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Abstract

Column name expansion in tabular data, known
as NameGuess, is potentially benefiting a wide
range of table-centric tasks in natural language
processing and database management. Recent
work proposes solving this task by tuning Large
Language Models (LLMs) using synthetic rule-
generated training data under the table con-
text. While previous work has made significant
strides, we identify two key limitations: the un-
realistic nature of rule-generated abbreviations
in training data and the persistent divergence
problem in LLM outputs. To address the first
issue, we propose a novel approach that inte-
grates a subsequence abbreviation generator
trained on human-annotated data with the in-
troduction of non-subsequence abbreviations
in the training set. To address the second issue,
we propose a decoding system constrained on a
robust automaton that represents the basic rules
of abbreviation expansion. We extended the
original English NameGuess test set to include
non-subsequence and PinYin scenarios. Exper-
imental results show that properly tuned 7/8B
moderate-size LLMs with a refined decoding
system can surpass the few-shot performance
of state-of-the-art LLMs, such as the GPT-4
series, which is widely believed to have over
100B parameters. The code and data are pre-
sented in the supplementary material.

1 Introduction

Tabular data is widely used in various domains,
from web applications to enterprise databases, as
a key structure for organizing information. Abbre-
viated column names are common to simplify ex-
pressions and meet database constraints. However,
these abbreviations often harm downstream tasks.
For example, Text2SQL (Yu et al., 2018), schema-
based relation detection (Koutras et al., 2021), and
table QA tasks (Yin et al., 2020) suffer performance
drops of 10.54, 40.50, and 3.83 percentage points,
respectively (Zhang et al., 2023). This issue is
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Figure 1: A Real Example of the NameGuess Task.

also critical for data integration pipelines and data-
sharing scenarios, where cryptic schema names
hinder understanding, especially in legacy systems
with incomplete documentation.

The NameGuess task, which expands abbre-
viated column names, is crucial for improving
tabular data usability. It requires table con-
text understanding and capturing multiple ab-
breviation patterns. For instance, in Fig. 1, a
real example from the dataset, both patterns of
subsequence (Department—Deprtmnt) and non-
subsequence (Transaction—Txn) exist. Humans
achieve only 43.4% accuracy on the City Open
Data dataset (Zhang et al., 2023), highlighting the
challenge of training reliable models.

Through statistics, we find that English table
design follows a pattern that primarily uses sub-
sequence abbreviations, with a few other non-
subsequence abbreviations. Besides, in program-
ming practice in other non-English-speaking coun-
tries, e.g., China, people tend to use abbreviated
PinYin (Chinese Phonetic Alphabet) in column
names, which maintains the subsequence relation-
ship at another phonetic level. In this paper, we will
discuss how to define the rules in different abbrevi-
ation schemes and how to apply them along with
other advanced techniques. Large language mod-
els (LLMs) show promise for NameGuess (Zhang
etal.,2023; Cai et al., 2022). They understand table



context and generate natural language (Sui et al.,
2024). Few-shot in-context learning (Dong et al.,
2022) with models like GPT-4 achieves competi-
tive performance but is expensive and suboptimal
for some schemes. Tuned moderate-size LLMs
(<10B parameters) offer a cost-effective alternative,
so we primarily choose this option in this paper.
Current methods rely on rule-based training data
generation, focusing mainly on subsequence abbre-
viations (Zhang et al., 2023; Gorman et al., 2021).
However, they face two key challenges:

Challenge 1: Unrealistic training data. Real-
world abbreviation conventions are complex and
not fully captured by rule-based systems. Human
annotation is scarce due to privacy and security
concerns in tabular data. Existing methods gen-
erate abbreviations by removing characters under
fixed probabilities (Zhang et al., 2023). These ap-
proaches fail to reflect real-world patterns and ex-
clude non-subsequence abbreviations.

To address this issue, we develop a subsequence
abbreviation generator trained on human-annotated
data, capturing real-world patterns. We also pro-
pose a non-subsequence abbreviation generation
method. Non-subsequence abbreviations are added
to training data, covering diverse schemes like fixed
expressions and language-specific methods.

Challenge 2: Undesirable output divergence.
LLMs may generate invalid expansions, fail-
ing to follow subsequence rules or handle non-
subsequence conventions. Guiding LLMs to adhere
to rules remains a challenge.

To tackle this challenge, we propose an
automaton-based decoding system to constrain
LLM output in real-time, which handles subse-
quence, phonetic subsequence, and fixed non-
subsequence patterns. Beam search explores candi-
date paths, and automaton-guided pruning enforces
format rules. To improve the beam search effi-
ciency, we leverages the characteristic of this task
and enforce a constraint that prevents the automa-
ton from staying in the same state for extended
periods.

In conclusion, we make the following contribu-
tions:

* Create a subsequence abbreviation generator
using human-annotated data and incorporate
various non-subsequence abbreviations.

* Design an automaton-based beam search de-
coding system for real-time LLM output con-
straints, improving accuracy with automaton-

guided pruning across different abbreviation
patterns.

* Perform extensive evaluations including more
challenging cases like non-subsequence and
PinYin-based abbreviations. Extensive experi-
ments demonstrate our approach’s superiority.
Fine-tuning a 7/8B parameter model with our
decoding system achieves similar results with
the state-of-the-art models (GPT-4 series).

2 Background

This section introduces the NameGuess task, the
steps for tuning LLMs to solve it, and the heuristic
rules related to this task.

2.1 NameGuess Task

The NameGuess task (Zhang et al., 2023) im-
proves table readability and downstream task per-
formance in tabular data. Formally, given a ta-
ble t with N rows {x1,...,z%}, ..., {z, ..., 2%}
and K column query names g1, ..., qx, the goal
is to find a generator fy that predicts full
names pi,...,px. Each p; is computed as

f@(pi‘Q17 oy Ky P1y ooy Pi—1, t) Here9 p represents
full names, and q represents abbreviated names.

2.2 NameGuess through LLM

Table Context. The structured data is serialized
into a task prompt during training and inference.
The prompt format in (Zhang et al., 2023) is:

Column names: {q1, ..., ¢ } <SEP>row_1:
{z1,...,2}} <SEP> .. <SEP> row_i:
{2%, ..., 2%} <SEP> ... <SEP>

row_N: {zV, ..., z¥}, As abbreviations of
column names from a table, {q1, ..., qx}
stand for {p1, ..., px }.

Here, <SEP> is a splitting token or a newline
token.
Training Data Generation. Real-world annota-
tions of qi, ..., qx (abbreviations) and pq, ..., px
(full names) are limited, so alternatively previous
work uses synthetic data for LLM training (Zhang
et al., 2023). First, a table corpus containing both
abbreviated and full names is collected. Full names
are extracted to form training data since applying
rules to existing abbreviations may cause inconsis-
tencies. Next, character-removal rules generate ab-
breviations from full names. Rules include keeping
the first characters, removing non-leading vowels
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Figure 2: We tune a moderate-size LLM with LoRA for the NameGuess task. Before training, abbreviated forms of
tables with full column names need to be generated. Specifically, we use a model-based abbreviation module for
subsequence pattern generation. A lookup table collection method supplements corner cases. After training, the
LLM recovers full column names through decoding. In decoding, a rule-enhanced automaton-based filter in beam
search aids accuracy. Discriminative rules are used in decoding, as counterparts to the generative rules.

and duplicate characters, and randomly removing
vowels or consonants with certain probabilities.
Generative Rules vs. Discriminative Rules.
Abbreviation rules can be categorized into gen-
erative and discriminative rules.  Generative
rules define the generator fy, which provides
P(q1,....,qx|p1,-..,PK, t), a probability for abbre-
viated column names. These rules enumerate
character-deleting strategies and their probabili-
ties. Discriminative rules check if full names
are valid expansions of abbreviations, where
P(p1,..,PKlqu, -, qx, t) > 0.

For example, for subsequence abbrevia-
tions (Zhang et al., 2023; Cai et al., 2022),
discriminative rules ensure ¢; is a subsequence of
the generated full name. Generative rules include
character-deleting strategies and their probabilities.
Beyond the subsequence abbreviation, we also
consider PinYin (a widely used Chinese phonetic
abbreviation), lookup table, and mixed rules.
Discriminative rules can further be transformed
into automata for decoding. In Appendix. A, we
list all the rules related to this paper.

3 Method

3.1 Realistic Training Data Generation from
Real-life Data

In the city open data dataset (Zhang et al., 2023),
real-world column name expansion pairs are gen-
erated and audited by human annotators. 93.3% of
the abbreviated column names (8512 out of 9128

pairs) are subsequences of their corresponding full
names after normalization. However, 616 pairs
(6.7%) involve abbreviations that are not subse-
quences of the full names. This shows that real-
world abbreviation schemes for tabular column
names are mostly subsequence-based. A small but
significant portion involves non-subsequence ab-
breviations.

As stated in the introduction, using purely syn-
thetic subsequence-based data as training data has
two main drawbacks: 1. Real life subsequence ab-
breviation patterns are not fully captured. Heuristic
rules used to generate training data deviate from
real-world data distributions. This reduces the qual-
ity of the trained model; 2. While subsequence
abbreviations are common, other schemes exist,
making it challenging to handle a mix of mostly
subsequence and some corner-case abbreviations.

To address these issues, we propose using a new
tuned model to capture the pattern in subsequence
abbreviation. Since the non-subsequence abbrevia-
tion cases are limited and the tuned moderate size
LLM’s generalization capability on these cases are
poor, we don’t use a unified generation model. In-
deed, we propose a lookup table collection method
for the non-subsequence abbreviations.

Subsequence Abbreviation Generation. Previous
approaches rely on insufficient heuristic rules due
to a lack of annotated abbreviation pairs. Real-
world training data is needed for better abbreviation
generation.



Similar tasks in chat language normalization
have been studied, with annotated data released
before, e.g., the W-NUT 2015 challenge (Baldwin
etal., 2015) and the tweet normalization task (Chru-
pata, 2014). However, these datasets are unavail-
able now due to Twitter’s data license. Human-
annotated abbreviation pairs are available in (Gor-
man et al., 2021). Professional annotators removed
characters from sentences sampled from English
pages. This subsequence abbreviation scheme is
ideal for training abbreviation generation models.

We assume the distribution of subsequence ab-

breviations in formal English sentences is similar
to that in table column names. Single-word ab-
breviations are largely context-independent. Thus,
we transfer the model trained on text data to gen-
erate subsequence abbreviations for tabular data.
Specifically, Gorman et al.’s (Gorman et al., 2021)
dataset includes sentences with abbreviated words.
We collect all full name and corresponding abbre-
viations in this dataset. Training data is organized
with a prompt, which is presented in Appendix. B.
We fine-tune Llama3.1-8B to generate the possible
abbreviations for and input full word. To generate
the training set, we gather all individual words in
column names. Using the trained model, we gener-
ate possible abbreviation candidates for each word.
Then, we randomly substitute words with one can-
didate, avoiding duplicate calculations for words in
the training set.
Corner Case Generation. Non-subsequence ab-
breviations arise from various reasons, such as sym-
bol substitutions (replacing words with symbols,
e.g.g, at— @), phonetically related abbreviations
(based on phonetic sounds, e.g., action—axn), and
convention-based abbreviations (e.g., charles —
chuck).

Using the capabilities of LLMs, we construct
a lookup table for these abbreviations. We ask a
strong LLLM to generate non-subsequence abbre-
viations providing the forming reasons and corre-
sponding examples. The prompt used is shown in
Appendix C. We use GPT-40 to generate possible
non-subsequence abbreviations for each words in
the table column name contexts, forming a lookup
table.! To generate a non-subsequence abbrevia-
tion, we select a memorized term from this lookup
table as the output.

Whole Process. We follow similar training set con-

"Many cases generated by GPT-4o fail to follow the in-
structions and still appear to be subsequences, so we only keep
the non-subsequence part.

struction steps as (Zhang et al., 2023). The logical
name identification and combining processes are
the same. First, we use the logical name identifi-
cation process to extract tables with sufficient full
column names from the table corpus. Then, we
collect all individual words in the training set and
use a trained abbreviation generation model to cre-
ate possible abbreviated forms. Finally, we apply a
mixed strategy: abbreviating words using the sub-
sequence lookup table with probability pg,, = 0.5
and the non-subsequence lookup table with proba-
bility 1 — psyp.

3.2 Rule-enhanced LLM Beam Search
Decoding via Automata

Despite the strong capabilities of LLM and fine-
tuning, LLM still suffers from the problem of hal-
lucination (Rawte et al., 2023). Specifically, we
observe that LLMs trained using data following a
certain generative rule may still fail to obey the dis-
criminative rule in inference. To relieve this issue,
we take measures to ensure that the LLM output
follows the discriminative rules via applying con-
straints to the LLM’s outputs.
Constrained Output of LLM. In the decoding
stage of language models, we aim to find the opti-
mal p:
p=arg max log fo(p | q,t) )
where p is the full name to be generated, q is the
abbreviated names, ¢ is the table context, D, is the
valid output structures defined by our discrimina-
tive rules, and fy is the generative model. Under
such restrictions, we prune the output p that doesn’t
satisfy the discriminative rules to search for better
generation under restrictions.

We propose using automata to represent the re-
strictions because it’s clear that a wide range of
discriminative rules can be expressed into an au-
tomaton (or regular expression). We can further
traverse on these automata to express our restric-
tions and heuristics.

We construct a deterministic finite automaton
(DFA) T for the basic subsequence abbreviation.
For example in Fig. 3, the fundamental DFA T rep-
resents the subsequence discriminative rule, which
consists of the same number of tokens as the abbre-
viated name ¢. On each state, only the correspond-
ing character can transit to the next state. E.g., state
0 accepts the first character ¢, and other characters
return to themselves.

To cope with the lookup table for non-
subsequence abbreviation, we define a non-
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process. The full name p is "transaction". In the beam search process, tokens that are idling on a state for too many
times are considered violating the automaton, e.g., state 0(2), which fails to generate a token that covers the first

character of ¢ for 2 times.

deterministic finite automaton (NFA) 7 for the
mixed lookup and subsequence abbreviation. For
example, in Fig. 3, the NFA 77 consists of the by-
pass representing the lookup table. To deal with a
more generalized PinYin abbreviation, we define
an NFA 7T, for it.

The first three automata takes characters as input,
while we have to deal with the LLM’s tokens as in-
put, so we define an NFA 77 for the mixed lookup
and subsequence abbreviation that takes tokens as
input. Referring to the computation result, the tran-
sitions of 71 have the subsequence part, where to-
kens traverse to the farthest covering state (trans-
action from sg to s;) , and the non-subsequence
lookup part, where tokens traverse according to the
abbreviated form of it in the lookup table (transac-
tion from sg to s3). We list the detailed automaton
construction forms in Appendix D.

Beam Search in Decoding. Beam search can ef-
fectively boost the performance of solving Eq. 1
compared to greedy decoding. We can easily im-
plement a straightforward beam search algorithm
(on 7 for instance) for language model decoding.
However, there still exist two gaps towards the fi-
nal solution: 1. The naive approach has a major
drawback, which can be called the wild-matching
phenomenon (Koo et al.; Willard and Louf, 2023).
In our expansion task, in each generation step, ev-
ery token is treated as a valid input, allowing to-
kens to remain idle in the same state indefinitely.
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Figure 4: Maximum Number of Consecutive Idling
Number in the City Open Dataset.

This behavior can severely impact the search ef-
ficiency of the naive approach, as it leads to un-
necessary and excessive exploration of redundant
paths; 2. How to implement the automata is not
simple. In (Koo et al.), the authors compile the
composed automaton for the constraints they are
using (programming language templates, JSON for-
mat). However, this approach is impractical for our
dynamic, subsequence-changing template scheme.
While the constraints are well-defined, efficiently
calculating the states and handling the lookup table
during execution remain a challenge.

To deal with the first gap, we propose blocking
tokens to idle on a state for th;y times. th;q is a
hyperparameter that controls the number of consec-
utive idling numbers. According to an observation
on human-annotated data presented in Fig. 4, we



can come to the conclusion that in tabular column
name expansion, the phenomenon of consecutive
idling on a certain state is quite limited. Stuck-
ing in one state once is usually due to generating
spaces or conjunctions, and 99.4% of the cases in
the test set don’t idle for up to 2 times in the city
open dataset, which suggests that we can filter out
invalid tokens through this heuristic. So we set
th;q = 2. Through experiments, we show that this
significantly increases our search quality because
wrong paths are dumped early in our approach.

To bridge the second gap, we propose an au-
tomaton construction and beam search algorithm
for abbreviation expansion.

The State Traverse algorithm (Alg. 1) constructs
a Trie tree to efficiently retrieve all possible full
forms of an abbreviation from a lookup table by
traversing paths and recording matches. For exam-
ple, for the abbreviation "txn", we have to check
whether "txn","tx","t" has a full name in the lookup
table, this can be efficiently implemented using a
Trie tree. The subsequence path is easy to compute
plainly by the NFA definitions.

The Beam Search algorithm (Alg. 2) leverages

the State Traverse algorithm, along with a finite
automaton and language model, to iteratively gen-
erate optimal expansions. After using the State
Traverse algorithm to calculate the state each feasi-
ble token transitions to, beam search is performed
based on probabilities provided by the LLM. The
search must reach the final state while satisfying
the idling heuristic rules. We describe the details
of the two algorithms in Appendix E.
Efficiency. The additional complexity of our
method is a small part of the original cost. The
detailed analysis is presented in Appendix. F. We
also show this through experiment.

4 Experiment

In this section, we conduct extensive experiments
to evaluate our proposed rule-enhanced pipeline.
Our objective is to address the following research
inquiries through our experiments:

¢ I1: How does our rule-enhanced method per-
form compared to the default LLM methods
in the NameGuess task? How does each mod-
ule (the new training set, the rule-enhanced
decoding module) affect the performance?

* 12: How does our new pipeline work under
different abbreviation schemes, such as the

Table 1: Performance on the City Open Dataset

Model Method EM | F1

Llama 3.1_70B | Few-shot 65.1 | 81.2
Qwen 2.5_75B | Few-shot 66.3 | 81.2
GPT_40_mini Few-shot 609 | 78.5
GPT _4o0 Few-shot 68.9 | 83.4
GPT 4 Few-shot 67.7 | 83.1
Llama 3_8B Fine-tune(Rule+GE) 56.0 | 73.9
Llama 3_8B Fine-tune(Rule+Beam) 575|759
Llama 3_8B Fine-tune(Rule+AutoBeam) 62.9 | 79.2
Llama 3_8B Fine-tune(RTDG+GE) 60.6 | 76.5
Llama 3_8B Fine-tune(RTDG+Beam) 59.7 | 76.4
Llama 3_8B Fine-tune(RTDG+AutoBeam) | 66.1 | 81.2
Qwen 2.5_7B Fine-tune(Rule+GE) 53.7 | 71.7
Qwen 2.5_7B Fine-tune(Rule+Beam) 545|723
Qwen 2.5_7B Fine-tune(Rule+AutoBeam) 553 | 74.6
Qwen 2.5_7B Fine-tune(RTDG+GE) 59.7 | 76.0
Qwen 2.5_7B Fine-tune(RTDG+Beam) 60.2 | 76.5
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) | 64.5 | 79.9
Human 434 | 66.5

richer non-subsequence abbreviation scheme
and the Chinese PinYin abbreviation scheme?

4.1 Experimental Setup

Datasets. We trained our model using the Git-
Tables dataset, and evaluated it on three datasets:
City Open Dataset, Non-subsequence GitTables,
and PinYin dataset. We show the details of the
training set in Appendix. H.

Evaluation Metrics. We use the metrics in (Zhang
et al., 2023): exact match (EM) accuracy and F1
scores based on partial matches. The details of the
metrics are described in Appendix. L.

Baselines. We compare with baselines of di-
rect fine-tuning and LLM usage. In training, we
compare training on the original dataset (Rule:
dataset generated by heuristic rules in (Zhang et al.,
2023)) with our Realistic Training Data Generation
(RTDG) method. RTDG involves generating data
using a model and substituting non-subsequence
cases. During decoding, we compare AutoBeam
(Rule-enhanced LLLM Beam Search Decoding Via
Automata) with GE (Regular Greedy Encoding)
and default Beam Search (Beam).

We test on multiple backbone LLMs. We mainly
use Qwen 2.5 7B (Yang et al., 2024) and Llama 3
8B (Dubey et al., 2024) for fine-tuning on Chinese
tasks. We also test larger GPT models (Achiam
et al., 2023), Llama, and Qwen models as state-of-
the-art examples. Large models are tested using
few-shot inference to demonstrate the task. Specif-
ically, we prepend demonstration examples to the
original prompt. We show them in Appendix. J.
Implementation Details. We list the implementa-
tion details in Appendix. G.



Table 2: Performance on the Non-subsequence GitTa-

bles

Model Method EM | Fl

Llama 3.1_70B | Few-shot 49.9 | 60.2
Qwen 2.5_75B | Few-shot 46.4 | 56.4
GPT_40_mini Few-shot 358 | 439
GPT_4o0 Few-shot 35.1 | 425
GPT_4 Few-shot 54.5 | 65.8
Llama 3_8B Fine-tune(Rule+GE) 50.8 | 57.6
Llama 3_8B Fine-tune(Rule+Beam) 50.9 | 58.1
Llama 3_8B Fine-tune(Rule+AutoBeam) 56.8 | 63.8
Llama 3_8B Fine-tune(RTDG+GE) 56.4 | 62.3
Llama 3_8B Fine-tune(RTDG+Beam) 56.8 | 63.1
Llama 3_8B Fine-tune(RTDG+AutoBeam) | 60.4 | 66.5
Qwen 2.5_7B Fine-tune(Rule+GE) 52.3 |1 59.0
Qwen 2.5_7B Fine-tune(Rule+Beam) 549 | 62.0
Qwen 2.5_7B Fine-tune(Rule+AutoBeam) 57.5 | 64.5
Qwen 2.5_7B Fine-tune(RTDG+GE) 56.9 | 63.1
Qwen 2.5_7B Fine-tune(RTDG+Beam) 59.4 | 65.8
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) | 61.9 | 67.9

Table 3: Performance on the PinYin Dataset

Model Method EM | Fl

Llama 3.1_70B | Few-shot 29.2 | 36.3
Qwen 2.5_75B | Few-shot 40.6 | 51.6
GPT_40_mini Few-shot 31.1 | 42.2
GPT_4o Few-shot 43.6 | 52.2
GPT_4 Few-shot 52.6 | 63.5
Llama 3_8B Fine-tune(RTDG+GE) 71.1 | 79.5
Llama 3_8B Fine-tune(RTDG+Beam) 71.8 | 80.0
Llama 3_8B Fine-tune(RTDG+AutoBeam) | 71.8 | 80.3
Qwen 2.5_7B Fine-tune(RTDG+GE) 694 | 78.4
Qwen 2.5_7B Fine-tune(RTDG+Beam) 70.5 | 79.3
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) | 73.4 | 81.8

4.2 NameGuess Performance

We list the NameGuess performance on the three
datasets (city open dataset, non-subsequence Git-
Tables dataset, and the PinYin dataset) in Tab. 1,
Tab. 2, and Tab. 3 respectively.

City Open Dataset. Several conclusions can be
drawn from Tab. 1. I. As we can see, our best
approach lies in Llama 3-8B trained on our real-
istic training set with model-generated abbrevia-
tions and non-subsequence lookup replacements
and a beam search decoding module guided by au-
tomaton. (RTDG+AutoBeam). Compared to the
state-of-the-art LLMs with larger parameters, our
best result has a similar performance. II. The ef-
fect of model parameters. As mentioned in (Zhang
et al., 2023), tuned models with 3B parameters
(GPT2-neo) can achieve 43% accuracy, which still
exists a huge gap with a tuned 7B/ 8B parame-
ter model. Models with similar parameters have
similar performance on this task. Larger models
exhibit significant marginal effects on performance
improvement. III. Supervised fine-tuning is crucial
for this task. Tuned Llama 3.1 8B can have similar
effects to the similar model with 70B parameters.

Tuned models have a stronger capability of follow-
ing the instructions, avoiding generating answers
that can’t be parsed, which is a drawback in the
few-shot inference pipeline. IV. Ablation studies.
Compared to the basic beam search methods, our
best approach of using the automaton-constrained
beam search has an average improvement of 4.2%
in EM. Also, refining the dataset brings an average
of 5.3% improvement in EM on this dataset. This
shows that the key component of our method is
effective for solving the tabular NameGuess task.

Non-subsequence GitTables Dataset. We list
three conclusions from the results of the non-
subsequence GitTables dataset. I. Our best ap-
proach of tuning Qwen2.5-7B using the new dataset
and automaton constraint achieves a 5.9% improve-
ment in EM and 0.7% improvement in F1 com-
pared to the state-of-the-art GPT4 model. Com-
pared to the baseline fine-tuning model, our best
approach achieves an improvement of 9.6% in EM
and 8.9% in F1. II. Compared to the City Open
dataset, which has a relatively small portion of non-
subsequence abbreviations, the non-subsequence
GitTables dataset with more non-subsequence ab-
breviations is more difficult, thus having poorer
performance. In contrast, our method that deals
with this scenario can boost performance on this
dataset. III. Ablation studies. Similarly, our best
approach gains an average of 3.7% and 4.8% per-
formance in EM due to the advanced dataset and
decoding module, respectively.

PinYin Dataset. The PinYin dataset is another ab-
breviation module that requires an understanding
of Chinese and its pronunciation. We draw the fol-
lowing conclusions: I. Our best approach is tuning
Qwen 2.5-7B with the automaton decoding con-
straint, which outperforms the best state-of-the-art
few-shot baseline, GPT-4, by 18.3% in EM and
16.6% in F1. II. The few-shot larger LLMs per-
form poorly compared with a small Qwen model.
This is partially due to the difficulty of transform-
ing PinYin to Chinese, which is unusual in the
model’s training set. (In some cases, the un-tuned
models still output in English.) To bridge this gap,
supervised fine-tuning is required to help the model
understand the generative rule in this scenario.

4.3 Efficiency

We present the time proportions for an average
sample in Appendix K.



4.4 Case Study

We present a case study of the improvements made
to the original answer. The improvements are
brought by the AutoBeam system and realistic train-
ing set. The details are listed in Appendix. L

5 Related Work

Abbreviation Expansion. Abbreviation expan-
sion (language normalization) is a key area in nat-
ural language processing. It is crucial across do-
mains like SMS (Choudhury et al., 2007; Cai et al.,
2022), chatrooms (Aw and Lee, 2012), and social
media (Baldwin et al., 2015). In text entry, De-
masco and McCoy (Demasco and McCoy, 1992)
explore abbreviation schemes. Gorman et al. (Gor-
man et al., 2021) investigate neural models for tex-
tual contexts. In biomedical articles, Jin et al. (Jin
et al., 2019) highlight its importance, while Zhu et
al. (Zhu et al., 2014) focus on clinical notes. Re-
cently, Zhang et al. (Zhang et al., 2023) propose
the NameGuess task for tabular data, showing that
tabular context is key to revealing full names in
column headers. Our work builds on NameGuess
to generate better results in tabular data.

Various machine learning techniques, from hid-
den Markov models to neural language models,
are applied to abbreviation expansion. The noisy
channel paradigm, inspired by contextual spelling
correction, is detailed by Brill and Moore (Brill
and Moore, 2000) and used by Gorman et al. (Gor-
man et al., 2021) for abbreviation modeling. Re-
cent works (Gorman et al., 2021; Cai et al., 2022;
Zhang et al., 2023) leverage neural language mod-
els. With advancements in LLMs, this field contin-
ues to evolve, addressing diverse challenges.
LLM. Since 2017, pretrained language models
(PLMs) have become a research trend due to their
strong performance on various tasks (Kenton and
Toutanova, 2019). Recently, large language mod-
els (LLMs) with significantly more parameters
have shown remarkable capabilities beyond smaller
PLMs (Zhao et al., 2023). Several LLMs (Achiam
et al., 2023; Yang et al., 2024; Dubey et al., 2024;
GLM et al., 2024) have been proposed, reshaping
Al research.

LLMs can address abbreviation expansion due
to their strong language understanding. Zhang et
al. (Zhang et al., 2023) evaluate few-shot in-context
learning using state-of-the-art LLMs (above 100B
parameters) on the NameGuess task. Our work uses
amoderate-size LLM (7/8B parameters), delivering

outcomes on par with leading-edge, larger LLMs.

Constrained Language Model Decoding. Con-
strained decoding is vital in natural language pro-
cessing, particularly for LLMs. These models gen-
erate outputs probabilistically, but real-world appli-
cations often require outputs adhering to specific
constraints, such as structured formats or domain-
specific rules. Since LLMs lack native constraint
enforcement, constrained decoding techniques are
needed. Hokamp and Liu (Hokamp and Liu, 2017)
introduce lexically-constrained sequence decod-
ing. Anderson et al. (Anderson et al., 2017) ex-
tend beam search with constraints for valid out-
puts. Recent works (Scholak et al., 2021; De Cao
et al.) use trie-based lexical constraints and incre-
mental parsing for tasks like entity disambiguation
and SQL generation. Grammar-constrained decod-
ing (Deutsch et al., 2019) ensures structural validity,
and Roy et al. (Roy et al., 2022) and Stengel-Eskin
et al. (Stengel-Eskin et al., 2023) show its impact
on LLM performance.

A related topic is using automata for constraint
implementation. Koo et al. (Koo et al.) and Willard
et al. (Willard and Louf, 2023) discuss efficient
automaton implementation for programming lan-
guages and JSON constraints. Our work avoids
fixed templates, addressing changing subsequence
patterns. We leverage NameGuess task character-
istics and explore how abbreviation scheme con-
straints are expressed and implemented in automa-
ton. Constrained decoding ensures generated text
meets predefined criteria. In this task, we tailor
criteria to specific abbreviation schemes, enabling
broader applications.

6 Conclusion

In this paper, we propose improvements to the
training and decoding processes of large language
models (LLMs) to enhance their performance on
the NameGuess task. We introduce a model-
based subsequence abbreviation generation mod-
ule and a lookup table generation method for non-
subsequence abbreviations. We also discuss the
PinYin abbreviation scheme. In addition, we lever-
age automata to encode discriminative rules for
abbreviation expansion and constrain the beam
search process to improve efficiency. Experiments
show our approach enables fine-tuned moderate-
size LLMs with a refined decoding system to
achieve performance comparable to state-of-the-
art models like GPT-4.



7 Limitations

While our methods improve the NameGuess task,
they do not fully exploit finer-grained table con-
text, such as the order of columns or inter-column
relationships, which could provide additional in-
formation to enhance model performance. Fur-
thermore, our experiments primarily focus on fine-
tuned small LLMs, and we have not extensively
explored the potential of scaling our techniques to
larger LLMs. Future work could investigate how
incorporating detailed table features and tuning
larger models might further improve performance
and generalization to more complex tabular data
scenarios. For the risks of our work, deploying
a not mature NameGuess system may have the
possibility of incorrect predictions or mismatches,
which could lead to data misinterpretation or errors
in downstream processes.
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A Examples of Generative and
Corresponding Discriminative Rules in
Related Abbreviation Schemes

We list the examples of generative and discrimina-
tive rules in Tab. 4.

B Prompt for Abbreviation Generation

We use the following prompt to train the model for
abbreviated word generation.

Provide several possible abbreviations for
the word. Word: p; Abbreviations:

{a1, - ar}

C Prompt for Corner Case Generation

We construct a prompt for word p to query its non-
subsequence abbreviations:

A subsequence is a sequence that can be
derived from another sequence by deleting
some or no elements without changing the
order of the remaining elements. Please gen-
erate an abbreviation from the full name that
is not the full name’s subsequence. Here
are some examples that may cause this phe-
nomenon.

#Examples:

Symbol correlation: {ICL Examples}
Phonetically related: {ICL Examples}
Convention: {ICL Examples}

Generate the possible non-subsequence ab-
breviation for this word: Word: p
Abbreviation:

We present some of the examples of non-
subsequence abbreviations in Tab. 5.

D Examples of Discriminative Rules in
Tab. 1 Expressed in Automaton

Subsequence and Lookup Abbreviation Rules
Expressed in Automaton. We mainly discuss the
two discriminative rules corresponding to what
we use in the training data generation: the sub-
sequence abbreviation and the lookup table abbre-
viation. Suppose we are generating the full name p
for the abbreviated form q = q1¢2...qy.

For the subsequence discriminative rule p €
{z|qis subsequence of x}, the regular expression
of it should be . * q;1. * g2.%, ..., . * q,.*%, where .x
matches any sequence of characters and ¢; matches
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the character ¢;. We define the DFA 7T as a 5-tuple
(S,%,9,s0, F) as:

e S = {s0,51,82,...,8n} is the set of states,
where each s; represents a prefix of the string

q.

* > is the alphabet, consisting of the distinct
symbols present in the string q.

e The transition function § : S x X — S is
defined as: 6(s;, ¢ir1) = $i+1,0 <i<n-—1.
For symbols not part of the sequence ¢, the
DFA transitions to the same state.

* 59 € S is the initial state, representing the
empty prefix.

o ' = {s,} is the set of accepting states, in-
dicating that the entire string ¢ has been suc-
cessfully read.

This DFA accepts the string p if and only if the
subsequence of p exactly matches q. We show an
example of the abbreviated form "txn" in Fig. 3.
For the lookup table abbreviation rule p €
{z|q € L(x)}, we can search in the reverse lookup
index for g, so the output should be fixed. For ex-
ample, in Fig. 3, for ¢g="txn", p should be the word
"transaction" using the lookup table.
Mixed Rule of Subsequence and Lookup Ab-
breviation. For a mixed discriminative rule p €
{z|3¢",....¢" = ¢, 2", .., 2" = x,¢7 € L(27)]
¢’ is subsequence of x’}, which allows part of
p abbreviated by lookup table and part of p ab-
breviated in subsequence form. We can slightly
modify 7 to Ty = (S0, X, do, S0, F') to cope with
this mixed rule as an NFA:

* So=S, For each ¢;, ..., ¢j, 3x1, .., x, L(x)
iy -y q], SO+ -
{s71,s72,...,5;"'} is the set of states,
where each s} represents a state in the bypath

of this possibly lookup abbreviation.

* The transition function Jg d,

Ty
50(8?t7xt+1) = t1

50(526’“*17:1:;6) = s;.

Generalization of Other Abbreviation Schemes.
We can generalize the mixed lookup table abbrevi-
ation to any possible abbreviation scheme in Tab. 4.
Take the PinYin abbreviation scheme as an exam-
ple, the abbreviated form is a subsequence of the
full name’s PinYin. We can represent the mixed



Table 4: Examples of generative and corresponding discriminative rules in related abbreviation schemes.

Generative Rules

Discriminative Rules

Description

randomly a non-null subsequence of p;

pi € {z|q; is subsequence of x}

subsequence abbreviation
in (Gorman et al., 2021)

p=0.2 rulel: keep first k characters;
p=0.4 rule2: removing non-leading vowels;
p=0.4 rule3: removing duplicate characters,...;

pi

€ {z|3ruleq, gi = ruleq(pi)}

heuristic abbreviation in (Zhang
etal., 2023)

p=0.12 rulel: delete final e;

p=0.012 rule13: delete non-duplicate consonants; bi

p=0.073 rulel4: others;

€ {z|q; is subsequence of x}

statistic of abbreviations in (Gor-
man et al., 2021)

reserve the first character of p; pi € {z|g; = pil0]} optimized abbreviation for KSR
in (Cai et al., 2022)
select one of the abbreviations in the lookup table L of p; pi € {z]q; € L(z)} lookup table for corner cases

split p; = p}, N pf select one of the abbreviations in the
lookup table L of p? or randomly a non-null subsequence of p;

pi €

8

. q

k
;T =

{e ]3], df = @2 ...

; i ; mix rules
€ L(z7) | ¢ is subsequence of 7}

randomly a subsequence of p;’s PinYin Di

€ {z|qi is subsequence of PinYin(z)}

PinYin abbreviation

Table 5: Examples and Categories of Non-subsequence
Abbreviations

Category Examples
Symbol Substitution about->@
at->@
i action->axn
Phonetically Related - tordondd
Convention battleship->bb

charles->chuck

rule of PinYin and subsequence form as a new NFA.
The new NFA T, = (Spy = S, Xpy, Opy, S0, F) is
also modified from 7

* Y,y is the Chinese character set.

qi»

e The transition function  J,,
d. For each =z € Yoy
dmazx j,q;, ..., q; is subsequence of
PinYin(x), 6py(si, ) = s;. This represents
a bypath of this possible abbreviation of the
Chinese token x’s PinYin.

Language Model Tokenizer as Composed Trans-
ducer. Since we are dealing with token inputs from
the LLM’s tokenizer instead of the character input
in T, 7o, we have to model the tokenizer as well.
Koo et al. propose treating the language model’s
vocabulary as a transducer, which has the states
equal to the base DFA 7’s alphabet (Koo et al.).
This allows us to composite the language model
transducer with the constraint DFA/NFA. We use
the same definition of the transducer 7; of LLM
in (Koo et al.), and the composed NFA 71 = T;07j.
Due to the special form of 7y’s definition, we can
directly calculate 7; = (S1 = S, %1, 61, 80, F1 =
F):

* 1 =V, where V is the vocabulary of the
language model decoding.

 The transition function d;(s;,v) s,
iy qi+15 -+ ql i$

subsequence of v and ¢, ...,qi11 1S not
subsequence of v. Or d;(s;,v)

Qi» @ity - q = L(v), v is a token in 3.

Si5

Intuitively, one of the tokens v from the vocabu-
lary V can traverse as far as it can to cover part of
q as its subsequence, or it can cover part of ¢ as a
lookup value and itself as a lookup key. For exam-
ple, in Fig. 3, starting from the third state, "taxi"
covers "tx" in "txn", so it traverses to the second
state. "axe" covers none in "txn", so it stays the
first state. "transaction" is a key in the lookup table,
and its value is “txn", so it can directly traverse to
the fourth state.

For the generalized cases, such as the mixed
rules of PinYin and the subsequence abbreviation,
the composed NFA with the transducer also has
a similar form. We use the same definition of
the transducer 7; of LLM in (Koo et al.), and
the composed NFA Tp1 = T¢ 0 Tpy = (Spy1 =
S, Epyl, 5py1, S0, F1 = F)I

* Ypy1 is the Chinese vocabulary of the lan-
guage model decoding.

* The transition function Opy1(si,v) = sy,
Qi Qi+1, ---,q 1S subsequence of v and
Qs -, qi+1 1S not subsequence of w.

Qi Qi+1, ---» qi 1 subsequence of PinYin(v)
and g¢j,...,qi+1 is not subsequence of
PinYin(v), where v is a token in ;1.

This is similar to traversing to the farthest state,
however an additional PinYin transition is required.
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E Algorithm of State Traverse
Computation and Constrained Beam
Search via Automata

We describe the algorithms in detail in this section.
The proposed algorithms, State Traverse and Beam
Search, are designed to tackle the problem of ab-
breviation expansion using a combination of finite
automata and language models. In Algorithm 1, the
State Traverse algorithm initializes by constructing
a Trie Tree from a lookup table, which serves as a
reference for valid expansions. A Trie Tree is used
to efficiently search whether any of g1, ..., qn’s
prefixes have a corresponding full name. Specif-
ically, check(Tr, (qi+1, ---qn)) means that we tra-
verse from the root to the state of ¢, ..., ¢,, and we
record all the possible lookup abbreviations on the
path to form the output of check(Tr, (q1+1, ---Qn))-
For example, q;1,...,qn, = txn, the possible by
path at this stage consists of all the full names that
have the abbreviated form in "txn", "tx" and "t". So,
by traversing the path through "txn" to the root, we
can tract all the possible full names in the lookup
table.

Algorithm 2, the Beam Search algorithm, uti-
lizes the State Traverse algorithm to iteratively ex-
plore possible expansions of an abbreviation. Start-
ing from an initial state, it maintains a buffer of
candidate expansions, each associated with a prob-
ability score and a wait counter to prevent stalling
on non-progressive states. After Alg. 1 calculates
the set of traversing states using the NFA we de-
fined, for each arrival state q,;rjyq; determined by
the transition function, the algorithm updates the
new state and probability, and appends the new
candidate to the buffer if they are below a prede-
fined idling threshold. The generation quality of
each candidate is valued by generation probability
calculated using the LLM, and the buffer is sorted
according to the probability after each iteration.
This process continues until the buffer is exhausted,
ensuring a breadth-first search of potential expan-
sions while adhering to the constraints imposed
by the finite automaton and language model. The
combination of these algorithms provides a robust
framework for accurately expanding abbreviations
in a structured and efficient manner.

F Efficiency Analysis

Different automata built for different abbreviation
schemes may have different running complexities,
we will take the mixed rule of subsequence abbrevi-
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ation and lookup abbreviation as an example here.
The additional cost of our proposed filter compared
to the traditional beam search is the cost of check-
ing the lookup table and the transition functions.
Lookup Table. In our implementation, the lookup
rule in the beam search part is implemented as a
prefix tree. In Alg. 1, where we need to check
whether a generated token is a prefix of the full
name of a potential prefix of (q;41, ..., ¢n). This re-
quires a query in the prefix tree of g;41, ..., ¢n. The
complexity of querying ¢;41, ..., ¢ in a prefix tree
is O(l,) in the worst case, where [, is the length of
qi+1, ---, n. Transition Function Check. In our
implementation, we conduct the transition function
check on the run. For each token v to be checked,
we traverse according to the transition rules com-
posed by the rule NFA and the token transducer
DFA. The complexity of such a transition is O(l,),
where [, is the length of the token v. Overall
Complexity. Suppose that the Beam Width is B,
which refers to the number of candidate sequences
retained at each step, and the maximum length of
the generated sequence in tokens is 7". The addi-
tional overall complexity of the B * T" x (I + 1)),
which is a small part of the whole language model
inferencing cost. Notably, /,, [, is a small number
regardless of how large the lookup table is, which
promises a low additional cost for our method.

G Implementation Details

We use Huggingface’s Transformers (Wolf et al.,
2019) library to implement the LLMs, we lever-
age the TRL library and PEFT library to conduct
Lora fine-tuning on the LLLMs, and we apply the
vLLM (Kwon et al., 2023) library to generate se-
quences from the LLMs more efficiently. The fine-
tuning and inference of GPT models are imple-
mented through the OPENALI official API using
the default hyper-parameters. Following the con-
ventions in LLM fine-tuning, we train our model
using the AdamW optimizer (Loshchilov and Hut-
ter, 2019). The number of training epochs is set to
3, the learning rate is set to 2e — 5, and the batch
size is set to 4. The lora configs are lora_alpha =
16, lora_dropout 0.1, and lora_rank = 8.
The prompt template we used is in Appendix C.
In all experiments regarding beam search, we use
a beam width of 10 and a maximum sampling to-
ken of 50 to ensure fair comparison. We report the
mean result of three times experiment. The exper-
iments are conducted on an Ubuntu 20.04.6 with



Algorithm 1: State Traverse

Class State_Traverse:
Function initialize (lookup table L):
L Build a Trie Tree 17, for values in L;

Traverse on 77, from root to q;

return Soyiput;

number k):
Vi <= Top(f(Pm+1[pl, s Pm, @), k);
Vvalid < {}7

for each v € V;, do
| Voatia-add((v, 50));

Vvalid‘add((vv Su));

return V,,;;d;

Function run(NFA 71 = (Q1 = Q,%1,01,q0, F1 = F), input g = ¢, . . .
model f, lookup table L, input state s;, current full name p1, ..., py, beam search sampling

{z,t|lx = L(q141, .-, qt) } < check(TL, (qi41, - - -

ifv,t € {z,t|lxr = L(¢+1,-..,q)} then

Use v to traverse on 77 from s; to s,;

Function check( Trie Tree Ty, input ¢ = q1, .., Gn)*

Collect Full name z and Abbreviation q;11, ..., g; t0 Soutput On the path;

, Qn, language

7Qn));

an Intel Xeon Silver 4210R CPU and 2 NVIDIA
A6000 graphics cards.

H Datasets

We show the statistics of the training set in Tab. 6.
We train our models mainly based on the GitTables
dataset (Hulsebos et al., 2023). We clean up (filter
tables with no column names, tables containing
above a half of null values, and tables with few
rows and columns) the original GitTables dataset to
remove its noisy part. We generate the abbreviation
pairs using our proposed method. The combining
pattern of the generated abbreviation pairs is the
same as that in (Zhang et al., 2023).

We train the abbreviation generation model with
the training set extracted from Gorman et al.’s (Gor-
man et al., 2021) expert annotated wiki sentence
dataset on a Llama3-8B model. We follow the con-
struction way in Sec. 3.1. We collect a lookup table,
especially for the non-subsequence abbreviations
in English. We also follow the construction way in
Sec. 3.1 We evaluate our method and the baseline
methods on mainly three datasets.

City Open Dataset (Zhang et al., 2023). Zhang et
al. collected the City Open dataset from city gov-
ernment tables from New York (NYC), Chicago
(CHI), San Francisco (SF), and Los Angeles (LA),
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covering multiple categories, such as business, ed-
ucation, environment, health, art, and culture. Hu-
man annotators are assigned to recover the abbrevi-
ated column names and generate new abbreviated
forms from full names on these tables. A further
quality audit is conducted to enhance the validity
of this dataset. The table corpus of this dataset is
the whole GitTables dataset.

Non-subsequence GitTables. After the word seg-
mentation of the column names (each column name
may be separated into multiple words), we select
the tables containing potential full names that can
be abbreviated into non-subsequence forms. The
words having an acronym in the lookup table are
transformed using the lookup table with 0.8 prob-
ability, and the rest of the words are transformed
using the rules in (Zhang et al., 2023). We split the
original GitTables dataset to form the training set
and the testing set. The data construction process
is the same in both sets. We construct this dataset
to show that our training method can further boost
performance on different abbreviation schemes and
training on the non-subsequence forms can actually
generalize to other non-subsequence cases.

PinYin dataset. The PinYin scheme is relatively
difficult because it’s rare in the LLM’s training
corpus. We transform the GitTables dataset into



Algorithm 2: Constrained Beam Search via Automata

Input: NFA ’Tl = (Ql = Q, 21,51,50, F1 = F), input q=q,..

., qn, language model f, lookup

table L, beam search sampling topk k, idling threshold th;;, beam width w

QOutput: Output full name p
ST « State_Traverse();
ST.initialize(lookup table = L);

buf <[(sstate = So, wait = 0, prob = 0, cname = "")];

success < [];
while buf is not empty do
(Sstate, Wait, prob, cname) < buf.pop();

if Sstate in F1 then

continue;

for each v, §1(Sstate, V) € Vyatid do
for surivai € 01(Sstate, v) do
if Sgrrival = Sstate then

L new_wait < wait + 1;

else
L new_wait < 0 ;

if new_wait < th;q then

Sort buf by prob in descending order;
B buf < buf[:w];

Sort success by prob in descending order;
return success[0].cname;

Vyatid < ST.run(input = g, current full name = cname, $; = Sgzqate, NFA = T7,
language model = f, beam search sampling number = k);

success.append((Ss¢qte, Wait, prob, cname));

L buf.append((Sarrival, NEW_wait, prob + f(v, cname|q), cname+v));

Table 6: Statistics of the used datasets.

Developing Dataset #Example | #Avg. Col | #Avg. Row
GitTables 163,204 19.5 93
Gorman’s Wiki 11,511 / /
Non-subsequence Lookup | 2,473 / /

Training set_City 79,551 4.6 61
Training set_nonsub 59,492 4.0 47
Training set_PinYin 49,211 3.8 45
Evaluating Dataset #Example | #Avg. Col | #Avg. Row
City Open_SF 4,781 239 643

City Open_CHI 3,975 21.1 605

City Open_LA 462 21.3 578
GitTables_nonsub 19,668 8.5 87

PinYin 14,054 7.1 67

Chinese and the corresponding PinYin to form this
dataset. The English table contents are preserved,
and the column names are either kept in English
or transformed into their PinYin form in Chinese.
We set the probability of keeping and transforming
to 0.5 and 0.5, respectively. We split the original
GitTables dataset to form the training set and the
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testing set. The training set is constructed using
the same rules. We construct this dataset to show
that our proposed pipeline can cope with different
abbreviation schemes.

I Evaluation Metric

EM checks if the predicted column name matches
the ground truth after normalization, ignoring case,
punctuation, and articles. The F1 score measures
token overlap between predictions and ground truth,
calculated as 2 - precision - recall/(precision +
recall). Precision is the proportion of correct tokens
among predictions, and recall is the proportion of
correct tokens in the ground truth. This metric bal-
ances accuracy and completeness, capturing partial
matches.



Table 7: Case study of improved examples in the three datasets.

Dataset Ans (Rule+GE)

Ans (RTDG+AutoBeam)

Abbreviation

["row_id", "BasePay",

"employment_type", "job_class",
"lump_sum_pay", "other_pay_payerroll_tax",
"overtime_pay","pay_grade",
"job_class_link", "avg_boss_life"

City Open

["ROW ID", "Base Pay",
"Employment Type",

"JOB CLASS", "LUMP SUM PAY",
"Other Pay Payroll Explorer",
"Overtime Pay", "Pay Grade",

"job class link", "Average Basic Life"]

["rowld", "BsePay",
"employmnt_typ",

"job_cls", "lump_sm_pay",

" othr_pay_payrll_expl",
"ovrtm_pay", "pay_grd",
"job_cls_Ink", "avg_bsc_life"]

Non-subsequence
GitTables

["time", "attenuation",
"dispersion”, "omegaXvolume"]

["time", "attenuation”,
"dispersion", "omega_times_volume"]

["time", "atten",
"dssn", "omegXVIm"]

("R, ERE, AR,

PinYin "ﬁﬁ”, R T'K/H\:V/J"]

[T, I, ORI,
LR, K]

["MingCheng", "ShengWuTi", "YiZhiuoYong",
"WeiZhi", "FuGuanJZ"]

J Demonstration Examples for LLM
Baseline

For the city open dataset, we use the example:
"As abbreviations of column names from a ta-
ble, c_name | pCd | dt stand for Customer Name
| Product Code | Date." For the GitTables_PinYin
dataset, we use: "column names: JiLu, JiYin, SWT,
row 1: P50402, EMD, Human, row 2: Q9Y6D?9,
MADIL1, Human. As abbreviations of column
names from a table, *JiLul JiYinl SWT’ stands for
10K E K A" (Full column names are
Chinese, and abbreviations are subsequences of the
full names.)

K Efficiency Experiment

We present the time proportions in the whole end-
to-end inference time for an average sample in
Fig. 5. We select Qwen 2.5-7B for test in this sub-
section. The data compares the time spent on two
parts, LM Reasoning (original beam search cost)
and Rule Judgment (additional cost brought by the
automata constraints in beam search), across three
different datasets: City Data, Non-subsequence
GitTables, and PinYin. For the City Data and Non-
subsequence GitTables dataset, the time spent on
LM Reasoning is significantly higher than the time
spent on Rule Judgment. Specifically, for City
Data, LM Reasoning accounts for 99.0% of the
total time, while Rule Judgment takes up only 1%.
For Non-subsequence GitTables, the proportions
are similar. However, for PinYin, LM Reasoning
takes only 20.5% of the time, with Rule Judgment
making up the remaining 79.5%. This is due to
the high cost of converting the Chinese tokens to
PinYin.

These percentages suggest that LM Reasoning is
a more time-consuming process compared to Rule
Judgment while we are using the mixed rules of
subsequence and lookup rules, which is the same
as we have analyzed in Sec. 3.2 regardless of the
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Figure 5: Time comparison of the LM running time and
additional constraint running time.

dataset being processed. The time cost of rules is
much higher in the PinYin dataset, as the transitions
of tokens to their pronunciation are not straightfor-
ward, thus costing more time in rule judgment.

L Case Study

In three distinct dataset case studies, we ob-
serve improvements made to the original answer
(Ans(Rule+GE)) to provide the correct field names
in our best answer (Ans(RTDG+AutoBeam)). (The
original answer is from the original training set
with greedy encoding, and the optimized answer is
from the new realistic training set with automaton
constraints.) Firstly, in the "City Open" dataset,
the original answer contained field names such
as "other_pay_payerroll_tax" and "avg_boss_life,"
which are clearly hallucinations from the LLM.
The first abbreviation contains multiple words,
thus making it hard to generate the correct an-
swer, while the second abbreviation may be dis-
tracted from the job context so that it generates
the word "boss". Both errors violate the subse-
quence constraints ("other_pay_payerroll_tax" <>
"othr_pay_paryrll_expl", and "avg_boss_life" <>
"avg_bsc_life"). The optimized answer (New Ans)
corrected these field names to "Other Pay Payroll
Explorer" and "Average Basic Life," making the



abbreviated form a subsequence of the generated
full names.

Secondly, in the "Non-subsequence GitTables"
dataset, the original answer included a field name
"omegaXvolume", which could be confusing as
it didn’t clearly express the relationship between
"omega" and "volume." The optimized answer cor-
rected this to "omega_times_volume," clarifying
the multiplicative relationship between the two con-
cepts. This is corrected due to the "times" <> "X"
relationship in the lookup table, and through train-
ing on such datasets with non-subsequence pairs,
the model values “times” over "X" to make the
prediction correct.

Lastly, in the "PinYin" dataset, the original an-
swer had a field name "“C{t&4#)" (Father Com-
pound, Pronunciation: FuHuaHeWu), which is dis-
tracted by the biochemistry context of this table and
violates the subsequence rule of Chinese PinYin. (
"FuHuaHeWu" <+ "FuGuanJZ" ) The optimized an-
swer changed this to "3 K5 " (Father Keyword,
Pronunciation: FuGuanlJianZi), which satisfies the
constraints and appears to match with the ground
truth.

These case studies demonstrate that by adopting
our methods, we can significantly enhance the read-
ability and usability of data, thereby facilitating the
data analysis and processing process.
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