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ABSTRACT

We propose a simple yet novel data augmentation method for general data modal-
ities based on energy-based modeling and principles from information geometry.
Unlike most existing learning-based data augmentation methods, which rely on
learning latent representations with generative models, our proposed framework
enables an intuitive construction of a geometrically aware latent space that rep-
resents the structure of the data itself, supporting efficient and explicit encoding
and decoding procedures. We then present and discuss how to design latent spaces
that will subsequently control the augmentation with the proposed algorithm. Em-
pirical results demonstrate that our data augmentation method achieves competi-
tive performance in downstream tasks compared to other baselines, while offering
fine-grained controllability that is lacking in the existing literature.

1 INTRODUCTION

Data augmentation has advanced considerably in recent years, driven largely by the increasing use
of generative models (Kingma & Welling}, |2014; (Chadebec et al., [2022; |/Antoniou, 2017 [Trabucco
et al.| [2024) to meet the demand for larger and more diverse datasets (Feng et al.| 2021; Wong et al.,
2016). Beyond traditional domains such as images, these methods have been extended to a wide
range of modalities. Despite their promise, however, generative-model-based augmentation faces
several fundamental challenges. First, data augmentation is most valuable when training data is
scarce, yet in such cases, we typically lack a pre-trained foundational model for the target domain.
This creates a paradox: before we can augment the data, we must first train a generative model—
reintroducing the very problem of limited data. Second, even when suitable foundational models are
available, the computationally intensive nature of deep generative methods poses practical obstacles.
Since effective augmentation often requires generating data of the same order as the original dataset,
the cost of large-scale generation can quickly become prohibitive. Third, augmenting data with gen-
erative models raises concerns about their interpretability and controllability (Guidotti et al., [2018]).
Consequently, even when these models perform well, the lack of understanding of the underlying
transformations of the augmented data makes it difficult to control the generated outputs, which
poses a significant risk in the case of high-stakes scenarios (Rudin, |[2019).

In this work, we propose a new data augmentation framework that addresses the challenges out-
lined above by providing a learning-free, efficient, and controllable algorithm applicable across
diverse data modalities. Our approach builds on the well-established theory of energy-based mod-
els (Xie et al., |2016), together with recent advances in log-linear models on partially ordered sets
(posets) (Sugiyama et al, 2016} [2017) and information geometry (Amari, |2016; /Amari & Nagaokal
20005 Ay et al.L 2017). Conceptually, our framework resembles an autoencoder (Kingma & Welling,
2014). We begin by parametrizing data as discrete probability distributions on a curved statistical
manifold S. The data is then encoded into a chosen “latent space” B C S via forward projec-
tion. Within this latent space, simple augmentation procedures informed by the encoded data are
applied. Finally, the resulting “augmented representation” is backward projected to the local data
space D C &, yielding new augmented data. As our proposed algorithm exploits the duality of the
projection in the statistical manifold S, where it is linear in the manifold’s intrinsic coordinates yet
non-linear in the ambient space, we hence term it pseudo-non-linear data augmentation.

This design offers three key advantages. First, it is learning-free: the sub-manifold structure is
constructed explicitly, allowing direct control over the properties of the augmented data without the
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need to train a generative model. Second, it is computationally efficient: both forward and backward
projections can be formulated as convex programs and solved with efficient first-order methods such
as gradient descent. Third, it provides controllability: leveraging prior knowledge about relation-
ships among features, one can adjust the choice of S and the sub-manifold of projection to tailor the
statistical properties of the augmented data. Our contributions are summarized as follows:

* We propose a novel framework for modeling structured data (e.g., tensors) within a statistical
manifold using energy-based models. This framework captures the intrinsic geometry of data and
enables the design of geometry-aware algorithms.

* We develop the pseudo-nonlinear data augmentation algorithm under this framework. The method
is learning-free, efficient, and controllable, and applies broadly across different data modalities.

* We empirically validate the effectiveness of our approach, showing that it achieves competitive
or superior performance compared to both generative-model-based baselines (e.g., autoencoders)
and classical augmentation methods across multiple datasets and modalities.

2 RELATED WORK

2.1 LEARNING-BASED DATA AUGMENTATION

Data augmentation has proven to be effective in enhancing deep learning training by increasing
dataset size, improving model robustness (Rebulffi et al.| 2021)), and introducing implicit regulariza-
tion (Hernandez-Garcia & Konig, |[2018)). These techniques have been applied across various modal-
ities, including text (Shorten et al., 2021} |[Feng et al., [2021} |L1 et al.,|2022a)) and images (Shorten &
Khoshgoftaar, 2019; [Mumuni & Mumunil [2022; [Wang et al., |2017). Due to the generality and the
popularity, much of the recent progress in data augmentation for general modalities has been driven
by advancements in generative models, such as autoencoders (Kingma & Welling, [2014; |(Chadebec
et al) [2022), generative adversarial networks (Antoniou, |2017), and diffusion models (Trabucco
et al.| [2024). Despite the progress, to date, there is no fully satisfactory solution for the two chal-
lenges mentioned for generative-model-based data augmentation, i.e., efficiency and controllability.
For example, the design of controllable GANs (Li et al.||2022bj [She et al.| 2021)) and efficient flow-
based models (Geng et al.}2025) remains an active area of research, and exploration in this direction
is largely limited to specific domains such as images.

2.2 LEARNING-FREE DATA AUGMENTATION

Learning-free data augmentation methods (Maharana et al., 2022) that do not rely on generative
models are particularly appealing because they construct an explicit, low-dimensional “latent space”
in which data can be represented and augmented with fine-grained and intuitive control and inter-
pretability. These latent spaces are typically derived from classical dimension reduction techniques
such as Principal Component Analysis (PCA)(Wold et al.,|1987) and Singular Value Decomposition
(SVD)(Stewart, [1993)). In general, these methods identify an optimal /inear subspace and then per-
form augmentations that respect this (Euclidean) geometry of the ambient subspace. Beyond their
simplicity and transparency, linear methods also provide useful insights; for instance, PCA reveals
principal directions that capture the dominant modes of variation in the data.

A major limitation of linear dimension reduction for augmentation, however, is the difficulty of the
inverse problem: reconstructing high-dimensional data from low-dimensional representations with-
out a learned decoder is often non-trivial. Some works attempt to circumvent this issue by leverag-
ing linear dimension reduction only indirectly for augmentation (Abayomi-Alli et al.,[2020; Sirakov
et al.; 2024). Other approaches, such as mixup (Zhang et al., [2018)), bypass dimension reduction
entirely and operate directly in the original data ambient space. While popular in practice due to
simplicity, these methods are typically heuristic, application-specific, and harder to generalize.

Non-linear generalizations of dimension reduction is often referred to as manifold learning (Meila
& Zhangl [2024), which provides an alternative route. Methods such as t-SNE (Hinton & Rowesis|,
2002; Van der Maaten & Hinton, 2008), Isomap (Tenenbaum et al., 2000), and UMAP (Mclnnes
et al 2018) aim to exploit the manifold hypothesis, which posits that high-dimensional data lie
near a lower-dimensional manifold embedded in the ambient space. Their goal is to uncover this
manifold and produce a smooth embedding that captures the intrinsic geometry of the data.
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In principle, manifold learning could avoid the inverse problem by recovering a low-dimensional
manifold with minimal information loss, making it an attractive candidate for data augmentation. In
practice, however, this goal is rarely achieved without incorporating learning mechanisms (Duque
et al.| 2020; |Coifman & Lafon, 2006; Williams & Seeger, 2000; |VIadymyrov & Carreira-Perpinan,
2013; |Han et al., [2022). A workaround is to exploit the latent space learned by a model already
trained on a downstream task, as in manifold mixup (Verma et al.,|2019). Yet these approaches again
sacrifice interpretability and controllability, compared to fully learning-free augmentation methods.

3 PRELIMINARY

3.1 DUALLY-FLATNESS IN INFORMATION GEOMETRY

Information geometry studies the structure of statistical manifolds S within the space of probability
distributions. In this paper, we are primarily concerned with the space of an exponential family
{po(z) | & € RP}, where each py denotes a probability density function parameterized by 6. We
focus on the key concept in this field, dually-flatness, in this preliminary, while directing readers to
Appendix [A]and |[Amari| (2016) for more comprehensive details.

The starting point is the observation that the log-partition function 1 (0) (also known as the cumulant
generating function in statistics and free energy in physics) of an exponential family with density py
is convex in the natural parameter § € RP. This convexity induces a natural coordinate system,
6, on S, defining both the Riemannian metric g = V21/J(0) and the Bregman divergence (Bregman,
1967) Dy (pg, per ). With these structures, the manifold (S, g) is flat, meaning that any curve 6(t) =
at + b (where a,b € RP are constants) is a geodesic and lies entirely within S. This flatness is
known as e-flatness, and the geodesics are referred to as e-geodesics or primal-geodesics.

The dual structure arises from the Legendre transform (Legendre, [1787), which generates the dual
function 1*(n), where n € RP is the expectation parameter. This dual function is also convex,
giving rise to the expectation coordinate system 7, the dual Riemannian metric g*, and also the dual
Bregman divergence D~ which is the well-known Kullback-Leibler divergence Dkr, (Eq.(3)). The
corresponding flatness is termed m-flatness, with m-geodesics or dual-geodesics as its geodesics.

Remark 3.1. An e-flat (m-flat) sub-manifold can be defined by forcing linear constraints on the 0
coordinates (n coordinates) (Amari, 2016, Chapter 2).

Dually-flatness emerges from the interplay between these two structures. Specifically, for any point
(distribution) p in S, there is a unique point p* on an e-flat sub-manifold B C S that minimizes
the dual Bregman divergence D« (p, ¢) = Dxr,(p, ¢) (Amari, 2016, Theorem 1.5). This process,
known as the m-projection, can be efficiently solved via convex optimization (Appendix [A.2). The
dual holds when switching e and m. Projection is a central tool in information geometry with
profound implications for understanding the geometry of S, which we will use later.

3.2 STATISTICAL MANIFOLD ON POSETS

A set Q is a partially ordered set (poset) if it is equipped with a partial order “<”, a relation
satisfying the following for all z,y,z € Q: 1.) xz < x (reflexivity); 2.) x < y and y < x implies
r = y (antisymmetry); 3.) ¢ < y and y < z implies x < z (transitivity). We focus on finite posets
 with a bottom element L such that 1 < x for all x € 2 to prevent some technical difficulties.

Given such a poset §2, consider a discrete random variable X with finite support €2 with its prob-
ability mass function p: Q@ — Rxg, p(z) = Pr(X = z) for z € Q. For a discrete probability
distribution p over a poset €, the log-linear model on posets recursively defines 0: 2 — R as
logp(z) = >, ., 0(y) for all z € Q (Sugiyama et al., 2017). This model belongs to the expo-
nential family, with 6 corresponding to the natural parameters, except for #(_L), which coincides
with the partition function. Thus, all discrete probability distributions over €2 form a (|Q| — 1)-
dimensional dually-flat statistical manifold S := {p: @ — R | > .o p(x) = 1}, with the dual
coordinate systems (0, 7) depend on the poset structure.

Remark 3.2. One can think of 0(x) for each element x € ) as specifying the energy (i.e., p(x)) for
x, and the relation between 0(x)’s on different elements x’s is specified by the poset structure.
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4 PSUEDO-NONLINEAR DATA AUGMENTATION

We first present our proposed framework in Section[4.T]and the projection algorithms in Section 4.2}
then we combine and apply them to data augmentation in Section [4.3] Finally, we discuss two
important features of the proposed method regarding controllability and efficiency in Section
Throughout this section, we will use positive tensors as our running example (Example {.T)).

4.1 LOG-LINEAR MODEL ON POSETS FRAMEWORK

Motivated by Remark by associating each element x € () with a feature dimension, we can
specify the geometry among features—i.e., design the poset structure—using prior knowledge or
natural structure present in the data. The resulting models define an energy-aware, curved statistical
space that faithfully reflects the prescribed relationships among features.

More specifically, given a dataset {z;}}_;, we first embed the data into a statistical manifold S
by leveraging the log-linear model on posets, which provides a geometric structure induced by the
energy-based modeling. The process works in three steps: 1.) models each z; as a real-valued
poset; 2.) embeds the real-valued poset into the statistical manifold S by viewing it as a probability
distribution; 3.) computes the corresponding two coordinate representations using the log-linear
model on posets. See Figure|I|for an illustration. We now explain each step in detail below.

Data Poset €2
s-1o|[6]5]
010.2] 81[21]—7 Design Log-Lmear( )

Model

|

Real-Valued Poset € (g Probability Distribution pg € S

Figure 1: Given structured data, we first design a poset € that reflects the structure or the relationship
between features. The resulting real-valued poset is then embedded into the statistical manifold S as
a discrete probability distribution py(x) via an embedding . Finally, the log-linear model on posets
provides the dually-flat coordinates (6, 7)) for py, which can be computed efficiently (Section .

Real-Valued Poset. In the typical machine learning pipeline, inputs are often constrained to be
vectors or matrices, which fail to accommodate more complex data. In contrast, posets are flexible
enough to capture data with structures, including vectors, matrices, or tensors. In general, any data
structure that admits a natural partial order can be modeled by a poset: for instance, a D-dimensional
vector z € RP (i.e., 1%-order tensor) admits a structure that can be modeled by the poset 2 := [D]
with the partial order being the natural order between positive integers. Similarly, other common
data structures, such as matrices or tensors, can be treated in the same way. On the other hand, as
noted at the beginning of the section, a custom poset structure {2 can also be specified, either with
or without the natural structure, to reflect prior knowledge of the relation between features.

We can then define the real-valued poset, which is a mapping from the poset €2 to the set of real
numbers R such that each entry (element) of the data structure (poset) = € () is associated with a
feature in R. We denote the set of real-valued posets as Qg. In the D-dimensional vector example,
Q1 = [D], each element = € (2 corresponds to one of the D dimensions. Associating a real number
to each dimension then corresponds to an element in Q.

Embedding. To embed the data {z; € Qr}?_,, which are now modeled as real-valued posets,
to the statistical manifold S which concerns with discrete probability distributions, we want an
embedding ¢: Qr — S and its inverse ¢~ !: S — Qg, such that > owea(@(zi))e = 1forall z; with
dim(S) = D — 1{1_-] In other words, ¢(z;) gives a probability mass function of a discrete random
variable over the poset, where (¢(z;)), is the probability of sampling « € {2 when sampled from
©(z;), representing the energy of the feature x. From the perspective of energy-based modeling, as
noted in Remark 3.2} ¢ can be naturally induced, e.g., for tabular frequency data, or customized to

'One can also consider the manifold of positive measures of dimension D and avoid the potential scaling
issues. For simplicity, we omit this trivial extension in the presentation.
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reflect the desired energy relationship between features. We note that in the latter case, a joint design
of  with the poset structure 2 is often more expressive to describe a desirable energy structure.

Dually-Flat Coordinates. Finally, from the log-linear model on posets introduced in Section
for each 2! := p(z;) € S, we associate the dually-flat coordinates (2/) € RP~! and n(z}) € RP-L.
Such coordinate systems are defined with respect to the underlying poset structure €2, providing a
representation that captures the prescribed geometric structure among features of the data. We next

illustrate the framework with one canonical example, positive tensors, in Example 4.1}

Example 4.1 (Positive tensor). A d"-order tensor T € RV xla —
RP is a multidimensional array with real entries for every index vector
v = (i1,...,4q) € [I1] X --- x [Ig] = Q where for each k, [I};] =
{1,2,...,1} for a positive integer I};. Tensors with entries all being

positive are called positive tensors, denoted as P € RI;OX woxla ?—)?—) OQO

A natural partial order “<” between two index vectors v = (i1,...,1q),
w = (J1,...,Ja)fortensors is that v < w if and only if i, < ji forall k €
[d]. Finally, for positive tensors, a simple embedding ¢ RI;OX"'XI‘I - S Figure 2: Natural poset

where P’ := ¢(P): Q — Rxq such that P} == P,/ %", .o Py for all structure of 3"-order
v € Q can be defined with a natural empirical inverse (see Remark[{.3).  tensors in R3*3%3,

Example [.T] applies to many common data modalities. For example, a color image can be repre-
sented as a 3"-order tensor, where the first two dimensions correspond to height and width, and
the third dimension encodes the color channels. Time-series data likewise admit a tensorial poset
structure, with the temporal dimension inducing a natural ordering among features at discrete time
steps. Despite this flexibility, our framework comes with one notable limitation:

Remark 4.2 (Invariance). Because the framework relies on specifying a partial order over the index
set, it is not naturally equipped to model invariances under index permutations. This can introduce
unwanted bias, for instance, in settings such as graphical data. Nonetheless, a key advantage of
being learning-free and fully transparent is that the source of such bias is explicit, allowing one to
identify and, when desired, mitigate it by appropriately modifying the modeling choices.

To conclude, we emphasize that the notion of energy in our framework acts as a modality-specific
potential function that quantifies the stability or plausibility of a data configuration under the chosen
poset embedding. Once the poset is specified, both the energy function and the induced manifold
structure follow directly, yielding a clean and computationally convenient representation that sup-
ports subsequent computations and algorithm design, which we will discuss next.

4.2 FORWARD AND BACKWARD PROJECTION

We now demonstrate how to incorporate the log- 2 Generated Data 2 Qg
linear on poset framework with projection the- 2 RF . i _

ory to conduct data augmentation. Our algorithm Pt ! )2

mimics the architecture of autoencoders, focusing Q% 1 ’ S
on two building blocks: the encoder Enc(-) and Z2oxa

the decoder Dec(-). First, for the encoding step, D 5 A B

we formally explain how projection theory can T

be applied to perform dimension reduction and "-,/\ “w,

obtain compact representations within our frame- o) » Forward
work. Next, for the decoding step, we introduce -» Backward
our proposed algorithm, termed backward projec-

tion, which serves as the inverse of dimension re-

duction. Figure [3]provides an intuitive geometric Figure 3: Illustration of forward and backward
illustration for our proposed algorithms. projection. Here, w;: latent representation of
the original data z;, obtained from forward pro-

jection to B; w*: augmented latent represen-
tation; w* ~— 2z’*: backward projection to D,
obtained from the original data of the nearest
neighbor(s) of w* in the latent space.

Forward Projection. The embedding from Qg
to S introduced in Section ] maintains the di-
mensionality. To achieve dimension reduction,
we leverage the projection theory: by project-
ing z; = ¢(z;) onto a low-dimensional flat sub-
manifold called base sub-manifold B C S with dim(B) < dim(S), we obtain the desired encoding
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Enc := Projgop: Qr — B that maps the data to a low-dimensional latent representation. Note
that the encoding Enc(+) is smooth and well-defined as the projection is unique when B is flat and
minimizing either the primal or the dual Bregman divergence, depending on either B is e- or m-flat.

Backward Projection. One of the technical burdens is that the encoding Enc(-) is not invertible,
hence a perfect decoding Dec(-) is mathematically impossible, even when Enc(-) only involves a
simple linear projection in Euclidean space. Here, we propose a simple, geometrically intuitive, and
data-centric solution that aims to find the inverse of the projection with theoretical guarantees.

The high-level intuition is simple: we assume that similar data will result in similar projections.
Hence, given a point in the low-dimensional latent representation space, we try to “project it back”
to approximate the original dataset by exploiting the fact that we have access to the inverse of the
dataset’s projection, which is the dataset itself. Specifically, we can artificially create a sub-manifold
D around a subset of the dataset that captures the local geometric structure of the dataset around the
latent representation, and backward project onto it.

Formally, assuming that we have access to the embedded dataset {2z} = ¢(z;)}?_; and their pro-

jected result {w; = Projgz(z})}?_, for some flat base sub-manifold /5. To find the inverse of some
given point w* € B assuming it comes from the projection on B, we first find w*’s k-nearest
neighbors among w;’s, obtaining a size k index set N C [n] with |[N| = k. Then we create
a flat sub-manifold D called local data sub-manifold based on the pre-images z,’s of these w;’s,
and project w* on D to obtain the inverse z'* = Projz'(w*) = Projp(w*). The construction
of D can be arbitrary, in particular, one can easily control the degree of freedom of the result-
ing 2'*: for instance, from Remark given the nearest neighbor z.., one can define an e-flat
D = {0 € RS | (0), = (0(z].)), for some = € Q} by fixing some indexes of 6 to be the
corresponding #-coordinate values of z/..

Algorithm [1] in Appendix [B| summarizes this procedure, which we termed backward projection.
With access to Projgl(~), decoding is simply Dec = ¢! o Projgl: B — Qg. Algorithm
is a geometrically intuitive, data-centric algorithm with desirable theoretical guarantees such as
divergence minimizing when projecting on the constructed local data sub-manifold D.

4.3 PSUEDO-NONLINEAR DATA AUGMENTATION

With all the building blocks in place, we can now formally describe the proposed data augmentation
algorithm, which consists of: 1.) encoding, 2.) augmenting, and 3.) decoding.

Encoding. As described in Section the encoding Enc := Projgz oy is simply a combination
of the embedding followed by a projection. Notation-wise, we write w; := Enc(z;).

Augmenting. To generate an augmented data z*, we first generate a new representation w™* in the
latent space, which in our case, is a pre-specified flat base sub-manifold 3. This w* can be generated
in various ways, such as controlled perturbations of the original representations or a linear mixture
of two arbitrary original representations.

of backward projection (Algorithm [1)) with the inverse of the embedding. Notation-wise, we write
2* = Dec(w*) = ¢~ (2'*) where 2’* := Projz' (w*) := Projp(w*).

Decoding. Asdescribed in Section the decoding Dec := ¢~ 'oPro jgl is simply a combination

The proposed method integrates the nonlinear forward and backward projections as encoding and
decoding, which we summarize the above in Algorithm 2] with an illustration given by Figure

Remark 4.3 (Positive tensor). With Algorithm the empirical inverse ¢~ for the positive tensors
in Example can be defined as the inverse of the average of the scaling among nearest neighbors.

4.4 SUB-MANIFOLDS FOR POSITIVE TENSORS

It is evidence that the proposed method is learning-free. In this section, we describe how to con-
struct flat sub-manifolds (for B and D) to control the augmentation process, and how these sub-
manifolds naturally admit efficient projection algorithms. For clarity and concreteness, we focus
our discussion on the case of positive tensors, while noting that the principles and arguments extend
to broader settings for other data modalities, poset structures, and the design of the energy potential.
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Designing Sub-Manifolds. We start by discussing an intrinsic trade-off of choosing the dimen-
sion of B C S we aim to forward project on. Clearly, more information about the data is preserved
after forward projection onto B as dim(/3) increases. Hence, the quality of the backward projec-
tion Proj,'(-) (Algorithm [1) increases along with dim(B). However, in the extreme case when
dim(B) ~ dim(S), Algorithm [2] becomes less effective as the augmenting step now suffers from
the curse of dimensionality. Previous studies on such a trade-off of choosing dim(B) (Sugiyama
et al., 2018} |Ghalamkari et al., |2024) reveal how one should construct flat base sub-manifolds. In
particular, the many-body tensor approximation (Ghalamkari et al.| 2024; |Derun & Sugiyama, 2025)
aims to capture a hierarchy of mode interactions with different dim(5) for positive tensors within
the log-linear model on posets. Specifically, the ¢-body approximation considers projection on the
following sub-manifold:

My = {6 € RY™S) | g, = 0 for all non (-body parameters z € Q}, (1)

where the ¢-body parameter corresponds to ¢ non-one indices, acting as a generalization of one-
body and two-body parameters (Ghalamkari et al.,|2024). Intuitively speaking, an /-body parameter
captures the interaction among ¢ different modes. Hence, when B = My, all interactions between
modes of orders higher than ¢ are neglected. This approach provides a principled way of designing
the latent space with a clear understanding of what each dimension signifies.

On the other hand, a dual-like trade-off exists for the local data sub-manifold D. Recall that the goal
of backward projection is to project back to the “local data” space D given by a set IV of k nearest
neighbors of a generated latent representation. When dim (D) increases, backward projecting onto D
has a higher degree of freedom, which is desirable for data augmentation. However, in the extreme
case when dim(D) ~ dim(S), the backward projection becomes unconstrained and potentially
generates gibberish results. Hence, a natural construction of D is to consider the “dual” notion of
M, where we now allow all non /-body parameters to vary while fixing every ¢-body parameter to
be the average of the 6 values among N:

: 1
M;(N) = {9 e RIS | g, = z Z (0(zi~)) for all £-body parameters = € Q} )

i*eEN

These two constructions offer a practical design choice for Algorithm 2] while providing the desired
properties. For instance, By choosing an appropriate ¢, both M, and M} can capture specific
information with desired degree of freedom.

Efficient Projection. For sub-manifolds M, designed for many-body approximation with B
many non-fixed indexes (i.e., /-body parameters), the projection can be efficiently computed via
formulating the projection as a convex program over B variables that can be solved via gradient
descent in polynomial time (in terms of B). We note that the projection in the statistical manifold
offers other desirable theoretical guarantees, such as minimizing the KL-divergence (correspond-
ing to energy minimization) and uniqueness of the projection. Moreover, in the case of many-body
approximation, it admits an efficient algorithmic implementation, since the gradient of the corre-
sponding convex program has a closed-form, which makes the optimization extremely efficient. We
refer the reader to Appendix [A.2]for a detailed discussion.

5 EXPERIMENTS

The structure of this section is as follows. Firstly, Section[5.1|demonstrates the energy aspect of the
proposed framework, validating our motivation. Then, Section [5.2]illustrates the proposed pseudo-
nonlinear data augmentation on real-world visual datasets. Finally, we apply the pseudo-nonlinear
data augmentation on downstream tasks in Section[5.3]

5.1 LOG-LINEAR MODEL WITH ENERGY INTERACTION

Setup. We demonstrate our proposed log-linear model on the posets framework with simple syn-
thetic data under controlled feature interactions. The goal of this section is to illustrate both
the energy-modeling perspective of our proposed framework, as well as how designing base sub-
manifolds B allows us to capture higher-order mode interactions among data.
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In particular, we model both the 2-dimensional intensity data and 1-dimensional time-series data
as a 2"-order tensor as described in Example where we apply reshaping to time-series data to
capture higher-order mode dependencies across the temporal dimension.

Experiment. Firstly, we consider Original

1-body Appx. 1-body Appx. Error 2-body Appx. 2-body Appx. Error
separable and non-separable 2-
dimension intensity data I. Separable
data (Figure(a)) corresponds to data

without feature interaction, where we

generate I(i,7) =~ f(i) x g(j) for (a) Weak mode interaction with separable data.

mode i and ] On the other hand, Original 1-body Appx. BD].-btzd\‘/-.A:x.llErr.or . 2-body Appx. 2-body Appx. Error .
non-separable data (Figure #(b)) cor- Freae?|” w
responds to data with intricate feature o oo 18 »
interaction, where I(#, j) has higher- ael, .

order interaction between modes i . . .
and j such that I(i, §) is not factoriz- (b) Strong mode interaction with non-separable data.
able[| From Figure éf we remark two

interesting properties that are central
to our framework: 1.) we can control the order of mode interaction preservation intuitively with ap-
propriate sub-manifold design; 2.) even when the base sub-manifold does not have enough capacity
to capture the mode interactions (e.g., 1-body approximation in Figure[(b)), it nevertheless captures
the essence of the data within its capacity in the energy-minimizing sense.

Figure 4: Mode interaction and approximation.

2000 2025 2050 t2075 o100 Following a similar setup, we con-
—e— Energy-Aware . . .
trate the advantages of our method’s

(a) Energy-aware interpolation. indgced ge(?metry compared to- the
2000 teoae  te0s0  t075  te100 vanilla ambient space geometry. In

oo particular, we interpolate between

O et toratian Peamerar o° SEparable and non-separable data

within both the base sub-manifold

(b) Ambient space interpolation. (c) Energy increase. (Figure[5(a)) and ambient space (Fig-

ure d measure the inferaction

energy: the discrepancy between the
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Figure 5: Interpolation energy in different geometries.

Finally, in Figure [6] we consider 150
time series data with temporal de-
pendencies emerging from higher-
order interactions. A similar trend 50
as Figure [ emerges: the latent
space geometry derived from a sim-
ple base sub-manifold results in
a larger error at the place where
higher-order mode interactions are
presented (i.e., high frequency chirp 0
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pattern). In contrast, an appropriate Time (1)

base sub-manifold can capture such
a mode interaction perfectly. Figure 6: Approximation of temporal-dependent time-series.

5.2 CONTROLLABILITY WITH CHOICES OF SUB-MANIFOLDS

Setup. As discussed in Section[4.4] constructing the sub-manifold carefully provides the essential

controllability. We demonstrate this with MNIST (LeCunl [1998)) and CIFAR (Krizhevsky & Hinton
A1) by

2009), where we first apply the log-linear model on posets for positive tensors (Example

’Equivalently, separable data is linear in log space where log I(i,5) = log f(i) + log g(j), while non-
separable data has non-linear mode interactions in log space.
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normalizing features to be positive and reshaping the features as a tensor of suitable dimensions, then
apply our proposed pseudo-nonlinear data augmentation afterwards. In particular: 1.) for MNIST,
we let B = M7 and D = M7, which correspond to preserving shape information; 2.) for CIFAR,
we first carefully reshape the colored images to higher-order tensors, and let B = M5 and D = M},
which correspond to preserving fine-grained collective shape and color information.

Experiment. Figures and show the results of the forward projection, while Figures
and [7(e)] show the results of the backward projection of the latent representations sampled from the
kernel density model M fitted on the results (6-coordinates) of Flgures [7(a) and[7(d)] respectively.

For MNIST, we see that the augmentation results (Figure [7/(b)) with backward projection success-
fully reconstruct the digit structures, indicating that the essential shape information is indeed pre-
served and separated in the latent space 53 to provide non-trivial neighbor information for construct-
ing a sufficiently good D for backward projection. Note that the local data sub-manifold D has a
dimension of 767, indicating a high degree of freedom for backward projection.

Enﬂﬂﬂﬂﬂﬂﬂﬂ H&EIEQMI!H

(a) Forward projection on B with dim(B) = 17. (d) Forward projection on B with dim(B) = 1410.
EIIEHIEIII FEH[EWIF‘L
(b) Backward projection on D with dim(D) = 767. (e) Backward projection on D with dim(D) = 2334

i [+ -
EIEEHIIIEI itlﬁlmlﬂs
(c) The closest training data of Figure(7(b), (f) The closest training data of Flgurem

Figure 7: Results of MNIST (Left) and CIFAR-10 (Right) for Algorithm The first row shows some
representative latent representations from the dataset, while the second row shows the backward
projection from an augmented latent representation.

More interesting results for CIFAR-10 are shown in Figures[7(d)|to[7(f)] By our proposed projection-
based augmentation method, the fine-grained shape and color information is preserved. For in-
stance, the third image, ostrich, successfully preserves the fine-grained shape and color relationship
(e.g., colors for eyes and beak, and small pink flowers in the background), while the crude shape-
to-color information is lost (e.g., colors for the background without shape details shift noticeably).
The same trend can be observed consistently, validating the proposed method’s efficacy.

In practice, by carefully reshaping the data into higher-order tensors such that some modes of the ten-
sors contain the essential relationship between features that one wishes to control, with many-body
approximation, it is possible to construct suitable sub-manifolds that preserve the chosen informa-
tion, providing a controllable augmentation of the original data via simple projection operations.

5.3 CLASSIFICATION PERFORMANCE

Setup. We apply our proposed pseudo-nonlinear data augmentation algorithm on downstream
classification tasks across different datasets with various modalities, including image (MNIST and
CIFAR-10), audio (Speech Commands (Warden, |2018))), and tabular data (Connectionist Bench (Se-
jnowski & Gorman, |1988), Taiwanese Bankruptcy (Journal, [2020), and Wine Quality (Cortez et al.,
2009)). For each dataset, we train a classifier on both the original training set and an augmented
training set, where the augmented portion corresponds to 20% of the original training size and is
generated from the training data. The classifiers used are ResNet-18 (He et al., 2016) for CIFAR-10,
M5 (Dai et al.,|2017) for SpeechCommands, and a simple MLP for the remaining datasets. All of the
models are evaluated on 20 randomly bootstrapped test subsets, each containing 50% of the original
test data. Further details of the training setup are provided in Appendix [C.1]

Experiment. Several baselines are compared against our proposed method, including both
learning-based and learning-free methods, including: 1.) pseudo-nonlinear (PNL, ours), 2.) au-
toencoder-based augmentation (AE) (Kingma & Welling} 2014; |Chadebec et al., 2022). B|3.) mixup

*More recent learning-based baselines, e.g., diffusion-based augmentation (Trabucco et al.,[2024), are often
computationally infeasible at our scale and can only be applied in a “few-shot” setting.
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Table 1: Test accuracy of classifiers trained on different datasets.

Training | Dataset
Set \ MNIST CIFAR-10 Speech Commands ~ Connectionist Bench ~ Taiwanese Bankruptcy =~ Wine Quality

oG 97.98 £0.19% 88.57 £ 0.57% 84.48 £+ 0.50% 88.10 £ 8.58% 96.54 £ 0.56% 55.00 £ 1.69%
OGS™ 97.98 +0.24%  89.89 + 0.44% 82.98 + 0.50% 85.24 + 7.66% 96.17 £ 0.57% 57.85+ 1.81%
OGPN: 97.91+0.21% 88.07 +0.46% 84.35+ 0.37% 93.81 + 4.54% 96.53 £+ 0.47% 59.03 £+ 1.74%
OGAE 97.97 +£0.25%  88.36 + 0.46% 83.13 + 0.32% 82.86 + 7.59% 95.92 + 0.62% 57.23 + 1.67%
oGMY 96.45 +0.23%  86.60 + 0.49% 81.85 + 0.61% 89.29 £+ 4.97% 96.55 £ 0.68% 57.76 £ 1.67%
OGMMU | 97,52 £0.30% 88.02 +0.39% 83.06 & 0.54% 91.19 £ 5.06% 96.44 £+ 0.53% 58.70 £ 1.74%

(MU) (Zhang et al., 2018) 4.) manifold mixup (MMU) (Verma et al.,[2019), and 5.) standard aug-
mentation (STD). For images, STD includes standard techniques such as random cropping, flipping,
rotations, and affine transformations. For speech, STD combines random volume scaling, time
stretching, MelSpectrogram conversion, frequency masking, and time masking (Park et al., [2019).
For other data types, STD is implemented as Gaussian noise perturbations.

Results are summarized in Table[T] where we denote the original dataset as OG, and the augmented
dataset using a method AG as OGAC. In most cases, the classifier trained on the augmented data
achieves a better prediction accuracy compared to the one trained only on OG. One exception is
the dataset associated with image modality, where all other baselines perform worse than OG and
OGS™ . A potential explanation is that the baseline augmentation algorithms for other baselines act
more like regularizers, while OGS™ explicitly forces the classifier to learn the robust visual features
associated with modality-specific transformation, promoting properties such as rotation, location,
and color invariance. Nevertheless, in general, PNL consistently outperforms other baselines on all
datasets, demonstrating a competitive performance across modalities.

Importantly, we highlight the stability, a crucial but often overlooked goal in data augmentation.
This is best illustrated by the Connectionist Bench dataset, which contains only 208 data points and
60 features, posing a significant challenge for stable training and testing for generalization. From
Table 1} the standard deviations in accuracy on this dataset are noticeably higher for OG, OGS,
and OGAE. In contrast, our method achieves a substantially lower standard deviation of 4.54%,
indicating improved consistency across bootstrap testing runs. Other data augmentation baselines,
such as OGMY and OGMMU | also achieve a substantial improvement. Still, our method achieves the
lowest standard deviation among all, and this trend is consistently presented across all datasets.

5.4 ADDITIONAL EXPERIMENTS

We conduct a series of additional ablation studies and experiments in Appendices|C.2)to[C.3] Specif-
ically, Appendices [C.2] and [C.3] assess the robustness of our proposed method and the impact of
augmentation on downstream task performance. In contrast, Appendix provides a justification
for the necessity of forward projection. Finally, Appendix [C.5]explores the effect of different latent
space design choices on augmentation outcomes, offering insights into how these design decisions
can be leveraged to better control the augmentation process.

6 CONCLUSION

We introduced the pseudo-nonlinear data augmentation framework, which leverages information
geometry and energy-based models to provide a learning-free, efficient, and controllable augmen-
tation method. Our approach, grounded in the log-linear model on posets, endows data with a rich
information-geometric structure induced from the designed energy potential, facilitating both ge-
ometric reasoning and principled algorithm design. A key component is the backward projection
algorithm, which reverses dimension reduction in a geometrically intuitive and data-centric manner.

Through extensive experiments, we demonstrated the effectiveness of our method across diverse
modalities and datasets. In particular, it enables scalable augmentation for general data types while
offering controllability via the design of 1.) the base sub-manifold B, 2.) the local data sub-manifold
D, and 3.) the poset structure €2. Empirically, our framework outperforms both learning-based and
learning-free data augmentation baselines, even on common modalities such as images and audios.

10
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practices for dataset preprocessing and model evaluation to avoid introducing unfair bias. To the
best of our knowledge, our methodology and findings do not pose potential harm, nor do they raise
concerns regarding privacy, security, discrimination, or misuse.

REPRODUCIBILITY STATEMENT

We are commiitted to ensuring the reproducibility of our results. The main paper provides a detailed
description of the proposed method and the experimental setup. All hyperparameters, training proce-
dures, and evaluation metrics are documented in Appendix[C.1] To further facilitate reproducibility,
we provide the source code and instructions for reproducing all experiments.
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A PROJECTION THEORY IN INFORMATION GEOMETRY

We will assume some familiarity with the basic terminologies for manifold (Leel [2012, Chapter 1,
4). In particular, in this section, we explain the main concepts of information geometry used in
this study, including natural parameters, expectation parameters, model flatness, and convexity of
optimization. In the following, we consider only discrete probability distributions for simplicity and
refer to Amari| (2016)) for more general cases.

A.1 (6,717)-COORDINATE AND GEODESICS

Consider S as the space of discrete probability distributions, which is a non-Euclidean space with the
Fisher information matrix G as the metric. This metric measures the distance between two points,
i.e., discrete probability distributions, in S. In Euclidean space, the shortest path between two points
is a straight line, while in a non-Euclidean space, such a shortest path is called a geodesic. In the
space S, two kinds of geodesics can be introduced: e-geodesics and m-geodesics. For two points
p1,p2 € S, e- and m-geodesics are defined as

{re [logry = (1—t)logpy +tlogpy —¢(t),0 <t <1}, {re[re = (1—t)p1+1ip2,0 <t <1},
respectively, where ¢(t) is a normalization factor to keep r; to be a distribution.

We can parameterize distributions p € S by parameters known as natural parameters. In Sec-
tion [3_701 we have described the relationship between a distribution p and a natural parameter vector
6 € RP~! for a discrete probability distribution over a sample space of D elements in the log-linear
model. The natural parameter € serves as a coordinate system of S, since any distribution in S is
specified by determining 6. Furthermore, we can also specify a distribution p by its expectation
parameter vector € RP~1 which corresponds to expected values of the distribution and an al-
ternative coordinate system of S. More explicitly, the definition of the expectation parameter 7 is
defined as n, = >_ -, p(y) forz € 2, and 1, = 1, where p() is the probability mass function
of p over the sample set (2, which is assumed to be a poset. The #-coordinates and n-coordinates
are orthogonal with each other, which means that the Fisher information matrix G has the following
property, Gy, = O1,/00,, and (G™1),,, = 96,,/0n,. e- and m-geodesics can also be described
using these parameters as follows:

{0; |0, =(1—0)0P +t0P2,0 <t <1}, {me|m =1 —=t)nP +tnP2,0 <t <1},

where 6P and 1P are 6- and 7-coordinate of a distribution p € S.

A.2 FLATNESS, PROJECTION, AND ITS OPTIMIZATION

A subspace is called e-flat when any e-geodesic connecting two points in a subspace is included
in the subspace. The vertical descent of an m-geodesic from a point p € S onto e-flat subspace
B, is called m-projection. Similarly, e-projection is obtained when we replace all e with m and
m with e. The flatness of subspaces guarantees the uniqueness of the projection destination. The
projection destination P or p obtained by m- or e-projection onto B, or 53,,, minimizes the following
KL divergence

T):argminDKL(paq)a ﬁ:argminDKL(q7p)7
qEB. qEBm

where the KL divergence from discrete distributions p € S to ¢ € S is given as

Dxu(p,q) = Y p(x 1og 3)
€N

where p(x) and ¢(z) are the probability mass functions of p and ¢, respectively. A subspace with
some of its natural parameters fixed at 0 is e-flat (Amari, 2016, Chapter 2), which is obvious from
the definition of e-flatness. More generally, any subspace B resulting from linear constraints on
the natural parameter is e-flat. Similarly, any subspace B resulting from linear constraints on the
expectation parameter is m-flat. When a space is e-flat and m-flat at the same time, we say that the
space is dually-flat. The set of discrete probability distributions S is dually-flat.

Both e- and m-flatness guarantee that the cost functions to be optimized in Eq. (3) are convex.
Therefore, m- and e-projection onto an e- or m-flat subspace can be implemented by a gradient
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method using a second-order gradient. This second-order gradient method is known as the natural
gradient method (Amari}, [1998)). The Fisher information matrix G appears by second-order differ-
entiation of the KL divergence. For instance, given p and an e-flat subspace 3., the optimization
problem p = argmin, .z Dxr(p,q) can be efficiently solved via gradient descent with second-

order derivative by the update rule 6y, = 0; — G~ (n; — n?), where G € RP*P is the Hessian
matrix, and Dk, (P, Q)/00 = n — P is the derivative of the KL divergence. The updated nat-
ural parameters ;.1 can then be used to construct ;11 € B, that is closer to the destination p
along with the e-geodesic from ¢; to p. By repeating this process until convergence, we can always
find the global optimal solution. A similar algorithm can be implemented for the other case, i.e.,
p=argmings Dxr(q,p).

We make some remarks on the optimization of many-body approximation (Ghalamkari et al.| 2024)
that we omit in Section[4.4] which is a specific case of the above discussion.

Example A.1 (Many-body approximation). For B, = M, defined in Eq. E]

1. Convexity and uniqueness. The solution of the many-body approximation is always unique, and
the objective function of the many-body approximation is convex (Ghalamkari et al.| 2024} The-
orem 1). In particular, the many-body approximation is a maximum likelihood estimation that
approximates a non-negative tensor, which is regarded as an empirical distribution, by an ex-
tended Boltzmann machine without hidden variables.

2. Computational complexity: The computational complexity of the many-body approximation for
B, = My with B many non-fixed indexes (i.e., {-body parameters) is O(T|B|?), where T is the
number of iterations of the optimization. This is because the overall complexity is dominated
by the update of 0, which includes matrix inversion of G, and the complexity of computing the
inverse of an n. x n matrix is O(n®). As an alternative, one can appeal to first-order methods such
as gradient descent, which will then reduce the complexity to O(T'|B|), where |B| corresponds
to computing the gradient.

Note that this complexity can be reduced if one reshapes tensors so that the size of each mode
becomes small. We explore this idea further in Appendix[C.3]

B OMITTED DETAILS FROM SECTION

We provide the pseudocode for the proposed algorithm in Algorithms [I{and

Algorithm 1: Backward projection

Data: A representation w* € B, p-embedded dataset {z]}7_; with projection {w;}}_; on B,
keN
Result: Backward projected data 2"

N <Nearest-Neighbor (k, w* {w;} ;)
D +Construct-Sub-Manifold ({z}}ien)
Z* «+Proj (w*, D)

return z’*

*One can consider B,,, with Eq. being defined w.r.t. the n-coordinate system, and similar remarks hold.
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Algorithm 2: Pseudo-non-linear data augmentation

Data: A dataset {z;}7_;, embedding ¢: Qr — S, k € N, flat base sub-manifold B, size m € N
Result: A generated dataset {27} | of size m

fori=1,...,ndo // Encoding
z; + (2:)
w; <Proj (2, B) // w = Enc(z) = Projg op(2)

forj=1,...,mdo // Augmenting

| w} <Augment ({w;}i,, B)

forj=1,...,mdo // Decoding
2" +Back-Proj (w}, {z;}1y, {wi}iy, k) // Algorithm
Z; gp’l(z;-*) // z* = Dec(w*) = ¢! o Projz "' (w*)

return {27},

C OMITTED DETAILS FROM SECTION

In Appendix [C.I] we provide the details of experimental setup omitted in Section [5] and Appen-
dices[C.3|to[C.5|consists of additional experiments.

C.1 DETAILS OF EXPERIMENTAL SETUP

In this section, we provide the details of each dataset and other experimental setups with relevant
explanations.

Datasets. First, we summarize the details of each dataset in Table [Z] and relevant parameters for
applying the log-linear model on posets and Algorithm

Table 2: Summary of each dataset and the corresponding setups of Algorithm

| Dataset
\ MNIST CIFAR-10 Speech Commands Connectionist Bench  Taiwanese Bankruptcy =~ Wine Quality
Train Size 60,000 60,000 84,848 166 5,455 5,197
Test Size 10,000 10,000 4,890 42 1,364 1,300
Augment Size 10,000 10,000 7,000 32 1,090 1,036
Class 10 10 35 2 2 7
Feature 784 3,072 16,000 \, 4,000 60 95 11
Poset O R7;0><2“ R§§ x3 R§0X 53 Rgﬂwxs R%lg R§0X3
Base B (dim) My an  Ms aao My ase) Mji o) M @23 M o)
Local Data D @im) | M7 76 M} 2,339 M 3,430) M @30y M 72 M7 @
Bandwidth 0.05 0.05 0.05 0.05 0.05 0.05
Neighbor & 8 3 3 2 5 10

Note that MNIST holds a CC BY-SA 3.0 license, CIFAR-10 is released with a MIT license, and
Speech Commands is released with a CC BY 4.0 license. Finally, all the UCI datasets (Connectionist
Bench, Taiwanese Bankruptcy, and Wine Quality) are licensed under CC-BY 4.0. We now break
each group down and explain it in detail:

1. The first group consists of basic dataset statistics. The first three datasets (MNIST, CIFAR-10,

and Speech Commands) come with a default train/test split; for the last three UCI datasets, since
there is no default train-test split, we take 80% of the whole dataset as the training set, and the
remaining 20% as the test dataset. Augment Size reports the size of the augmented data, which is
roughly 20% of Train Size, off by some rounding errors since we assume we augment the same
amount of data for each class.
In all cases, the full training set is used to train the classifier when evaluating the classification
performance in Section and also to train our data augmentation baseline (i.e., autoencoder)
for comparison. The only exception is that for MNIST and Speech Commands, we choose an
equal number of samples for every class when doing our pseudo-non-linear data augmentation
for implementation convenience.
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Finally, due to the extremely high dimensionality of Speech Commands (16000), we down-
sampled each data to 4000 dimensions in the entire experiment due to the computational con-
straint: solving 16000-dimension convex programs is infeasible in terms of the memory require-
ment.

2. The second group consists of the poset structure we impose on each dataset when applying the

log-linear model for positive tensors. Since our ultimate goal is to utilize the many-body ap-
proximation (Egs. (I) and (2)), by reshaping the feature vector into a high-order tensor, a finer
hierarchy of projection can be obtained. Hence, in all experiments, we reshape the feature w.r.t.
the prime-number factorization of the number of features. For instance, an MNIST image is
in R2>80X 28 and we reshape it into a tensor of shape (7,2,2,7,2,2), giving it a 6M-order tensor
structure R%QXQ”XQXQ. For notation convenience, in Poset €2, we overload RZ to indicate the
natural poset structure introduced in Example[4.1] and compress the repeated prime factors in the
exponent. We note that for the Wine Quality dataset, since the feature dimension is originally 11,
which is a prime, we artificially add 1 dimension by padding 0’s, so we get a non-trivial prime
factorization.
Next, Base 5 and Local Data D report the corresponding construction of the base sub-manifold
and the local data sub-manifold using either Eq.(T)) or Eq.(2) w.r.t. the given poset structure of that
dataset. The number in the parentheses reports the corresponding dimension of the constructed
sub-manifolds.

3. Finally, Bandwidth reports the bandwidth parameter we used when fitting the kernel density
model M in the generating step, and Neighbor & reports the number of nearest neighbors used
in Algorithm 1]

Classification Performance. In Section we evaluate the augmentation methods by training
classifiers and evaluating their prediction accuracy. For MNIST and three UCI datasets, we consider
the simple 2-layer MLP, while we use the ResNet-18 for the other two datasets. All models are
trained by Stochastic Gradient Descent (SGD) (Ruderl [2016)) with learning rate 0.1, momentum 0.9,
and weight decay 5 x 10~%. A step size scheduler is utilized to reduce the learning rate by a factor
of 0.1 every 30 epochs until convergence.

For the two baseline data augmentation methods:

* Standard method (STD): The standard image augmentation methods include random horizontal
flipping and cropping. For other modalities, the standard augmentation method corresponds to
adding Gaussian noise, which is sampled from N(0, 0?), where o is chosen to be 1/4 of the
minimum standard deviations over each feature dimension to make sure that the noise level is
reasonable.

* Autoencoder (AE): For UCI datasets, we consider a simple two-layer MLP encoder-decoder ar-
chitecture, where the dimension of the hidden layer is the same as dim(B) indicated in Table
with a bottleneck dimension being 3. For the image datasets, both the encoder and the decoder are
based on convolutional layers. The encoder uses a series of convolutional layers with increasing
feature map sizes to progressively downsample the input image, while the decoder mirrors this
structure with transposed convolutional layers to reconstruct the image from the latent representa-
tion.

In all experiments, the autoencoder is trained with the Adam optimizer with a learning rate 10~3
under the mean squared error until convergence.

C.2 IMPACT OF THE SIZE OF AUGMENTATION

In this section, we conduct additional experiments on the impact of the ratio between the augmented
dataset size on the performance. Specifically, we consider the two image datasets (MNIST and
CIFAR-10) and the audio dataset (Speech Commands), and vary the size of the original size of the
augmented dataset, which is 20% of the original dataset size. The results are presented in Tables
to
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Table 3: Impacts on the sizes of the augmentation dataset for MNIST.

AG | 25% 50% 75% 100%
None | 98.14% 98.08% 98.10% 98.12%
STD | 92.08% 92.00% 92.02% 92.16%

AE | 97.91% 97.86% 97.90% 97.97%
PNL | 98.01% 98.07% 97.93% 97.55%

Table 4: Impacts on the sizes of the augmentation dataset for CIFAR-10.

AG | 25% 50% 75% 100%
None | 89.06% 89.32% 88.63% 88.83%
STD | 90.42% 92.00% 90.60% 90.92%

AE | 88.56% 88.76% 88.42% 86.49%
PNL | 88.72% 88.32% 88.53% 88.67%

Table 5: Impacts on the sizes of the augmentation dataset for Speech Commands.

AG | 25% 50% 75% 100%
None | 83.68% 83.26% 84.72% 84.16%
STD | 84.34% 83.84% 84.98% 84.25%

AE | 82.30% 83.49% 84.72% 85.21%
PNL | 84.20% 84.61% 84.56% 84.43%

C.3 SENSITIVITY AND ROBUSTNESS

We examine our proposed method’s robustness and sensitivity of the bandwidth used when fitting
the kernel density model, and also the number k of the nearest neighbors used in Algorithm [I] For
an easier visual inspection, we use MNIST in this section.

Bandwidth of Kernel Density Estimation Model. Consider varying the bandwidth we use when
fitting the kernel density model, ranging among {0.01,0.05,0.1,0.2,0.5}. The results are shown in
Figure[§] We observe that Algorithm 2]is robust under different bandwidths when working with the
kernel density estimation model in the generating step.
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(a) Result with bandwidth 0.01.
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(b) Result with bandwidth 0.05.

ol 112]3l4]5]6]7]8]9

(c) Result with bandwidth 0.1.
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(d) Result with bandwidth 0.2.
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(e) Result with bandwidth 0.5.

Figure 8: Augmented data via Algorithm with different kernel density estimation bandwidths.

Number of Nearest Neighbors. Next, we consider ranging k& among {1, 4, 8,16}. The results are
shown in Figure @} Observe that when k is small, e.g., 1, the result of Algorithm tends to overfit
since the local sub-manifold D in Algorithm [1|is defined using only the nearest neighbor. When &
goes up, a non-trivial augmentation emerges, robust across different k’s.
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0] 1|a]3d]5]Cl7]8]s

(a) Result with k& = 1.
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(b) Result with k = 4.
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(c) Result with &k = 8.
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(d) Result with £ = 16.

Figure 9: (Top) Augmented data via Algorithm with different k’s for Algorithm (Bottom) The
closest training data.
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C.4 NECESSITY OF DIMENSION REDUCTION

We demonstrate that dimension reduction, a key building block of our proposed method based on
the intuition we have from autoencoder-like models, is necessary for Algorithm [2|to work. For an
easier visual inspection, we use MNIST in this section.

Direct Fitting. Naive perturbation-based data augmentation methods fall short of high-
dimensional data due to the sparsity of the data. Figure [TI0] shows the results of directly fitting a
kernel density estimation model on MNIST with 1000 samples.

ofrf2l3l«lsiela]g]g
0l i]213l«|s5]E]9]8]7

Figure 10: (Top) Augmented data via directly fitting a kernel density estimation model with a band-
width 30. (Bottom) The closest training data.

Observe that even with a large bandwidth (30) to introduce variability, we only see a meaningless
noisy perturbation on one of the exact training samples, indicating overfitting.

Local Data Sub-manifold. A potential problem related to the necessity of dimension reduction is
that, if D captures too much local information about the data (i.e., with low dimension), backward
projecting a random latent representation w* € B might already suffice to augment the data in a
non-trivial way, without the need for knowing the latent representations of the training dataset. To
this end, consider sampling uniformly random latent representations within the empirical range we
observed from the latent representations of the training data and perform Algorithm|[l} The results
are shown in Figure

FHEEAAEaRanA
oldlzlil4]5] 7] 8] 7

(a) Result with k& = 1.

ol L1 1 sl |-1s]
RAREANAREA

(b) Result with k = 4.

EEEECINEENE
RIAEEREAREE

(c) Result with k& = 8.

EEEEEEEEEN
FHHAAREAEARFEE

(d) Result with £ = 16.

Figure 11: (Top) Augmented data on random latent representations via Algorithm [2| with different
k’s for Algorithm E} (Bottom) The closest training data.
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For k = 1, Figure shows that, similar to Figure it is possible to overfit one of the
training data (i.e., the nearest neighbor of the randomly sampled latent representation). This is not
surprising since the base sub-manifold is only of dimension 17, as the random latent representation
is sufficiently close to one of the representations of the training data in 53, their backward projection
result should not deviate too much. Furthermore, we observe the fading effect, which intuitively
corresponds to misspecification of the energy, indicating that the sampled latent representation is
fundamentally different from that of the dataset.

As k increases, the benefit of getting informative and meaningful latent representations from the
original dataset becomes clear. Specifically, we start to see degeneration: from unclear overlappings
to collapsing (i.e., only a few pixels are showing). Intuitively speaking, it is because the random
latent representation’s nearest neighbors appear to be significantly different, hence failing to provide
a consistent local data sub-manifold. For instance, in the extreme case when k£ = 16, the local data
sub-manifold is completely not informative, resulting in collapsing. Overall, without dimension
reduction, we will lose the reference of realistic latent representations provided by the original
dataset, which leads to bad performance once we are beyond the trivial overfitting regime.

C.5 CHOICES OF TENSOR STRUCTURE AND CONSTRUCTION OF SUB-MANIFOLDS

In Section we consider varying ¢ for B = M, with the tensor structure R7{2*2X72%2 o
the MNIST ataset In this section, we further vary the tensor structure as well: in garticular, we
consider the tensor structure of the MNIST image being R 828 R7X4X7X4 and R XIXIXTXIXZ

Remark C.1. For notation convenience, we also write thelr corresponding poset structures as
RZ8X28  RUXAXTXA " g R7>XO2X2X7X2X2, and further write the many-body approximation sub-
manifold (Eq. ) as My(2) and its dual (Eq. ) as M} (N, Q) for a particular poset ) to empha-

size the dependency.

Flnally, we consider ranging ¢ from 1 to at most 4 where we neglect the degenerate case: for instance,
in the case of RZ}%%, M, (R28X28) S as there are only two modes for a matrix, therefore degen-

erates to direct ﬁttmg which is not of interest (see Appendix [le) Note that throughout this section,
we fix the default local data sub-manifold to be D = M ( X2X2XTX2X2) for consistency.

The results for the finest structure, R7$?*2*7*2X2 are shown in Flgure As £ grows, the forward

projection results (Top) preserve the structure of the data better, subsequently improving the quality
of the augmented data (Bottom). Similar trends can be found in the case of R;XO X7x4 "as shown in
Figure

If we look at the results when using the original matrix structure ]RzzsoX 8 (Figure , some interest-
ing comparisons can be made. Firstly, if we compare the augmentation results for B = M, (RigoX 28)
(Flgure 2(B70tt20n12)) with the finer structures counterparts, e.g., (Figure |1 (Bottom)) for
My (RUZTFXEXTX2XZY “one can observe that the results are worse. However, the former requires
more dlmension (dim(M; (RE)2%)) = 55 > 17 = dim (M (RT2*2*7*2%2))) for the base sub-

manifold. Similarly, the augmentation results with B = M, (RT$**7*4) (Figure [13(a)| (Bottom))
also achieve better performance with a lower base sub-manifold dimension.
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(a) Result with base sub-manifold B = M (R75?***72*2) (dim(B) = 17).
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esult with base sub-manifo 2 1m =
(b) Result with b b-manifold B = M RW””XM (di =107).

(c) Result with base sub-manifold B = M3( R7 X2X2XTX2X2Y (dim(B) = 327).
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(d) Result with base sub-manifold B = My R”Z”””“) (dim(B) = 592).

Figure 12: (Top) Forward projection on B = ME(R;EZXQWXZ“)

onD = MT(R7>>62X2X7X2X2).
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(a) Result with base sub-manifold B = M; R7X4X7X4) (dim(B) = 19).

-v"'

(b) Result with base sub-manifold B = M R;f;*”“) (dim(B) = 136).

. (Bottom) Backward projection

Figure 13: (Top) Forward projection on B = M,(
D= MT(R7><2><2><7><2><2)
= 2 )
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Figure 14: (Top) Forward projection on B = MZ(R?OX%). (Bottom) Backward projection on
D= M*(R7><2><2><7><2><2)
18>0 :

RIS T4) " (Bottom) Backward projection on
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