OGAG.
Results are summarized in Table 1, where each model is trained on its respective training set and
evaluated on 20 randomly bootstrapped test subsets, each containing 50% of the original test data.

Table 1: Test accuracy of classifiers trained on different datasets.
Training

Set
Dataset

MNIST CIFAR-10 Speech Commands Connectionist Bench Taiwanese Bankruptcy Wine Quality

OG 98.29± 0.16% 89.08± 0.32% 84.56± 0.62% 78.81± 11.22% 96.59± 0.65% 56.90± 1.55%
OGSTD 97.90± 0.21% 90.31± 0.36% 84.26± 0.44% 75.00± 9.97% 96.36± 0.65% 57.07± 2.10%
OGPNL 98.03± 0.17% 84.57± 0.70% 86.32± 0.41% 80.00± 6.49% 96.61± 0.67% 58.12± 2.05%
OGAE 98.09± 0.18% 85.43± 0.50% 86.03± 0.42% 79.29± 9.44% 95.85± 0.62% 56.61± 1.84%

We see that in most cases, the classifier trained on the augmented data indeed achieves a better
prediction accuracy compared to the one trained only on OG. One exception is CIFAR-10, where
both OGPNL and OGAE perform worse than OG and OGSTD. We suspect that this is because of
the visual complexity of CIFAR-10, and the augmented datasets OGPNL and OGAE act more like
regularizers, while OGSTD explicitly forces the classifier to learn the correct visual representation.
In all cases, PNL consistently outperforms AE, demonstrating a competitive performance.

Importantly, we also emphasize stability, a crucial but often overlooked goal in data augmentation.
This is best illustrated by the Connectionist Bench dataset, which contains only 208 data points and
60 features, posing a significant challenge for consistent generalization. From Table 1, the standard
deviations in accuracy on this dataset typically hover around 10%, regardless of the model. In con-
trast, our method achieves a substantially lower standard deviation of 6.49%, indicating improved
consistency across runs.

5.4 ADDITIONAL EXPERIMENTS

We conduct a series of additional ablation studies and experiments in Appendices C.2 to C.5. Specif-
ically, Appendices C.2 and C.3 assess the robustness of our proposed method and the impact of
augmentation on downstream task performance. In contrast, Appendix C.4 provides a justification
for the necessity of forward projection. Finally, Appendix C.5 explores the effect of different latent
space design choices on augmentation outcomes, offering insights into how these design decisions
can be leveraged to better control the augmentation process.

6 CONCLUSION

In this paper, we introduced the pseudo-nonlinear data augmentation framework, which leverages
information geometry and energy-based models to provide a learning-free, efficient, and control-
lable augmentation method. Our approach, grounded in the log-linear model on posets, endows data
with a rich information-geometric structure that facilitates both geometric reasoning and principled
algorithm design. A key component is the backward projection algorithm, which reverses dimension
reduction in a geometrically intuitive and data-centric way.

Through extensive experiments, we demonstrated the effectiveness of our method across diverse
modalities and datasets. In particular, it enables scalable augmentation for general data types while
offering controllability via the design of 1.) the base submanifold B, 2.) the local data submanifold
D, and 3.) the poset structure Ω. Empirically, our framework outperforms both generative-model-
based augmentation baselines and classical standard methods, especially on common modalities
such as images and speech.

only around 15 augmented images per experiment. Thus, we select autoencoder-based augmentation as a
practical generative baseline.
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We are committed to ensuring the reproducibility of our results. The main paper provides a detailed
description of the proposed method and the experimental setup. All hyperparameters, training proce-
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A PROJECTION THEORY IN INFORMATION GEOMETRY

We will assume some familiarity with the basic terminologies for manifold (Lee, 2012, Chapter 1,
4). In particular, in this section, we explain the main concepts of information geometry used in
this study, including natural parameters, expectation parameters, model flatness, and convexity of
optimization. In the following, we consider only discrete probability distributions for simplicity and
refer to Amari (2016) for more general cases.

A.1 (θ, η)-COORDINATE AND GEODESICS

Consider S as the space of discrete probability distributions, which is a non-Euclidean space with the
Fisher information matrix G as the metric. This metric measures the distance between two points,
i.e., discrete probability distributions, in S. In Euclidean space, the shortest path between two points
is a straight line, while in a non-Euclidean space, such a shortest path is called a geodesic. In the
space S, two kinds of geodesics can be introduced: e-geodesics and m-geodesics. For two points
p1, p2 ∈ S, e- and m-geodesics are defined as

{rt | log rt = (1− t) log p1+ t log p2−ϕ(t), 0 ≤ t ≤ 1}, {rt | rt = (1− t)p1+ tp2, 0 ≤ t ≤ 1},
respectively, where ϕ(t) is a normalization factor to keep rt to be a distribution.

We can parameterize distributions p ∈ S by parameters known as natural parameters. In Sec-
tion 3.2, we have described the relationship between a distribution p and a natural parameter vector
θ ∈ RD−1 for a discrete probability distribution over a sample space of D elements in the log-linear
model. The natural parameter θ serves as a coordinate system of S, since any distribution in S is
specified by determining θ. Furthermore, we can also specify a distribution p by its expectation
parameter vector η ∈ RD−1, which corresponds to expected values of the distribution and an al-
ternative coordinate system of S. More explicitly, the definition of the expectation parameter η is
defined as ηx =

∑
y≥x p(y) for x ∈ Ω, and η⊥ = 1, where p(x) is the probability mass function

of p over the sample set Ω, which is assumed to be a poset. The θ-coordinates and η-coordinates
are orthogonal with each other, which means that the Fisher information matrix G has the following
property, Gu,v = ∂ηu/∂θv , and (G−1)u,v = ∂θu/∂ηv . e- and m-geodesics can also be described
using these parameters as follows:

{θt | θt = (1− t)θp1 + tθp2 , 0 ≤ t ≤ 1}, {ηt | ηt = (1− t)ηp1 + tηp2 , 0 ≤ t ≤ 1},
where θp and ηp are θ- and η-coordinate of a distribution p ∈ S.

A.2 FLATNESS, PROJECTION, AND ITS OPTIMIZATION

A subspace is called e-flat when any e-geodesic connecting two points in a subspace is included
in the subspace. The vertical descent of an m-geodesic from a point p ∈ S onto e-flat subspace
Be is called m-projection. Similarly, e-projection is obtained when we replace all e with m and
m with e. The flatness of subspaces guarantees the uniqueness of the projection destination. The
projection destination p or p̃ obtained by m- or e-projection onto Be or Bm minimizes the following
KL divergence

p = argmin
q∈Be

DKL(p, q), p̃ = argmin
q∈Bm

DKL(q, p),

where the KL divergence from discrete distributions p ∈ S to q ∈ S is given as

DKL(p, q) =
∑
x∈Ω

p(x) log
p(x)

q(x)
, (3)

where p(x) and q(x) are the probability mass functions of p and q, respectively. A subspace with
some of its natural parameters fixed at 0 is e-flat (Amari, 2016, Chapter 2), which is obvious from
the definition of e-flatness. More generally, any subspace B resulting from linear constraints on
the natural parameter is e-flat. Similarly, any subspace B resulting from linear constraints on the
expectation parameter is m-flat. When a space is e-flat and m-flat at the same time, we say that the
space is dually-flat. The set of discrete probability distributions S is dually-flat.

Both e- and m-flatness guarantee that the cost functions to be optimized in Eq. (3) are convex.
Therefore, m- and e-projection onto an e- or m-flat subspace can be implemented by a gradient
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method using a second-order gradient. This second-order gradient method is known as the natural
gradient method (Amari, 1998). The Fisher information matrix G appears by second-order differ-
entiation of the KL divergence. For instance, given p and an e-flat subspace Be, the optimization
problem p = argminq∈Be

DKL(p, q) can be efficiently solved via gradient descent with second-
order derivative by the update rule θt+1 = θt − G−1(ηt − ηp), where G ∈ RD×D is the Hessian
matrix, and ∂DKL(P,Q)/∂θ = η − ηp is the derivative of the KL divergence. The updated nat-
ural parameters θt+1 can then be used to construct qt+1 ∈ Be that is closer to the destination p
along with the e-geodesic from qt to p. By repeating this process until convergence, we can always
find the global optimal solution. A similar algorithm can be implemented for the other case, i.e.,
p̃ = argminq∈Bm

DKL(q, p).

We make some remarks on the optimization of many-body approximation (Ghalamkari et al., 2024)
that we omit in Section 4.4, which is a specific case of the above discussion.
Example A.1 (Many-body approximation). For Be =Mℓ defined in Eq.(1):4

1. Convexity and uniqueness: The solution of many-body approximation is always unique, and the
objective function of many-body approximation is convex (Ghalamkari et al., 2024, Theorem 1).
In particular, the many-body approximation is a maximum likelihood estimation that approx-
imates a non-negative tensor, which is regarded as an empirical distribution, by an extended
Boltzmann machine without hidden variables.

2. Computational complexity: The computational complexity of the many-body approximation for
Be =Mℓ with B many non-fixed indexes (i.e., ℓ-body parameters) is O(T |B|3), where T is the
number of iterations of the optimization. This is because the overall complexity is dominated
by the update of θ, which includes matrix inversion of G, and the complexity of computing the
inverse of an n× n matrix is O(n3).
Note that this complexity can be reduced if one reshapes tensors so that the size of each mode
becomes small. We explore this idea further in Appendix C.5.

B OMITTED DETAILS FROM SECTION 4

We provide the pseudocode for the proposed algorithm in Algorithms 1 and 2.

Algorithm 1: Backward projection
Data: A representation w∗ ∈ B, φ-embedded dataset {z′i}ni=1 with projection {wi}ni=1 on B,

k ∈ N
Result: Backward projected data z′∗

N ←Nearest-Neighbor(k, w∗, {wi}ni=1)
D ←Construct-Sub-Manifold({z′i}i∈N)
z′∗ ←Proj(w∗, D)
return z′∗

Algorithm 2: Pseudo-non-linear data augmentation
Data: A dataset {zi}ni=1, embedding φ : ΩR → S, k ∈ N, flat base sub-manifold B, size m ∈ N
Result: A generated dataset {z∗j }mj=1 of size m

for i = 1, . . . , n do // Encoding
z′i ← φ(zi)
wi ←Proj(z′i, B) // w = Enc(z) = ProjB ◦φ(z)

for j = 1, . . . ,m do // Augmenting
w∗
i ←Augment({wi}ni=1, B)

for j = 1, . . . ,m do // Decoding
z′∗j ←Back-Proj(w∗

j , {z′i}ni=1, {wi}ni=1, k) // Algorithm 1

z∗j ← φ−1(z′∗j ) // z∗ = Dec(w∗) = φ−1 ◦ Proj−1
B (w∗)

return {z∗j }mj=1

4One can consider Bm with Eq.(1) being defined w.r.t. the η-coordinate system, and similar remarks hold.
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C OMITTED DETAILS FROM SECTION 5

In Appendix C.1, we provide the details of experimental setup omitted in Section 5, and Appen-
dices C.3 to C.5 consists of additional experiments.

C.1 DETAILS OF EXPERIMENTAL SETUP

In this section, we provide the details of each dataset and other experimental setups with relevant
explanations.
Datasets. First, we summarize the details of each dataset in Table 2 and relevant parameters for
applying the log-linear model on posets and Algorithm 2.

Table 2: Summary of each dataset and the corresponding setups of Algorithm 2.
Dataset

MNIST CIFAR-10 Speech Commands Connectionist Bench Taiwanese Bankruptcy Wine Quality

Train Size 60,000 60,000 84,848 166 5,455 5,197
Test Size 10,000 10,000 4,890 42 1,364 1,300

Augment Size 10,000 10,000 7,000 32 1,090 1,036
Class 10 10 35 2 2 7

Feature 784 3,072 16,000↘ 4,000 60 95 11

Poset Ω R72×24

≥0 R210×3
≥0 R25×53

≥0 R22×3×5
≥0 R5×19

≥0 R22×3
≥0

Base B (dim) M1 (17) M5 (1,410) M2 (136) M1 (9) M1 (23) M2 (10)

Local Data D (dim) M∗
1 (767) M∗

4 (2,334) M∗
3 (3,430) M∗

2 (30) M∗
1 (72) M∗

1 (7)

Bandwidth 0.05 0.05 0.05 0.05 0.05 0.05
Neighbor k 8 3 3 2 5 10

Note that MNIST holds a CC BY-SA 3.0 license, CIFAR-10 is released with a MIT license, and
Speech Commands is released with a CC BY 4.0 license. Finally, all the UCI datasets (Connectionist
Bench, Taiwanese Bankruptcy, and Wine Quality) are licensed under CC-BY 4.0. We now break
each group down and explain it in detail:

1. The first group consists of basic dataset statistics. The first three datasets (MNIST, CIFAR-10,
and Speech Commands) come with a default train/test split; for the last three UCI datasets, since
there is no default train-test split, we take 80% of the whole dataset as the training set, and the
remaining 20% as the test dataset. Augment Size reports the size of the augmented data, which is
roughly 20% of Train Size, off by some rounding errors since we assume we augment the same
amount of data for each class.
In all cases, the full training set is used to train the classifier when evaluating the classification
performance in Section 5.3, and also to train our data augmentation baseline (i.e., autoencoder)
for comparison. The only exception is that for MNIST and Speech Commands, we choose an
equal number of samples for every class when doing our pseudo-non-linear data augmentation
for implementation convenience.
Finally, due to the extremely high dimensionality of Speech Commands (16000), we down-
sampled each data to 4000 dimensions in the entire experiment due to the computational con-
straint: solving 16000-dimension convex programs is infeasible in terms of the memory require-
ment.

2. The second group consists of the poset structure we impose on each dataset when applying the
log-linear model for positive tensors. Since our ultimate goal is to utilize the many-body ap-
proximation (Eqs. (1) and (2)), by reshaping the feature vector into a high-order tensor, a finer
hierarchy of projection can be obtained. Hence, in all experiments, we reshape the feature w.r.t.
the prime-number factorization of the number of features. For instance, an MNIST image is
in R28×28

≥0 , and we reshape it into a tensor of shape (7, 2, 2, 7, 2, 2), giving it a 6th-order tensor
structure R7×2×2×7×2×2

≥0 . For notation convenience, in Poset Ω, we overload RD≥0 to indicate the
natural poset structure introduced in Example 4.1, and compress the repeated prime factors in the
exponent. We note that for the Wine Quality dataset, since the feature dimension is originally 11,
which is a prime, we artificially add 1 dimension by padding 0’s, so we get a non-trivial prime
factorization.
Next, Base B and Local Data D report the corresponding construction of the base sub-manifold
and the local data sub-manifold using either Eq.(1) or Eq.(2) w.r.t. the given poset structure of that
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dataset. The number in the parentheses reports the corresponding dimension of the constructed
sub-manifolds.

3. Finally, Bandwidth reports the bandwidth parameter we used when fitting the kernel density
model M in the generating step, and Neighbor k reports the number of nearest neighbors used
in Algorithm 1.

Classification Performance. In Section 5.3, we evaluate the augmentation methods by training
classifiers and evaluating their prediction accuracy. For MNIST and three UCI datasets, we consider
the simple 2-layer MLP, while we use the ResNet-18 for the other two datasets. All models are
trained by Stochastic Gradient Descent (SGD) (Ruder, 2016) with learning rate 0.1, momentum 0.9,
and weight decay 5× 10−4. A step size scheduler is utilized to reduce the learning rate by a factor
of 0.1 every 30 epochs until convergence.

For the two baseline data augmentation methods:

• Standard method (STD): The standard image augmentation methods include random horizontal
flipping and cropping. For other modalities, the standard augmentation method corresponds to
adding Gaussian noise, which is sampled from N (0, σ2), where σ is chosen to be 1/4 of the
minimum standard deviations over each feature dimension to make sure that the noise level is
reasonable.

• Autoencoder (AE): For UCI datasets, we consider a simple two-layer MLP encoder-decoder ar-
chitecture, where the dimension of the hidden layer is the same as dim(B) indicated in Table 2,
with a bottleneck dimension being 3. For the image datasets, both the encoder and the decoder are
based on convolutional layers. The encoder uses a series of convolutional layers with increasing
feature map sizes to progressively downsample the input image, while the decoder mirrors this
structure with transposed convolutional layers to reconstruct the image from the latent representa-
tion.
In all experiments, the autoencoder is trained with the Adam optimizer with a learning rate 10−3

under the mean squared error until convergence.

C.2 IMPACT OF THE SIZE OF AUGMENTATION

In this section, we conduct additional experiments on the impact of the ratio between the augmented
dataset size on the performance. Specifically, we consider the two image datasets (MNIST and
CIFAR-10) and the audio dataset (Speech Commands), and vary the size of the original size of the
augmented dataset, which is 20% of the original dataset size. The results are presented in Tables 3
to 5.

Table 3: Impacts on the sizes of the augmentation dataset for MNIST.

AG 25% 50% 75% 100%

None 98.14% 98.08% 98.10% 98.12%
STD 92.08% 92.00% 92.02% 92.16%
AE 97.91% 97.86% 97.90% 97.97%

PNL 98.01% 98.07% 97.93% 97.55%

Table 4: Impacts on the sizes of the augmentation dataset for CIFAR-10.

AG 25% 50% 75% 100%

None 89.06% 89.32% 88.63% 88.83%
STD 90.42% 92.00% 90.60% 90.92%
AE 88.56% 88.76% 88.42% 86.49%

PNL 88.72% 88.32% 88.53% 88.67%
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Table 5: Impacts on the sizes of the augmentation dataset for Speech Commands.

AG 25% 50% 75% 100%

None 83.68% 83.26% 84.72% 84.16%
STD 84.34% 83.84% 84.98% 84.25%
AE 82.30% 83.49% 84.72% 85.21%

PNL 84.20% 84.61% 84.56% 84.43%

C.3 SENSITIVITY AND ROBUSTNESS

We examine our proposed method’s robustness and sensitivity of the bandwidth used when fitting
the kernel density model, and also the number k of the nearest neighbors used in Algorithm 1. For
an easier visual inspection, we use MNIST in this section.

Bandwidth of Kernel Density Estimation Model. Consider varying the bandwidth we use when
fitting the kernel density model, ranging among {0.01, 0.05, 0.1, 0.2, 0.5}. The results are shown in
Figure 5. We observe that Algorithm 2 is robust under different bandwidths when working with the
kernel density estimation model in the generating step.

(a) Result with bandwidth 0.01.

(b) Result with bandwidth 0.05.

(c) Result with bandwidth 0.1.

(d) Result with bandwidth 0.2.

(e) Result with bandwidth 0.5.

Figure 5: Augmented data via Algorithm 2 with different kernel density estimation bandwidths.

Number of Nearest Neighbors. Next, we consider ranging k among {1, 4, 8, 16}. The results are
shown in Figure 6. Observe that when k is small, e.g., 1, the result of Algorithm 2 tends to overfit
since the local sub-manifold D in Algorithm 1 is defined using only the nearest neighbor. When k
goes up, a non-trivial augmentation emerges, robust across different k’s.
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(a) Result with k = 1.

(b) Result with k = 4.

(c) Result with k = 8.

(d) Result with k = 16.

Figure 6: (Top) Augmented data via Algorithm 2 with different k’s for Algorithm 1. (Bottom) The
closest training data.

C.4 NECESSITY OF DIMENSION REDUCTION

We demonstrate that dimension reduction, a key building block of our proposed method based on
the intuition we have from autoencoder-like models, is necessary for Algorithm 2 to work. For an
easier visual inspection, we use MNIST in this section.

Direct Fitting. Naive perturbation-based data augmentation methods fall short of high-
dimensional data due to the sparsity of the data. Figure 7 shows the results of directly fitting a
kernel density estimation model on MNIST with 1000 samples.

Figure 7: (Top) Augmented data via directly fitting a kernel density estimation model with a band-
width 30. (Bottom) The closest training data.

Observe that even with a large bandwidth (30) to introduce variability, we only see a meaningless
noisy perturbation on one of the exact training samples, indicating overfitting.

Local Data Sub-manifold. A potential problem related to the necessity of dimension reduction is
that, if D captures too much local information about the data (i.e., with low dimension), backward
projecting a random latent representation w∗ ∈ B might already suffice to augment the data in a
non-trivial way, without the need for knowing the latent representations of the training dataset. To
this end, consider sampling uniformly random latent representations within the empirical range we
observed from the latent representations of the training data and perform Algorithm 1. The results
are shown in Figure 8.
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(a) Result with k = 1.

(b) Result with k = 4.

(c) Result with k = 8.

(d) Result with k = 16.

Figure 8: (Top) Augmented data on random latent representations via Algorithm 2 with different k’s
for Algorithm 1. (Bottom) The closest training data.
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For k = 1, Figure 8(a) shows that, similar to Figure 6(a), it is possible to overfit one of the training
data (i.e., the nearest neighbor of the randomly sampled latent representation). This is not surpris-
ing since the base sub-manifold is only of dimension 17, as the random latent representation is
sufficiently close to one of the representations of the training data in B, their backward projection
result should not deviate too much. Furthermore, we observe the fading effect, which intuitively
corresponds to misspecification of the energy, indicating that the sampled latent representation is
fundamentally different from that of the dataset.

As k increases, the benefit of getting informative and meaningful latent representations from the
original dataset becomes clear. Specifically, we start to see degeneration: from unclear overlappings
to collapsing (i.e., only a few pixels are showing). Intuitively speaking, it is because the random
latent representation’s nearest neighbors appear to be significantly different, hence failing to provide
a consistent local data sub-manifold. For instance, in the extreme case when k = 16, the local data
sub-manifold is completely not informative, resulting in collapsing. Overall, without dimension
reduction, we will lose the reference of realistic latent representations provided by the original
dataset, which leads to bad performance once we are beyond the trivial overfitting regime.

C.5 CHOICES OF TENSOR STRUCTURE AND CONSTRUCTION OF SUB-MANIFOLDS

In Section 5.2, we consider varying ℓ for B = Mℓ with the tensor structure R7×2×2×7×2×2
≥0 on

the MNIST dataset. In this section, we further vary the tensor structure as well: in particular, we
consider the tensor structure of the MNIST image being R28×28

≥0 , R7×4×7×4
≥0 , and R7×2×2×7×2×2

≥0 .

Remark C.1. For notation convenience, we also write their corresponding poset structures as
R28×28

≥0 , R7×4×7×4
≥0 , and R7×2×2×7×2×2

≥0 , and further write the many-body approximation sub-
manifold (Eq.(1)) asMℓ(Ω) and its dual (Eq.(2)) asM∗

ℓ (N,Ω) for a particular poset Ω to empha-
size the dependency.

Finally, we consider ranging ℓ from 1 to at most 4 where we neglect the degenerate case: for instance,
in the case of R28×28

≥0 ,M2(R28×28
≥0 ) = S as there are only two modes for a matrix, therefore degen-

erates to direct fitting which is not of interest (see Appendix C.4). Note that throughout this section,
we fix the default local data sub-manifold to be D =M∗

1(N,R
7×2×2×7×2×2
≥0 ) for consistency.

The results for the finest structure, R7×2×2×7×2×2
≥0 , are shown in Figure 9. As ℓ grows, the forward

projection results (Top) preserve the structure of the data better, subsequently improving the quality
of the augmented data (Bottom). Similar trends can be found in the case of R7×4×7×4

≥0 , as shown in
Figure 10.

If we look at the results when using the original matrix structure R28×28
≥0 (Figure 11), some in-

teresting comparisons can be made. Firstly, if we compare the augmentation results for B =
M1(R28×28

≥0 ) (Figure 11 (Bottom)) with the finer structures counterparts, e.g., (Figure 9(a) (Bot-
tom)) for M1(R7×2×2×7×2×2

≥0 ), one can observe that the results are worse. However, the former
requires more dimension (dim(M1(R28×28

≥0 )) = 55 > 17 = dim(M1(R7×2×2×7×2×2
≥0 ))) for the

base sub-manifold. Similarly, the augmentation results with B = M1(R7×4×7×4
≥0 ) (Figure 10(a)

(Bottom)) also achieve better performance with a lower base sub-manifold dimension.
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(a) Result with base sub-manifold B = M1(R7×2×2×7×2×2
≥0 ) (dim(B) = 17).

(b) Result with base sub-manifold B = M2(R7×2×2×7×2×2
≥0 ) (dim(B) = 107).

(c) Result with base sub-manifold B = M3(R7×2×2×7×2×2
≥0 ) (dim(B) = 327).

(d) Result with base sub-manifold B = M4(R7×2×2×7×2×2
≥0 ) (dim(B) = 592).

Figure 9: (Top) Forward projection on B = Mℓ(R7×2×2×7×2×2
≥0 ). (Bottom) Backward projection

on D =M∗
1(R

7×2×2×7×2×2
≥0 ).

(a) Result with base sub-manifold B = M1(R7×4×7×4
≥0 ) (dim(B) = 19).

(b) Result with base sub-manifold B = M2(R7×4×7×4
≥0 ) (dim(B) = 136).

Figure 10: (Top) Forward projection on B = Mℓ(R7×4×7×4
≥0 ). (Bottom) Backward projection on

D =M∗
1(R

7×2×2×7×2×2
≥0 ).

Figure 11: (Top) Forward projection on B = Mℓ(R28×28
≥0 ). (Bottom) Backward projection on

D =M∗
1(R

7×2×2×7×2×2
≥0 ).
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