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Abstract

Reinforcement learning is increasingly applied to optimize recommender systems for
long-term user engagement and system objectives. However, a significant challenge re-
mains in ensuring fair supplier exposure alongside user relevance, as traditional meth-
ods often lead to popularity bias. Addressing this challenge by adaptively balancing
relevance and fairness can lead to more sustainable, equitable digital platforms and
improved long-term user engagement. We introduce A2Fair, a RL framework that per-
sonalizes recommendations by dynamically balancing relevance and exposure fairness
through an adaptive reward function that considers individual user diversity preferences
and a rich state representation.

1 Introduction

Recommender systems (RS) in digital marketplaces personalize user experience and drive engage-
ment. However, established RS methodologies like collaborative and content-based filtering (Das
et al., 2007; Marlin & Zemel, 2004; Su & Khoshgoftaar, 2009; Yang et al., 2014; Adomavicius &
Tuzhilin, 2005; Kompan & Bielikov4, 2010; Phelan et al., 2011) can be limited in dynamic environ-
ments with long-term interaction effects. Reinforcement learning (RL) offers a robust alternative for
optimizing decision policies by learning from long-term environmental interactions. Consequently,
RL-based recommender systems (RLRS) are developed to enhance personalization and efficiency in
these settings (Dulac-Arnold et al., 2015; Zhao et al., 2018; Zheng et al., 2018; Zou et al., 2019; Liu
et al., 2020b).

A key challenge in marketplace system is ensuring fair supplier exposure alongside user-centric met-
rics. Conventional RS and naive RL implementations can create popularity bias, where few items
or suppliers dominate recommendations. This "rich-get-richer" phenomenon (Mehrotra et al., 2018;
Singh & Joachims, 2018) hinders new or niche suppliers, limits user discovery, and impacts mar-
ketplace health and diversity (Abdollahpouri et al., 2020; Pitoura et al., 2021; Wang et al., 2023).
Addressing this requires balancing immediate user relevance with supplier exposure (Abdollahpouri
et al., 2020), considering the dynamic, sequential nature of user interactions and evolving prefer-
ences (Liu et al., 2019; D’ Amour et al., 2020; Creager et al., 2020b; Chen et al., 2023; Gohar et al.,
2025; Tang et al., 2025).

Users exhibit diverse preferences for content variety; some prefer specific supplier groups, while
others welcome broader recommendations (Mehrotra et al., 2018; Mansoury et al., 2023; Prent
& Mansoury, 2025), suggesting that a one-size-fits-all approach to fairness and relevance is sub-
optimal. Our approach addresses this by dynamically balancing recommendation relevance with
supplier exposure fairness, considering individual user affinity for diversity. We use RL to learn
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a policy that personalizes for both relevance and fairness by modeling sequential interactions as a
markov decision process (MDP) and designing a reward function that incorporates user diversity
preference.

This approach yields RL agents for RS that are effective by traditional relevance metrics, robust to
fairness concerns, and adaptable to diverse user behaviors. Where dynamic adaptation to user prefer-
ences and system-level objectives like fairness is paramount, RL can foster sustainable and equitable
digital platforms. Successfully balancing accuracy and fairness through such an RL framework can
improve long-term user engagement and cultivate a healthier, more diverse marketplace ecosystem.

This work contributes A2Fair, an RL-based solution for balancing relevance and fairness in recom-
mender systems. Experiments on public datasets demonstrate that our approach, which explicitly
designs the RL agent to consider user affinity for diversity, improves both recommendation relevance
and exposure fairness.

2 Fairness of Exposure in Recommender Systems

Recommender systems personalize suggestions based on user preferences, which can inadvertently
lead to unequal exposure among items. This disparity occurs because optimizing solely for user-
centric metrics often neglects broader system-level objectives, such as ensuring fair visibility for
item providers (Abdollahpouri et al., 2020). Although traditional RS evaluations prioritize user-
focused metrics like precision, recall, and diversity (Abdollahpouri et al., 2020), incorporating
provider perspectives is crucial for a balanced ecosystem. In multilateral recommendation envi-
ronments, establishing an equilibrium between relevant recommendations for users and equitable
exposure for providers is a fundamental challenge for ecosystem sustainability.

The dynamic nature of recommender systems, where user interactions continuously reshape the
environment, introduces additional complexity. Applying static fairness criteria at each interaction
step can, paradoxically, worsen long-term unfairness (Creager et al., 2020a; D’ Amour et al., 2020;
Zhang et al., 2020; Deldjoo et al., 2023; Wang et al., 2023; Mansoury & Mobasher, 2023; Gohar
et al., 2025; Tang et al., 2025). Several RL-based approaches have been proposed to address these
dynamic challenges. For example, Wen et al. (2021) formalize fair decision-making within MDPs to
achieve long-term group fairness. Yadav et al. (2021) integrate meritocratic fairness principles with
policy gradients. Other strategies involve categorizing items by popularity and applying RL with
fairness constraints (Ge et al., 2021), or employing demographic parity where deviations from fair
exposure serve as learning constraints for policy gradients (Singh & Joachims, 2019). Alternative
frameworks, such as multi-objective RL (Ge et al., 2022) and fairness-aware multi-armed bandits
(Joseph et al., 2016; Metevier et al., 2019; Patil et al., 2021; Wang et al., 2021), also provide solutions
for balancing the exploration-exploitation trade-off alongside fairness objectives.

Items can be categorized into groups based on various criteria, such as sensitive attributes or platform
monetization strategies. This grouping facilitates the management of item exposure, enabling either
equal or strategically differentiated visibility across groups. Consequently, platform visibility can be
tailored to group-specific exposure targets, which are often defined by importance weights reflecting
platform strategies. Formally, let A be the set of all items, partitioned into [ distinct groups, G =
{g1,..., 91} For each group g; € G, A4, C A denotes the subset of items belonging to that group.
Group exposure fairness (Singh & Joachims, 2018; Liu et al., 2020c) is quantified using these item
groupings. The exposure of a group g; up to time t, denoted as z¢, is the i-th component of the
exposure distribution vector x; € Rﬁr across all [ groups:

¢
s 2k=1 L, (ax)

t— 1 t ’

D=1 D k=1 1y, (ar)

(1)
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where 14, (ax) is the indicator function, which equals 1 if item aj, belongs to group A, and 0
otherwise. Weighted proportional fairness aims to maximize PropFair:

!
PropFair = Z w; log(1 4 zt), (2)
i=1

subject to Zl L7t =1land 2} > 0. Here, w; € Ry are predefined nnportance weights for each

group. The optimal exposure distribution x?, for group g; under this metric is: =%, =S S
ir=1W

Weighted proportional fairness is one of several fairness definitions; the choice of metric is hlghly
context-dependent, and no single definition is universally applicable. Liu et al. (2020c), for example,
employed this fairness definition within an RL framework. They argued that only post-exposure ac-
tions with direct commercial value (e.g., clicks) should contribute to exposure calculations, thereby
disregarding items that are shown but do not lead to immediate conversion. However, this perspec-
tive overlooks the potential of initial exposure—even without immediate conversion—to act as a
precursor to future engagement, such as later conversions, product discovery, or increased familiar-
ity. Therefore, an exposure that does not yield a high immediate reward might still be instrumental
in a sequence of interactions that ultimately leads to a higher cumulative reward in the long term.

3 Combining relevance and fairness

We model the recommendation process as a MDP, where the RS acts as the agent and user interac-
tions constitute the environment. At each discrete time step ¢, the agent observes the current state
s¢ € S, selects an action a; € A (recommends an item), receives user feedback y,, (e.g., a click or
skip), and obtains a reward r,. The agent’s objective is to learn an optimal policy 7* that maximizes
the cumulative reward over time. The core components of this MDP are defined as follows:

The immediate relevance reward, Ryejevance (U, Gt ), for recommending a; to user u is based on feed-
back y,,. We set Rielevance (U, a:) = +1 for positive interactions (e.g., clicks, purchases), signifying
high relevance, and Riejevance (4, ar) = —1 otherwise.

To promote fair exposure for item providers, items are categorized into [ distinct groups, G =
{91, --., g}, with each item belonging to exactly one group A,, C .A. These groups are typically
defined by system designers based on criteria such as shared item attributes, provider identity, or
platform-specific policies. The exposure of a group g; at time ¢, denoted ¢ (Eq. 1), is considered
fair when it aligns with a predetermined ideal exposure %, function of the group’s importance
weight w;. This framework empowers recommender system developers to adjust group exposure in
line with platform guidelines, thereby balancing strategic objectives with the goal of fair exposure.

The fairness component of the reward, Rpyimess(a¢), is designed to guide the agent towards achieving
the target exposure distribution. It is calculated based on the disparity between the current exposure
2t (Bq. 1) of the group to which item a; belongs and its optimal exposure z°

R’rmmess (If Z 1Ag at . — l't) 3)

The term (2% — %) quantifies the fairness gap for the selected item’s group: a positive value indicates
that the group is under-represented, while a negative value signifies over-representation.

Users exhibit significant variability in their sensitivity to content diversity: some users consistently
prefer items from specific groups, while others are more open to recommendations from a broader
range of categories (Mehrotra et al., 2018; Mansoury et al., 2023; Prent & Mansoury, 2025). To
capture this, we use user u’s history of positive interactions H,, = {e,,,. .., €q,, }, where m is the
total count of relevant items. Each item a € H,, is associated with an embedding e,, which captures
its characteristics.
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The challenge lies in quantifying a user’s preference for items similar to those they previously fa-
vored. We use a diversity coefficient based on the cosine similarities between the embeddings of
items in H,,. The preference for diverse content is then defined as:

n(u) =1—pe,, 4

where /i, is the mean cosine similarity of items in H,, and n(u) € [0,1]. n(u) =~ 0 suggests
preference for similar items; 7(u) = 1 indicates preference for variety.

We propose an adaptive reward function to optimize RS, dynamically balancing relevance for users
with low diversity affinity and fairness for users with high diversity affinity. It integrates relevance
and fairness using a dynamic weighting factor:

R(U7 at) = ((1 - n(u)) * Rrelevance(ua at)) + (n(u) * Rfairness(at))- (5)

As a user’s diversity preference n(u) (Eq. 4) increases, the system emphasizes fairness. Conversely,
as 1)(u) decreases, the focus shifts to relevance. This approach aims for a fairer recommender system
that adapts to individual user preferences while promoting equitable group visibility. This dynamic
balance enables satisfying immediate user needs while promoting long-term fairness and diversity.

4 Proposed framework

We present A2Fair, a framework for fair reccommendations considering user profile, using an Actor-
Critic algorithm with three main components: state representation module, actor, and critic. The
state representation module (Figure 1) integrates user and system context, defined by four pillars:

1. User Understanding: Integrating user representation allows considering unique characteristics
for more relevant recommendations.

2. Recent Preferences: Last N positively interacted items reflect current preference trends

3. Detailed Interaction Modeling: Explicitly incorporating user-item interactions enhances RL ca-
pabilities for identifying preference patterns.

4. Fairness and Diversity Promotion: Including group exposure distribution clarifies current fairness
balance, allowing strategic prioritization of underrepresented groups.

State representation
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Figure 1: State representation module
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State s; includes the user’s recent positive interaction history H,, = {a1,...,an}, a user represen-
tation vector e,, and current fairness state of the system. A state representation module processes
this information into a continuous vector. This module takes as input the last /N positively en-
gaged items, and their group identifiers. Each item a is represented by an embedding e,, and each
group g is represented by an embedding e, (mean of its item embeddings). The item representation
€ = e, + e4 enriches item features with group context (Liu et al., 2020c).

User and item embeddings are pre-trained and fixed during the RL training phase. this has limi-
tations for industrial use, where systems must adapt to changing characteristics, requiring constant
retraining, which can be impractical in production (Liu et al., 2020a). However, for the purpose of
offline evaluation and demonstrating the core mechanics of A2Fair, fixed pre-trained embeddings
suffice.

A2Fair (Figure 2) employs the DDPG Actor-Critic algorithm (Lillicrap et al., 2016). The Actor
network is responsible for generating an action a; given the current state s;. This state s; is pro-
cessed through fully-connected layers to produce an action vector z; € R'**_ This vector z; then
defines a ranking function; the score score; for a candidate item 7, (represented by its embedding)
is calculated as 4; - 2] .. The item with the highest score is then recommended. In this study, one
item is recommended at each step. The Critic network evaluates the actions selected by the Actor.
It learns to predict the expected long-term return, (s, 2;), based on the current state s; and the
action vector z; generated by the Actor (Figure 2).

The training process for A2Fair proceeds over discrete time steps ¢, with each step involving two
primary phases: (1) Transition Generation: The agent first observes the current state s;. An action
ay, representing the selection of an item, is derived from the Actor network’s current policy, with
OU-Noise (Uhlenbeck & Ornstein, 1930) for exploration. Following, the reward r; is estimated
using our adaptive reward function (Eq. 5). Subsequently, the user’s state (which includes updating
the interaction history H; to H,,; if a positive interaction occurs) and the group exposure metrics
are revised, leading to the next state s;y1. The resultant transition tuple (s¢, a, ¢, S¢41) is then
stored in a replay buffer D. (2) Model Update: From the replay buffer D, a mini-batch of M
transitions is sampled, using prioritized experience replay. To further enhance learning stability, the
target networks for both the Actor and Critic undergo soft updates.
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Figure 2: A2Fair Framework

The aforementioned reward r; is derived from user feedback ,,. In our offline experimental setup,
this feedback is obtained either from historical interactions present within the dataset or, for item-
user pairs without existing ratings, simulated. All rewards are subsequently normalized to a consis-
tent range of [—1, 1].
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5 Experimental Evaluation

To assess the efficacy of A2Fair, we conducted offline experiments using two public datasets: Movie-
Lens' and Yahoo! Music2. User ratings, on a 1-5 scale with positive interactions if > 4, are normal-
ized to the range [—1, 1] using the transformation # (rating,, , — 3).

* MovieLens: Collected by GroupLens Research, with versions from 100k to 1M ratings from the
MovieLens platform, supporting RS research.

* Yahoo! Music (R3): Part of Yahoo! Music User Ratings, for large-scale RS evaluation, particu-
larly in music recommendation and user behavior.

We compared A2Fair with conventional, deep learning, RL, and MAB-based algorithms:

* Random: Non-personalized baseline, suggests items randomly.

* MostPopular (Canamares & Castells, 2018): Recommends globally most popular items.
* LinUCB (Li et al., 2010): Contextual bandit balancing exploration/exploitation.

* DRR (Liu et al., 2020b): Deep RL framework for RS, maximizing long-term rewards.

* FairRec (Liu et al., 2020c): RL framework balancing accuracy and fairness.

Recommendation effectiveness is measured by Precision@T (fraction of positive interactions
among 71" recommendations), fairness by PropFair (Eq. 2). The trade-off is assessed using the

UFG = :ﬂ% score (Liu et al., 2020c), where higher values indicates a better trade-off.

Users were randomly allocated to training (80%) and testing (20%) sets. User and item embeddings
(100 dimensions) were pre-trained using PMF (Liu et al., 2020b;c). For simulating user feedback
within our offline environment BPMF was selected due to its superior predictive accuracy (Table 1),
which is likely attributable to its enhanced modeling of uncertainties.

Key hyperparameters for the A2Fair model and Table 1: Evaluation of Matrix Factorization
training were set as follows: a history length N =5, ethods for simulation.

a discount factor v = 0.9, and an episode length

T = 15. The Actor and Critic networks were con- PMF BPMF
structed with 256-unit hidden layers and optimized RMSE

using the Adam optimizer with a batch size of 64. MovieLens (100k) 0.493 0477
To simulate varying levels of item popularity and as- MovieLens (1M) 0.464  0.448
sess the framework’s fairness capabilities under such Yahoo! Music (R3) 0.639  0.623

conditions, items were randomly distributed into five

groups of differing sizes. This distribution followed a geometric pattern (Liu et al., 2020c), result-
ing in an unequal allocation of items. Consequently, some groups inherently contained more items,
affording them higher natural visibility, while other groups, with fewer items, faced reduced initial
exposure opportunities.

This setup simulates impact of unequal distribution on fairness. Standardizing weights w; = 1.0 for
all groups establishes equal importance, allowing analysis of algorithm’s ability to promote equity
from an unbalanced start. This methodology evaluates the system’s efficiency in ensuring equitable
group visibility, despite the initial imbalanced distribution.

5.1 Results and Analyses

Table 3 summarizes the simulated online evaluation results, with the best performances for
Precision (P), PropFair (F), and U FG (U) metrics highlighted in bold. All results are averaged
over 6 independent runs. The LinUCB and DRR baselines perform strongly in terms of recommen-
dation relevance (Precision), which is expected as their primary optimization objective is long-term

Uhttps://grouplens.org/datasets/movielens
Zhttps://webscope.sandbox.yahoo.com/
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Table 3: Experimental results on MovieLens and Yahoo! Music.

Random  Most Popular  LinUCB DRR FairRec A2Fair
ML (100k)
P 0.77510.05 0.89640.00 0.8021002 0.9081002 0.76640.06 0.93110.01
F  0.87110.00 0.87040.01 0.84140.03 0.8601901 0.87510.00 0.880.0.00
U 3.866i0.6 8.385:|:0.11 4.251:‘:0,74 9.923:&2.45 3.711:|:2‘99 12.721:|:0‘42
ML (1M)
P 0.72540.01 0.76710.01 0.7961+0.03 0.78410.02 0.8191002 0.891.003
F 0.872:|:().01 0.863:&0,02 0.874:‘:()‘01 0.876:&0.01 0.887:‘:0.02 0.887:‘:0.02
U 3.183i0,09 0.698i0,10 4.276i1,92 4-048i0,64 4.888i0.28 8.138i1_64
YM (R3)
P 0.68219.00 0.885+0.02 0.81010.02 0919901 0.9031001 0.91310.02
F 0.871i0_00 0.878i0,06 0.841i0,02 0.864i0,01 0.890i0,00 0.890i0,01
U 2.73810.02 7.639+0.20 4.43040.02 10.6701254 9.1671153 10.2434554

reward maximization. In contrast, FairRec demonstrates superior performance in promoting fairness
(PropFair), though this often comes at the cost of some accuracy.

On both the ML-100k and ML-1M datasets,
A2Fair demonstrated superior performance

Table 2: Impact on Relevance and Fairness
metrics for different reward formulations within

over the baselines across all three evaluated A2Fair.

metrics. These findings suggest significant

progress in achieving high recommendation rel- Reward Precision PropFair  UFG
evance without unduly sacrificing fairness, a ML (100k)

key practical goal. For the YM(R3) dataset, Relevance 0.948 0.864 16.466
while DRR achieved the highest raw rele- Fairness 0.818 0.864 4.755
vance, it also exhibited the lowest fairness in- Adaptive 0.931 0.880  12.721
dex among the more advanced methods. Con- ML (1M)

versely, A2Fair achieved a level of fairness Relevance 0.864 0.874 6.426
comparable to FairRec while simultaneously Fairness 0.840 0.882 5.512
increasing relevance by 1.1%. On the Movie- Adaptive 0.891 0.887 8.138
Lens (1M) dataset, A2Fair maintained fairness YM (R3)

levels similar to FairRec while achieving an Relevance 0.882 0.878 7.441
8.8% gain in relevance. Most notably, on the Fairness 0.837 0.898 5.509
MovieLens (100k) dataset, A2Fair increased Adaptive 0.913 0.890 10.243

relevance by a substantial 21.5% and fairness

by 0.6% compared to FairRec. These results

demonstrate A2Fair’s capability to efficiently and adaptively balance the often competing objectives
of accuracy and fairness.

We conducted an ablation study on reward formulations and state representation effectiveness com-
pared to FairRec’s approach. First, we studied three reward strategies: maximizing relevance, pro-
moting fairness (Eq. 3), and our adaptive reward (Eq. 5). Table 2 details results. Strategies focused
solely on relevance often boost user satisfaction, while an excessive focus on fairness can reduce it.

The adaptive reward formulation in A2Fair demonstrates its effectiveness in dynamically balancing
these dimensions. While it may not always achieve the absolute maximum for any single metric
(Precision or PropFair), it consistently maintains a strong balance, achieving fairness levels near the
ideal without a significant loss in relevance.

We then analyzed the effectiveness of our proposed state representation by comparing it with a con-
figuration inspired by FairRec’s approach, which excludes the user embedding from the state. This
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comparison, detailed in Table 4, showed that incorporating user features into the state configuration
leads to notable improvements.

Finally, we compared our adaptive reward with a formulation inspired by FairRec’s bipartite strat-
egy. Contrary to approaches that only assign value to immediate conversions, we argue that from a
long-term ecosystem perspective, all exposures hold potential value for future engagement or dis-
covery. Our reward model, which reflects this broader view by valuing all exposures, demonstrated
a significant increase in both relevance and fairness metrics (Table 4).

Table 4: Comparing percentage gains in relevance and fairness for A2Fair’s proposed components
versus alternatives inspired by FairRec’s approach (state without user embedding, reward valuing
only converting exposures).

State Representation Gain Reward Formulation Gain

Precision PropFair Precision PropFair
ML (100k) 3.1% 2.0% 8.1% 1.7%
ML (1M) 3.5% 1.7% 8.7% 0.1%
YM (R3) 2.7% 1.1% 2.6% 1.7%

6 Conclusion

We introduced A2Fair, a RL framework designed to balance relevance and exposure fairness in
recommender systems. The practical effectiveness of A2Fair is driven by two core design choices:
(1) an adaptive reward function that dynamically weights relevance and fairness based on measurable
user-level diversity preferences, allowing the system to meet individual nuances while pursuing
global fairness, and (ii) a rich state representation that incorporates user features and the current
system-wide exposure distribution, providing the RL agent with comprehensive context for decision-
making. Our ablation studies confirm that each of these components independently contributes to
improvements in both accuracy and equity.

Although the offline results are encouraging, deploying A2Fair in practice demands further vali-
dation and engineering. Our next steps are fourfold. (1) Augment the state encoder with context
features (e.g. time of day, trending content). (2) Replace static embeddings with online, jointly
trained user- and item-representations that adapt to evolving preferences. (3) Stress-test scalability
and decision latency to ensure the system can handle commercial-scale traffic. (4) Run live A/B tri-
als to measure user-perceived relevance, diversity, and fairness, providing the final proof of A2Fair’s
real-world value.

Broader Impact Statement and Practical Challenges

Deploying adaptive RL for fairness in real-world recommender systems, while promising, intro-
duces non-trivial risks and practical challenges that practitioners must consider. First, optimizing
for a specific fairness metric can inadvertently hide other forms of fairness harms or encourage a
superficial "checkbox" compliance, rather than genuine equity. The choice and continual evaluation
of fairness metrics themselves are critical practical tasks. Second, inherent biases within the train-
ing data may be learned and even amplified by the RL agent if embeddings inadvertently capture
proxies for sensitive attributes. Third, the increasing complexity of deep RL models can obscure the
decision-making process, limiting auditability and making it challenging to explain why a particular
recommendation was made. Finally, the very adaptiveness of RL means that rapid online learning
and policy changes might, in some cases, destabilize long-term equity goals or lead to unpredictable
system behavior if not carefully monitored and constrained. Mitigation requires: (i) multi-metric
fairness auditing; (ii) conducting thorough bias detection and mitigation analyses on both input data
and learned representations; (iii) developing and utilizing interpretable model diagnostics and ex-
planation techniques; and (iv) implementing continuous monitoring and evaluation frameworks to
track downstream effects on users, providers, and the overall platform ecosystem.
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