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Abstract

Multiplex graphs have emerged as a powerful tool for modeling complex data structures due
to their ability to handle multiple relational layers. Clustering within a multiplex graph can
involve merging vertices into communities that are consistent across all layers, grouping similar
layers into clusters, or creating overlapping clusters among vertices and layers. However, a
multiplex graph may exhibit distinct vertex communities based on the specific layers to which
a vertex is connected. This scenario, termed multi-group community detection, significantly
enhances the accuracy of clustering processes and aids in the interpretation of partitions.
To date, the current literature on state-of-the-art community detection has not extensively
addressed this modeling approach. In this paper, we introduce a novel methodology referred
to as the "Mixture Degree-Corrected Stochastic Block Model." This generative model,
an extension of the widely utilized Degree-Corrected Stochastic Block Model (DCSBM),
is designed to cluster similar layers by their community structures while simultaneously
identifying communities within each layer’s group. We provide a rigorous definition of the
model and utilize an iterative technique to perform inference computations. Furthermore,
we assess the identifiability of our proposed model and demonstrate the consistency of the
maximum likelihood function through analytical analysis. The effectiveness of our method is
evaluated using both real-word data sets and synthetic graphs.

1 Introduction

Recent technological advancements have precipitated an exponential increase in data accumulation, conducting
to the era of big data. This new ecosystem presents novel challenges in exploring and analyzing extensive
datasets, as highlighted in recent literature Elgendy & Elragal (2014). Often, data comes from multiple
sources, presenting multiple perspectives from diverse sources and features. Such datasets require sophisticated
models that capture intricate relationships and interdependencies across different data types and sources
Devagiri et al. (2021); Niu et al. (2016). To address the increasing complexity, multiplex graphs have become
a relevant asset Hammoud & Kramer (2020); Zweig (2016).

A multiplex graph consists of a set of vertices connected across multiple layers Han et al. (2023); Magnani et al.
(2021). Each layer in a multiplex graph uniquely represents a set of edges that models specific similarities
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Figure 1: Presentation of a multiplex graph with 4 layers. The results of community detection algorithms on
a multiplex graph are categorized into three distinct types of groupings. Each grouping is represented by
color-coded boxes, with each color signifying a different community. In figure (a), unified communities are
depicted, showing a single community structure shared across all layers. Figure (b) presents a visualization
of overlapping communities, where communities extend over several but not all layers. Finally, figure (c)
displays multi-group communities, in which similar layers are clustered together, and each cluster maintains
a uniform community partition.

between vertices, thereby serving as an effective model for multi-relational data. Additionally, multiplex
graphs are adept at modeling time-varying data, offering a robust framework for dynamic data analysis Xia
et al. (2020).

Clustering has long been recognized as an effective means for understanding and exploring data across various
domains by identifying groups of individuals with strong similarities Fortunato (2010a); Bedi & Sharma
(2016). In multiplex graphs, the clustering process poses a significant challenge, yet offers promising solutions
for analyzing complex data structures Wang et al. (2019). Community detection in multiplex graphs aims
to identify groups characterized by high intra-connectivity and low inter-connectivity Fortunato (2010b).
To this end, numerous algorithms employing diverse approaches such as optimization De Meo et al. (2011);
Que et al. (2015), spectral computation Li et al. (2018), consensus clustering Mandaglio et al. (2018), and
inference Shuo & Chai (2016) have been developed.

The results of these methods can generally be categorized into two groups. The first group optimizes
communities to be identical and unified across all layers, which may overlook the inherent diversity within
each layer, as presented in (a) from Figure 1. The second approach of multilayer communities allows for
overlapping communities across layers and vertices, where vertices may belong to different communities
in different layers, as presented in (b) from Figure 1. This model, while computationally intensive, also
poses challenges in interpretation and constrains the re-computation of partitions when a new layer arrives,
especially as the number of layers increases.

Here, we concentrate on a new outcome of multiplex graph partitioning, named as multi-group clustering.
This framework clusters layers into groups, with vertices within each group organized into communities
that remain consistent across all layers, as shown in the third clustering outcome in part (c) of Figure 1.
This multi-group perspective not only captures the intrinsic structure of each layer but also simplifies the
interpretation of the clustering.

Moreover, clustering multiplex layers into groups of similar networks has become an active research area,
treating each layer as an individual within a population of networks Mantziou et al. (2023); van der Laan
et al. (2022). However, previous approaches have often treated the clustering of layers and the partitioning
of vertices independently, neglecting the structural differences in community configurations when layers are
clustered. Our dual clustering approach thus aims to enhance both layer clustering and community detection
within multiplex graphs, providing a comprehensive solution to the challenges posed by complex network
structures.
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Although multi-group community detection has not been widely addressed in the literature, its relevance is
apparent in real-world datasets. For example, individuals sharing similar musical tastes may not necessarily
align in their political or sports affiliations, that proving the structural diversity of layers. In the financial
sector, multiplex graphs represent various transaction types within banking systems—such as online, wire,
and ATM transactions. Grouping these transactions by similar dynamics and identifying communities within
these groups are crucial for detecting anomalous behaviors and preventing fraud. Additionally, as we present
in experiment section in the field of neuroscience, the study of brain connectivity through magnetic resonance
imaging offers profound insights. Our experiments demonstrate that this approach can effectively group
subjects with similar neurological diagnoses, illustrating the practical applications of multi-group community
detection in medical research.

We introduce a new approach for Multi-group community detection based on the Stochastic Block Model
(SBM), a generative model extensively developed for community detection, which recognizes the presence of
communities within a graph by defining the probability of edges between vertices based on the communities
to which they belong Lee & Wilkinson (2019). SBM has been applied to various graph types including
single-layer Abbe (2017), multiplex Barbillon et al. (2017), and dynamic networks Corneli (2017). The
Degree-Corrected Stochastic Block Model (DCSBM), an advancement of SBM, addresses the heterogeneity of
vertex degrees within communities, relaxing the assumption of uniform degree distribution Karrer & Newman
(2011). The previous work in Stanley et al. (2015) proposed a model for SBM with multiple strata, which
bears some resemblance to multi-group community detection. However, their implementation faces significant
limitations when applied to real-world scenarios. These limitations arise due to the strong assumption within
the SBM model of a uniform distribution within communities, challenges in initialization, and difficulties in
determining the optimal number of communities when used in practical applications.

To overcome the limitations of the SBM models mentioned above, we introduce the Mixture Degree-Corrected
Stochastic Block Model (MDCSBM), an innovative framework designed for the multi-group partitioning of
multiplex graphs. Our method strategically groups similar layers and allocates the vertices within
these layers into distinct blocks, as illustrated in part (c) of Figure 1. We posit that layers grouped
together adhere to a uniform DCSBM distribution. The degree-corrected feature of our model allows us to
relax the constraints of uniform distribution within communities, thus extending the scope of application
of our model. To implement this dual clustering process, we utilize the Expectation Maximization (EM)
algorithm (in particular we consider Classifier EM (CEM) in this case Celeux & Govaert (1992))to determine
the layer groupings, and the Variational Expectation Maximization (VEM) technique for assigning vertices
to specific blocks within each group. We also present a theoretical proof confirming the identifiability of
the model and establish the consistency of the maximum likelihood estimates derived from this model. To
achieve rapid and accurate result, we propose a novel and efficient initialization method based on spectral
representation. The experimental section of the paper evaluates the model’s performance and scalability
across multiple synthetic graphs with multiple layers. We further validate our model’s efficacy using two
real-world datasets, providing interpretations of the results and highlighting the advantages of our approach
over existing models. Throughout the paper, we define "partitioning" as the process of forming communities
of vertices, and "clustering" as the method of grouping layers.

2 Related Works

Community detection in multiplex graphs can yield diverse types of partitions. For instance, some approaches
employ spectral representation-based algorithms and tensor-based algorithms that fuse layers into a centroid
graph. This graph is constrained to have K connected components, each representing a community, where K
is the number of clusters aimed at capturing highly consistent communities Kang et al. (2019); Wang et al.
(2019); Papalexakis et al. (2016). Other methods focus on consensus clustering, which involves computing
communities for each layer individually and then identifying the most consistent community across all layers
for multiplex community detection Berlingerio et al. (2013); Tagarelli et al. (2017); Tang et al. (2012).
Additionally, algorithms originally designed for mono-layer community detection have been adapted for
multiplex graphs, often allowing for overlapping between vertices and layers to form multilayer communities,
such as Generalized Modularity and Multilayer Infomap Mucha et al. (2010); Afsarmanesh & Magnani (2016);
De Domenico et al. (2015); Wilson et al. (2017).
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Recent research has also focused on identifying clusters of similar layers that may exhibit the same structure
van der Laan et al. (2022). In this approach, each graph is treated as an individual within a population of
networks. Various algorithms aim to identify a set of similar layers using methods such as mixture parametric
models Mantziou et al. (2023); Kemp et al. (2006), nonparametric methods derived from minimum code length
descriptions Kirkley et al. (2023); Kirkley & Newman (2022), models based on graph distance measurements
La Rosa et al. (2015), and latent space models Young et al. (2022).

However, these models, which aim to partition the graph into communities, often overlook the potential
for multiple clusters within the multiplex graph and do not consider the similarity of communities between
different layers. This dual consideration is crucial for enhancing the accuracy and comprehensibility of
results, especially as the number of layers increases. In the filed of tabular data, the dual clustering of both
features and samples—referred to as co-clustering—has been extensively explored and has proven beneficial
for in-depth data analysis Ailem et al. (2015); Nadif & Govaert (2010). Thus, bridging this gap in graph-type
data is crucially relevant.

The Stochastic Block Model (SBM) is a generative probabilistic model widely used for community detection in
networks. Originally developed for single-layer networks, SBM has been extended to accommodate multi-layer
clustering. A notable example is the introduction of the Multi-Layer Stochastic Block Model (MLSBM),
which incorporates various types of layer aggregation Vallè s-Català et al. (2016). In contrast, a directed
graph model with layers generated independently from the same distribution was explored in De Bacco et al.
(2017). Furthermore, Paul & Chen (2016) adapted SBM by assigning each layer its own affinity matrix, yet
constrained these matrices to yield consistent communities across layers. Additional developments include
the work of Amini et al. (2024); Roy et al. (2006), which focuses on a hierarchical generalization of SBM.
This approach seeks to uncover underlying community structures by considering the hierarchical nature
of real-world networks. Other adaptations of MLSBM utilize techniques such as Variational Expectation
Maximization to infer multi-layer graph structures Barbillon et al. (2017); Corneli et al. (2016); Han et al.
(2015). However, these models often grapple with the challenge of exponential parameter scaling, which
complicates their application to real-world graphs. Moreover, they generally lack mechanisms for constraining
the formation of multi-group structures within the multiplex graph, a critical aspect for capturing the
complexity of such networks.

3 Mixture DCSBM

This work aims to achieve a dual clustering process by grouping similar layers into a group of layers, and
vertices within each group are further clustered into a shared block of vertices. The estimation process of
MDCSBM involves determining layer-to-group variables to identify the group of each layer. It is assumed
that edges within each group follow a unique DCSBM distribution, treating layers within the same group as
independently sampled from the same distribution. Therefore, vertex-to-block variables are estimated for
each group to identify the block of each vertex within the same group.

3.1 Model Definition

Consider a multiplex graph denoted as G = {G1, ...GL} comprising L layer, Gl = {V,El} represents a single
layer, where l, s.t l ∈ [1, L] indicates the layer index, V indicates the set of vertices with |V | = N , El the set
of edges within layer l. Let A = {A1, ..., AL} be the corresponding adjacency matrix of multiplex graph G,
where Al stands for the adjacency matrix of the graph Gl. The underlying graph model in this study is an
unweighted and undirected multiplex graph, where the edge distributions follow a Bernoulli distribution. The
generalization of this model to a directed graph is straightforward. Finally, an edge Alij is defined by a dyad
i, j, representing its extremity.

Let us consider partitioning multiplex’s graph layers into K groups and assume that the vertices of group k
are divided into Qk blocks, where k ∈ [1,K]. The probability of having an edge Ali,j in layer l, within group
k, giving the block assigned to each vertex, under MDCSBM model is expressed as follows:

P (Ali,j |Zk,Πk,Θk) = θki θ
k
j π

k
Zk

i
,Zk

j
(1)
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where Zk = {Zk1 , ...ZkN} is the set of vertex-to-block assignments in the group k and Zki ∈ {1, ..., Qk},
Θk = {θk1 , ..., θkN} is the set of degree heterogeneity parameter for vertices in group k, s.t θki > 0 and∑

i,Zk
i

=q θ
k
i = 1∀i ∈ V,∀q ∈ [1, Qk]. The matrix Πk has Qk × Qk elements πkq,w,∀q, w ∈ {1, ..., Qk}2. Each

element represents the probability of an edge existing within the group k, depending on the block of its dyad
{i, j}.

Let consider a given layer Gl with known vertex-to-block variable assignments for each group Z = {Z1, ...,ZK}.
The probability of existing edge Alij between dyad (i, j) from the MDCSBM model, conditioned on Z, can be
described as a mixture distribution of K independent DCSBMs, expressed as:

P (Alij = 1|Z; β,Π,Θ) =
K∑
k=1

βkθki θ
k
j π

k
Zk

i
,Zk

j

s.t
∑
k

βk = 1,∑
i,Zk

i
=q

θki = 1,∀q ∈ [1, Qk],∀k ∈ [1,K]

(2)

where β = {β1, ..., βK} denotes the set of probabilities of layer l to be generated from group k, representing
the mixture weights of MDCSBM, Π = {Π1,Π2, ...,ΠK} is the set of parameters of each group, and
Θ = {Θ1,Θ2, ...,ΘK} is the set of degree heterogeneity for each group. This model incorporates K
distributions from which layers can be generated.

To address the challenge of maximizing the log-likelihood function due to the sum in the mixture model,
we introduce a set of latent variables Y that represents the layer-to-group assignment. Specifically, ylk, s.t
l ∈ [1, L] and k ∈ [1,K], takes the value of one when layer l is generated from group k and zero otherwise.
The updated formulation for the probability of an existing edge is as follows:

P (Alij = 1|Y,Z; Π,Θ) =
K∏
k=1

(θki θkj πkZk
i
,Zk

j
)ylk

P (ylk = 1;β) =
∏
k=1

(βk)ylk

(3)

Additionally, for any group k, we identify the probability of a vertex i to be assigned to block q as follows:

P (Zki = q; αk) = αkq

s.t

Qk∑
q=1

αkq = 1
(4)

such that α = {α1,α2, ...,αK} and αk = {αk1 , αk2 , ..., αkQk
}.

Let us consider ∆ = {∆1,∆2, ...,∆K}, such that ∆k = {Πk,Θk,αk} be the aggregation of group parameters,
the log-likelihood of the proposed model is written as follows:

L(A,Y,Z; β, ∆) =
L∑
l=1

K∑
k=1

ylk

[
lnβk + L(Al,Zk; ∆k)

]
(5)

where L(Al,Zk; ∆k) is the complete log-likelihood of layer l in group k with parameters ∆k, formulated as
follow:

L(Al,Zk; ∆k) = ln(P (Al|Zk; Πk,Θk)) + ln(P (Zk; αk))

=
∑
i,j,i ̸=j

Alij ln(πkZiZj
) + (1 −Alij)ln(1 − πkZiZj

) +
∑
i,j,i ̸=j

ln(θki θkj ) +
∑
i=1

ln(αkZi
) (6)
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In the context of inferring information from a given multiplex graph, the primary objectives involve assigning
each layer to a specific group k using variable ylk, then assigning each vertex i within group k to a particular
block q using variable Zki , and optimizing the parameters β and ∆.

The verification of the parameter’s identifiability and the assessment of the maximum likelihood consistency
are performed as follows.

3.1.1 Identifiability

The identifiability of the parameters for uni layer Bernoulli SBM has been proved in Celisse et al. (2012).
The proof has been extended to a multiplex graph for pillar division Barbillon et al. (2017). We extend this
analysis for multiplex DCSBM with multi groups.
Theorem 3.1. Let assume that there is K groups and every group has the same number of blocks Qk = Qk

′ =
Q ∀k, k′ ∈ {1, ..., Q}2. Assume for any q ∈ {1, ..., Q}, k ∈ {1, ...,K}, αkq > 0, βk > 0. Let Π ∈]0, 1[K∗Q×K∗Q

diagonal block that contains matrices Πk at diagonal as follow:Π1 ... 0
: ... :
0 ... ΠK


Let also α be a K ∗ Q × K ∗ Q matrix, which is the diagonilization of [α1

1, ...α
1
Q, ...α

K
Q ] vector, and β be a

K ∗Q×K ∗Q matrix, which is the diagonilization of [β1, ...β1, β2...βK ] vector, where βi is repeated Q times,
∀i ∈ {1, ...,K}. Assume that the elements of r = Π.α.β are distinct. Then the MDCSBM parameters are
identifiable under equivalent solutions.

The proof is presented in the supplementary material in A

3.1.2 Consistency of the Maximum Likelihood

Let us assume that the following assumptions hold:
Assumption 3.2. For every q ̸= q′ ,there exists w ∈ {1, ..., Qk} such that πkqw ̸= πkq′w, or πkwq ̸= πkwq′

Assumption 3.3. There exists ζ > 0 such that ∀(q, w) ∈ {1, ..., Qk}, πkqw ∈]0, 1[→ πqw ∈ [ζ, 1 − ζ]
Assumption 3.4. There exists γ ∈ 1/Qk such that ∀q ∈ {1, ..., Qk}, αkq ∈]0, 1[→ αq ∈ [γ, 1 − γ]
Assumption 3.5. There exists ξ ∈ 1/K such that ∀k ∈ {1, ...,K}, βk ∈]0, 1[→ βk ∈ [ξ, 1 − ξ]
Theorem 3.6. Let (Θ, d) and (Ψ, d′) denote metric spaces and let Mn : Θ × Ψ → R be a random function
and M : Θ → R a deterministic function such that for every ϵ > 0

supd(θ,θ0)M(θ) < M(θ0) (7)
sup(θ,ψ)∈Θ×Ψ|Mn(θ, ψ) −M(θ)| := ||Mn −M ||Θ×Ψ → 0 (8)

and (θ̂, ψ̂) = argmax
θ,ψ

Mn(θ, ψ), then

d(θ̂, θ0) → 0 (9)

The proof is presented in the supplementary material in B.

4 Optimization of Log Likelihood Function

As explained previously, the MDCSBM depends on layer-to-group and vertex-to-block assignment variables.
We set an iterative approach to address this joint assignment clustering challenge. To elaborate, we estimate
layer-to-group assignment variables by utilizing the Expectation Maximization (EM) technique. Then, to infer
the DCSBM model within each group, we use the Variational EM (VEM) technique. This technique proves
its performance in maximizing DCSBM distribution parameters while estimating the latent vertex-to-block
variables.
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4.1 Estimation of Layer-to-Group Variables

The computation of layer-to-group latent variables estimation is derived from equation 5, which defines the
complete log-likelihood. The estimation process involves calculating the expectation of the log-likelihood
based on the posterior distribution of layer-to-group latent variables, and it can be expressed as follows:

EY[L(A,Y,Z; β, ∆)] =
L∑
l=1

K∑
k=1

E(ylk)
[
lnβk + L(Al,Zk; ∆k)

]
(10)

where E(ylk) is the posterior expectation probability of layer l to be generated from group k, defined as
p(ylk|Al,Zk). Using Bayes theorem, the estimation of layer-to-group is computed as follows:

E(ylk) = βkP (Al,Zk|∆k)∑
j β

jP (Al,Zj |∆j) (11)

where P (Al,Zk; ∆k) is written as follows:

P (Al,Zk; ∆k) = P (Al|Zk; Πk,Θk)P (Zk; αk) (12)

The estimation of layer-to-group prioritizes the layer that maximizes the likelihood distribution for a specific
group, which is presented as the classification step in CEM algorithm. In order to assign each layer to a
single group, the selection of the group is based on the following:

ylk = argmax
j

ylj (13)

4.2 Maximization of Likelihood Parameters and Vertex-to-Block Variables

Once the layer-to-group assignment is identified, the MDCSBM parameters can be maximized, and the
vertex-to-block variable can be estimated too.

4.2.1 Maximization of β

Considering equation 5, the optimization of β involves expressing the complete log-likelihood as follows:

L(A,Y; β, ∆) =
Lk∑
l=1

lnβk + C(βk)

s.t

K∑
k=1

βk = 1

(14)

where Lk = {l ∈ [1, L], s.t ylk = 1}, set of layer of group k, and C(βk) defined as a constant regarding on βk.
By employing the Lagrange multiplier approach, the solution that satisfies the Karush-Kuhn-Tucker (KKT)
conditions can be expressed as follows:

βk = Nk

N
(15)

where Nk = |Lk| is the number of layers in the groups k.

4.2.2 Estimation of vertex-to-block and Maximization of Parameter ∆k

Our mathematical models assume that the layers within the same group are generated independently from
the same DCSBM distribution specific to that group. Let Ak the multiplex graph that contains the layers of
group k, based on equation 6, the log-likelihood of group k is expressed as follows:
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L(Ak,Zk; ∆k) =
∑
l∈Lk

∑
i,j,i ̸=j

ln(θki θkj ) +
∑
i=1

ln(αkZi
) +

∑
l∈Lk

∑
i,j,i ̸=j

Alij ln(πkZiZj
) + (1 −Alij)ln(1 − πkZiZj

)

s.t

Qk∑
q

αkq = 1,
∑

i,Zk
i

=q

θki = 1
(16)

In order to optimize the parameters that maximize the previous equation, it is essential to first estimate the
latent assignment variables. This task is addressed using the Expectation Maximization (EM) algorithm,
which requires computing the posterior probability of the latent variable Zk with respect to the observed
layers, denoted as P (Zk|Ak). However, for single-layer graphs, it has been demonstrated that calculating this
conditional probability is computationally intractable Celisse et al. (2012). Various approaches have been
proposed in the literature to tackle this challenge Li et al. (2015); Lee & Wilkinson (2019), but they tend to
suffer from the curse of dimensionality, mainly when dealing with large-scale datasets.

The Variational EM technique has been adopted to address this issue as an alternative technique for handling
DCSBM estimation challenges. Previous studies have established the VEM technique’s convergence for
single-layer SBM and DCSBM models and multiplex SBM graphs Celisse et al. (2012); Barbillon et al. (2017).
The VEM approach involves approximating the posterior distribution P (Zk|Ak), by another distribution RAk

over Zk. By leveraging this approximation, the marginal log-likelihood over Zk can be expressed as follows:

L(Ak; ∆k) =
∑
Zk

RAk (Zk)L(Ak,Zk; ∆k) −
∑
Zk

RAk (Zk)ln
(
RAk (Zk)

)
+

KL
[
RAk (Zk), P (Zk|Ak; ∆k)

] (17)

where KL is the Kullback-Leibler divergence. Therefore, instead of maximizing L(Ak; θk) for the observed
data, the VEM technique optimizes a lower bound of L(Ak; θk), denoted as Iθ(RAk ). This lower bound is
known as the evidence lower bound, and it can be defined as follows:

Iθ(RAk ) = L(Ak; θk) − KL
[
RAk (Zk), P (Zk|Ak; ∆k)

]
=

∑
Zk

RAk (Zk)L(Ak,Zk; ∆k) −
∑
Zk

RAk (Zk)logRAk (Zk)

≤ L(Ak,Zk; ∆k)

(18)

The equality between the evidence lower bound and the log-likelihood holds when RAk (Zk) is equal to the
true posterior distribution P (Zk|Ak; ∆k). Maximizing the lower bound Iθ(RAk ) is equivalent to minimizing
the Kullback-Leibler divergence KL

[
RAk (Zk), P (Zk|Ak; ∆k)

]
. Regarding to integer nature of vertex-to-block

variables, to approximate the posterior distribution, we select RAk (Zk) as follows:

RAk (Zk) =
N∏
i=1

h(Zki ; τki ) (19)

where h(:; τki ) is a multinomial distribution with parameters τ = {τk1 , ...τkQk }. The entity τkiq approximates
the probability that vertex i belongs to the community q in group k. The Iθ(RGk ) can be written as follows:

Iθ(RAk ) = 1
2

∑
l∈Lk

∑
i ̸=j

∑
qw

τkiqτ
k
jw

[
Alij ln(πkqw) + (1 −Alij)ln(1 − πkqw)

]
+

∑
i

∑
q

τkiqln(αkq )+

∑
i

∑
q

τkiqln(θki ) −
∑
i

∑
q

τkiqln(τkiq)
(20)
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Algorithm 1 Inference of Likelihood of MDCSBM
Input: G,K,Q = [Q1, ..., QK ]
Output: Y,Z,Π, Θ, β, α

Initialize Y,Z with Algorithm 2
while Iteration < Iteration max ∧ Not Converge do

Estimate ylk with 11
Compute ylk with 13
Compute αkq with 22
Compute πkqw with 23
Compute θki with 21
Compute τkqw with 24

end while

The parameters that maximize Iθ(RAk ) are derived directly from the previously presented formula. To ensure
that the vector αk and matrix Πk satisfy the constraints

∑
q α

k
q = 1 and 0 ≤ πqw ≤ 1,∀q, w ∈ {1, ..., Qk}2,

Lagrange multipliers are employed as follows:

θ̂ki =
∑
l∈Lk

∑
j A

l
ij∑

l∈Lk

∑
i,j∈q A

l
ij

(21)

α̂kq =
∑
i

τkiq
N

(22)

π̂kqw =
∑
l∈Lk

∑
i ̸=j τ

k
iqτ

k
jwA

l
ij∑

l∈Lk

∑
i̸=j τ

k
iqτ

k
jw

(23)

τ̂kiq ∝ α̂kq
∏
l∈Lk

∏
i ̸=j

∏
w

[
π̂kqw

Al
ij + (1 − π̂kqw)(1−Al

ij)
]τ̂k

jw

(24)

where α̂k, Θ̂k, Π̂k, τ̂ k are the best current parameters for the group k. Due to the interdependence between
Π̂k and τ̂k, an effective way to determine the best estimation is to alternate between updating Π̂k and τ̂k

iteratively until convergence. The optimized parameters define the distribution of DCSBM and vertex-to-block
assignments for a group k. The same computation is executed for each group independently. The overall
method is summarized in the algorithm 1.

4.3 Initialization model

The initialization process of MDCSBM involves setting up values to layer-to-group variables Y and vertex-to-
block variables Z. Effective initialization of these assignment variables contributes to faster convergence and
a higher chance of recovering accurate ground truth values. In the context of mixture models, the K-means
algorithm is commonly employed for initializing assignment variables due to its simplicity and quick response.
In this paper, we introduce a novel spectral technique that computes layer-to-group and vertex-to-block
variables, such that clustering results are used as an initialization for inferring the MDCSBM model.

Consider U = {U1,U2, ...,UK} set of centroid graphs, with each graph Uk being the centroid that represents
the group k . We aim to find layer-to-group variables by optimizing centroids that best represent each group.
Then, each centroid Uk gets clustered into Qk community to initialize the vertex-to-block assignment variable.
One way to find the communities of centroid k is to ensure that it is composed of Qk disconnected components,
where each component corresponds to a community in the graph. In network theory, a graph with a Qk
component exhibits a multiplicity of Qk null eigenvalues in its corresponding Laplacian matrix. These null
eigenvalues are the smallest eigenvalues of the Laplacian matrix. Thus, minimizing the Qk smallest eigenvalue
of the Laplacian matrix associated with Uk facilitates the formation of Qk disconnected components within
the centroid. Therefore, the model aiming to optimize these representations can be formulated as follows:

9



Published in Transactions on Machine Learning Research (02/2025)

min
U1,..,UK ,F,Y

L∑
l=1

K∑
k=1

ylk||Uk − Al||2F + 2λ
K∑
k=1

Tr(FkTLUk Fk)

s.t ∀i, ukij ≥ 0,1Tuki = 1,∀k,

(Fk)TFk = I, ylk ∈ {0, 1},
K∑
k=1

ylk = 1

(25)

where ||.||2F denote the Frobenius norm, and ukij represents element of the centroid Uk, where ∀i, j ∈ V . The
Laplacian representation of centroid Uk is denoted by LUk , and Fk represents an embedding vector. The
Laplacian matrix is computed in its unnormalized version as follows:

LUk = DUk − Uk (26)

where DUk denotes the degree matrix, a diagonal matrix. Fk ∈ RN×Qk helps to get the number of
connected components in the graph. The embedding vector was included in the cost function to relax the
non-linear constraint of constructing a centroid with Qk disconnected components that effectively represent
the communities, leveraging the number of null eigenvalues corresponding to the number of components in
the graph. The optimization process for this model is described in the next subsection. Experimentally, this
initialization helps the MDCSBM to converge faster than random initialization, up to more than 30 times
faster, which generally depends on the data structure.

4.4 Optimization of initialization model

The initialization model described in Section 4.3 in Equation 25 involves multiple variables, making it
challenging to optimize them simultaneously. Therefore, we adopt an iterative technique where each variable
will be optimized while the others are held fixed.

4.4.1 Optimizing Y, while U and F are fixed

The model can be represented as follows:

min
Y

L∑
l=1

K∑
k=1

ylk||Uk − Al||2F

s.t ylk ∈ {0, 1},
K∑
k=1

ylk = 1

(27)

By relaxing the constraint ylk ∈ {0, 1} to ylk ∈ [0, 1], the model becomes linear, facilitating the application of
analytical solutions that satisfy the Karush-Kuhn-Tucker (KKT) conditions using the Lagrange technique.
The analytical solution is expressed as follows:

ylk = ||Uk − Al||2F∑K
k′=1 ||Uk′ − Al||2F

(28)

The determination of the group to which the layer l will be assigned is carried out as follows:

ylk = argmax
k

ylk (29)

4.4.2 Optimizing U , while Y and F are fixed

Firstly, the optimization of centroids Uk is performed independently, and according to Wang et al. (2020),
the objective function Tr(FkTLUk Fk) can be expressed as

∑
i, j||fi − fj||22ui, j. Therefore, the optimization

10
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for each centroid can be formulated as follows:

min
Uk

∑
l∈Lk

∑
i,j

||uij −Aij ||2F − λ
∑
i,j

||fi − fj ||22ui,j

s.t uij ≥ 1,1T .ui = 1
(30)

Lk represent the set of layers for which ylk equals one. We denote ||fi − fj||22 as dij. Due to the independence
of optimization for each vertex vector ui from the others, the optimization of Uk can be formulated as follows:

min
uk

i

∑
l∈Lk

||ui − λ

2|Lk|
di||2F

s.t ∀i, j uij ≥ 1,1T .ui = 1
(31)

The model mentioned above is quadratic with linear constraints, indicating that it is convex. It can resolved
using the augmented Lagrange multipliers. Otherwise, any quadratic solver can efficiently resolve this problem.

4.4.3 Optimizing Fk while U and Y are fixed

The optimization of each Fk for every group is performed independently of the remaining groups. For a given
group, the model can be formulated as follows:

min
Fk

Tr(Fk
T

LUk Fk)

s.t Fk
T

.Fk = I
(32)

The optimal Fk can be obtained by extracting Qk eigenvectors of the Laplacian matrix LUk , which are
associated with the smallest Qk eigenvalues. It is important to note that Qk denotes the number of
communities within group k.

Algorithm 2 Multi Centroids algorithm initialization
Input G,K,Q = [Q1, ..., QK ] Output: U,Y

Initialize U = {U1,U2, ...,UK}
while Iteration < Iteration max || Not Converge do

optimize ylk with 29
optimize ui with 31
compute Fk from the eigen vector associated to Qk smallest eigen value of LUk

end while

5 Model Selection

To determine the optimal number of groups K and the number of blocks Qk in each group k, we propose
using the Bayesian Information Criterion (BIC). The BIC is formulated as follows:

BIC =2
K∑
k=1

(Qk)2 log(|Lk|N(N − 1)) + (N −Qk)log(|Lk|N) + (Qk − 1) log(|Lk|N)

+2(K − 1) log(L) − L(G,Y,Z; β, ∆)

(33)

In this expression, |Lk| represents the number of layers associated with group k. The BIC helps determining
the number of group and blocks by balancing the fit of the model to data penalized by its complexity. The
selected model is the one with the lowest BIC.
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6 Experiments

To assess the properties of the Mixture Degree-Corrected Stochastic Block Model (MDCSBM), we evaluated
its performance across various datasets. This analysis includes real-world data on brain connectivity from
cerebral imaging and reality mining data concerning proximity interactions among students within a university.
Additionally, we utilized multiple synthetic data partitions to explore the limits of MDCSBM and assess its
scalability in handling large datasets.

We conducted comparative analyses of MDCSBM against several established algorithms, including the
multiplex DCSBM, Generalized Louvain Mucha et al. (2010), and Graph Fusion Spectral Clustering (GFSC)
Kang et al. (2019). These algorithms are designed to optimize partitions within multilayer graphs. They are
constrained to return a single partition for all multilayer graph, which will be used as the partition for each
layer. To quantitatively evaluate the performance of each algorithm, we employed metrics such as Average
Normalized Mutual Information (NMI) and Average Adjusted Mutual Information (AMI). These metrics
were calculated by computing the NMI and AMI scores for each layer independently, then averaging these
scores across all layers. Since the algorithms used for comparison return unified community structures across
all layers, the same set of communities is applied in the assessment for each layer. The results presented here
reflect only the mean values of these metrics.

6.1 Real Data Set

In our real-world application, we examined two datasets: diffusion Magnetic Resonance Imaging (dMRI) and
the Reality Mining dataset. To the best of our knowledge, neither dataset includes expert annotations or
ground truth labels, meaning there is no reference standard for comparison. Consequently, this lack of ground
truth prevents a fair comparison with other algorithms. Instead, we conducted an in-depth analysis of these
datasets using our MDCSBM algorithm, offering interpretations and insights based on the results obtained.

6.1.1 Brain Connectivity from Multiplex Graph Representation

To assess the relevance of the MDCSBM in real applications, we conducted a study focusing on brain
connectivity using diffusion Magnetic Resonance Imaging (dMRI)1. We utilized the HNU1 dataset, which
includes 300 undirected graphs derived from 10 brain-scanning sessions across 30 individuals Zuo et al. (2015).
Each graph contains 200 vertices representing different regions of the brain, with edges indicating the observed
neural connections between these regions. The dataset treats each graph as an independent observation,
aligning with methodologies from prior studies Mantziou et al. (2023); Arroyo et al. (2020).

Our primary goal was to detect groups of subjects exhibiting similar brain connectivity patterns and to
identify communities within these regions. Considering the brain’s division into two hemispheres, each graph
inherently comprises two blocks. However, inter-subject scan variations reflect the unique neural states of the
individuals.

The MDCSBM was tasked with recognizing subjects with closely related brain scans, accounting for each
hemisphere. The model was initialized to distinguish 30 groups, corresponding to the number of subjects,
with two blocks per group reflecting the hemispheres. Using the centroid method for initialization, the model
consistently identified two blocks for each snapshot across 100 runs, which supports neuroscientific evidence
of significant hemispherical independence. However, it also tended to consolidate subjects into 27 distinct
groups from the 300 graphs.

Remarkably, the model effectively grouped each subject’s graphs within the identified clusters. Specifically,
it clustered subjects 8 and 23, 11 and 14, and 10 and 28 together, as detailed in Table 1. The grouping of
subjects 11 and 14 aligns with findings from a semi-supervised study Arroyo et al. (2020). Notably, while
that study employed a semi-supervised method to achieve these results, our MDCSBM model operates in a
completely unsupervised manner. Despite the numerous hyper-parameters that need to be carefully adjusted,
our approach still provides more comprehensive results. Additionally, in the study by Mantziou et al. (2023),
the experiment limited clustering to only two groups across all layers, which is not optimal for this dataset

1https://neurodata.io/mri/
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containing 30 different subjects. Even with this simplified task, they were unable to consistently group all
layers from the same subject within the same cluster. In contrast, our results demonstrate the robustness
of the MDCSBM algorithm, as it successfully grouped all layers of each subject into same cluster in every
instance.

Subject Image Cluster Subject Image Cluster Subject Image Cluster Subject Image Cluster Subject Image Cluster Subject Image Cluster

S1

1 C1

S2

1 C2

S3

1 C3

S4

1 C4

S5

1 C5

S6

1 C6
2 C1 2 C2 2 C3 2 C4 2 C5 2 C6
3 C1 3 C2 3 C3 3 C4 3 C5 3 C6
4 C1 4 C2 4 C3 4 C4 4 C5 4 C6
5 C1 5 C2 5 C3 5 C4 5 C5 5 C6
6 C1 6 C2 6 C3 6 C4 6 C5 6 C6
7 C1 7 C2 7 C3 7 C4 7 C5 7 C6
8 C1 8 C2 8 C3 8 C4 1 C5 8 C6
9 C1 9 C2 9 C3 9 C4 9 C5 9 C6
10 C1 10 C2 10 C3 10 C4 10 C5 10 C6

S7

1 C7

S8

1 C8

S9

1 C9

S10

1 C10

S11

1 C11

S12

1 C12
2 C7 2 C8 2 C9 2 C10 2 C11 2 C12
3 C7 3 C8 3 C9 3 C10 3 C11 3 C12
4 C7 4 C8 4 C9 4 C10 4 C11 4 C12
5 C7 5 C8 5 C9 5 C10 5 C11 5 C12
6 C7 6 C8 6 C9 6 C10 6 C11 6 C12
7 C7 7 C8 7 C9 7 C10 7 C11 7 C12
8 C7 8 C8 8 C9 8 C10 8 C11 1 C12
9 C7 9 C8 9 C9 9 C10 9 C11 9 C12
10 C7 10 C8 10 C9 10 C10 10 C11 10 C12

S13

1 C13

S14

1 C11

S15

1 C14

S16

1 C15

S17

1 C16

S18

1 C17
2 C13 2 C11 2 C14 2 C15 2 C16 2 C17
3 C13 3 C11 3 C14 3 C15 3 C16 3 C17
4 C13 4 C11 4 C14 4 C15 4 C16 4 C17
5 C13 5 C11 5 C14 5 C15 5 C16 5 C17
6 C13 6 C11 6 C14 6 C15 6 C16 6 C17
7 C13 7 C11 7 C14 7 C15 7 C16 7 C17
8 C13 8 C11 8 C14 8 C15 8 C16 8 C17
9 C13 9 C11 9 C14 9 C15 9 C16 9 C17
10 C13 10 C11 10 C14 10 C15 10 C16 10 C17

S19

1 C18

S20

1 C19

S21

1 C20

S22

1 C21

S23

1 C8

S24

1 C22
2 C18 2 C19 2 C20 2 C21 2 C8 2 C22
3 C18 3 C19 3 C20 3 C21 3 C8 3 C22
4 C18 4 C19 4 C20 4 C21 4 C8 4 C22
5 C18 5 C19 5 C20 5 C21 5 C8 5 C22
6 C18 6 C19 6 C20 6 C21 6 C8 6 C22
7 C18 7 C19 7 C20 7 C21 7 C8 7 C22
1 C18 8 C19 8 C20 8 C21 8 C8 8 C22
9 C18 9 C19 9 C20 9 C21 9 C8 9 C22
10 C18 10 C19 10 C20 10 C21 10 C8 10 C22

S25

1 C23

S26

1 C24

S27

1 C25

S28

1 C10

S29

1 C26

S30

1 C27
2 C23 2 C24 2 C25 2 C10 2 C26 2 C27
3 C23 3 C24 3 C25 3 C10 3 C26 3 C27
4 C23 4 C24 4 C25 4 C10 4 C26 4 C27
5 C23 5 C24 5 C25 5 C10 5 C26 5 C27
6 C23 6 C24 6 C25 6 C10 6 C26 6 C27
7 C23 7 C24 7 C25 7 C10 7 C26 7 C27
8 C23 1 C24 8 C25 8 C10 8 C26 8 C27
9 C23 9 C24 9 C25 9 C10 9 C26 9 C27
10 C23 10 C24 10 C25 10 C10 10 C26 10 C27

Table 1: The table shows the cluster obtained for each image of each subject by the MDCSBM algorithm.
Each of the 30 existing subjects has ten images, which are presented in 10 layers.

6.1.2 Reality Mining Study

In this second study, we analyze a physical proximity graph derived from the reality mining study conducted
by Eagle and Pentland Eagle & (Sandy), featuring a group of college students and faculty. This dataset
comprises undirected graphs representing interactions among 96 students from the Massachusetts Institute of
Technology, collected over a nine-month period. Participants were equipped with mobile phones installed
with special software that recorded close proximity encounters using Bluetooth technology. Therefore, each
layer of this multiplex graph represents a day, with edges indicating at least one observed proximity encounter
between individuals on that day. The dataset thus includes L = 234 layers, each with |V | = 96 vertices.

Figure 2 illustrates the results from the MDCSBM model applied to this dataset. Sub-figure (d) displays the
BIC values relative to the number of groups. We identified five distinct groups, with two communities in
groups 0 and 2, and one community in groups 1, 3, and 4. The single community structure in groups 1, 3,
and 4 is attributable to the high sparsity of layers within these groups. In contrast, groups like 0 exhibit dual
communities as depicted in sub-figure (c), which shows a layer from group 0.

Sub-figures (a) and (b) reveal discernible patterns within these groups. Notably, group 3 (colored red)
encompasses layers from weekends and holidays, particularly the Christmas period in December. The
other groups capture monthly variations; for instance, group 0 (colored blue) corresponds to the start of
the semester, characterized by denser layers. Group 1 (colored orange) represents mid-year, aligning with
academic examinations and displaying sparser community interactions. Groups 2 and 4 (colored green and
purple, respectively) reflect the end-of-year activities, showing varied layer densities. These interpretations
are consistent with typical university schedules, where students primarily interact with classmates during
academic sessions but engage with a broader range of acquaintances outside of class times.

Sub-figures (a) and (b) reveal discernible patterns within these groups, particularly for groups 0 and 2, which
each contain two communities. From both sub-figures, it is evident that group 0, represented in blue, consists
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((a)) ((b))

((c)) ((d))

Figure 2: The figure illustrates the outcomes of the Multi-Group clustering applied to the reality mining
distance proximity dataset. Panel (a) depicts the total number of days represented in each group. Panel (b)
details the monthly distribution of days for each group. Panel (c) presents the community structures within
a layer from the group 0. Finally, panel (d) displays the BIC values relative to the number of groups.
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of days of the week when courses are likely to occur in the first part of the year. This group is characterized
by denser layers, indicating that students are taking two different courses. Conversely, group 2, represented
in green, functions similarly to group 0 but pertains to the second part of the year, again involving students
taking two different courses. This explains the presence of two communities within these groups.

Group 3, colored red, encompasses layers from weekends and holidays, with a notable focus on the Christmas
period in December. Other groups capture monthly variations; for instance, group 1, colored orange, represents
the mid-year period, which aligns with academic examinations and displays sparser community interactions.
Group 4, colored purple, reflects end-of-year activities, showing varied layer densities. These interpretations
align with typical university schedules, where students primarily interact with classmates during academic
sessions but engage with a broader range of acquaintances outside of class times.

This experiment demonstrates the effectiveness of the DCMSBM in real-world applications, adeptly handling
complex data structures and offering insightful interpretations of dynamic social interactions.

6.2 Synthetic Data

6.2.1 Variability in Block Size

In this experiment, we aim to assess each group’s sensitivity to block size. Therefore, the dataset is composed
of 3 groups. Each group of layers consists of 10 graphs, each with 100 vertices organized into four blocks.
Vertices inside a block are randomly linked to each other with a probability πintra = 0.5, and vertices from
different blocks are randomly connected with a probability πinter = 0.3. What distinguishes the groups of layers
is the number of vertex in each block, G1 = {25, 25, 25, 25}, G2 = {20, 25, 25, 30} and G3 = {30, 30, 20, 20},
where Gi is the ith group, and for each group, the first number indicates the number of vertex of the first
block, the second number the one of the second block, and so forth, as shown in figure 3.

Figure 3: The adjacency matrices correspond to a single layer for each group. G1 is presented on the right,
G2 in the middle, and G3 on the left. The intra-block density is set at πintra = 0.5. For better visualization,
the inter-block connectivity probability is set at πinter = 0.1, instead of πinter = 0.3 as an experiment.

The actor-based clustering algorithm on multiplex graphs yields an average clustering of vertices. In contrast
to MDCSBM, there is no differentiation between blocks of vertices for each group of layers, contributing to
the superior NMI/AMI results of MDCSBM over other multiplex algorithms, as shown in Table 2. The mean
errors between the predicted and generated parameters of MDCSBM are meanErroParamMDCSBM = 0.04,
affirming the improved parameter recovery of MDCSBM compared to the multiplex DCSBM, which results
in an error of meanErroParamMultiDCSBM = 0.67.
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MDCSBM DCSBM GLouvain GFSC
NMI 100 61.40 77.44 73.80
AMI 100 58.74 75.74 72.65

Table 2: The NMI and AMI performances on MDCSBM, multiplex DCSBM, Glouvain and GFSC in variability
on block size synthetic datasets.

6.2.2 Variability in Block Distribution

In this experiment, we aim to assess the model’s performance regarding variation in block distribution.
Therefore, the dataset for this experiment comprises three groups, each containing ten layers. Each graph
consists of 100 vertices distributed across four equally sized blocks ({25, 25, 25, 25}) with the same intra-
community probability (πintra = 0.5). The distinction between layer groups lies in the probability of having
an edge between blocks, denoted as πG1

inter = 0.1, πG2

inter = 0.3, and πG
3

inter = 0.5. This variability tests
the algorithm’s capability to identify groups with different Π distributions. Notably, the third group has
πinter = πintra, resembling a random graph without communities.

MDCSBM accurately identifies vertex blocks for each group with an estimated parameter error of
meanErroParamMDCSBM = 0.04. Additionally, the algorithm recognizes "1 community" for the layers
without communities, consistent with a random graph. This result demonstrates the MDCSBM’s ability
to identify the noisy layer. In contrast, multiplex algorithms exhibit an average effect in the vertex-to-
block assignment, especially multiplex DCSBM estimates the vertex-to-block with a higher estimation error
(meanErroParamMultiDCSBM = 0.71), as observed previously.

MDCSBM DCSBM GLouvain GFSC
NMI 100 55.54 66.66 53.55
AMI 100 55.03 66.66 53.02

Table 3: The NMI and AMI performance for MDCSBM, multiplex DCSBM, Glouvain and GFSC in variability
on block size synthetic datasets.

6.2.3 Variability in Number of Layer

In this experiment, we test the scalability of the method regarding the number of layers. Therefore, we keep
the number of vertices, groups, and the block distribution constant while we vary the number of layers for each
group. Similar to Experiment 6.2.1, we define three groups with an equal number of layers but distinct block
divisions for each group. Specifically, we set πintra = 0.5 and πinter = 0.3. The block distribution within each
group consists of four blocks, as follows: G1 = {25, 25, 25, 25}, G2 = {20, 25, 25, 30}, and G3 = {30, 30, 20, 20},
where Gi represents the ith group.

The result of the following experiments is shown in the figure 4. We can see that the performance of the
MDCSBM in retrieving the optimal blocks for each layer augments when the number of layers augments,
compared to the other methods. It can be explained by the law of large numbers, which delineates the
convergence in probability to the expected value as the number of samples—the layers in our case—increases.
As the layers in the multiplex graph augment, the computation time increases linearly due to the number
of parameters scaling linearly with the number of layers, given a fixed number of groups and blocks. This
contrasts with other tested algorithms, which do not scale well with large datasets.

6.2.4 Variability in Number of Vertices

In this experiment, we assess the scalability of the method regarding the size of each graph. Therefore, we fix
the number of layers, the number of groups, and the block distribution of each group, and then we vary the
number of vertices of the multiplex graph. We set three groups with an equilibrium of 10 layers for each and
different block division such that G1 = {25%N, 25%N, 25%N, 25%N}, G2 = {20%N, 25%N, 25%N, 30%N},
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Figure 4: The performance of MDCSBM, DCSBM, Glouvain, and GFSC to find the clusters of vertices
regarding the number of layers for each group. The NMI and AMI were used as metrics of performance.

and G3 = {30%N, 30%N, 20%N, 20%N}. The x%N means x percent from a number of vertices of the layer.
The intra-block distribution is πintra = 0.5 and the inter-distribution is πinter = 0.3.

In this experiment, we maintain a constant number of layers, groups, and block distribution for each group
while varying the graph size by raising its number of vertices. Similar to the previous experiments in 6.2.1,
we define three groups with an equal number of layers and distinct block divisions for each.

Figure 5: The performance of MDCSBM, DCSBM, Glouvain, and GFSC to find the clusters of vertices
regarding the number of vertices in a multiplex graph. The NMI and AMI were used as metrics of performance.

The obtained result is represented in the figure 5. We can notice that the MDCSBM scales to a large dataset
with thousands of nodes. The time complexity varies regarding the graph’s size and the block’s structure.
We study the complexity time of the MDCSBM in the supplementary materials.

6.2.5 Variability in the Number of Groups

The objective of this experiment is to assess the method’s sensitivity with respect to the number of groups
within the multiplex graph. Consequently, we keep the number of layers in the multiplex graph fixed at 20,
then we vary the number of groups from 2 to 8, ensuring that each group has a distribution distinct from the
others.

Figure 6 shows the performance of the algorithms in this experiment. The MDCSBM performs better than
the others in finding multigroup community detection. However, we can see that for a high number of groups,
the performance of MDCSBM decreases; such a result may be explainable by the reduced number of layers
for the high number of groups. We can see that this result will be enhanced when each group’s layer number
increases.
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Figure 6: Performance of MDCSBM, DCSBM, GLouvain and GFSC when the number of groups varies in
fixed number of layer.

6.2.6 Sensitivity to Block Size

In this experiment, we aim to assess the ability of the method to perform in an unbalanced block size.
Therefore, we construct a multiplex graph with 20 layers and 2 groups, such that each group has 10 layers of
100 vertices for each, and each group has two blocks with the same distribution. We fix the size of blocks of
one group to be 50 vertex per block, and for the other group, we change the block size from 10 to 50 vertex.

Figure 7: Performance of MDCSBM, DCSBM, GLouvain and GFSC when the size of block variate. The
variate group has two blocks; the sensitivity is computed by the fraction between the size of the two blocks.

The performance of the algorithms in this experiment is presented in Figure 6. It is observed that MDCSBM
outperforms the others in multi-group community detection. However, with a high number of groups, the
performance of MDCSBM decreases, potentially due to the reduced number of layers for the high number of
groups. This result is expected to improve when the number of layers in each group increases.

6.2.7 Sensitivity to Group Size

This experiment aims to assess the model’s performance when the groups have an unbalanced distribution of
layers. We consider a multiplex graph with two groups featuring distinct block distributions to achieve this.
The number of layers in the first group is fixed at 10, while the number of layers in the second group varies
from 1 to 100. Each layer consists of 100 vertices.

Figure 8 illustrates various algorithms’ performance in this application. Compared to the others, the
MDCSBM algorithm demonstrates notable stable performance, even in scenarios with high imbalance in the
number of layers. This result is attributed to the effectiveness of the joint clustering approach, which we
believe contributes to achieving accurate results.
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Figure 8: Performance of MDCSBM, DCSBM, GLouvain, and GFSC for different numbers of layers in the
group. It varies from 1 to 40 layers.

6.2.8 Time Complexity

To illustrate the model’s time complexity and scalability to large datasets, we present the time complexity of
the model. To achieve this, we conduct two experiments where the time complexity is evaluated for varying
numbers of layers and vertices.

((a)) ((b))

Figure 9: Complexity time regarding a number of layers and vertices. At the right, the time is counted when
the number of layers augments. At the left, the time is counted when the number of vertices augments. The
time is counted in seconds.

Figure 9 illustrates the time complexity for each case and for each algorithm. Firstly, MDCSBM models scale
better in all cases than all other algorithms. Evidently, the time complexity scales linearly with the number
of layers. This behavior is attributed to the increase in variables that linearly correlate with the number
of layers. Additionally, the time complexity rises more rapidly with an increase in the number of vertices.
This outcome results from the significant growth of the combinatorial solution as the number of vertices
increases. Despite this, the modeling approach maintains a reasonable time complexity in scenarios with
high combinatorial solutions, owing to our efficient initialization process, which facilitates faster convergence
compared to random initialization. Furthermore, our initialization accelerates convergence to a favorable
local minimum, achieving speeds over 50 times faster than random initialization.

6.2.9 Comparison Between MDCSBM and the Initialization Model

The proposed initialization model, based on spectral representation, can be regarded as a comprehensive
approach capable of performing multi-group community detection. To evaluate its performance against the
MDCSBM model, we used the test set detailed in 6.2.1. This dataset consists of 3 groups, each containing 10
layers, with each layer comprising 100 vertices organized into four blocks. Vertices within the same block
are connected randomly with a probability of πintra = 0.5, while connections between vertices in different
blocks occur with a probability of πinter = 0.3. The distinguishing characteristic of each group lies in the
distribution of vertices within the blocks: G1 = 25, 25, 25, 25, G2 = 20, 25, 25, 30, and G3 = 30, 30, 20, 20,
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where Gi denotes the ith group. Within each group, these values represent the number of vertices in the first,
second, third, and fourth blocks, respectively, as depicted in Figure 3.

For this evaluation, we used the MDCSBM algorithm initialized with the proposed spectral model. The
experiment was repeated 100 times, and the performance results are summarized in Table 4.

Model Initialization (Spetrale Representation) MDCSBM
NMI 75.48+-22.80 95.60 +- 17.33
AMI 74.60+-23.82 95.36+-17.98

Table 4: The NMI and AMI performance for MDCSBM and model initialization on block size synthetic
datasets.

The superior performance of the MDCSBM model compared to the spectral model can be attributed to
the way the MDCSBM utilizes the results produced by the spectral model. The spectral model provides
a partition that corresponds to a fixed point of its own cost function, serving as an effective initialization.
Although this partition does not necessarily represent a fixed point for the MDCSBM, it enables the MDCSBM
to further refine and enhance the clustering results, ultimately achieving better overall performance.

6.2.10 Comparison Between Random and Proposed Initialization

The MDCSBM model is highly non-convex, and the resulting outputs are significantly influenced by the
initialization of layer-to-group and vertex-to-block values. To address this, we proposed an efficient ini-
tialization method based on spectral representation. To illustrate the advantages of this technique, we
present a comparison of performance and computation time between random initialization and our proposed
spectral-based initialization model.

The same test set described in 6.2.1 was used for this comparison. This dataset comprises 3 groups, each
containing 10 layers, with each layer composed of 100 vertices organized into four blocks. Vertices within the
same block are randomly connected with a probability of πintra = 0.5, while vertices between different blocks
are connected with a probability of πinter = 0.3. The distinguishing factor among the groups is the number of
vertices in each block: G1 = 25, 25, 25, 25, G2 = 20, 25, 25, 30, and G3 = 30, 30, 20, 20, where Gi represents
the ith group. Within each group, the numbers correspond to the vertex count of the first, second, third, and
fourth blocks, respectively, as illustrated in Figure 3.

We repeated the experiment 100 times and present the performance results and computation times in Table 5.

Model Initialization Random Initialization
NMI 95.60 +- 17.33 23.73+-26.40
AMI 95.36+-17.98 22.70+-27.38

Time Complexity (Second) 3.65+-11.16 130.84+-74.79

Table 5: The NMI and AMI performance, and time computation for MDCSBM by using the proposed model
initialization and random initialization on block size synthetic datasets.

We observed that both the computation time and performance were notably improved when using our
proposed initialization method compared to random initialization. This improvement can be attributed to the
non-convex nature of the MDCSBM model and its sensitivity to initialization. A robust and well-structured
initialization method, such as the one we proposed, is essential for achieving better performance and faster
convergence.

6.2.11 Model Selection

The defined MSBM model needs a prior knowledge of number of cluster. Ones can think about formulation
that allows to optimize the number of cluster in the inference as presented in Roy et al. (2006); Amini et al.
(2024). Such models has been based on Chinese Restaurant Process (CRP) to determine the number of
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cluster. The CRP modeling in out of the scope of this paper, further enhancement will be reserved for future
work. Here in this experiment, we show the results from using he BIC criteria to determine the number of
cluster as defined in equation 33. It worth noting to remember that the BIC criteria determine the optimal
number of blocks and groups by balancing the fit of the model to the data with a penalization of the model
complexity.

In this experiments, we create a multiplex graph of 30 layers. Within this multiplex graph, we set 3 groups of
10 layers for each. We set πintra = 0.5 and πinter = 0.3 for all layers. The block distribution within each
group consists of four blocks, as follows: G1 = {25, 25, 25, 25}, G2 = {20, 25, 25, 30}, and G3 = {30, 30, 20, 20},
where Gi represents the ith group.

((a)) ((b))

Figure 10: The BIC metric for finding the optimal number of groups and block. At the left, the number of
group is fixed to 3, then the BIC is computed for variate number of blocks. At the right, the number of block
is fixed to 4, then the BIC is computed for variate number of group.

Figure 10 shows the variation of the Bic regarding the number of blocks when the number of groups is fixed
to 3 at the left, and the variation of BIC regarding number of layers when the number of block is fixed to 4
at the right. We can clearly notice that the minimal value of BIC for both experiences indicates the optimal
value of cluster as what is attending, showcasing its performance in toy example to define the number of
clustering.

7 Conclusion

Throughout this paper, we have introduced the Mixture Degree-Corrected Stochastic Block Model (MDCSBM)
for multi-group community detection in multiplex graphs. The MDCSBM defines the existing groups that
share a similar community structure. Therefore, for each identified group, a distinct DCSBM is derived to
ascertain the community structure of each vertex. We have devised an Expectation-Maximization (EM)
framework for estimating layer-to-group assignment variables, followed by a Variational EM technique for
estimating vertex-to-block assignments. A novel centroid methodology has been proposed to initialize
layer-to-group and vertex-to-block variables, enhancing the model’s convergence.

This model has been formulated to refine the estimation of the generating model underlying multiplex
graphs. It significantly contributes to a better comprehension of community structures within multiplex
graphs characterized by multigroups of community memberships. While the current presentation exclusively
addresses unweighted graphs, potential extensions encompassing the incorporation of weights through
alternative probability distributions such as Gaussian or Poisson distributions exist. Such extensions would
undoubtedly enrich the model’s applicability in capturing the intricacies of diverse real-world scenarios.
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A Identifiability

Proof. We consider the degree node heterogeneity parameter constant and extend the proof from Celisse
et al. (2012) to the MDCSBM model as follows. For any group k, rq,k is the probability for a giving member
from block q in group k to have a connection with another in the same group rq,k =

∑Q
l=1 βkπ

k
qlα

k
l . Let R be

Q ∗ K square matrix such that Ri,q,k = (rq,k)i for i ∈ 0, ..., Q ∗ k − 1. R is a Vandermonde matrix that is
invertible by assumptions.

Therefore, for any i = 0, ..., (2Q− 1) ∗K, let set

µi =
∑
q,k

αq,k(rq,k)i (34)

and M is a k(Q+ 1) ×KQ matrix such that

Mij = µi+j (35)

For any i = 0, ..., Q ∗ k, we define the Q*K square matrix M i by removing line i from the matrix. In hence,

MQ = RαRT (36)

where α is Q∗K matrix as defined previously, where all αkq ̸= 0. Because R being invertible, then det(M) > 0.
Let us define

B(X, θ) =
Q×K∑
i=0

(−1)i+Q∗Kdet(M i(θ))Xi (37)

B is of degree Q×K. For V i(θ) = (1, ri(θ), ..., (ri(θ))Q), then

B(ri(θ), θ) = det(M(θ), Vi(θ)) (38)

The column of M are linearly combinations of Vi, then B(ri(θ), θ) = 0 for any i. It means that B can be
factorized as follow:

B(x, θ) = det(MQ×K)
KQ−1∏
i=0

(x− ri(θ)) (39)

Let assume the θ = (Π, α, β) and θ′ = (Π′, α′, β′) are two sets of parameters such that for any multiplex
G graph with multi-group model, L(G; θ) = L(G; θ′). Therefore, we get, µi(θ) = µi(θ′), that means that
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M i(θ) = M i(θ′) for any i. The B(; θ) = B(; θ′) because it dependents on the determinant of M , which leads
to ri(θ) = ri(θ′). Ths R(θ) = R(θ′), and

α(θ) = (R(θ)T )−1MQ,KR(θ) = α(θ′) (40)

Therefore α = α′. The same steps can be applied to proof the identifiability of β where the matrix diagonal
α is replaced by diagonal matrix of β where every βk,∀k ∈ {1, ...,K} will be repeated Q times before set
βk+1. It leads to a matrix with the same dimension Q×K.

For Π, let’s define
Uij = R(θ)β(θ)α(θ)Πα(θ)β(θ)(R(θ))T

From previously, R(θ) = R(θ′), α(θ) = α(θ′) and β(θ) = β(θ′) then

U(θ) = U(θ′) → Π = Π′ (41)

B Consistency of Maximum likelihood

Proof. The asymptotic consistency of the maximum likelihood estimator of Bernoulli uni layer SBM has
been studied in Celisse et al. (2012); Bickel et al. (2013). The proof of the consistency of MDCSBM is
straightforward from the proof of MSBM model, which can derived from the proof of uni-layer SBM. The
proof can be performed by the same steps by taking

Mn(π, α, β) = 1
N(N − 1)L ∗K

L∑
l=1

log
(∑

k

∑
z[n]

βk
∏
i ̸=j

Bernoulli(πkzk
i
,zk

j
)
∏
i

αkzk
i

) (42)

M(π) = max
ai,j∈A

∑
k

∑
q,w

β∗kα∗k
q α

∗k
w∑

q′,w′

a∗k
qq′a∗k

ww′ [π∗k
q,wlog(πkq′,w′) + (1 − π∗k

q,w)log(1 − π∗k
q′,w′)]

(43)

where Bernoulli(π) is the Bernoulli distribution with parameter π, and β∗, α∗and π∗ denote the true
parameters respectively, with

A = {(akij)1≤q,w≤Qk , akqw ≥ 0,
∑
w

akqw = 1} (44)
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