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Abstract

The release of sensitive data often relies on synthetic data generation and Person-
ally Identifiable Information (PII) removal, with an inherent assumption that these
techniques ensure privacy. However, the effectiveness of sanitization methods for
text datasets has not been thoroughly evaluated. To address this critical gap, we
propose the first privacy evaluation framework for the release of sanitized textual
datasets. In our framework, a sparse retriever initially links sanitized records with
target individuals based on known auxiliary information. Subsequently, seman-
tic matching quantifies the extent of additional information that can be inferred
about these individuals from the matched records. We apply our framework to
two datasets: MedQA, containing medical records, and WildChat, comprising
individual conversations with ChatGPT. Our results demonstrate that seemingly
innocuous auxiliary information, such as specific speech patterns, can be used to
deduce personal attributes like age or substance use history from the synthesized
dataset. We show that private information can persist in sanitized records at a
semantic level, even in synthetic data. Our findings highlight that current data
sanitization methods create a false sense of privacy by making only surface-level
textual manipulations. This underscores the urgent need for more robust protec-
tion methods that address semantic-level information leakage.

1 Introduction

The need for protected user and patient data in research and collaboration has made privacy protec-
tion critical (Federal Data Strategy, 2020; McMahan et al., 2017; Koker et al., 2021). To mitigate
disclosure risks, two sanitization techniques are widely used (Garfinkel, 2015): removing explicit
identifiers and generating synthetic datasets that mimic the statistical properties of original, seed
data. This latter approach has gained significant traction, especially in medical domains (Giuffrè &
Shung, 2023; Priyanshu et al., 2023), where it has been hailed as a silver-bullet solution for privacy-
preserving data publishing, as the generated information is considered not to contain real units from
the original data (Stadler et al., 2022; Rankin et al., 2020). However, the efficacy of synthetic data
in truly preserving privacy remains contentious across legal, policy, and technical spheres (Bellovin
et al., 2019; Janryd & Johansson, 2024; Abay et al., 2019). While these methods eliminate direct
identifiers and modify data at a surface level, they may fail to address subtle semantic cues that could
compromise privacy. This raises a critical question: Do these methods truly protect data, or do they
provide a false sense of privacy?

Consider a sanitized medical dataset containing Alice’s record, as illustrated in Figure 1 (example
drawn from the MedQA dataset). Conventional sanitization methods often rely on lexical matching
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She abruptly stops talking in the 
middle of sentences. She occasionally 
directs her attention to the ceiling as if 
she were listening to someone.

Auxiliary Information

Sanitized Dataset

Semantic Match
A 21yo woman presents with fatigue, 
describes multiple voices calling her before 
she falls asleep... The patient has no 
significant medical or psychiatric history. She 
doesn’t smoke or drink... 

Detected Leakage
1. Young adult (early 20s)
2. Auditory hallucinations
3. No substance use history

Matched Record:
Matched Record:

Semantic 
Eval

Lexical 
Eval

Semantic 
Eval

A 23-year-old woman is brought to the ER... She says that she feels "empty inside" and 
has been hearing voices telling her that she is worthless... She does not drink alcohol or 
use illicit drugs... Her speech is slow and monotonous; she abruptly stops talking in the 
middle of sentences and does not finish them. She sometimes directs her attention to the 
ceiling as if she were listening to someone. 

Original Record

Data Sanitization

Linking 
Step

Original Dataset

Figure 1: Our privacy evaluation framework overview: First, we use innocuous auxiliary informa-
tion about Alice to find potential matches in the sanitized dataset using a sparse retriever. Second,
we semantically evaluate each piece of inferred information from the matched records, revealing
sensitive details about Alice, such as her age.

and removal of direct identifiers like names, deeming data safe when no matches are found (Pilán
et al., 2022). However, privacy risks extend beyond explicit identifiers to quasi-identifiers –
seemingly innocuous information that, when combined, can reveal sensitive details (Sweeney, 2000;
Morris et al., 2022)– and beyond literal lexical matches to semantically similar ones. An adversary
aware of some auxiliary information about Alice’s habits (e.g., stopping mid-sentence) could still
use this information (Ganta et al., 2008) and locate a record with semantically similar descriptions
in the sanitized data. This record could reveal Alice’s age or history of auditory hallucinations,
compromising her privacy, despite the dataset being “sanitized”.

To address this gap in evaluation, we introduce the first framework that quantifies the information
inferrable about an individual from sanitized data, given auxiliary background knowledge (Ganta
et al., 2008). Grounded in statistical disclosure control (SDC) guidelines used by the US Cen-
sus Bureau for anonymizing tabular data (Abowd et al., 2023), our two-stage process (Figure 1)
adapts these principles to unstructured text. The first stage, linking, employs a sparse retriever to
match de-identified, sanitized records with potential candidates. This is achieved by leveraging term
frequency-inverse document frequency (TF-IDF) weighting to compute relevance scores between
query terms and documents and then retrieving most relevant matches.

The second stage, semantic matching, assesses the information gained about the target by com-
paring the matched record from the linking step with the original, private data. We operate at a
granular, discrete “claim” level, evaluating individual pieces of information within the linked record
separately, rather than the entire record as a whole, and we consider semantic similarity rather than
lexical matching. This allows for a more nuanced assessment of privacy risks. For example, con-
sider Alice’s case again (Figure 1). We might retrieve a record stating Alice is 21 years old when
she is, in fact, 23. A lexical match would report no leakage, as the ages do not match precisely.
Semantic matching, however, recognizes this close approximation and assigns partial credit for such
inferences, capturing subtle privacy risks.

We evaluate various state-of-the-art sanitization methods on two real-world datasets: MedQA (Jin
et al., 2021), containing diverse medical notes, and a subset of WildChat (Zhao et al., 2024), fea-
turing AI-human dialogues with personal details (Mireshghallah et al., 2024). We compare two
sanitization approaches: (1) identifier removal techniques, including commercial PII removal, LLM-
based anonymizers (Staab et al., 2024), and sensitive span detection (Dou et al., 2024); and (2) data
synthesis methods using GPT-2 fine-tuned on private data, with and without differential privacy (Yue
et al., 2023). For differentially private synthesis, we add calibrated noise to the model’s gradients
during training to bound the impact of individual training examples. We assess both privacy and
utility, measuring leakage with our metric and lexical matching, and evaluating sanitized datasets on
domain-specific downstream tasks.

Our main finding is that current dataset release practices for text data often provide a false sense of
privacy. To be more specific, our key findings include: (1) State-of-the-art PII removal methods are
surface-level and still exhibit significant information leakage, with 91% of original claims still in-
ferable. (2) Without differential privacy, synthesized data still exhibits some leakage (54%). (3) Dif-
ferentially private synthesis methods provide the strongest privacy protections but can significantly
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reduce utility, particularly for complex tasks (-4% performance on MedQA task from baseline and
have degraded quality on the synthesized documents). We also conduct comprehensive ablations, in-
cluding using different semantic matching techniques and changing the auxiliary attributes used for
de-identification, providing a thorough analysis of our framework’s performance across various text
dataset release scenarios. Our results highlight the necessity to develop privacy guardrails that go
beyond surface-level protections and obvious identifiers, ensuring a more comprehensive approach
to data privacy in text-based domains.

2 Privacy Metric

As shown in Figure 1, given a sanitized dataset, our framework employs a linking attack and a
semantic similarity metric to evaluate the privacy protection ability of the sanitizer.

2.1 Definition

Let Doriginal = {x(i)}Ni=1 denote the original dataset and Dsanitized = S(Doriginal) = {y(i)}Mi=1 the
sanitized dataset for the given data sanitization method of interest S. Our goal is to evaluate the
privacy of Dsanitized under a re-identification attack by an adversary which has access to Dsanitized as
well as auxiliary information x̃(i) = A(x(i)) ⊂ x(i) for entries in Doriginal. The access function A
depends on the threat model; in our experiments, we just assume that A(x) samples a small random
subset of claims in x.

To assess potential privacy breaches that could result from the public release of a sanitized dataset,
we define L(x̃(i),Dsanitized) → ŷ(i) as a linking method that takes some auxiliary information x̃(i)

and the sanitized dataset Dsanitized as inputs and produces a linked record ŷ(i) ∈ Dsanitized. Let
µ(x(i), ŷ(i)) be a similarity metric quantifying the similarity between the original record x(i) and
the linked record ŷ(i). Given these components, we define our privacy metric as:

privacy(Doriginal,Dsanitized) = Ex(i)∈Doriginal
[µ(x(i), L(x̃(i),Dsanitized))]. (1)

2.2 Atomizing Documents

Documents typically contain multiple discrete pieces of information, complicating the quantifica-
tion of privacy leakage. For example, Alice’s record in Figure 1 encompasses both her habits and
medical information, making it challenging to assign a single privacy metric that accounts for all
sensitive data concurrently. To address this issue and facilitate a more fine-grained approach to
privacy evaluation, we atomize data records. Adopting the core concept introduced by Min et al.
(2023), we decompose each document into atomic claims, where each claim represents a single,
indivisible piece of information. In our framework, we partition each data record x(i) into a set of
atomized claims x(i)

j .

2.3 Linking Method L

The linking method L employs a sparse information retrieval technique that aggregates auxiliary in-
formation into a query, which is then used to search a datastore of sanitized documents. This method
ranks potential matches based on relevance scores, selecting the top candidates. By performing a
semantic search rather than a literal text comparison, L can uncover subtle connections between aux-
iliary information and sanitized records. This approach provides a more comprehensive assessment
of potential privacy leakage in the sanitized dataset and retrieves more relevant candidates.

2.4 Similarity Metric µ

Upon linking auxiliary information to a sanitized document, we quantify the amount of information
gain using a similarity metric µ. This metric employs a language model to assess the semantic
similarity between the retrieved sanitized document and its original counterpart. The evaluation
process involves querying the language model with claims from the original document that were not
utilized in the linking phase. The model then assesses the similarity between these claims and the
content of the sanitized document. We employ a three-point scale for this assessment: a score of
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1 indicates identical information, while a score of 3 signifies that the claim is unsupported by the
sanitized document. In this scoring scheme, a higher value of µ corresponds to a greater degree of
privacy preservation, as it indicates reduced similarity between the original and sanitized documents.
The specific prompt used for this evaluation can be found in Appendix C.4.

3 Experimental Setup

3.1 Datasets and Utility Metrics

We apply our metric on datasets: MedQA (Jin et al., 2021) and WildChat (Zhao et al., 2024). Each
dataset employs distinct measures of downstream utility to assess the effectiveness of our sanitiza-
tion method. For the MedQA dataset, we evaluate the performance of synthesized data records on its
associated downstream task, which assesses the preservation of information for individual records.
Conversely, for the WildChat dataset, we examine the sanitization method’s ability to capture the
distribution of the original records. This allows for a coarse grained evaluation of the sanitization
method. In addition to these dataset-specific evaluations, we assess the quality of sanitization across
the two datasets. Detailed descriptions of the datasets and sanitization methods are presented in
Appendix A.1, while the prompts used in our study are provided in Appendix C.

3.2 Data Sanitization Techniques

We evaluate a range of data sanitization techniques, broadly categorized into sample-level and
dataset-level approaches, as illustrated in Figure 2 in Appendix A.2. Sample-level methods, which
maintain a one-to-one correspondence between original and sanitized records, include prompt-based
sanitization (Staab et al., 2024), prompt-based sanitization with paraphrasing, named entity recog-
nition and anonymization (Dou et al., 2024), and PII scrubbing. Dataset-level techniques, which
regenerate the distribution of the input dataset, encompass synthesis via differentially private fine-
tuning and standard language model fine-tuning. We also include a no-sanitization baseline for
comparison. Detailed descriptions of each technique, including specific implementations, parame-
ters, and methodological choices, are provided in Appendix A.2.

4 Experimental Results

In this section we discuss our experimental results, starting with a comparison of the privacy-utility
trade-off of different sanitization methods (removal of identifiers and vanilla data synthesis). Then,
we study how differential privacy can be used to provide rigorous privacy guarantees for synthesis,
but at the cost of utility. After that we ablate the impact of the choice of auxiliary side information
in the linking of records and sanitized data. Finally, we conduct a human evaluation to see how
well our metric correlates to people’s perception of leakage of data. We provide a few qualitative
examples of matched documents in Table 5 in the Appendix.

4.1 Privacy-Utility Trade-off: Comparing Different Sanitization Methods

We present a detailed analysis of the privacy-utility trade-off across various data sanitization meth-
ods in Table 1. The lexical overlap metric utilizes ROUGE-L as the similarity matching function
µ, with the corresponding privacy metric calculated as one minus the ROUGE-L score, ensuring
that higher values indicate greater privacy. Semantic similarity is obtained using our prompt-based
method, which evaluates whether the retrieved information semantically supports the original data.
The task utility for MedQA is measured by the accuracy of answers to multiple-choice questions
defined in the dataset, evaluated post-sanitization. Notably, zero-shot prompting achieves an accu-
racy of 0.46. For WildChat, utility is determined by a normalized chi-squared distance related to the
classification of documents, and we detail it in Appendix A.1.1. Text coherence, is a text quality
metric ranging from 1 to 5. The higher the score, the better quality outputting generation is. We
provide a more thorough description of this metric in Appendix A.1.2,

The analysis of Table 1 reveals that both identifier removal and data synthesis techniques exhibit
privacy leakage, as evidenced by semantic match values consistently below 1.0 (perfect privacy).
Notably, identifier removal methods have a consistently lower semantic privacy metric compared
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to lexical metric. This gap demonstrates that these techniques primarily modify and paraphrase
text without effectively disrupting the underlying connected features and attributes, leaving them
susceptible to inference. This finding is particularly concerning for widely adopted commercial
tools such as Azure AI. In contrast, data synthesis methods show a reduced lexical-semantic gap
and higher privacy metric values, suggesting potentially enhanced privacy protection. However,
it is crucial to note that while low privacy metric values indicate risk, high values do not guarantee
privacy. Although data synthesis consistently achieves higher privacy measures across both datasets,
its utility is not always superior. In the WildChat dataset, data synthesis performs comparably or
occasionally inferiorly to identifier removal methods like PII scrubbing. Similarly, in the MedQA
dataset, it underperforms compared to the Sanitize and paraphrase method. These observations
highlight the trade-off between privacy protection and data utility.

Table 1: Privacy-utility comparison of different sanitization methods across datasets. Lexical over-
lap reflects using ROUGE-L as the similarity matching function after the linking stage, providing a
surface-level evaluation. Semantic similarity demonstrates higher leakage (lower value of privacy
metric) in most cases, hinting that although the text is manipulated, attributes can still be inferred.

Privacy ↑ Utility ↑

Dataset Method Lexical
Overlap

Semantic
Similarity

Task
Utility

Text
Coherence

MedQA

No Sanitization 0.08(0.000) 0.01(0.000) 0.69(0.000) 3.79(0.006)

Sanitize & Paraphrase 0.66(0.006) 0.41(0.007) 0.65(0.003) 3.62(0.020)
Azure AI PII tool 0.20(0.003) 0.09(0.001) 0.67(0.000) 3.27(0.012)
Dou et al. (2024) 0.61(0.005) 0.54(0.002) 0.62(0.012) 2.84(0.009)
Staab et al. (2024) 0.54(0.004) 0.48(0.006) 0.62(0.004) 3.05(0.019)

Data Synthesis 0.45(0.017) 0.46(0.023) 0.61(0.007) 3.48(0.033)

WildChat

No Sanitization 0.04(0.000) 0.14(0.001) 0.99(0.001) 4.09(0.024)

Sanitize & Paraphrase 0.73(0.001) 0.52(0.006) 0.62(0.001) 3.16(0.525)
Azure AI PII tool 0.17(0.005) 0.17(0.000) 0.99(0.000) 3.59(0.008)
Dou et al. (2024) 0.26(0.005) 0.20(0.001) 0.99(0.001) 2.98(0.046)
Staab et al. (2024) 0.48(0.015) 0.47(0.020) 0.99(0.002) 3.51(0.027)

Data Synthesis 0.86(0.001) 0.90(0.003) 0.93(0.004) 3.28(0.043)

4.2 Privacy-Utility Trade-off: Data Synthesis with Differential Privacy

Table 2: Privacy-utility comparison of data synthesis using differential privacy with different levels
of ε, across datasets. Lower ε means more private. Lexical overlap reflects using ROUGE-L as the
similarity matching function. Even high values of ε provide low leakage, albeit at the cost of utility
and quality.

Privacy ↑ Utility ↑

Dataset Privacy
Budget

PII
Overlap

Semantic
Similarity

Task
Utility

Text
Coherence

MedQA

ε = ∞ 0.45(0.017) 0.46(0.023) 0.61(0.007) 3.48(0.033)
ε = 1024 0.79(0.001) 0.95(0.003) 0.42(0.014) 2.23(0.019)
ε = 64 0.79(0.005) 0.95(0.000) 0.42(0.008) 2.14(0.026)
ε = 3 0.80(0.001) 0.95(0.004) 0.41(0.006) 2.04(0.009)

WildChat

ε = ∞ 0.86(0.001) 0.90(0.003) 0.93(0.004) 3.28(0.043)
ε = 1024 0.88(0.002) 0.96(0.002) 0.89(0.010) 1.86(0.039)
ε = 64 0.88(0.001) 0.96(0.003) 0.82(0.007) 1.86(0.015)
ε = 3 0.88(0.003) 0.97(0.002) 0.72(0.020) 1.63(0.032)

In the previous section, we showed that data synthesis offers an improved privacy-utility trade-off
compared to identifier removal methods. However, this sanitization technique remains imperfect,
as there is still privacy leakage. To address this, researchers often integrate data synthesis with
differential privacy (DP) to establish formal bounds on potential data leakage (Yue et al., 2023). The
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bounding of the leakage in DP is governed by the privacy budget, denoted as ε. A higher ε value
corresponds to reduced privacy. Table 2 presents an evaluation of the previously discussed metrics
under various DP conditions. The row where ε = ∞ is equivalent to not applying differential
privacy, i.e. the vanilla data synthesis row from Table 1.

Our analysis reveals that implementing DP, even with relaxed guarantees such as ε = 1024, signifi-
cantly enhances privacy protection. The lexical privacy metric increases from 0.46 to 0.79, and the
semantic privacy metric from 0.43 to 0.92. However, this enhanced privacy comes at the cost of task
utility. For MedQA, utility drops from 0.62 to 0.40, falling below the baseline of not using private
data (0.44). Interestingly, the WildChat dataset exhibits a smaller utility decrease for task classifi-
cation when DP is applied. We attribute this disparity to the differing complexity and nature of the
tasks. Medical question answering is a complex, sparse task where contextual nuances significantly
impact the answer. Conversely, the WildChat utility metric assesses the ability to infer the user’s
intended task, which is essentially a simple topic modeling task achievable with limited keywords,
even in less coherent text. This effect is evident in the text coherence metric, where the introduction
of DP significantly degrades textual coherence from 3.28 to 1.83, where a score of 1 indicates the
sanitized document has a “Very Poor” quality.

A final observation from this experiment reveals that, unlike in the previous section, certain ε values
yield privacy metrics via lexical overlaps that are much lower than semantic similarity. Qualitative
manual inspection attributes this to extremely low text quality. In these cases, there is minimal infor-
mation leakage, and the non-zero lexical overlap (i.e., privacy metric not reaching 1.0) stems from
matches in propositions, articles, and modifiers (e.g., “a”, “the”) with the original text, indicating
false leakage. However, in privacy contexts, false negatives are more critical than false positives, as
false alarms are less catastrophic than overlooking real leakage (Bellovin et al., 2019).

4.3 Analysis: Changing the Available Auxiliary Information

Table 3: Comparison of successful linkage rates for various data sanitization methods across
datasets, assuming access to different auxiliary information (claims) for performing matching and
retrieval in re-identification attempts. The high variance in these rates highlights the significant im-
pact that available auxiliary side-information has on potential data leakage.

Dataset Method First Three
Claims

Random Three
Claims

Last Three
Claims

MedQA

No Sanitization 0.99(0.000) 0.99(0.000) 0.98(0.000)
Paraphrase 0.80(0.002) 0.85(0.001) 0.83(0.002)

Sanitize & Paraphrase 0.57(0.016) 0.72(0.009) 0.78(0.006)
Azure AI PII tool 0.95(0.000) 0.99(0.000) 0.98(0.000)
Dou et al. (2024) 0.75(0.012) 0.75(0.002) 0.73(0.007)
Staab et al. (2024) 0.71(0.018) 0.79(0.006) 0.82(0.006)

WildChat

No Sanitization 0.88(0.000) 0.89(0.000) 0.85(0.000)
Paraphrase 0.72(0.013) 0.76(0.009) 0.68(0.010)

Sanitize & Paraphrase 0.61(0.015) 0.68(0.003) 0.63(0.005)
Azure AI PII tool 0.87(0.000) 0.87(0.000) 0.83(0.000)
Dou et al. (2024) 0.87(0.003) 0.89(0.001) 0.84(0.003)
Staab et al. (2024) 0.63(0.014) 0.71(0.020) 0.71(0.010)

In real-world re-identification attacks, an adversary’s access to auxiliary information influences their
ability to link and match records in sanitized datasets. Our previous experiments utilized the last
three claims from each record as the adversary’s accessible information. To assess the impact of this
choice on the adversary’s information gain and matching capabilities, we conducted experiments
using both randomly selected claims and the first three claims.

Table 3 presents the results of these experiments, focusing on the correct linkage rate for sample-
level, identifier removal methods. We limited our analysis to these methods due to the availability of
ground truth mappings for verification, which is not possible with dataset synthesis techniques that
lack one-to-one mapping among records in the original and sanitized dataset.
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The results demonstrate a high variance in the adversary’s ability to correctly link records and re-
identify individuals across different claim selections, underscoring the significant impact of acces-
sible information on re-identification success. Notably, for the MedQA dataset, methods relying
on Large Language Models (LLMs), such as sanitize & paraphrase and the approach proposed by
Staab et al. (2024), exhibit the highest variance. This variance is particularly pronounced between
scenarios where the adversary has access to the first three claims versus the last three claims. We
hypothesize that this phenomenon may be attributed to the non-uniform instruction following char-
acteristics of LLMs, resulting in uneven preservation of information across different sections of the
text.

4.4 Human Evaluation of the Similarity Metric

We conducted a small-scale human study to assess the efficacy of our language model in reflect-
ing human preferences for the similarity metric µ, as defined in Section 2.4. Three of the authors
provided annotations for 580 claims. The results, presented in Table 4, demonstrate a high inter-
annotator agreement with a Fleiss’ kappa of 0.87. We then evaluate the same 580 claims using
LLaMA 3 8B, using a majority voting system over three queries. This method achieved a Spearman
correlation coefficient of 0.93 with the mode of human annotations, comparable to the strong perfor-
mance of GPT-4o, which achieves a coefficient of 0.97. In contrast, the lexical algorithm ROUGE
demonstrated a lower correlation, with an absolute Spearman coefficient of 0.81.

Table 4: Inter-rater agreement and model correlations for semantic similarity inference task.

Metric/Model Measure Value P-value
Human Agreement Fleiss’ Kappa 0.875 -

LLaMA 3 8B Spearman Correlation 0.934 3.53e-257

GPT-4o Spearman Correlation 0.965 0 (underflow)

ROUGE-L recall Spearman Correlation -0.806 1.48e-133

5 Related Work

Privacy evaluations of dataset disclosure. Evaluating privacy prior to dataset release has been
a longstanding practice in the statistical disclosure control (SDC) field (Hundepool et al., 2012).
This practice spans various fields, including legal, technical, and medical domains (Bellovin et al.,
2019; Garfinkel, 2015; Giuffrè & Shung, 2023). Traditionally, these evaluations have focused on re-
identification risks, particularly for tabular data in census or medical contexts (Abowd et al., 2023;
El Emam et al., 2011). While there have been attempts to create text anonymization benchmarks
(Pilán et al., 2022), these primarily concentrate on span detection and anonymization rather than
comprehensive re-identification and focus on scrubbing methods rather than data synthesis, contrary
to our work. Recent work in the security literature has begun to challenge the perceived safety of
synthetic data, but these studies have primarily focused on simple, low-dimensional tabular or image
data (Stadler et al., 2022; Yale et al., 2019; Annamalai et al., 2024), raising concerns about the pri-
vacy guarantees of synthetic data. However, these investigations have not extended to unstructured
text, leaving a critical gap.

Data sanitization through removal of identifiers. Traditional approaches to data sanitization have
centered on the detection and removal of Personally Identifiable Information (PII) (Mendels et al.,
2018; Montani et al., 2022) relying on named entity recognition (NER) systems and masking. Re-
cently, LLMs have been employed for this task: Staab et al. (2024) developed an iterative prompting
method using GPT-4 to achieve implicit attribute removal, moving beyond simple token replace-
ment. Similarly, Dou et al. (2024) proposed a two-step approach, combining a self-disclosure de-
tection model with an abstraction technique to reduce privacy risks in text data. Morris et al. (2022)
introduced an unsupervised deidentification method that focuses on removing words that could lead
to reidentification, using a learned probabilistic reidentification model. Their approach, motivated
by K-anonymity, does not rely on specific rule lists of named entities but instead learns from aligned
descriptive text and profile information. However, their method requires a dataset of aligned text
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and profiles, which may not always be available in real-world scenarios. All these approaches target
certain pre-defined categories of attributes for protection, on a record level.

Data sanitization through synthesis. To provide untargeted, dataset-level protection, data synthesis
has been employed (Garfinkel, 2015), sometimes with the assumption that synthesis alone provides
some degree of privacy(Liu et al.). To address this, differentially private data synthesis techniques
have been developed. Xie et al. (2018) proposed DP-GAN, a differentially private generative ad-
versarial network for tabular data synthesis. Torkzadehmahani et al. (2019) extended this approach
with DP-CGAN, incorporating conditional information to improve utility. For textual data, Yue et al.
(2023); Mireshghallah et al. (2022) introduce differentially private fine-tuning approachs for large
language models to generate synthetic text. Kurakin et al. (2023) further refined this, addressing
data contamination issues and improving utility. These approaches aim to provide formal privacy
guarantees while maintaining data utility.

6 Conclusion

This paper introduces a novel dataset-level privacy metric that addresses key limitations in current
data sanitization methods for unstructured text. By using a re-identification attack model and a
semantic-based privacy metric, our approach captures privacy risks more effectively than traditional
lexical matching techniques. Our framework integrates both privacy and utility assessments for the
sanitized dataset, providing a comprehensive evaluation of the trade-offs involved in different saniti-
zation techniques. Experiments on MedQA highlight that while differential privacy provides strong
privacy protection, it often drastically reduces data utility. Conversely, prompt-based LLM sanitiza-
tion and data scrubbing methods maintain utility but fail to adequately protect privacy. Fine-tuning
offers a better balance for some tasks but struggles with sample-specific details. Our work advances
privacy evaluation by providing a holistic framework, helping researchers better navigate the trade-
offs between privacy and utility and providing a test bed for future research in data sanitization.

Limitations

While our approach offers valuable insights into data privatization methods, several limitations war-
rant consideration. Our study does not encompass the full spectrum of data privatization techniques,
particularly those that do not directly manipulate the data itself. Although we have conducted pre-
liminary investigations into the efficacy of our approach at various stages of the pipeline, further
rigorous studies are necessary to fully validate its accuracy, especially concerning the computations
of the privacy metric. Additionally, our analysis was primarily confined to datasets within the med-
ical and conversational domains, which limits the generalizability of our findings. Future research
should focus on evaluating the method’s applicability across diverse datasets and domains to estab-
lish its broader relevance and robustness.

A key challenge in our work is that the definition of privacy and what constitutes a privacy leak is
often blurry and context-dependent. Privacy is fundamentally based on outcomes and how people
feel about information disclosure, rather than purely objective measures or monetary harm. Our
metric measures semantic similarity, which may be more relevant for some types of information
(e.g., medical conditions) but less meaningful for others (e.g., social security numbers). This lim-
itation is particularly relevant when comparing our method to techniques specifically designed for
PII removal. Furthermore, there is an inherent ambiguity in distinguishing between information
learned from the sanitized dataset and information that can be scientifically inferred from the aux-
iliary data. For example, if someone has auditory hallucinations, one might infer a high probability
of schizophrenia without accessing the sanitized data. Disentangling these sources of information is
challenging and not fully addressed in our current framework.

It is important to note that our work does not pass judgment on whether the inferences made con-
stitute privacy violations, as some might be necessary for maintaining downstream utility. Instead,
we provide a quantitative measure of potential information leakage, contributing to a more com-
prehensive understanding of privacy in sensitive data releases. This approach takes a crucial step
towards developing more robust protection methods, but it also highlights the complexity of privacy
evaluation in textual data. These limitations underscore the need for continued research in this area,
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addressing the challenges of privacy assessment across diverse data types and contexts, and refining
our understanding of what constitutes meaningful privacy protection in real-world scenarios.

Ethics Statement

Our research demonstrates that current data sanitization methods do not fully guarantee individual
privacy protection. We acknowledge the potential risks associated with developing an automated re-
identification process, which could be exploited maliciously. However, we argue that the long-term
benefits of this research outweigh these risks. By facilitating the development of more sophisti-
cated and effective data sanitization techniques, our work contributes to enhancing overall privacy
protection in data-driven research and applications. We emphasize the importance of responsible
disclosure and ethical usage of our findings to mitigate potential misuse.

This study utilizes two primary datasets: WildChat and MedQA. WildChat (Zhao et al., 2024) com-
prises user interactions with GPT-3.5 and GPT-4 models through publicly accessible APIs hosted on
Hugging Face spaces. Users accessed these models without creating accounts or providing personal
information, consenting to data collection and agreeing to usage terms in exchange for free access.
The dataset includes hashed IP addresses and country locations, offering authentic, real-world con-
versations for analysis of user safety in large language model interactions.

WildChat enables quantitative assessment of users’ self-disclosure patterns and the types of sensitive
information shared with AI assistants. This provides a unique opportunity to evaluate potential
privacy and information security risks associated with data collection in human-AI interactions.

The MedQA dataset (Jin et al., 2021), derived from medical board examinations, offers a compre-
hensive and standardized corpus of questions and answers for assessing medical knowledge. Cu-
rated by experts, this dataset contains no true identities and serves as a controlled complement to the
real-world data from WildChat.

References
Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Latanya

Sweeney. Privacy preserving synthetic data release using deep learning. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin,
Ireland, September 10–14, 2018, Proceedings, Part I 18, pp. 510–526. Springer, 2019.

John M Abowd, Tamara Adams, Robert Ashmead, David Darais, Sourya Dey, Simson L Garfinkel,
Nathan Goldschlag, Daniel Kifer, Philip Leclerc, Ethan Lew, et al. The 2010 census confiden-
tiality protections failed, here’s how and why. Technical report, National Bureau of Economic
Research, 2023.

Meenatchi Sundaram Muthu Selva Annamalai, Andrea Gadotti, and Luc Rocher. A linear recon-
struction approach for attribute inference attacks against synthetic data. In USENIX Association,
2024.

Steven M Bellovin, Preetam K Dutta, and Nathan Reitinger. Privacy and synthetic datasets. Stan.
Tech. L. Rev., 22:1, 2019.

Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human
evaluations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15607–15631. Association for Computational Linguistics, 2023. doi:
10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.acl-long.870.

Yao Dou, Isadora Krsek, Tarek Naous, Anubha Kabra, Sauvik Das, Alan Ritter, and Wei Xu. Re-
ducing privacy risks in online self-disclosures with language models. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 13732–13754, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.741.
URL https://aclanthology.org/2024.acl-long.741.

9

https://aclanthology.org/2023.acl-long.870
https://aclanthology.org/2024.acl-long.741


Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024. URL http://arxiv.
org/abs/2407.21783.

Khaled El Emam, Elizabeth Jonker, Luk Arbuckle, and Bradley Malin. A systematic review of
re-identification attacks on health data. PloS one, 6(12):e28071, 2011.

Federal Data Strategy. Federal data strategy, 2020. URL https://strategy.data.gov/. Ac-
cessed 2024-09-01.

Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam Smith. Composition attacks and
auxiliary information in data privacy. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 265–273, 2008.

Simson L. Garfinkel. De-identification of personal information. NISTIR 8053, National Institute of
Standards and Technology, 2015. URL http://dx.doi.org/10.6028/NIST.IR.8053. This
publication is available free of charge.
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Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1273–1282, 2017. URL http:
//proceedings.mlr.press/v54/mcmahan17a.html.

Omri Mendels, Coby Peled, Nava Vaisman Levy, Sharon Hart, Tomer Rosenthal, Limor Lahiani,
et al. Microsoft Presidio: Context aware, pluggable and customizable pii anonymization service
for text and images, 2018. URL https://microsoft.github.io/presidio.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke
Zettlemoyer, and Hannaneh Hajishirzi. FActScore: Fine-grained atomic evaluation of factual
precision in long form text generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 12076–12100, Singapore, December 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.741. URL https://aclanthology.org/2023.emnlp-main.
741.

Fatemehsadat Mireshghallah, Yu Su, Tatsunori Hashimoto, Jason Eisner, and Richard Shin. Privacy-
preserving domain adaptation of semantic parsers. arXiv preprint arXiv:2212.10520, 2022.

10

http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://strategy.data.gov/
http://dx.doi.org/10.6028/NIST.IR.8053
https://doi.org/10.1038/s41746-023-00927-3
http://arxiv.org/abs/2404.07503
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://microsoft.github.io/presidio
https://aclanthology.org/2023.emnlp-main.741
https://aclanthology.org/2023.emnlp-main.741


Niloofar Mireshghallah, Maria Antoniak, Yash More, Yejin Choi, and Golnoosh Farnadi. Trust No
Bot: Discovering Personal Disclosures in Human-LLM Conversations in the Wild. In The First
Conference on Language Modeling (COLM), October 2024.

Ines Montani, Matthew Honnibal, Matthew Honnibal, Sofie Van Landeghem, Adriane Boyd, Hen-
ning Peters, Paul O’Leary McCann, Maxim Samsonov, Jim Geovedi, Jim O’Regan, Duygu Alti-
nok, György Orosz, Søren Lind Kristiansen, Roman, Explosion Bot, Lj Miranda, Leander Fiedler,
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A Implementation Details

A.1 Datasets and Utility Metrics Details

A.1.1 Datasets

MedQA Dataset. The MedQA dataset (Jin et al., 2021) comprises multiple-choice questions de-
rived from the United States Medical Licensing Examination, encompassing a broad spectrum of
general medical knowledge. This dataset is designed to assess the medical understanding and rea-
soning skills required for obtaining medical licensure in the United States. It consists of 11,450
questions in the training set and 1,273 in the test set. Each record contains a patient profile para-
graph followed by a multiple-choice question with 4-5 answer options. We allocated 2% of the
training set for a development set to facilitate hyper-parameter tuning. In our study, we treat the pa-
tient profiles as private information requiring sanitization. As the MedQA benchmark is commonly
used to evaluate a language model’s medical domain expertise, we report the model’s performance
on this task as our primary metric.

WildChat Dataset. The WildChat dataset (Zhao et al., 2024) comprises 1 million real user-
ChatGPT interactions containing sensitive personal information (Mireshghallah et al., 2024). This
dataset provides insights into how the general public utilizes large language models. Following the
pre-processing steps outlined in Mireshghallah et al. (2024), we categorize each conversation and
task the sanitization method to generate new conversations. We then evaluate the distribution of
categories in these generated conversations, reporting the chi-squared distance from the original dis-
tribution as a measure of utility. Following the paper, we also use GPT-4o2 as the evaluation model
for determining the category.

To ensure comparability with the MedQA accuracy metric, we normalize the chi-squared distance
to a scale of 0 to 1. We establish a baseline performance by tasking the language model to generate
random categories from the list and treating the resulting distance as the minimum performance
threshold. To address the complexity introduced by bot-generated content within the dataset, we
implement an additional pre-processing step. We summarize each conversation prior to atomizing
the dataset, thereby preventing the atomization process from being overwhelmed by lengthy content.
This approach allows for more precise linking and analysis of privacy leakage.

A.1.2 Quality of Generation Metric

The downstream tasks previously mentioned often lack granularity, particularly for the WildChat
conversation generation task. Current evaluation methods fail to adequately assess sanitization qual-
ity, as they may classify outputs correctly based on a few key tokens without guaranteeing overall
coherence. To address this limitation and inspired by recent works (Zeng et al., 2024a; Chiang &
Lee, 2023), we employ a Large Language Model as a judge to assess the quality of sanitization out-
puts on a Likert scale of 1 to 5, with a specific focus on text coherence. For this metric, we utilize
GPT-4o as our evaluation model. We provide our prompts used in Appendix C.

A.2 Data Sanitization Techniques

We analyze various data sanitization techniques, as illustrated in Figure 2. Our focus encom-
passes two primary categories of sanitization: sample-level sanitization and dataset-level sanitiza-
tion through synthesis. Sample-level sanitization operates on individual records, aiming to remove
private information from each record, and it maintains a one-to-one correspondence between the
original and sanitized datasets. In contrast, dataset-level sanitization seeks to regenerate the dis-
tribution of the input dataset, where sanitized records may not directly correspond to those in the
original dataset. Detailed prompts used in our analysis are provided in Appendix C.

Prompt-based Sanitization (Staab et al., 2024). This approach utilizes Large Language Models
(LLMs) to remove sensitive information through iterative prompting. We implement the sanitization
pipeline proposed by Staab et al. (2024), which employs a two-step process of adversarial inference
and sanitization. In the adversarial inference step, the language model attempts to infer sensitive

2https://openai.com/index/hello-gpt-4o/
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Figure 2: Overview of the data sanitization techniques evaluated using our framework.

attributes from the text. Subsequently, in the sanitization step, the model is prompted to sanitize
the text referencing the inference results. We perform three rounds of this process, focusing on all
attributes identified in the original study: age, education, income, location, occupation, relationship
status, sex, and place of birth. For this sanitization method, we employ GPT-4o as our LLM.

Prompt-based Sanitization with Paraphrasing. Drawing insights from Zeng et al. (2024b), who
explored record rewriting, we extend the prompt-based method to involve a two-step process: initial
sanitization followed by paraphrasing. We first apply the sanitization prompt from Staab et al. (2024)
without attribute inference, then use an LLM to paraphrase the sanitized text, potentially enhancing
privacy protection.

Named Entity Recognition and Anonymization (Dou et al., 2024). We evaluate the self-
disclosure detection model developed by Dou et al. (2024). This two-step process first applies their
span detector to identify potential self-disclosures in each sentence of a record, then uses their span
abstraction model to sanitize the detected spans.

Data Sanitization via Scrubbing. We evaluate an industry standard data sanitization method that
focuses on identifying and removing personally identifiable information (PII). This approach utilizes
the Azure AI Language PII detection service3 to identify and redact PII from the dataset with the
“*” character.

Synthesis via Differentially Private Fine-tuning. We furthermore evaluate a data synthesis tech-
nique, specifically fine-tuning with differential privacy (DP). DP algorithms aim to limit the impact
of individual data points by producing output distributions that remain statistically similar regard-
less of the inclusion of any specific data point. We adopt the method described by Yue et al. (2023),
which generates synthetic text while maintaining formal DP guarantees. This approach controls
generation by conditioning the output on categorical information of the desired data. Prior to fine-
tuning a generative model, the method preprocesses data records by prepending a “control code”, a
categorical label, to each data excerpt. During inference, the generation process is controlled by first
selecting the categorical information, thereby conditioning the output.

In our experiments, we apply this method to our datasets with privacy budget values of ε ∈
{3, 8, 16, 64, 512, 1024} that are commonly used in the differnetial privacy literature.

For the MedQA dataset, we employ a “control code” comprising both the question and its corre-
sponding answer, effectively setting the category to be sample-specific. Specifically, we prepend a
text snippet in the format “Question: . . . |Answer: . . . ” to each record x(i). During the generation
of sanitized records, we provide this same text snippet with the record portion omitted, treating the
generated content as the sanitized information.

For the WildChat dataset, we do not control the generation in order to better evaluate the distribution
of the synthesized record category distribution.

Synthesis via Language Model Fine-Tuning. To refine our language model, we implement a data
processing pipeline that builds upon the methodology outlined in the preceding section. This pro-

3https://learn.microsoft.com/en-us/azure/ai-services/language-service/
personally-identifiable-information/overview
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cess incorporates the previously described ”control code” technique, which allows for more precise
guidance of the model’s behavior. The fine-tuning procedure involves iteratively exposing the pre-
trained model to our curated dataset, adjusting its parameters to optimize performance on privacy-
preserving text generation tasks. This approach enables the model to learn task-specific features
while maintaining its general language understanding capabilities. We implement a data processing
pipeline similar to the one described in the previous section. Specifically, we employ the “control
code” as described above and perform normal fine-tuning process.

Sanitization Baselines. We incorporate one additional baselines: No Sanitization. The No San-
itization baseline utilizes the original, unmodified text to establish a performance reference point,
serving as both a lower bound for privacy protection and an upper bound for data utility.

A.3 Privacy Metric Setup

We evaluate our privacy metric µ using LLaMA 3 8B (Dubey et al., 2024). To improve the model’s
consistency, we query the LLaMA model three times for each similarity metric evaluation and de-
termine the final classification based on the mode of these responses. In addition, we assume the
attacker possesses three randomly selected claims for each record. To maintain consistency across
experiments, we apply the linking method with the same set of three claims per record.

B Examples Table
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Table 5: Examples from MedQA dataset, sanitized and original, re-identified and inferred using our
method.

Original Record Our Method Match Claims Used for Matching Privacy Leaks Detected by Se-
mantic Similarity

A 23-year-old woman is brought
to the emergency department ...
She says that she feels ”empty in-
side” and has been hearing voices
telling her that she is worthless.
... She does not drink alco-
hol or use illicit drugs. ... On
mental status examination, her
speech is slow and monotonous;
she abruptly stops talking in the
middle of sentences and does not
finish them. She occasionally di-
rects her attention to the ceiling
as if she were listening to some-
one.

A 21-year-old woman presents
to an outpatient psychiatrist with
chief complaints of fatigue and
”hearing voices.” She describes
multiple voices which sometimes
call her name or say nonsensi-
cal things to her before she falls
asleep at night. ... The patient
has no significant past medical or
psychiatric history. She does not
smoke or drink alcohol. ...

She abruptly stops talking in the
middle of sentences.
She does not finish her sentences.
She occasionally directs her at-
tention to the ceiling as if she
were listening to someone.

1. Young adult (early 20s)
2. Presence of auditory halluci-
nations
3. No substance use history
4. Potential psychotic disorder

A 34-year-old woman, gravida 1,
para 0, at 16 weeks’ gestation
comes to the physician for a rou-
tine prenatal visit. ... Serum stud-
ies show:
Alpha-fetoprotein decreased
Unconjugated estriol decreased
Human chorionic gonadotropin
increased
Inhibin A increased

A 26-year-old primigravid
woman comes to the physician
... for her first prenatal visit. ...
Maternal serum studies show low
α-fetoprotein and free estriol
concentrations, and increased in-
hibin A and β-human chorionic
gonadotropin concentrations.

Serum human chorionic go-
nadotropin levels are increased.
Serum inhibin A levels are
increased.
The patient wants a definitive
diagnosis as quickly as possible.

1. Pregnant woman
2. First pregnancy
3. Abnormal serum markers
4. Potential fetal abnormality

A 58-year-old chronic smoker
known to have chronic bron-
chitis for the last 20 years
presents to his physician ...
Right heart catheterization is per-
formed, which indicates a pul-
monary artery pressure of 30 mm
Hg and a pulmonary capillary
wedge pressure of 13 mm Hg.
There is a significant drop in pul-
monary artery pressure after the
administration of inhaled nitric
oxide.

A 51-year-old man comes to the
physician because of progres-
sively worsening dyspnea on ex-
ertion and fatigue for the past 2
months. ... Coarse crackles are
heard at the lung bases bilater-
ally. ... An x-ray of the chest
shows globular enlargement of
the cardiac shadow with promi-
nent hila and bilateral fluffy infil-
trates. ...

Right heart catheterization indi-
cates a pulmonary artery pressure
of 30 mm Hg.
Right heart catheterization in-
dicates a pulmonary capillary
wedge pressure of 13 mm Hg.
There is a significant drop in pul-
monary artery pressure after the
administration of inhaled nitric
oxide.

1. Middle-aged man
2. Progressive breathing diffi-
culty
3. Indication of lung disease
4. Potential heart involvement

A 56-year-old woman comes to
the emergency department be-
cause of worsening pain and
swelling in her right knee for
3 days. She underwent a to-
tal knee arthroplasty of her right
knee joint 5 months ago. ... Anal-
ysis of the synovial fluid shows:
... WBC count 78,000/mm3
Segmented neutrophils 94%
Lymphocytes 6%
Synovial fluid is sent for culture
and antibiotic sensitivity.

A 42-year-old woman comes to
the emergency department be-
cause of worsening severe pain,
swelling, and stiffness of her
right knee for the past 3 days. ...
Arthrocentesis of the right knee
joint yields cloudy fluid with a
leukocyte count of 25,000/mm3
and 80% neutrophils. ...

Analysis of the synovial fluid
shows lymphocytes 6%.
Synovial fluid is sent for culture.
Synovial fluid is sent for antibi-
otic sensitivity.

1. Middle-aged woman
2. Right knee problem
3. Joint inflammation
4. Potential infection
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C Prompts Used

C.1 Atomizing Records

Please breakdown the following input into a set of atomic, independent
claims, and return each of the claim in a new line.

{icl_samples}

{document}

C.2 Prompt-based Sanitization with Paraphrasing

C.2.1 Sanitization via Querying a Language Model

This prompt is adapted from Staab et al. (2024).

You are an expert anonymizer that carefully adapts small parts of the text
to make it anonymous. You follow the instructions and format precisely
and you try to change as little as possible, keeping the original text
in tact as much as possible. Only generalize information and do not
invent new information.

Example: ’my husband and I’ -> ’my partner and I’ is valid, but ’my husband
and I’ -> ’my wife and I’ is not.

Example: ’my husband and I have a dog’ -> ’my partner and I have a dog’ is
valid, but ’my husband and I have a dog’

-> ’my partner and I have a cat’ is not.
Example: ’my husband and I’ -> ’I’ is also valid as it only removes

information.
Below I give you a medical record from a user. Your task is to anonymize

the record to protect user’s privacy, while keeping the rest of the
text intact.

Record:
{document}

In a first step briefly explain the changes you will make. In a new line
write a single # and then return the anonymized text. Only change
relevant parts and keep everything else as is. Make sure you keep the
original meaning, i.e. do not invent new information instead generalize
information. Do not add indicators besides #, i.e. do not add phrases

such as Anonymized text: or similar.

C.2.2 Paraphrasing via Querying a Language Model

Given the following text, generate a paraphrased version that maintains the
original meaning, context, and tone while using different words and

sentence structures. Ensure that the paraphrased text is clear,
coherent, and logically organized.

text: {document}

In a new line return the anonymized text. Make sure you keep the original
meaning, i.e. do not invent new information instead generalize
information. Do not add any indicators, i.e. do not add phrases such as
paraphrased text: or similar.
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C.3 LLM are Advanced Anonymizer Prompts

These prompts are adapted from Staab et al. (2024).

C.3.1 Adversarial Inference - WildChat

Let us play a guessing game. The following is the a conversation between a
user and an AI chatbot. Your task is to guess the user’s attributes
including Age, Education, Income, Location, Occupation, Relationship
Status, Sex, Place of Birth? Only include attributes that might be
inferred from the text.

Type: <target_attribute>
Inference: Your detailed inference
Guess: Your top 3 guesses in a list separated by ;
Certainty: Based on your inference how certain you are from 1-5. 1 is very

uncertain only based on biases and 5 has clear evidence in the
conversation. Only give the number.

Conversation: {document}

C.3.2 Adversarial Inference - MedQA

Let us play a guessing game. The following is a synthetic patient record.
Your task is to guess the patient’s attributes including Age, Education
, Income, Location, Occupation, Relationship Status, Sex, Place of
Birth? Only include attributes that might be inferred from the text.

Type: <target_attribute>
Inference: Your detailed inference
Guess: Your top 3 guesses in a list separated by ;
Certainty: Based on your inference how certain you are from 1-5. 1 is very

uncertain only based on biases and 5 has clear evidence in the record.
Only give the number.

Record: {document}

C.3.3 Sanitization - WildChat

--System Prompt--
You are an expert anonymizer that carefully adapts small parts of the text

to make it anonymous. You follow the instructions and format precisely
and you try to change as little as possible, keeping the original text
in tact as much as possible. Only generalize information and do not
invent new information.

Example: ’my husband and I’ -> ’my partner and I’ is valid, but ’my
husband and I’ -> ’my wife and I’ is not.

Example: ’my husband and I have a dog’ -> ’my partner and I have a dog’
is valid, but ’my husband and I have a dog’ -> ’my partner and I
have a cat’ is not.

Example: ’my husband and I’ -> ’I’ is also valid as it only removes
information.

--User Prompt--
Below I give you a conversation between a user and an AI chatbot as well as

personal inferences made about the user that can be made from the
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conversation. Your task is to anonymize the conversation to prevent
these inferences, while keeping the rest of the text intact.

Conversation:
{document}

In a first step briefly explain the changes you will make. In a new line
write a single # and then return the anonymized text. Only change
relevant parts and keep everything else as is. Make sure you keep the
original meaning, i.e. do not invent new information instead generalize
information.

Inference that can be made from the user (do not include the below in the
sanitization):

{inference}

C.3.4 Sanitization - MedQA

--System Prompt--
You are an expert anonymizer that carefully adapts small parts of the text

to make it anonymous. You follow the instructions and format precisely
and you try to change as little as possible, keeping the original text
in tact as much as possible. Only generalize information and do not
invent new information.

Example: ’my husband and I’ -> ’my partner and I’ is valid, but ’my
husband and I’ -> ’my wife and I’ is not.

Example: ’my husband and I have a dog’ -> ’my partner and I have a dog’
is valid, but ’my husband and I have a dog’ -> ’my partner and I
have a cat’ is not.

Example: ’my husband and I’ -> ’I’ is also valid as it only removes
information.

--User Prompt--
Below I give you a medical record from a user as well as personal

inferences made about the user that can be made from the record. Your
task is to anonymize the record to prevent these inferences, while
keeping the rest of the text intact.

Record:
{document}

In a first step briefly explain the changes you will make. In a new line
write a single # and then return the anonymized text. Only change
relevant parts and keep everything else as is. Make sure you keep the
original meaning, i.e. do not invent new information instead generalize
information.

Inference that can be made from the user (do not include the below in the
sanitization):

{inference}

C.4 Privacy Metric
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**Task**:
For each of the following claims, rate how well the provided passage

supports it on a scale of 1 to 3, where:
- **1** means "Same Information,"
- **2** means "Different but Similar Information," and
- **3** means "unsupported."

Use the rubric below to guide your evaluation and include a brief
explanation for your rating to justify your decision. Focus on the
content and facts being discussed, ignoring wording differences.
Evaluate each claim separately and do not group them together in your
output.

**Rubric**:
1. *Same Information*: The claim exactly matches the corresponding

information in the passage. The claim could be a direct quote from the
passage or a paraphrase that captures the same information.

2. *Different but Similar Information*: The claim is not identical to the
passage but captures the same or closely related information. For
example, the claim could be an abstraction of the corresponding
information in the passage, or it could have minor differences that do
not significantly change its overall meaning.

3. *Unsupported*: The claim is not supported by the passage. It could
either be not discussed at all in the passage or inconsistent with the
passage.

{icl_samples}

**Input**:
**Original text**:
{context}

**Claims**:
{atomized_claims}

**Output**:

C.5 Quality of Generation

C.5.1 Quality of Generation - MedQA

You are provided with a concise medical case summary. Your task is to
evaluate this summary based on its clinical relevance, completeness,
and coherence. Use the following 5-point scale:

1 (Very Poor): The summary is severely lacking in critical information,
contains major contradictions, or is so incomplete that it fails to
provide a meaningful picture of the patient’s condition.

2 (Poor): The summary includes some relevant information but omits several
important details. It may fail to connect symptoms with potential
diagnoses or lack crucial elements of the patient’s history or
examination findings.

3 (Satisfactory): The summary provides a basic overview of the patient’s
presentation, including key elements such as age, gender, chief
complaint, and some relevant history or examination findings. However,
it may lack depth or miss some important details.

4 (Good): The summary is coherent and includes most important clinical
information. It presents a clear picture of the patient’s case,
including age, gender, chief complaint, relevant medical/social history
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, and key physical examination findings. Minor details may be missing,
but overall it provides a solid foundation for clinical reasoning.

5 (Excellent): The summary is comprehensive, clinically insightful, and
well-structured. It presents a complete picture of the patient’s case,
including age, gender, chief complaint, relevant medical/social history
, key physical examination findings, and any immediate test results.
The summary effectively highlights the most clinically relevant
information and provides a strong basis for forming a differential
diagnosis.

Evaluation Instructions:

Read the case summary carefully.
Assess the summary based on the above criteria, focusing on its clinical

relevance, completeness, and coherence.
Provide a brief explanation (2-3 sentences) justifying your rating,

highlighting specific strengths or weaknesses.
Assign a rating from 1 to 5.

Your response should follow this format:
Explanation: [Your 2-3 sentence justification]
Rating: [Your rating (1-5)]
Remember, you are evaluating the quality and completeness of the case

summary itself, not making a diagnosis or judging the medical decisions
. Your evaluation should focus on how well the summary captures and
presents the essential clinical information needed for initial patient
assessment.

Medical Profile: {Document}

C.5.2 Quality of Generation - WildChat

Your task is to evaluate the quality of synthetic conversations, including
both the user input and the AI response. Each entry represents a
complete exchange. Assess the overall coherence, relevance, and quality
of the conversation using the following 5-point criteria:

Very Poor (1 point): The conversation is incoherent or nonsensical, with
significant disconnects between user input and AI response, and/or
contains harmful, offensive, or entirely inappropriate content.

Poor (2 points): The conversation lacks flow or logical progression, the AI
response is only marginally related to the user input, and there are

noticeable inconsistencies or errors in the exchange.
Average (3 points): The conversation demonstrates a basic connection

between input and response, is mostly coherent with some minor errors,
and the AI response adequately addresses the user’s input.

Good (4 points): The conversation flows well with a clear logical
progression, the AI response is relevant and enhances the conversation,
and the exchange demonstrates good quality interaction with minimal

errors.
Excellent (5 points): The conversation flows naturally and logically, the

AI response not only addresses the user input but significantly
enhances the conversation, and the exchange demonstrates exceptional
quality interaction, including creativity, insight, or nuanced
understanding.

Evaluation Instructions:

Carefully read the entire conversation exchange.
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Assess the overall quality based on the above criteria, focusing on
coherence, relevance, and the relationship between user input and AI
response.

Provide a brief explanation (3-4 sentences) justifying your rating,
highlighting specific strengths or weaknesses in both the user input
and AI response.

Assign a rating from 1 to 5.

Your evaluation should follow this format:
Explanation: [Your 3-4 sentence justification, addressing both user input

and AI response]
Rating: [Your rating (1-5)]
Additional Considerations:

Evaluate how well the AI understood and interpreted the context provided by
the user.

Assess the appropriateness of the conversation’s tone, style, and content
for the given context.

Consider the balance between the complexity of the user’s input and the
depth of the AI’s response.

For creative or open-ended prompts, evaluate the originality and engagement
level of the entire exchange.

For task-oriented conversations, assess how effectively the exchange moves
towards completing the implied or stated task.

Remember, you are evaluating the quality of the entire synthetic
conversation. Consider how well the exchange mimics a natural human-AI
interaction, and whether it achieves its apparent communicative goal.

Conversation: {Document}

C.6 Utility

C.6.1 Utility - MedQA

Solve the following medical multiple choice question and answer correctly:

Question:
{question}
Options:
A. {options[’A’]}
B. {options[’B’]}
C. {options[’C’]}
D. {options[’D’]}

Answer:

C.6.2 Utility - WildChat

Read the following conversation between a user and an AI chatbot. Which
tasks from the following list are being explicitly requested by the
user? Return only the most likely task name.

Tasks:
- summarization
- model jailbreaking (e.g. asking model to roleplay as DAN, NsfwGPT,

Niccolo Machiavelli, IMMORAL, AIM, or Kevin)
- generating prompts for AI models
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- story and script generation
- song and poem generation
- generating character descriptions
- code generation
- code editing and debugging
- generating communications (email, text messages, etc.)
- generating non-fictional documents (resumes, essays, etc.)
- editing existing text
- comparison, ranking, and recommendation
- brainstorming and generating ideas
- information retrieval
- solving logic, math, and word problems
- explanation, how-to, practical advice
- personal advice about mental health, relationships, etc.
- back-and-forth role-playing with the user
- answering multiple choice question
- translation
- general chitchat

Conversation:
{context}

Answer:
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