
Realistic Training Data Generation and Rule Enhanced Decoding in LLM
for NameGuess

Anonymous ACL submission

Abstract

Column name expansion in tabular data, known001
as NameGuess, is potentially benefiting a wide002
range of table-centric tasks in natural language003
processing and database management. Recent004
work proposes solving this task by tuning Large005
Language Models (LLMs) using synthetic rule-006
generated training data under the table con-007
text. While previous work has made significant008
strides, we identify two key limitations: the un-009
realistic nature of rule-generated abbreviations010
in training data and the persistent divergence011
problem in LLM outputs. To address the first012
issue, we propose a novel approach that inte-013
grates a subsequence abbreviation generator014
trained on human-annotated data with the in-015
troduction of non-subsequence abbreviations016
in the training set. To address the second issue,017
we propose a decoding system constrained on a018
robust automaton that represents the basic rules019
of abbreviation expansion. We extended the020
original English NameGuess test set to include021
non-subsequence and PinYin scenarios. Exper-022
imental results show that properly tuned 7/8B023
moderate-size LLMs with a refined decoding024
system can surpass the few-shot performance025
of state-of-the-art LLMs, such as the GPT-4026
series, which is widely believed to have over027
100B parameters. The code and data are pre-028
sented in the supplementary material.029

1 Introduction030

Tabular data is widely used in various domains,031

from web applications to enterprise databases, as032

a key structure for organizing information. Abbre-033

viated column names are common to simplify ex-034

pressions and meet database constraints. However,035

these abbreviations often harm downstream tasks.036

For example, Text2SQL (Yu et al., 2018), schema-037

based relation detection (Koutras et al., 2021), and038

table QA tasks (Yin et al., 2020) suffer performance039

drops of 10.54, 40.50, and 3.83 percentage points,040

respectively (Zhang et al., 2023). This issue is041

Cur Deprtmnt_nm Txn_id

USD Building 13....5

EUR Logistic 12....1 Currency
Department
name

Transaction
identification

Department
name

Transaction
identification

Currency Department
name

Transaction
identification

Full name

Abbreviated name

A subset of columns in a currency transaction table

Figure 1: A Real Example of the NameGuess Task.

also critical for data integration pipelines and data- 042

sharing scenarios, where cryptic schema names 043

hinder understanding, especially in legacy systems 044

with incomplete documentation. 045

The NameGuess task, which expands abbre- 046

viated column names, is crucial for improving 047

tabular data usability. It requires table con- 048

text understanding and capturing multiple ab- 049

breviation patterns. For instance, in Fig. 1, a 050

real example from the dataset, both patterns of 051

subsequence (Department→Deprtmnt) and non- 052

subsequence (Transaction→Txn) exist. Humans 053

achieve only 43.4% accuracy on the City Open 054

Data dataset (Zhang et al., 2023), highlighting the 055

challenge of training reliable models. 056

Through statistics, we find that English table 057

design follows a pattern that primarily uses sub- 058

sequence abbreviations, with a few other non- 059

subsequence abbreviations. Besides, in program- 060

ming practice in other non-English-speaking coun- 061

tries, e.g., China, people tend to use abbreviated 062

PinYin (Chinese Phonetic Alphabet) in column 063

names, which maintains the subsequence relation- 064

ship at another phonetic level. In this paper, we will 065

discuss how to define the rules in different abbrevi- 066

ation schemes and how to apply them along with 067

other advanced techniques. Large language mod- 068

els (LLMs) show promise for NameGuess (Zhang 069

et al., 2023; Cai et al., 2022). They understand table 070

1

context and generate natural language (Sui et al.,071

2024). Few-shot in-context learning (Dong et al.,072

2022) with models like GPT-4 achieves competi-073

tive performance but is expensive and suboptimal074

for some schemes. Tuned moderate-size LLMs075

(<10B parameters) offer a cost-effective alternative,076

so we primarily choose this option in this paper.077

Current methods rely on rule-based training data078

generation, focusing mainly on subsequence abbre-079

viations (Zhang et al., 2023; Gorman et al., 2021).080

However, they face two key challenges:081

Challenge 1: Unrealistic training data. Real-082

world abbreviation conventions are complex and083

not fully captured by rule-based systems. Human084

annotation is scarce due to privacy and security085

concerns in tabular data. Existing methods gen-086

erate abbreviations by removing characters under087

fixed probabilities (Zhang et al., 2023). These ap-088

proaches fail to reflect real-world patterns and ex-089

clude non-subsequence abbreviations.090

To address this issue, we develop a subsequence091

abbreviation generator trained on human-annotated092

data, capturing real-world patterns. We also pro-093

pose a non-subsequence abbreviation generation094

method. Non-subsequence abbreviations are added095

to training data, covering diverse schemes like fixed096

expressions and language-specific methods.097

Challenge 2: Undesirable output divergence.098

LLMs may generate invalid expansions, fail-099

ing to follow subsequence rules or handle non-100

subsequence conventions. Guiding LLMs to adhere101

to rules remains a challenge.102

To tackle this challenge, we propose an103

automaton-based decoding system to constrain104

LLM output in real-time, which handles subse-105

quence, phonetic subsequence, and fixed non-106

subsequence patterns. Beam search explores candi-107

date paths, and automaton-guided pruning enforces108

format rules. To improve the beam search effi-109

ciency, we leverages the characteristic of this task110

and enforce a constraint that prevents the automa-111

ton from staying in the same state for extended112

periods.113

In conclusion, we make the following contribu-114

tions:115

• Create a subsequence abbreviation generator116

using human-annotated data and incorporate117

various non-subsequence abbreviations.118

• Design an automaton-based beam search de-119

coding system for real-time LLM output con-120

straints, improving accuracy with automaton-121

guided pruning across different abbreviation 122

patterns. 123

• Perform extensive evaluations including more 124

challenging cases like non-subsequence and 125

PinYin-based abbreviations. Extensive experi- 126

ments demonstrate our approach’s superiority. 127

Fine-tuning a 7/8B parameter model with our 128

decoding system achieves similar results with 129

the state-of-the-art models (GPT-4 series). 130

2 Background 131

This section introduces the NameGuess task, the 132

steps for tuning LLMs to solve it, and the heuristic 133

rules related to this task. 134

2.1 NameGuess Task 135

The NameGuess task (Zhang et al., 2023) im- 136

proves table readability and downstream task per- 137

formance in tabular data. Formally, given a ta- 138

ble t with N rows {x11, ..., x1K}, ..., {xN1 , ..., xNK} 139

and K column query names q1, ..., qK , the goal 140

is to find a generator fθ that predicts full 141

names p1, ..., pK . Each pi is computed as 142

fθ(pi|q1, ..., qK , p1, ..., pi−1, t). Here, p represents 143

full names, and q represents abbreviated names. 144

2.2 NameGuess through LLM 145

Table Context. The structured data is serialized 146

into a task prompt during training and inference. 147

The prompt format in (Zhang et al., 2023) is: 148

Column names: {q1, ..., qK} <SEP> row_1:
{x11, ..., x1K} <SEP> ... <SEP> row_i:
{xi1, ..., xiK} <SEP> ... <SEP>
row_N: {xN1 , ..., xNK}, As abbreviations of
column names from a table, {q1, ..., qK}
stand for {p1, ..., pK}. 149

Here, <SEP> is a splitting token or a newline 150

token. 151

Training Data Generation. Real-world annota- 152

tions of q1, ..., qK (abbreviations) and p1, ..., pK 153

(full names) are limited, so alternatively previous 154

work uses synthetic data for LLM training (Zhang 155

et al., 2023). First, a table corpus containing both 156

abbreviated and full names is collected. Full names 157

are extracted to form training data since applying 158

rules to existing abbreviations may cause inconsis- 159

tencies. Next, character-removal rules generate ab- 160

breviations from full names. Rules include keeping 161

the first characters, removing non-leading vowels 162

2

Corner Cases

Abbr-Generation Model

Realistic Training Data
Generation from Real-life Data

Cur Deprtmnt_nm Txn_id

USD Building 13....5

EUR Logistic 12....1

0(0)

1(0)

1(0)

2(1)

2(0)

Generative
Rules

Discriminative
Rules

LoRA Finetuning

+

Prompt
column names: Cur, Deprtmnt_nm, Txn_id,
row 1: USD, Building,13...5,...,
As abbr.of column names from a table,
Cur, Deprtmnt_nm, Txn_id stand for

LLM

Output
Currency,
Department_name,
Transaction_identification

Golden Abbreviation Pairs

Abbr Full Name

Cur Current

Trstn Transaction

… ……

1(0) 2(1)

0(2)

2(1)

Rule-enhanced LLM Beam
Search Decoding via
Automata

1(1) 2(0)

… 3(0)

3(0)

3(0)

row_i: {𝒙𝒙𝒊𝒊 … 𝒙𝒙𝒊𝒊 }，𝟏𝟏 𝑲𝑲
As abbr.of column
names from a table,
𝒒𝒒𝟏𝟏 …𝒒𝒒𝒌𝒌 stand
for: 𝒑𝒑𝟏𝟏 …𝒑𝒑𝒌𝒌

Template

column names:{𝒒𝒒𝟏𝟏…𝒒𝒒𝒌𝒌},

Figure 2: We tune a moderate-size LLM with LoRA for the NameGuess task. Before training, abbreviated forms of
tables with full column names need to be generated. Specifically, we use a model-based abbreviation module for
subsequence pattern generation. A lookup table collection method supplements corner cases. After training, the
LLM recovers full column names through decoding. In decoding, a rule-enhanced automaton-based filter in beam
search aids accuracy. Discriminative rules are used in decoding, as counterparts to the generative rules.

and duplicate characters, and randomly removing163

vowels or consonants with certain probabilities.164

Generative Rules vs. Discriminative Rules.165

Abbreviation rules can be categorized into gen-166

erative and discriminative rules. Generative167

rules define the generator fθ, which provides168

P (q1, ..., qK |p1, ..., pK , t), a probability for abbre-169

viated column names. These rules enumerate170

character-deleting strategies and their probabili-171

ties. Discriminative rules check if full names172

are valid expansions of abbreviations, where173

P (p1, ..., pK |q1, ..., qK , t) > 0.174

For example, for subsequence abbrevia-175

tions (Zhang et al., 2023; Cai et al., 2022),176

discriminative rules ensure qi is a subsequence of177

the generated full name. Generative rules include178

character-deleting strategies and their probabilities.179

Beyond the subsequence abbreviation, we also180

consider PinYin (a widely used Chinese phonetic181

abbreviation), lookup table, and mixed rules.182

Discriminative rules can further be transformed183

into automata for decoding. In Appendix. A, we184

list all the rules related to this paper.185

3 Method186

3.1 Realistic Training Data Generation from187

Real-life Data188

In the city open data dataset (Zhang et al., 2023),189

real-world column name expansion pairs are gen-190

erated and audited by human annotators. 93.3% of191

the abbreviated column names (8512 out of 9128192

pairs) are subsequences of their corresponding full 193

names after normalization. However, 616 pairs 194

(6.7%) involve abbreviations that are not subse- 195

quences of the full names. This shows that real- 196

world abbreviation schemes for tabular column 197

names are mostly subsequence-based. A small but 198

significant portion involves non-subsequence ab- 199

breviations. 200

As stated in the introduction, using purely syn- 201

thetic subsequence-based data as training data has 202

two main drawbacks: 1. Real life subsequence ab- 203

breviation patterns are not fully captured. Heuristic 204

rules used to generate training data deviate from 205

real-world data distributions. This reduces the qual- 206

ity of the trained model; 2. While subsequence 207

abbreviations are common, other schemes exist, 208

making it challenging to handle a mix of mostly 209

subsequence and some corner-case abbreviations. 210

To address these issues, we propose using a new 211

tuned model to capture the pattern in subsequence 212

abbreviation. Since the non-subsequence abbrevia- 213

tion cases are limited and the tuned moderate size 214

LLM’s generalization capability on these cases are 215

poor, we don’t use a unified generation model. In- 216

deed, we propose a lookup table collection method 217

for the non-subsequence abbreviations. 218

Subsequence Abbreviation Generation. Previous 219

approaches rely on insufficient heuristic rules due 220

to a lack of annotated abbreviation pairs. Real- 221

world training data is needed for better abbreviation 222

generation. 223

3

Similar tasks in chat language normalization224

have been studied, with annotated data released225

before, e.g., the W-NUT 2015 challenge (Baldwin226

et al., 2015) and the tweet normalization task (Chru-227

pała, 2014). However, these datasets are unavail-228

able now due to Twitter’s data license. Human-229

annotated abbreviation pairs are available in (Gor-230

man et al., 2021). Professional annotators removed231

characters from sentences sampled from English232

pages. This subsequence abbreviation scheme is233

ideal for training abbreviation generation models.234

We assume the distribution of subsequence ab-235

breviations in formal English sentences is similar236

to that in table column names. Single-word ab-237

breviations are largely context-independent. Thus,238

we transfer the model trained on text data to gen-239

erate subsequence abbreviations for tabular data.240

Specifically, Gorman et al.’s (Gorman et al., 2021)241

dataset includes sentences with abbreviated words.242

We collect all full name and corresponding abbre-243

viations in this dataset. Training data is organized244

with a prompt, which is presented in Appendix. B.245

We fine-tune Llama3.1-8B to generate the possible246

abbreviations for and input full word. To generate247

the training set, we gather all individual words in248

column names. Using the trained model, we gener-249

ate possible abbreviation candidates for each word.250

Then, we randomly substitute words with one can-251

didate, avoiding duplicate calculations for words in252

the training set.253

Corner Case Generation. Non-subsequence ab-254

breviations arise from various reasons, such as sym-255

bol substitutions (replacing words with symbols,256

e.g.g, at→@), phonetically related abbreviations257

(based on phonetic sounds, e.g., action→axn), and258

convention-based abbreviations (e.g., charles →259

chuck).260

Using the capabilities of LLMs, we construct261

a lookup table for these abbreviations. We ask a262

strong LLM to generate non-subsequence abbre-263

viations providing the forming reasons and corre-264

sponding examples. The prompt used is shown in265

Appendix C. We use GPT-4o to generate possible266

non-subsequence abbreviations for each words in267

the table column name contexts, forming a lookup268

table.1 To generate a non-subsequence abbrevia-269

tion, we select a memorized term from this lookup270

table as the output.271

Whole Process. We follow similar training set con-272

1Many cases generated by GPT-4o fail to follow the in-
structions and still appear to be subsequences, so we only keep
the non-subsequence part.

struction steps as (Zhang et al., 2023). The logical 273

name identification and combining processes are 274

the same. First, we use the logical name identifi- 275

cation process to extract tables with sufficient full 276

column names from the table corpus. Then, we 277

collect all individual words in the training set and 278

use a trained abbreviation generation model to cre- 279

ate possible abbreviated forms. Finally, we apply a 280

mixed strategy: abbreviating words using the sub- 281

sequence lookup table with probability psub = 0.5 282

and the non-subsequence lookup table with proba- 283

bility 1− psub. 284

3.2 Rule-enhanced LLM Beam Search 285

Decoding via Automata 286

Despite the strong capabilities of LLM and fine- 287

tuning, LLM still suffers from the problem of hal- 288

lucination (Rawte et al., 2023). Specifically, we 289

observe that LLMs trained using data following a 290

certain generative rule may still fail to obey the dis- 291

criminative rule in inference. To relieve this issue, 292

we take measures to ensure that the LLM output 293

follows the discriminative rules via applying con- 294

straints to the LLM’s outputs. 295

Constrained Output of LLM. In the decoding 296

stage of language models, we aim to find the opti- 297

mal p̂: 298
p̂ = argmax

p∈Dq

log fθ(p | q, t) (1) 299

where p is the full name to be generated, q is the 300

abbreviated names, t is the table context, Dq is the 301

valid output structures defined by our discrimina- 302

tive rules, and fθ is the generative model. Under 303

such restrictions, we prune the output p that doesn’t 304

satisfy the discriminative rules to search for better 305

generation under restrictions. 306

We propose using automata to represent the re- 307

strictions because it’s clear that a wide range of 308

discriminative rules can be expressed into an au- 309

tomaton (or regular expression). We can further 310

traverse on these automata to express our restric- 311

tions and heuristics. 312

We construct a deterministic finite automaton 313

(DFA) T for the basic subsequence abbreviation. 314

For example in Fig. 3, the fundamental DFA T rep- 315

resents the subsequence discriminative rule, which 316

consists of the same number of tokens as the abbre- 317

viated name q. On each state, only the correspond- 318

ing character can transit to the next state. E.g., state 319

0 accepts the first character t, and other characters 320

return to themselves. 321

To cope with the lookup table for non- 322

subsequence abbreviation, we define a non- 323

4

LLM

0DFA 𝓣𝓣
[a-z]-[t] [a-z]-[x] [a-z]-[n]

t 1 x 2 n 3

Character-Level Automata for Subsequence

0 1 2 3

[a-z]-[t] [a-z]-[x] [a-z]-[n]

NFA 𝓣𝓣0
t x n

Character-Level Automata for Subsequence and
Lookup Mixup

t
r ….a i o

n

0

axe

1 2 3Composed NFA
𝓣𝓣1 = 𝓣𝓣𝑡𝑡 ∘ 𝓣𝓣0

transaction

taxi

transaction

(Idle Time)=0/1 (Idle Time)=0/1 (Idle Time)=2

State ID(x) State ID(x) State ID(2)

Normal
States

Low
Generated

Prob

State
Violating
Automata

0(0)
1(0)

2(0)

0(1)

1(1)

2(0)

2(1)

0(2)

2(0)

3(0)

3(0)

2(2)

3(0)

Rule-Enhanced Beam Search

Select Reject

Prompt
column names: Cur, Deprtmnt_nm, Txn_id,
row 1: USD, Building,13...5,...,
As abbr.of column names from a table,
Cur,Deprtmnt_nm,Txn_id stand for

Probability … …
transaction table-x-name taxi-id-name

Token-Level
Composed NFA

State ID
(Idle Time)

3(0)

axe

id

x

x
id

x

2(1)

number
name

x
name

Success
Stat

3(0)

Figure 3: Example of automaton and composed transducer of the abbreviated name q "txn" and the beam search
process. The full name p is "transaction". In the beam search process, tokens that are idling on a state for too many
times are considered violating the automaton, e.g., state 0(2), which fails to generate a token that covers the first
character of q for 2 times.

deterministic finite automaton (NFA) T0 for the324

mixed lookup and subsequence abbreviation. For325

example, in Fig. 3, the NFA T1 consists of the by-326

pass representing the lookup table. To deal with a327

more generalized PinYin abbreviation, we define328

an NFA Tpy for it.329

The first three automata takes characters as input,330

while we have to deal with the LLM’s tokens as in-331

put, so we define an NFA T1 for the mixed lookup332

and subsequence abbreviation that takes tokens as333

input. Referring to the computation result, the tran-334

sitions of T1 have the subsequence part, where to-335

kens traverse to the farthest covering state (trans-336

action from s0 to s1) , and the non-subsequence337

lookup part, where tokens traverse according to the338

abbreviated form of it in the lookup table (transac-339

tion from s0 to s3). We list the detailed automaton340

construction forms in Appendix D.341

Beam Search in Decoding. Beam search can ef-342

fectively boost the performance of solving Eq. 1343

compared to greedy decoding. We can easily im-344

plement a straightforward beam search algorithm345

(on T for instance) for language model decoding.346

However, there still exist two gaps towards the fi-347

nal solution: 1. The naive approach has a major348

drawback, which can be called the wild-matching349

phenomenon (Koo et al.; Willard and Louf, 2023).350

In our expansion task, in each generation step, ev-351

ery token is treated as a valid input, allowing to-352

kens to remain idle in the same state indefinitely.353

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

#E
xa

m
pl

e

89.07%

10.34%
0.57% 0.02% 0.00% 0.00%

Figure 4: Maximum Number of Consecutive Idling
Number in the City Open Dataset.

This behavior can severely impact the search ef- 354

ficiency of the naive approach, as it leads to un- 355

necessary and excessive exploration of redundant 356

paths; 2. How to implement the automata is not 357

simple. In (Koo et al.), the authors compile the 358

composed automaton for the constraints they are 359

using (programming language templates, JSON for- 360

mat). However, this approach is impractical for our 361

dynamic, subsequence-changing template scheme. 362

While the constraints are well-defined, efficiently 363

calculating the states and handling the lookup table 364

during execution remain a challenge. 365

To deal with the first gap, we propose blocking 366

tokens to idle on a state for thid times. thid is a 367

hyperparameter that controls the number of consec- 368

utive idling numbers. According to an observation 369

on human-annotated data presented in Fig. 4, we 370

5

can come to the conclusion that in tabular column371

name expansion, the phenomenon of consecutive372

idling on a certain state is quite limited. Stuck-373

ing in one state once is usually due to generating374

spaces or conjunctions, and 99.4% of the cases in375

the test set don’t idle for up to 2 times in the city376

open dataset, which suggests that we can filter out377

invalid tokens through this heuristic. So we set378

thid = 2. Through experiments, we show that this379

significantly increases our search quality because380

wrong paths are dumped early in our approach.381

To bridge the second gap, we propose an au-382

tomaton construction and beam search algorithm383

for abbreviation expansion.384

The State Traverse algorithm (Alg. 1) constructs385

a Trie tree to efficiently retrieve all possible full386

forms of an abbreviation from a lookup table by387

traversing paths and recording matches. For exam-388

ple, for the abbreviation "txn", we have to check389

whether "txn","tx","t" has a full name in the lookup390

table, this can be efficiently implemented using a391

Trie tree. The subsequence path is easy to compute392

plainly by the NFA definitions.393

The Beam Search algorithm (Alg. 2) leverages394

the State Traverse algorithm, along with a finite395

automaton and language model, to iteratively gen-396

erate optimal expansions. After using the State397

Traverse algorithm to calculate the state each feasi-398

ble token transitions to, beam search is performed399

based on probabilities provided by the LLM. The400

search must reach the final state while satisfying401

the idling heuristic rules. We describe the details402

of the two algorithms in Appendix E.403

Efficiency. The additional complexity of our404

method is a small part of the original cost. The405

detailed analysis is presented in Appendix. F. We406

also show this through experiment.407

4 Experiment408

In this section, we conduct extensive experiments409

to evaluate our proposed rule-enhanced pipeline.410

Our objective is to address the following research411

inquiries through our experiments:412

• I1: How does our rule-enhanced method per-413

form compared to the default LLM methods414

in the NameGuess task? How does each mod-415

ule (the new training set, the rule-enhanced416

decoding module) affect the performance?417

• I2: How does our new pipeline work under418

different abbreviation schemes, such as the419

Table 1: Performance on the City Open Dataset
Model Method EM F1
Llama 3.1_70B Few-shot 65.1 81.2
Qwen 2.5_75B Few-shot 66.3 81.2
GPT_4o_mini Few-shot 60.9 78.5
GPT_4o Few-shot 68.9 83.4
GPT_4 Few-shot 67.7 83.1
Llama 3_8B Fine-tune(Rule+GE) 56.0 73.9
Llama 3_8B Fine-tune(Rule+Beam) 57.5 75.9
Llama 3_8B Fine-tune(Rule+AutoBeam) 62.9 79.2
Llama 3_8B Fine-tune(RTDG+GE) 60.6 76.5
Llama 3_8B Fine-tune(RTDG+Beam) 59.7 76.4
Llama 3_8B Fine-tune(RTDG+AutoBeam) 66.1 81.2
Qwen 2.5_7B Fine-tune(Rule+GE) 53.7 71.7
Qwen 2.5_7B Fine-tune(Rule+Beam) 54.5 72.3
Qwen 2.5_7B Fine-tune(Rule+AutoBeam) 55.3 74.6
Qwen 2.5_7B Fine-tune(RTDG+GE) 59.7 76.0
Qwen 2.5_7B Fine-tune(RTDG+Beam) 60.2 76.5
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) 64.5 79.9
Human 43.4 66.5

richer non-subsequence abbreviation scheme 420

and the Chinese PinYin abbreviation scheme? 421

4.1 Experimental Setup 422

Datasets. We trained our model using the Git- 423

Tables dataset, and evaluated it on three datasets: 424

City Open Dataset, Non-subsequence GitTables, 425

and PinYin dataset. We show the details of the 426

training set in Appendix. H. 427

Evaluation Metrics. We use the metrics in (Zhang 428

et al., 2023): exact match (EM) accuracy and F1 429

scores based on partial matches. The details of the 430

metrics are described in Appendix. I. 431

Baselines. We compare with baselines of di- 432

rect fine-tuning and LLM usage. In training, we 433

compare training on the original dataset (Rule: 434

dataset generated by heuristic rules in (Zhang et al., 435

2023)) with our Realistic Training Data Generation 436

(RTDG) method. RTDG involves generating data 437

using a model and substituting non-subsequence 438

cases. During decoding, we compare AutoBeam 439

(Rule-enhanced LLM Beam Search Decoding Via 440

Automata) with GE (Regular Greedy Encoding) 441

and default Beam Search (Beam). 442

We test on multiple backbone LLMs. We mainly 443

use Qwen 2.5 7B (Yang et al., 2024) and Llama 3 444

8B (Dubey et al., 2024) for fine-tuning on Chinese 445

tasks. We also test larger GPT models (Achiam 446

et al., 2023), Llama, and Qwen models as state-of- 447

the-art examples. Large models are tested using 448

few-shot inference to demonstrate the task. Specif- 449

ically, we prepend demonstration examples to the 450

original prompt. We show them in Appendix. J. 451

Implementation Details. We list the implementa- 452

tion details in Appendix. G. 453

6

Table 2: Performance on the Non-subsequence GitTa-
bles

Model Method EM F1
Llama 3.1_70B Few-shot 49.9 60.2
Qwen 2.5_75B Few-shot 46.4 56.4
GPT_4o_mini Few-shot 35.8 43.9
GPT_4o Few-shot 35.1 42.5
GPT_4 Few-shot 54.5 65.8
Llama 3_8B Fine-tune(Rule+GE) 50.8 57.6
Llama 3_8B Fine-tune(Rule+Beam) 50.9 58.1
Llama 3_8B Fine-tune(Rule+AutoBeam) 56.8 63.8
Llama 3_8B Fine-tune(RTDG+GE) 56.4 62.3
Llama 3_8B Fine-tune(RTDG+Beam) 56.8 63.1
Llama 3_8B Fine-tune(RTDG+AutoBeam) 60.4 66.5
Qwen 2.5_7B Fine-tune(Rule+GE) 52.3 59.0
Qwen 2.5_7B Fine-tune(Rule+Beam) 54.9 62.0
Qwen 2.5_7B Fine-tune(Rule+AutoBeam) 57.5 64.5
Qwen 2.5_7B Fine-tune(RTDG+GE) 56.9 63.1
Qwen 2.5_7B Fine-tune(RTDG+Beam) 59.4 65.8
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) 61.9 67.9

Table 3: Performance on the PinYin Dataset
Model Method EM F1
Llama 3.1_70B Few-shot 29.2 36.3
Qwen 2.5_75B Few-shot 40.6 51.6
GPT_4o_mini Few-shot 31.1 42.2
GPT_4o Few-shot 43.6 52.2
GPT_4 Few-shot 52.6 63.5
Llama 3_8B Fine-tune(RTDG+GE) 71.1 79.5
Llama 3_8B Fine-tune(RTDG+Beam) 71.8 80.0
Llama 3_8B Fine-tune(RTDG+AutoBeam) 71.8 80.3
Qwen 2.5_7B Fine-tune(RTDG+GE) 69.4 78.4
Qwen 2.5_7B Fine-tune(RTDG+Beam) 70.5 79.3
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) 73.4 81.8

4.2 NameGuess Performance454

We list the NameGuess performance on the three455

datasets (city open dataset, non-subsequence Git-456

Tables dataset, and the PinYin dataset) in Tab. 1,457

Tab. 2, and Tab. 3 respectively.458

City Open Dataset. Several conclusions can be459

drawn from Tab. 1. I. As we can see, our best460

approach lies in Llama 3-8B trained on our real-461

istic training set with model-generated abbrevia-462

tions and non-subsequence lookup replacements463

and a beam search decoding module guided by au-464

tomaton. (RTDG+AutoBeam). Compared to the465

state-of-the-art LLMs with larger parameters, our466

best result has a similar performance. II. The ef-467

fect of model parameters. As mentioned in (Zhang468

et al., 2023), tuned models with 3B parameters469

(GPT2-neo) can achieve 43% accuracy, which still470

exists a huge gap with a tuned 7B/ 8B parame-471

ter model. Models with similar parameters have472

similar performance on this task. Larger models473

exhibit significant marginal effects on performance474

improvement. III. Supervised fine-tuning is crucial475

for this task. Tuned Llama 3.1 8B can have similar476

effects to the similar model with 70B parameters.477

Tuned models have a stronger capability of follow- 478

ing the instructions, avoiding generating answers 479

that can’t be parsed, which is a drawback in the 480

few-shot inference pipeline. IV. Ablation studies. 481

Compared to the basic beam search methods, our 482

best approach of using the automaton-constrained 483

beam search has an average improvement of 4.2% 484

in EM. Also, refining the dataset brings an average 485

of 5.3% improvement in EM on this dataset. This 486

shows that the key component of our method is 487

effective for solving the tabular NameGuess task. 488

Non-subsequence GitTables Dataset. We list 489

three conclusions from the results of the non- 490

subsequence GitTables dataset. I. Our best ap- 491

proach of tuning Qwen2.5-7B using the new dataset 492

and automaton constraint achieves a 5.9% improve- 493

ment in EM and 0.7% improvement in F1 com- 494

pared to the state-of-the-art GPT4 model. Com- 495

pared to the baseline fine-tuning model, our best 496

approach achieves an improvement of 9.6% in EM 497

and 8.9% in F1. II. Compared to the City Open 498

dataset, which has a relatively small portion of non- 499

subsequence abbreviations, the non-subsequence 500

GitTables dataset with more non-subsequence ab- 501

breviations is more difficult, thus having poorer 502

performance. In contrast, our method that deals 503

with this scenario can boost performance on this 504

dataset. III. Ablation studies. Similarly, our best 505

approach gains an average of 3.7% and 4.8% per- 506

formance in EM due to the advanced dataset and 507

decoding module, respectively. 508

PinYin Dataset. The PinYin dataset is another ab- 509

breviation module that requires an understanding 510

of Chinese and its pronunciation. We draw the fol- 511

lowing conclusions: I. Our best approach is tuning 512

Qwen 2.5-7B with the automaton decoding con- 513

straint, which outperforms the best state-of-the-art 514

few-shot baseline, GPT-4, by 18.3% in EM and 515

16.6% in F1. II. The few-shot larger LLMs per- 516

form poorly compared with a small Qwen model. 517

This is partially due to the difficulty of transform- 518

ing PinYin to Chinese, which is unusual in the 519

model’s training set. (In some cases, the un-tuned 520

models still output in English.) To bridge this gap, 521

supervised fine-tuning is required to help the model 522

understand the generative rule in this scenario. 523

4.3 Efficiency 524

We present the time proportions for an average 525

sample in Appendix K. 526

7

4.4 Case Study527

We present a case study of the improvements made528

to the original answer. The improvements are529

brought by the AutoBeam system and realistic train-530

ing set. The details are listed in Appendix. L531

5 Related Work532

Abbreviation Expansion. Abbreviation expan-533

sion (language normalization) is a key area in nat-534

ural language processing. It is crucial across do-535

mains like SMS (Choudhury et al., 2007; Cai et al.,536

2022), chatrooms (Aw and Lee, 2012), and social537

media (Baldwin et al., 2015). In text entry, De-538

masco and McCoy (Demasco and McCoy, 1992)539

explore abbreviation schemes. Gorman et al. (Gor-540

man et al., 2021) investigate neural models for tex-541

tual contexts. In biomedical articles, Jin et al. (Jin542

et al., 2019) highlight its importance, while Zhu et543

al. (Zhu et al., 2014) focus on clinical notes. Re-544

cently, Zhang et al. (Zhang et al., 2023) propose545

the NameGuess task for tabular data, showing that546

tabular context is key to revealing full names in547

column headers. Our work builds on NameGuess548

to generate better results in tabular data.549

Various machine learning techniques, from hid-550

den Markov models to neural language models,551

are applied to abbreviation expansion. The noisy552

channel paradigm, inspired by contextual spelling553

correction, is detailed by Brill and Moore (Brill554

and Moore, 2000) and used by Gorman et al. (Gor-555

man et al., 2021) for abbreviation modeling. Re-556

cent works (Gorman et al., 2021; Cai et al., 2022;557

Zhang et al., 2023) leverage neural language mod-558

els. With advancements in LLMs, this field contin-559

ues to evolve, addressing diverse challenges.560

LLM. Since 2017, pretrained language models561

(PLMs) have become a research trend due to their562

strong performance on various tasks (Kenton and563

Toutanova, 2019). Recently, large language mod-564

els (LLMs) with significantly more parameters565

have shown remarkable capabilities beyond smaller566

PLMs (Zhao et al., 2023). Several LLMs (Achiam567

et al., 2023; Yang et al., 2024; Dubey et al., 2024;568

GLM et al., 2024) have been proposed, reshaping569

AI research.570

LLMs can address abbreviation expansion due571

to their strong language understanding. Zhang et572

al. (Zhang et al., 2023) evaluate few-shot in-context573

learning using state-of-the-art LLMs (above 100B574

parameters) on the NameGuess task. Our work uses575

a moderate-size LLM (7/8B parameters), delivering576

outcomes on par with leading-edge, larger LLMs. 577

Constrained Language Model Decoding. Con- 578

strained decoding is vital in natural language pro- 579

cessing, particularly for LLMs. These models gen- 580

erate outputs probabilistically, but real-world appli- 581

cations often require outputs adhering to specific 582

constraints, such as structured formats or domain- 583

specific rules. Since LLMs lack native constraint 584

enforcement, constrained decoding techniques are 585

needed. Hokamp and Liu (Hokamp and Liu, 2017) 586

introduce lexically-constrained sequence decod- 587

ing. Anderson et al. (Anderson et al., 2017) ex- 588

tend beam search with constraints for valid out- 589

puts. Recent works (Scholak et al., 2021; De Cao 590

et al.) use trie-based lexical constraints and incre- 591

mental parsing for tasks like entity disambiguation 592

and SQL generation. Grammar-constrained decod- 593

ing (Deutsch et al., 2019) ensures structural validity, 594

and Roy et al. (Roy et al., 2022) and Stengel-Eskin 595

et al. (Stengel-Eskin et al., 2023) show its impact 596

on LLM performance. 597

A related topic is using automata for constraint 598

implementation. Koo et al. (Koo et al.) and Willard 599

et al. (Willard and Louf, 2023) discuss efficient 600

automaton implementation for programming lan- 601

guages and JSON constraints. Our work avoids 602

fixed templates, addressing changing subsequence 603

patterns. We leverage NameGuess task character- 604

istics and explore how abbreviation scheme con- 605

straints are expressed and implemented in automa- 606

ton. Constrained decoding ensures generated text 607

meets predefined criteria. In this task, we tailor 608

criteria to specific abbreviation schemes, enabling 609

broader applications. 610

6 Conclusion 611

In this paper, we propose improvements to the 612

training and decoding processes of large language 613

models (LLMs) to enhance their performance on 614

the NameGuess task. We introduce a model- 615

based subsequence abbreviation generation mod- 616

ule and a lookup table generation method for non- 617

subsequence abbreviations. We also discuss the 618

PinYin abbreviation scheme. In addition, we lever- 619

age automata to encode discriminative rules for 620

abbreviation expansion and constrain the beam 621

search process to improve efficiency. Experiments 622

show our approach enables fine-tuned moderate- 623

size LLMs with a refined decoding system to 624

achieve performance comparable to state-of-the- 625

art models like GPT-4. 626

8

7 Limitations627

While our methods improve the NameGuess task,628

they do not fully exploit finer-grained table con-629

text, such as the order of columns or inter-column630

relationships, which could provide additional in-631

formation to enhance model performance. Fur-632

thermore, our experiments primarily focus on fine-633

tuned small LLMs, and we have not extensively634

explored the potential of scaling our techniques to635

larger LLMs. Future work could investigate how636

incorporating detailed table features and tuning637

larger models might further improve performance638

and generalization to more complex tabular data639

scenarios. For the risks of our work, deploying640

a not mature NameGuess system may have the641

possibility of incorrect predictions or mismatches,642

which could lead to data misinterpretation or errors643

in downstream processes.644

References645

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama646
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,647
Diogo Almeida, Janko Altenschmidt, Sam Altman,648
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.649
arXiv preprint arXiv:2303.08774.650

Peter Anderson, Basura Fernando, Mark Johnson, and651
Stephen Gould. 2017. Guided open vocabulary im-652
age captioning with constrained beam search. In653
Proceedings of the 2017 Conference on Empirical654
Methods in Natural Language Processing, pages 936–655
945.656

Aiti Aw and Lianhau Lee. 2012. Personalized normal-657
ization for a multilingual chat system. In Proceed-658
ings of the ACL 2012 System Demonstrations, pages659
31–36.660

Timothy Baldwin, Marie-Catherine De Marneffe,661
Bo Han, Young-Bum Kim, Alan Ritter, and Wei662
Xu. 2015. Shared tasks of the 2015 workshop on663
noisy user-generated text: Twitter lexical normaliza-664
tion and named entity recognition. In Proceedings665
of the workshop on noisy user-generated text, pages666
126–135.667

Eric Brill and Robert C Moore. 2000. An improved668
error model for noisy channel spelling correction.669
In Proceedings of the 38th annual meeting of the670
association for computational linguistics, pages 286–671
293.672

Shanqing Cai, Subhashini Venugopalan, Katrin673
Tomanek, Ajit Narayanan, Meredith Morris, and674
Michael Brenner. 2022. Context-aware abbrevia-675
tion expansion using large language models. In Pro-676
ceedings of the 2022 Conference of the North Amer-677
ican Chapter of the Association for Computational678

Linguistics: Human Language Technologies, pages 679
1261–1275. 680

Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh 681
Mukherjee, Sudeshna Sarkar, and Anupam Basu. 682
2007. Investigation and modeling of the structure of 683
texting language. International Journal of Document 684
Analysis and Recognition (IJDAR), 10:157–174. 685

Grzegorz Chrupała. 2014. Normalizing tweets with edit 686
scripts and recurrent neural embeddings. In Proceed- 687
ings of the 52nd Annual Meeting of the Association 688
for Computational Linguistics (Volume 2: Short Pa- 689
pers), pages 680–686. 690

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and 691
Fabio Petroni. Autoregressive entity retrieval. In In- 692
ternational Conference on Learning Representations. 693

Patrick W Demasco and Kathleen F McCoy. 1992. Gen- 694
erating text from compressed input: An intelligent 695
interface for people with severe motor impairments. 696
Communications of the ACM, 35(5):68–78. 697

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. 2019. 698
A general-purpose algorithm for constrained sequen- 699
tial inference. In Proceedings of the 23rd Confer- 700
ence on Computational Natural Language Learning 701
(CoNLL), pages 482–492. 702

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan 703
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, 704
Tianyu Liu, et al. 2022. A survey on in-context learn- 705
ing. arXiv preprint arXiv:2301.00234. 706

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 707
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 708
Akhil Mathur, Alan Schelten, Amy Yang, Angela 709
Fan, et al. 2024. The llama 3 herd of models. arXiv 710
preprint arXiv:2407.21783. 711

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 712
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu 713
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family 714
of large language models from glm-130b to glm-4 all 715
tools. arXiv preprint arXiv:2406.12793. 716

Kyle Gorman, Christo Kirov, Brian Roark, and Richard 717
Sproat. 2021. Structured abbreviation expansion in 718
context. In Findings of the Association for Computa- 719
tional Linguistics: EMNLP 2021, pages 995–1005. 720

Chris Hokamp and Qun Liu. 2017. Lexically con- 721
strained decoding for sequence generation using grid 722
beam search. In Proceedings of the 55th Annual 723
Meeting of the Association for Computational Lin- 724
guistics (Volume 1: Long Papers). Association for 725
Computational Linguistics. 726

Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 727
2023. Gittables: A large-scale corpus of relational 728
tables. Proceedings of the ACM on Management of 729
Data, 1(1):1–17. 730

9

Qiao Jin, Jinling Liu, and Xinghua Lu. 2019. Deep731
contextualized biomedical abbreviation expansion.732
In Proceedings of the 18th BioNLP Workshop and733
Shared Task, pages 88–96.734

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina735
Toutanova. 2019. Bert: Pre-training of deep bidirec-736
tional transformers for language understanding. In737
Proceedings of NAACL-HLT, pages 4171–4186.738

Terry Koo, Frederick Liu, and Luheng He. Automata-739
based constraints for language model decoding. In740
First Conference on Language Modeling.741

Christos Koutras, George Siachamis, Andra Ionescu,742
Kyriakos Psarakis, Jerry Brons, Marios Fragkoulis,743
Christoph Lofi, Angela Bonifati, and Asterios Katsi-744
fodimos. 2021. Valentine: Evaluating matching tech-745
niques for dataset discovery. In 2021 IEEE 37th In-746
ternational Conference on Data Engineering (ICDE),747
pages 468–479. IEEE.748

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying749
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-750
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient751
memory management for large language model serv-752
ing with pagedattention. In Proceedings of the 29th753
Symposium on Operating Systems Principles, pages754
611–626.755

Ilya Loshchilov and Frank Hutter. 2019. Decoupled756
weight decay regularization. In 7th International757
Conference on Learning Representations, ICLR 2019,758
New Orleans, LA, USA, May 6-9, 2019.759

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A760
survey of hallucination in large foundation models.761
arXiv preprint arXiv:2309.05922.762

Subhro Roy, Sam Thomson, Tongfei Chen, Richard763
Shin, Adam Pauls, Jason Eisner, and Benjamin764
Van Durme. 2022. Benchclamp: A benchmark for765
evaluating language models on semantic parsing.766
arXiv preprint arXiv:2206.10668.767

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-768
danau. 2021. Picard: Parsing incrementally for769
constrained auto-regressive decoding from language770
models. arXiv preprint arXiv:2109.05093.771

Elias Stengel-Eskin, Kyle Rawlins, and Benjamin772
Van Durme. 2023. Zero and few-shot semantic773
parsing with ambiguous inputs. arXiv preprint774
arXiv:2306.00824.775

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and776
Dongmei Zhang. 2024. Table meets llm: Can large777
language models understand structured table data?778
a benchmark and empirical study. In Proceedings779
of the 17th ACM International Conference on Web780
Search and Data Mining, pages 645–654.781

Brandon T Willard and Rémi Louf. 2023. Efficient782
guided generation for large language models. arXiv783
preprint arXiv:2307.09702.784

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 785
Chaumond, Clement Delangue, Anthony Moi, Pier- 786
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 787
et al. 2019. Huggingface’s transformers: State-of- 788
the-art natural language processing. arXiv preprint 789
arXiv:1910.03771. 790

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 791
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 792
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 793
technical report. CoRR. 794

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se- 795
bastian Riedel. 2020. Tabert: Pretraining for joint 796
understanding of textual and tabular data. In Proceed- 797
ings of the 58th Annual Meeting of the Association 798
for Computational Linguistics, pages 8413–8426. 799

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 800
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 801
ing Yao, Shanelle Roman, et al. 2018. Spider: A 802
large-scale human-labeled dataset for complex and 803
cross-domain semantic parsing and text-to-sql task. 804
In Proceedings of the 2018 Conference on Empiri- 805
cal Methods in Natural Language Processing, pages 806
3911–3921. 807

Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srini- 808
vasan, Shen Wang, Huzefa Rangwala, and George 809
Karypis. 2023. Nameguess: Column name expan- 810
sion for tabular data. In Proceedings of the 2023 811
Conference on Empirical Methods in Natural Lan- 812
guage Processing, pages 13276–13290. 813

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 814
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 815
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 816
survey of large language models. arXiv preprint 817
arXiv:2303.18223. 818

Dongqing Zhu, Stephen Wu, Ben Carterette, and Hong- 819
fang Liu. 2014. Using large clinical corpora for query 820
expansion in text-based cohort identification. Jour- 821
nal of biomedical informatics, 49:275–281. 822

10

A Examples of Generative and823

Corresponding Discriminative Rules in824

Related Abbreviation Schemes825

We list the examples of generative and discrimina-826

tive rules in Tab. 4.827

B Prompt for Abbreviation Generation828

We use the following prompt to train the model for829

abbreviated word generation.830

Provide several possible abbreviations for
the word. Word: p; Abbreviations:
{q1, ..., qk}

831

C Prompt for Corner Case Generation832

We construct a prompt for word p to query its non-833

subsequence abbreviations:834

A subsequence is a sequence that can be
derived from another sequence by deleting
some or no elements without changing the
order of the remaining elements. Please gen-
erate an abbreviation from the full name that
is not the full name’s subsequence. Here
are some examples that may cause this phe-
nomenon.
#Examples:
Symbol correlation: {ICL Examples}
Phonetically related: {ICL Examples}
Convention: {ICL Examples}
Generate the possible non-subsequence ab-
breviation for this word: Word: p
Abbreviation:

835

We present some of the examples of non-836

subsequence abbreviations in Tab. 5.837

D Examples of Discriminative Rules in838

Tab. 1 Expressed in Automaton839

Subsequence and Lookup Abbreviation Rules840

Expressed in Automaton. We mainly discuss the841

two discriminative rules corresponding to what842

we use in the training data generation: the sub-843

sequence abbreviation and the lookup table abbre-844

viation. Suppose we are generating the full name p845

for the abbreviated form q = q1q2...qn.846

For the subsequence discriminative rule p ∈847

{x|q is subsequence of x}, the regular expression848

of it should be . ∗ q1. ∗ q2.∗, ..., . ∗ qn.∗, where .∗849

matches any sequence of characters and qi matches850

the character qi. We define the DFA T as a 5-tuple 851

(S,Σ, δ, s0, F) as: 852

• S = {s0, s1, s2, . . . , sn} is the set of states, 853

where each si represents a prefix of the string 854

q. 855

• Σ is the alphabet, consisting of the distinct 856

symbols present in the string q. 857

• The transition function δ : S × Σ → S is 858

defined as: δ(si, qi+1) = si+1, 0 ≤ i ≤ n−1. 859

For symbols not part of the sequence q, the 860

DFA transitions to the same state. 861

• s0 ∈ S is the initial state, representing the 862

empty prefix. 863

• F = {sn} is the set of accepting states, in- 864

dicating that the entire string q has been suc- 865

cessfully read. 866

This DFA accepts the string p if and only if the 867

subsequence of p exactly matches q. We show an 868

example of the abbreviated form "txn" in Fig. 3. 869

For the lookup table abbreviation rule p ∈ 870

{x|q ∈ L(x)}, we can search in the reverse lookup 871

index for q, so the output should be fixed. For ex- 872

ample, in Fig. 3, for q="txn", p should be the word 873

"transaction" using the lookup table. 874

Mixed Rule of Subsequence and Lookup Ab- 875

breviation. For a mixed discriminative rule p ∈ 876

{x|∃q1, ..., qk = q, x1, .., xk = x,qj ∈ L(xj)| 877

qj is subsequence of xj}, which allows part of 878

p abbreviated by lookup table and part of p ab- 879

breviated in subsequence form. We can slightly 880

modify T to T0 = (S0,Σ, δ0, s0, F) to cope with 881

this mixed rule as an NFA: 882

• S0=S, For each qi, ..., qj , ∃x1, .., xk, L(x) = 883

qi, ..., qj , S0+ = 884

{sx1
i , sx2

i , . . . , s
xk−1

i } is the set of states, 885

where each sxi represents a state in the bypath 886

of this possibly lookup abbreviation. 887

• The transition function δ0 = δ, 888

δ0(s
xt
i , xt+1) = s

xt+1

i , 889

δ0(s
xk−1

i , xk) = sj . 890

Generalization of Other Abbreviation Schemes. 891

We can generalize the mixed lookup table abbrevi- 892

ation to any possible abbreviation scheme in Tab. 4. 893

Take the PinYin abbreviation scheme as an exam- 894

ple, the abbreviated form is a subsequence of the 895

full name’s PinYin. We can represent the mixed 896

11

Table 4: Examples of generative and corresponding discriminative rules in related abbreviation schemes.

Generative Rules Discriminative Rules Description
randomly a non-null subsequence of pi pi ∈ {x|qi is subsequence of x} subsequence abbreviation

in (Gorman et al., 2021)
p=0.2 rule1: keep first k characters;
p=0.4 rule2: removing non-leading vowels;
p=0.4 rule3: removing duplicate characters,...;

pi ∈ {x|∃ rulea, qi = rulea(pi)} heuristic abbreviation in (Zhang
et al., 2023)

p=0.12 rule1: delete final e;
...;
p=0.012 rule13: delete non-duplicate consonants;
p=0.073 rule14: others;

pi ∈ {x|qi is subsequence of x} statistic of abbreviations in (Gor-
man et al., 2021)

reserve the first character of pi pi ∈ {x|qi = pi[0]} optimized abbreviation for KSR
in (Cai et al., 2022)

select one of the abbreviations in the lookup table L of pi pi ∈ {x|qi ∈ L(x)} lookup table for corner cases
split pi = p1i , ..., p

k
i , select one of the abbreviations in the

lookup table L of pji or randomly a non-null subsequence of pji

pi ∈ {x | ∃q1i , . . . , qki = qi, x
1, . . . , xk =

x, qji ∈ L(xj) | qji is subsequence of xj} mix rules

randomly a subsequence of pi’s PinYin pi ∈ {x|qi is subsequence of P inY in(x)} PinYin abbreviation

Table 5: Examples and Categories of Non-subsequence
Abbreviations

Category Examples

Symbol Substitution
about->@
at->@

Phonetically Related
action->axn
afford->a4d

Convention
battleship->bb
charles->chuck

rule of PinYin and subsequence form as a new NFA.897

The new NFA Tpy = (Spy = S,Σpy, δpy, s0, F) is898

also modified from T :899

• Σpy is the Chinese character set.900

• The transition function δpy =901

δ. For each x ∈ Σpy, qi,902

∃max j, qi, ..., qj is subsequence of903

PinY in(x), δpy(si, x) = sj . This represents904

a bypath of this possible abbreviation of the905

Chinese token x’s PinYin.906

Language Model Tokenizer as Composed Trans-907

ducer. Since we are dealing with token inputs from908

the LLM’s tokenizer instead of the character input909

in T , T0, we have to model the tokenizer as well.910

Koo et al. propose treating the language model’s911

vocabulary as a transducer, which has the states912

equal to the base DFA T ’s alphabet (Koo et al.).913

This allows us to composite the language model914

transducer with the constraint DFA/NFA. We use915

the same definition of the transducer Tt of LLM916

in (Koo et al.), and the composed NFA T1 = Tt◦T0.917

Due to the special form of T0’s definition, we can918

directly calculate T1 = (S1 = S,Σ1, δ1, s0, F1 =919

F):920

• Σ1 = V , where V is the vocabulary of the 921

language model decoding. 922

• The transition function δ1(si, v) = sl, 923

qi, qi+1, ..., ql is 924

subsequence of v and qi, ..., ql+1 is not 925

subsequence of v. Or δ1(si, v) = sl, 926

qi, qi+1, ..., ql = L(v), v is a token in Σ1. 927

Intuitively, one of the tokens v from the vocabu- 928

lary V can traverse as far as it can to cover part of 929

q as its subsequence, or it can cover part of q as a 930

lookup value and itself as a lookup key. For exam- 931

ple, in Fig. 3, starting from the third state, "taxi" 932

covers "tx" in "txn", so it traverses to the second 933

state. "axe" covers none in "txn", so it stays the 934

first state. "transaction" is a key in the lookup table, 935

and its value is “txn", so it can directly traverse to 936

the fourth state. 937

For the generalized cases, such as the mixed 938

rules of PinYin and the subsequence abbreviation, 939

the composed NFA with the transducer also has 940

a similar form. We use the same definition of 941

the transducer Tt of LLM in (Koo et al.), and 942

the composed NFA Tpy1 = Tt ◦ Tpy = (Spy1 = 943

S,Σpy1, δpy1, s0, F1 = F): 944

• Σpy1 is the Chinese vocabulary of the lan- 945

guage model decoding. 946

• The transition function δpy1(si, v) = sl, 947

qi, qi+1, ..., ql is subsequence of v and 948

qi, ..., ql+1 is not subsequence of v. 949

qi, qi+1, ..., ql is subsequence of PinY in(v) 950

and qi, ..., ql+1 is not subsequence of 951

PinY in(v), where v is a token in Σpy1. 952

This is similar to traversing to the farthest state, 953

however an additional PinYin transition is required. 954

12

E Algorithm of State Traverse955

Computation and Constrained Beam956

Search via Automata957

We describe the algorithms in detail in this section.958

The proposed algorithms, State Traverse and Beam959

Search, are designed to tackle the problem of ab-960

breviation expansion using a combination of finite961

automata and language models. In Algorithm 1, the962

State Traverse algorithm initializes by constructing963

a Trie Tree from a lookup table, which serves as a964

reference for valid expansions. A Trie Tree is used965

to efficiently search whether any of ql+1, ..., qn’s966

prefixes have a corresponding full name. Specif-967

ically, check(TL, (ql+1, ...qn)) means that we tra-968

verse from the root to the state of ql, ..., qn, and we969

record all the possible lookup abbreviations on the970

path to form the output of check(TL, (ql+1, ...qn)).971

For example, ql+1, ..., qn = txn, the possible by972

path at this stage consists of all the full names that973

have the abbreviated form in "txn", "tx" and "t". So,974

by traversing the path through "txn" to the root, we975

can tract all the possible full names in the lookup976

table.977

Algorithm 2, the Beam Search algorithm, uti-978

lizes the State Traverse algorithm to iteratively ex-979

plore possible expansions of an abbreviation. Start-980

ing from an initial state, it maintains a buffer of981

candidate expansions, each associated with a prob-982

ability score and a wait counter to prevent stalling983

on non-progressive states. After Alg. 1 calculates984

the set of traversing states using the NFA we de-985

fined, for each arrival state qarrival determined by986

the transition function, the algorithm updates the987

new state and probability, and appends the new988

candidate to the buffer if they are below a prede-989

fined idling threshold. The generation quality of990

each candidate is valued by generation probability991

calculated using the LLM, and the buffer is sorted992

according to the probability after each iteration.993

This process continues until the buffer is exhausted,994

ensuring a breadth-first search of potential expan-995

sions while adhering to the constraints imposed996

by the finite automaton and language model. The997

combination of these algorithms provides a robust998

framework for accurately expanding abbreviations999

in a structured and efficient manner.1000

F Efficiency Analysis1001

Different automata built for different abbreviation1002

schemes may have different running complexities,1003

we will take the mixed rule of subsequence abbrevi-1004

ation and lookup abbreviation as an example here. 1005

The additional cost of our proposed filter compared 1006

to the traditional beam search is the cost of check- 1007

ing the lookup table and the transition functions. 1008

Lookup Table. In our implementation, the lookup 1009

rule in the beam search part is implemented as a 1010

prefix tree. In Alg. 1, where we need to check 1011

whether a generated token is a prefix of the full 1012

name of a potential prefix of (ql+1, ..., qn). This re- 1013

quires a query in the prefix tree of ql+1, ..., qn. The 1014

complexity of querying ql+1, ..., qn in a prefix tree 1015

is O(lq) in the worst case, where lq is the length of 1016

ql+1, ..., qn. Transition Function Check. In our 1017

implementation, we conduct the transition function 1018

check on the run. For each token v to be checked, 1019

we traverse according to the transition rules com- 1020

posed by the rule NFA and the token transducer 1021

DFA. The complexity of such a transition is O(lv), 1022

where lv is the length of the token v. Overall 1023

Complexity. Suppose that the Beam Width is B, 1024

which refers to the number of candidate sequences 1025

retained at each step, and the maximum length of 1026

the generated sequence in tokens is T . The addi- 1027

tional overall complexity of the B ∗ T ∗ (lq + lv), 1028

which is a small part of the whole language model 1029

inferencing cost. Notably, lq, lv is a small number 1030

regardless of how large the lookup table is, which 1031

promises a low additional cost for our method. 1032

G Implementation Details 1033

We use Huggingface’s Transformers (Wolf et al., 1034

2019) library to implement the LLMs, we lever- 1035

age the TRL library and PEFT library to conduct 1036

Lora fine-tuning on the LLMs, and we apply the 1037

vLLM (Kwon et al., 2023) library to generate se- 1038

quences from the LLMs more efficiently. The fine- 1039

tuning and inference of GPT models are imple- 1040

mented through the OPENAI official API using 1041

the default hyper-parameters. Following the con- 1042

ventions in LLM fine-tuning, we train our model 1043

using the AdamW optimizer (Loshchilov and Hut- 1044

ter, 2019). The number of training epochs is set to 1045

3, the learning rate is set to 2e − 5, and the batch 1046

size is set to 4. The lora configs are lora_alpha = 1047

16, lora_dropout = 0.1, and lora_rank = 8. 1048

The prompt template we used is in Appendix C. 1049

In all experiments regarding beam search, we use 1050

a beam width of 10 and a maximum sampling to- 1051

ken of 50 to ensure fair comparison. We report the 1052

mean result of three times experiment. The exper- 1053

iments are conducted on an Ubuntu 20.04.6 with 1054

13

Algorithm 1: State Traverse

Class State_Traverse:
Function initialize(lookup table L):

Build a Trie Tree TL for values in L;

Function check(Trie Tree TL, input q = q1, .., qn):
Traverse on TL from root to q;
Collect Full name x and Abbreviation ql+1, ..., qt to Soutput on the path;
return Soutput;

Function run(NFA T1 = (Q1 = Q,Σ1, δ1, q0, F1 = F), input q = q1, . . . , qn, language
model f , lookup table L, input state sl, current full name p1, ..., pm, beam search sampling
number k):
Vk ← Top(f(pm+1|p1, ..., pm, q), k);
Vvalid ← {};
{x, t|x = L(ql+1, ..., qt)} ← check(TL, (ql+1, . . . , qn));
for each v ∈ Vk do

if v, t ∈ {x, t|x = L(ql+1, ..., qt)} then
Vvalid.add((v, st));

Use v to traverse on T1 from sl to su;
Vvalid.add((v, su));

return Vvalid;

an Intel Xeon Silver 4210R CPU and 2 NVIDIA1055

A6000 graphics cards.1056

H Datasets1057

We show the statistics of the training set in Tab. 6.1058

We train our models mainly based on the GitTables1059

dataset (Hulsebos et al., 2023). We clean up (filter1060

tables with no column names, tables containing1061

above a half of null values, and tables with few1062

rows and columns) the original GitTables dataset to1063

remove its noisy part. We generate the abbreviation1064

pairs using our proposed method. The combining1065

pattern of the generated abbreviation pairs is the1066

same as that in (Zhang et al., 2023).1067

We train the abbreviation generation model with1068

the training set extracted from Gorman et al.’s (Gor-1069

man et al., 2021) expert annotated wiki sentence1070

dataset on a Llama3-8B model. We follow the con-1071

struction way in Sec. 3.1. We collect a lookup table,1072

especially for the non-subsequence abbreviations1073

in English. We also follow the construction way in1074

Sec. 3.1 We evaluate our method and the baseline1075

methods on mainly three datasets.1076

City Open Dataset (Zhang et al., 2023). Zhang et1077

al. collected the City Open dataset from city gov-1078

ernment tables from New York (NYC), Chicago1079

(CHI), San Francisco (SF), and Los Angeles (LA),1080

covering multiple categories, such as business, ed- 1081

ucation, environment, health, art, and culture. Hu- 1082

man annotators are assigned to recover the abbrevi- 1083

ated column names and generate new abbreviated 1084

forms from full names on these tables. A further 1085

quality audit is conducted to enhance the validity 1086

of this dataset. The table corpus of this dataset is 1087

the whole GitTables dataset. 1088

Non-subsequence GitTables. After the word seg- 1089

mentation of the column names (each column name 1090

may be separated into multiple words), we select 1091

the tables containing potential full names that can 1092

be abbreviated into non-subsequence forms. The 1093

words having an acronym in the lookup table are 1094

transformed using the lookup table with 0.8 prob- 1095

ability, and the rest of the words are transformed 1096

using the rules in (Zhang et al., 2023). We split the 1097

original GitTables dataset to form the training set 1098

and the testing set. The data construction process 1099

is the same in both sets. We construct this dataset 1100

to show that our training method can further boost 1101

performance on different abbreviation schemes and 1102

training on the non-subsequence forms can actually 1103

generalize to other non-subsequence cases. 1104

PinYin dataset. The PinYin scheme is relatively 1105

difficult because it’s rare in the LLM’s training 1106

corpus. We transform the GitTables dataset into 1107

14

Algorithm 2: Constrained Beam Search via Automata
Input: NFA T1 = (Q1 = Q, Σ1,δ1,s0, F1 = F), input q = q1, . . . , qn, language model f , lookup

table L, beam search sampling topk k, idling threshold thid, beam width w
Output: Output full name p
ST ← State_Traverse();
ST.initialize(lookup table = L);
buf ←[(sstate = s0,wait = 0, prob = 0, cname = "")];
success← [];
while buf is not empty do

(sstate, wait, prob, cname)← buf.pop();
Vvalid ← ST.run(input = q, current full name = cname, sl = sstate, NFA = T1,

language model = f , beam search sampling number = k);
if sstate in F1 then

success.append((sstate, wait, prob, cname));
continue;

for each v, δ1(sstate, v) ∈ Vvalid do
for sarrival ∈ δ1(sstate, v) do

if sarrival = sstate then
new_wait← wait + 1;

else
new_wait← 0 ;

if new_wait < thid then
buf.append((sarrival, new_wait, prob + f(v, cname|q), cname+v));

Sort buf by prob in descending order;
buf← buf[:w];

Sort success by prob in descending order;
return success[0].cname;

Table 6: Statistics of the used datasets.

Developing Dataset #Example #Avg. Col #Avg. Row
GitTables 163,204 19.5 93
Gorman’s Wiki 11,511 / /
Non-subsequence Lookup 2,473 / /
Training set_City 79,551 4.6 61
Training set_nonsub 59,492 4.0 47
Training set_PinYin 49,211 3.8 45
Evaluating Dataset #Example #Avg. Col #Avg. Row
City Open_SF 4,781 23.9 643
City Open_CHI 3,975 21.1 605
City Open_LA 462 21.3 578
GitTables_nonsub 19,668 8.5 87
PinYin 14,054 7.1 67

Chinese and the corresponding PinYin to form this1108

dataset. The English table contents are preserved,1109

and the column names are either kept in English1110

or transformed into their PinYin form in Chinese.1111

We set the probability of keeping and transforming1112

to 0.5 and 0.5, respectively. We split the original1113

GitTables dataset to form the training set and the1114

testing set. The training set is constructed using 1115

the same rules. We construct this dataset to show 1116

that our proposed pipeline can cope with different 1117

abbreviation schemes. 1118

I Evaluation Metric 1119

EM checks if the predicted column name matches 1120

the ground truth after normalization, ignoring case, 1121

punctuation, and articles. The F1 score measures 1122

token overlap between predictions and ground truth, 1123

calculated as 2 · precision · recall/(precision + 1124

recall). Precision is the proportion of correct tokens 1125

among predictions, and recall is the proportion of 1126

correct tokens in the ground truth. This metric bal- 1127

ances accuracy and completeness, capturing partial 1128

matches. 1129

15

Table 7: Case study of improved examples in the three datasets.

Dataset Ans (Rule+GE) Ans (RTDG+AutoBeam) Abbreviation

City Open

["row_id", "BasePay",
"employment_type", "job_class",
"lump_sum_pay", "other_pay_payerroll_tax",
"overtime_pay","pay_grade",
"job_class_link", "avg_boss_life"

["ROW ID", "Base Pay",
"Employment Type",
"JOB CLASS", "LUMP SUM PAY",
"Other Pay Payroll Explorer",
"Overtime Pay", "Pay Grade",
"job class link", "Average Basic Life"]

["rowId", "BsePay",
"employmnt_typ",
"job_cls", "lump_sm_pay",
" othr_pay_payrll_expl",
"ovrtm_pay", "pay_grd",
"job_cls_lnk", "avg_bsc_life"]

Non-subsequence
GitTables

["time", "attenuation",
"dispersion", "omegaXvolume"]

["time", "attenuation",
"dispersion", "omega_times_volume"]

["time", "atten",
"dssn", "omegXVlm"]

PinYin
["名称", "生物体", "已知作用",
"位置", "父化合物"]

["名称", "生物体", "已知作用",
"位置", "父关键字"]

["MingCheng", "ShengWuTi", "YiZhiuoYong",
"WeiZhi", "FuGuanJZ"]

J Demonstration Examples for LLM1130

Baseline1131

For the city open dataset, we use the example:1132

"As abbreviations of column names from a ta-1133

ble, c_name | pCd | dt stand for Customer Name1134

| Product Code | Date." For the GitTables_PinYin1135

dataset, we use: "column names: JiLu, JiYin, SWT,1136

row 1: P50402, EMD, Human, row 2: Q9Y6D9,1137

MAD1L1, Human. As abbreviations of column1138

names from a table, ’JiLu| JiYin| SWT’ stands for1139

’记录| 基因| 生物体’." (Full column names are1140

Chinese, and abbreviations are subsequences of the1141

full names.)1142

K Efficiency Experiment1143

We present the time proportions in the whole end-1144

to-end inference time for an average sample in1145

Fig. 5. We select Qwen 2.5-7B for test in this sub-1146

section. The data compares the time spent on two1147

parts, LM Reasoning (original beam search cost)1148

and Rule Judgment (additional cost brought by the1149

automata constraints in beam search), across three1150

different datasets: City Data, Non-subsequence1151

GitTables, and PinYin. For the City Data and Non-1152

subsequence GitTables dataset, the time spent on1153

LM Reasoning is significantly higher than the time1154

spent on Rule Judgment. Specifically, for City1155

Data, LM Reasoning accounts for 99.0% of the1156

total time, while Rule Judgment takes up only 1%.1157

For Non-subsequence GitTables, the proportions1158

are similar. However, for PinYin, LM Reasoning1159

takes only 20.5% of the time, with Rule Judgment1160

making up the remaining 79.5%. This is due to1161

the high cost of converting the Chinese tokens to1162

PinYin.1163

These percentages suggest that LM Reasoning is1164

a more time-consuming process compared to Rule1165

Judgment while we are using the mixed rules of1166

subsequence and lookup rules, which is the same1167

as we have analyzed in Sec. 3.2 regardless of the1168

City Data Non-subsequence Gittables PINYIN
0

2

4

6

8

10

Ti
m

e
Sp

en
t(s

)
1.715 1.483

2.29

0.017 0.014

8.86LM Reasoning
Rule Judgment

Figure 5: Time comparison of the LM running time and
additional constraint running time.

dataset being processed. The time cost of rules is 1169

much higher in the PinYin dataset, as the transitions 1170

of tokens to their pronunciation are not straightfor- 1171

ward, thus costing more time in rule judgment. 1172

L Case Study 1173

In three distinct dataset case studies, we ob- 1174

serve improvements made to the original answer 1175

(Ans(Rule+GE)) to provide the correct field names 1176

in our best answer (Ans(RTDG+AutoBeam)). (The 1177

original answer is from the original training set 1178

with greedy encoding, and the optimized answer is 1179

from the new realistic training set with automaton 1180

constraints.) Firstly, in the "City Open" dataset, 1181

the original answer contained field names such 1182

as "other_pay_payerroll_tax" and "avg_boss_life," 1183

which are clearly hallucinations from the LLM. 1184

The first abbreviation contains multiple words, 1185

thus making it hard to generate the correct an- 1186

swer, while the second abbreviation may be dis- 1187

tracted from the job context so that it generates 1188

the word "boss". Both errors violate the subse- 1189

quence constraints ("other_pay_payerroll_tax"↔ 1190

"othr_pay_paryrll_expl", and "avg_boss_life"↔ 1191

"avg_bsc_life"). The optimized answer (New Ans) 1192

corrected these field names to "Other Pay Payroll 1193

Explorer" and "Average Basic Life," making the 1194

16

abbreviated form a subsequence of the generated1195

full names.1196

Secondly, in the "Non-subsequence GitTables"1197

dataset, the original answer included a field name1198

"omegaXvolume", which could be confusing as1199

it didn’t clearly express the relationship between1200

"omega" and "volume." The optimized answer cor-1201

rected this to "omega_times_volume," clarifying1202

the multiplicative relationship between the two con-1203

cepts. This is corrected due to the "times"↔ "X"1204

relationship in the lookup table, and through train-1205

ing on such datasets with non-subsequence pairs,1206

the model values “times” over "X" to make the1207

prediction correct.1208

Lastly, in the "PinYin" dataset, the original an-1209

swer had a field name "父化合物" (Father Com-1210

pound, Pronunciation: FuHuaHeWu), which is dis-1211

tracted by the biochemistry context of this table and1212

violates the subsequence rule of Chinese PinYin. (1213

"FuHuaHeWu"↔ "FuGuanJZ") The optimized an-1214

swer changed this to "父关键字" (Father Keyword,1215

Pronunciation: FuGuanJianZi), which satisfies the1216

constraints and appears to match with the ground1217

truth.1218

These case studies demonstrate that by adopting1219

our methods, we can significantly enhance the read-1220

ability and usability of data, thereby facilitating the1221

data analysis and processing process.1222

17

	Introduction
	Background
	NameGuess Task
	NameGuess through LLM

	Method
	Realistic Training Data Generation from Real-life Data
	Rule-enhanced LLM Beam Search Decoding via Automata

	Experiment
	Experimental Setup
	NameGuess Performance
	Efficiency
	Case Study

	Related Work
	Conclusion
	Limitations
	Examples of Generative and Corresponding Discriminative Rules in Related Abbreviation Schemes
	Prompt for Abbreviation Generation
	Prompt for Corner Case Generation
	Examples of Discriminative Rules in Tab. 1 Expressed in Automaton
	Algorithm of State Traverse Computation and Constrained Beam Search via Automata
	Efficiency Analysis
	Implementation Details
	Datasets
	Evaluation Metric
	Demonstration Examples for LLM Baseline
	Efficiency Experiment
	Case Study

