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Abstract: General-purpose robotic systems must master a large repertoire of di-
verse skills. While reinforcement learning provides a powerful framework for
acquiring individual behaviors, the time needed to acquire each skill makes the
prospect of a generalist robot trained with RL daunting. We study how a large-
scale collective robotic learning system can acquire a repertoire of behaviors si-
multaneously, sharing exploration, experience, and representations across tasks.
In this framework, new tasks can be continuously instantiated from previously
learned tasks improving overall performance and capabilities of the system. To
this end, we develop a scalable and intuitive framework for specifying new tasks
through user-provided examples of desired outcomes, devise a multi-robot col-
lective learning system for data collection that simultaneously collects experience
for multiple tasks, and develop a scalable and generalizable multi-task deep rein-
forcement learning method, which we call MT-Opt. We demonstrate how MT-Opt
can learn a wide range of skills, including semantic picking (i.e., picking an object
from a particular category), placing into various fixtures (e.g., placing a food item
onto a plate). We train and evaluate our system on a set of 12 real-world tasks with
data collected from 7 robots, and demonstrate the performance of our system both
in terms of its ability to generalize to structurally similar new tasks, and acquire
distinct new tasks more quickly by leveraging past experience. We recommend
viewing the videos at https://karolhausman.github.io/mt-opt/
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1 Introduction
Today’s deep reinforcement learning (RL) methods, when applied to real-world robotic tasks, pro-
vide an effective but expensive way of learning skills [1, 2]. While existing methods are effective and
able to generalize, they require considerable on-robot training time. For example, the QT-Opt [1]
system can learn vision-based robotic grasping, but it requires over 500, 000 trials collected across
multiple robots. While such sample complexity may be reasonable if the robot needs to perform a
single task, it becomes costly if we consider the prospect of training a general-purpose robot with a
large repertoire of behaviors, where each behavior is learned in isolation, starting from scratch. Can
we instead amortize the cost of learning this repertoire over multiple skills, where the effort needed
to learn whole repertoire is reduced compared to learning each skill in isolation?

Prior work suggests that multi-task RL can amortize the cost of single-task learning [3, 4, 5, 6, 7].
Insofar as the tasks share common structure, if that structure is discovered by the learning algorithm,
all of the tasks can in principle be learned more efficiently than learning each task individually.
In addition, by collecting experience simultaneously using controllers for a variety of tasks with
different difficulty, the easier tasks can “bootstrap” the harder tasks. Finally, by enabling the multi-
task RL policy to learn shared representations, learning new tasks can become easier over time as
the system acquires more skills and learns more widely-useful aspects of the environment.

However, to realize these benefits for a real-world robotic learning system, we need to overcome a
number of major challenges [8, 9, 10, 11], which have so far made it difficult to produce a large-
scale demonstration of multi-task image-based RL in the real world. First, multi-task reinforcement
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learning is known to be exceedingly difficult from the optimization standpoint [8, 12]. Second, a
real-world multi-task learning framework requires the ability to easily and intuitively define rewards
for a large number of tasks. Third, while all task-specific data could be shared between all the
tasks, it has been shown that reusing data from non-correlated tasks can be harmful to the learning
process [13]. Lastly, to receive the benefits from shared, multi-task representation, we need to
significantly scale up our algorithms, the number of tasks, and the robotic systems themselves.

Figure 1: A) Data collection. B) Training ob-
jects. C) Sample of training tasks. D) Sample
of behaviorally and visually distinct tasks such as
covering, chasing, alignment, which we show our
method can adapt to. MT-Opt learns new tasks
faster (potentially zero-shot if there is sufficient
overlap with existing tasks), and with less data
compared to learning the new task in isolation.

The main contribution of this paper is a general
multi-task learning system, which we call MT-Opt.
MT-Opt realizes the hypothesized benefits of multi-
task RL in a scalable real-world robotic learning sys-
tem, addressing the associated challenges through
a number of important design decisions, including
a carefully designed multi-task data sharing strat-
egy and multi-robot parallelized data collection. We
train MT-Opt on a set of 12 real-world tasks that
include data collected over the course of over 1.5
years, and provide an extensive evaluation (span-
ning over 500 real-robot-hours) of our method to-
gether with a number of baselines. We show that at
such scale, our system can quickly acquire new tasks
by taking advantage of prior tasks via shared repre-
sentations, new data-sharing strategies and learned
policies. Our results indicate that, by learning multi-
ple related tasks simultaneously, not only can we in-
crease the data-efficiency of learning each of them,
but also solve more complex tasks than in a single-
task setup. We present our multi-task system as well
as examples of some of the tasks that it is capable of
performing in Fig. 1.

2 Related Work
Multi-task learning, inspired by the ability of
humans to transfer knowledge between different
tasks [14], is a promising approach for sharing struc-
ture and data between tasks to improve overall effi-
ciency. Multi-task architectures have been successful across multiple domains; natural language
processing [15, 16, 17, 18] and computer vision [19, 20, 21, 22, 23, 24]. In this work, we apply
multi-task learning concept in a RL setting to real robotic tasks.

Combining multiple task policies has been explored in RL by using gating networks [25, 26], condi-
tioning policies on tasks [27], mapping tasks to parameters of a policy [28, 29, 30], distilling separate
task policies into a shared multi-task policy [31, 32, 33, 34, 35, 36]. Advantages of multi-task learn-
ing for visual representations has been explored in [37]. Pinto and Gupta [4] use a shared multi-task
neural network architecture, which is trained with separate task-specific losses. In contrast, in our
work, we concentrate on tasks with a common loss structure within a Q-learning framework. Sev-
eral works explore how to mitigate multi-task interference and conflicting objectives [38, 39]. In
our experiments, we find that better data routing helps with not only better mitigating conflicting
objectives but also improving learning efficiency through data reuse.

Learning complex skills has been addressed through hierarchical reinforcement learning with op-
tions [40, 41, 42], combining multiple sub-tasks [43, 44, 45, 46, 47, 48], reusing samples between
tasks [49], relabeling experience in hindsight [50], introducing demonstrations [51, 52, 53, 54, 55,
56, 57]. A range of works employ autonomous supervision to learn diverse skills, e.g. by scaling
up data collection [58], sampling suitable tasks [59] or goals [60] to practice, learning a task em-
bedding space amenable to sampling [7], or learning a dynamics model and using model-predictive
control to achieve goals [61, 62, 63, 64]. Riedmiller et al. [5] learn sparse-reward tasks by solving
easier auxiliary tasks and reusing that experience for offline learning of more complex tasks. In Cabi
et al. [65], previously collected experience is relabeled with new reward functions in order to solve
new tasks without re-collecting the data. In our work, we similarly design techniques for reusing
experience between related tasks and apply them to large-scale data collection on real robots.
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3 MT-Opt: a Scalable Multi-Task RL System
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Figure 2: MT-Opt overview. A) The user defines a
success detector (SD) for tasks through examples of
desired outcomes, and relabeling outcomes of prior
episodes. B) Utilizing the SD and the MT-Opt pol-
icy, new episodes are collected for multiple tasks. C)
Offline episodes enter the data-sharing pipeline that ex-
pands and re-balances the data used to train the MT-
Opt policy, while optionally more on-policy data is col-
lected, esp. for new tasks. This is an iterative pro-
cess, which results in additional experiences that can be
leveraged to define new tasks and train future policies.

Fig. 2 overviews our multi-task learning sys-
tem. We devise a distributed, off-policy multi-
task RL algorithm together with a multi-task
visual success detector (SD) to learn multi-
ple robotic manipulation tasks simultaneously.
The SD, trained from video examples of de-
sired outcomes, (Fig. 2A) in part determines
how episodes are leveraged to train an RL pol-
icy (Fig. 2C). During evaluation and fine-tuning
(Fig. 2B), at each time step, a policy takes as
input a camera image and a one-hot encoding
of the task, and sends a motor command to the
robot. At episode end, the outcome image of
this process is graded by the SD that deter-
mines which tasks were accomplished success-
fully and assigns a sparse reward 0 or 1 for
each task. The system then decides whether an-
other task should be attempted or if the environ-
ment should be reset. We train this system with
multiple robots, where each robot concurrently
collects data for a different, randomly selected
task. The generated episodes are used as offline
data for training future policies (Fig. 2C) and
are available to improve SDs.

In order to enable our system to take full advan-
tage of multi-task training, we develop a num-
ber of components and evaluate their impor-
tance for overall performance. First, we use a
single, multi-task deep neural network to learn
a policy for all the tasks simultaneously, which
enables parameter sharing between tasks. Second, we devise data management strategies that share
and re-balance data across certain tasks. Third, since all tasks share data and parameters, we use
some tasks as exploration policies for others, which aids in exploration. Although the individual
components are based on previously studied concepts in multi-task learning, we show through our
experiments that the particular choice and design of these components is essential for our large-
scale multi-task learning system to effectively leverage data from all tasks to improve performance,
particularly for “underrepresented” tasks that have the least available training data.

3.1 Multi-Task Reinforcement Learning Algorithm

We denote the multi-task RL policy as π(a|s, Ti), where a ∈ A denotes the action, which in our
case is the desired change in end-effector position, a change in yaw angle, binary gripper open and
close commands and a termination command, s ∈ S denotes the state, which corresponds to images
from the robot’s cameras, and Ti denotes an encoding of the ith task drawn from a categorical task
distribution Ti ∼ p(T ), with n possible categories, each corresponding to a different task. At each
time step, the policy selects an action a given the current state s and the current task Ti set at the
beginning of the episode, and receives a task-dependent reward ri(a, s, Ti). The goal of the multi-
task RL policy is to maximize the expected sum of rewards for all tasks drawn from the distribution
p(T ). The episode finishes when the policy selects a TERMINATE action or reaches a step limit.

We build on the single-task QT-Opt algorithm [1], which itself is a variant of Q-learning [66],
and learns a single-task optimal Q-Function by minimizing the Bellman error: Li(θ) =
E(s,a,s′)∼p(s,a,s′)

[
D(Qθ(s,a), QT (s,a, s

′))
]
, where QT (s,a, s′) = r(s,a) + γV (s′) is a target

Q-value and D is a divergence metric, such as cross-entropy, γ is a discount factor, V (s′) is
the target value function of the next state computed using stochastic optimization of the form
V (s′) = maxa′ Q(s′,a′), and the expectation is taken w.r.t. previously seen transitions p(s,a, s′).
Similarly to [1], we use the cross-entropy method (CEM) to perform the stochastic optimization to
compute the target value function.
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To extend this approach to the multi-task setting, let s(i),a(i), s′(i) denote a transition that was
generated by an episode e(i) for the ith task Ti. Each transition could be used for multiple tasks. In
the multi-task case, the loss becomes (with (s(i),a(i), s′(i)) being transitions generated by tasks Ti):

Lmulti(θ) = ETi∼p(T ) [Li(θ)] = ETi∼p(T )

[
(1)

Ep(s(i),a(i),s′(i))

[
D(Qθ(s

(i),a(i), Ti), QT (s(i),a(i), s′(i), Ti))
]]
.

3.2 Sharing Data Between Tasks
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Figure 3: Task impersonation: episodes are routed
to train relevant tasks, and data re-balancing where
the ratio of success (S) and failure (F) episodes and
proportion of data per task is controlled. Pale blue
and pale red show additional training data coming
from other tasks. The bar height indicates different
amount of data across tasks and successful outcomes.

Algorithm 1 Task Impersonation
procedure fI (ei : original episode)

expanded episodes = []
SD{ki} ← set of SDs relevant to task Ti

for SDk in SD{ki} do
// ek: ei but rewards for task Tk not Ti

ek = SDk(e
i)

expanded episodes.append(ek)
return expanded episodes

One advantage of an off-policy RL algorithm is
that collected experience can be used to update
the policy for other tasks, not just the task for
which it was originally collected. This section
describes how we effectively train with multi-
task data through task impersonation and data re-
balancing, as summarized in Fig. 3.

We leverage experience sharing at the episode
level rather than the individual transition level.
The goal is to use all transitions of an episode
e(i) generated by task Ti to aid in training a pol-
icy for a set of ki tasks T{ki}. We refer to this
process as task impersonation (see Algorithm 1),
where the impersonation function fI transforms
episode data collected for one task into a set of
episodes that can be used to also train other tasks,
i.e.: e{ki} = fI(e

(i)). Note that in general case
{ki} is a subset of all tasks {n}, and it depends
on the original task Ti that the episode e(i) was
collected for.

We consider two ends of the data-sharing
spectrum: an identity impersonation function
fIorig(e

(i)) = e(i), where no task impersonation
takes place, i.e. an episode e(i) generated by task Ti is used to train the policy only for that task; and
fIall = e{n}, where each task shares data with all n− 1 tasks (maximal data sharing). While fIorig

fails to leverage the reusable nature of multi-task data, fIall results in many unrelated episodes used
as negative examples for the target task.

For MT-Opt, we devise a new task impersonation strategy fIskill that uses more fine-grained similari-
ties between tasks. We refer to it as a skill-based task-impersonation strategy, where we overload the
term “skill” as a set of tasks that share semantics and dynamics, yet can start from different initial
conditions or operate on different objects. In this work we manually assign each task to a particular
skill based on the subjective similarity of the required manipulation primitive. For example, tasks
such as place-object-on-plate and place-object-in-bowl belong to the same skill. Our impersonation
function fIskill allows us to impersonate an episode e(i) only as the tasks belonging to the same skill
as Ti. Namely, given an episode ei generated by task Ti, a skill Sj that task belongs to is detected.
The ei will be impersonated only for the tasks T{Sj} belonging to that particular skill. In order to
avoid impersonating too many episodes and overloading the replay buffer, we introduce a stochas-
tic impersonation function. An impersonated episode candidate will be routed to training with the
probability ps if it’s a success, or with probability pf if it’s a failure. We provide more details on the
specific parameters in the Appendix 7.3. In our experiments, we conduct ablation studies comparing
fIskill (ours) with other task impersonation strategies.

While training, due to the design of our task impersonation mechanism, as well as the variability
in difficulty between tasks, the resulting training data stream often becomes highly imbalanced, see
Fig. 3B. To address this, we re-balance each batch both between tasks, such that the relative propor-
tion of training data for each task is equal, and within each task, such that the relative proportion of
successful and unsuccessful examples is kept constant.
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Figure 5: 12 evaluation tasks, giving rise to Object Acquisition and Object Manipulation skills.

4 SD-Based Rewards and Continuous Data Collection

We learn tasks evaluated on the final state of an episode. This sparse-reward assumption allows
us to train a multi-view multi-task CNN success detector model (SD), conditioned on task ID,
which given 3 final images from 3 different camera angles, infers task success (see Appendix 7.1 for
details).

To generate training data for the SD, we ask users to collect positive and negative examples of pos-
itive and negative outcomes of a task. These examples are not demonstrations – just examples of
what successful completion (i.e., the final state) looks like. We use this data to train the initial ver-
sion of the multi-task SD, which we then continuously fine-tune given the images gathered during
autonomous data collection to avoid out of distribution images that might be caused by various real-
world factors such as different lighting conditions, and novel states which the robot discovers. We
continue to manually label such images and incrementally retrain SD to obtain the most up-to-date
SD. In result, we label ≈ 5, 000 images per task and provide more details in the Appendix 8.

#Episodes by Task by Policy Type

Figure 4: Offline dataset properties. Our data collection
strategy collects data for multiple tasks, where it uses
easier, more general tasks (e.g. lift-any) to bootstrap
learning of more specialized tasks (e.g. lift-carrot). The
resulting dataset is imbalanced across the distribution of
exploration policies per task and success rate per task.

Our main observation w.r.t. the multi-task data
collection is the use of easier tasks to boot-
strap learning of more complex tasks. In par-
ticular, an average MT-Opt policy for simple
tasks might occasionally yield episodes suc-
cessful for harder tasks. Over time, this allows
us to start training an MT-Opt policy now for
the harder tasks, and consequently, to collect
better data for those tasks. To kick-start this
process and bootstrap our two simplest tasks,
we use two crude scripted policies for picking
and placing (see Sec. 7.2 for details) follow-
ing prior work [1]. To simplify exploration for
longer-horizon tasks, we allow the individual
tasks to be ordered sequentially, where one task
is executed after another using simple heuris-
tics such as executing placing tasks after lifting
tasks. Our dataset grows over time w.r.t. the
amount of per-task data as well as percentage
of successful episodes for all the tasks. All data
from a variety of different policies is accumulated over time: different versions of trained policies,
their epsilon-greedy counterparts (ε = 20%), and scripted policies. Importantly, this data collec-
tion process results in an imbalanced dataset, as shown on Fig. 4. Our data impersonation and
re-balancing methods address this imbalance by efficiently expanding and normalizing data.

5 Experiments

The goal of our real-world experiments is to answer the following questions: (1) How does MT-Opt
perform, quantitatively and qualitatively, on a large set of vision-based robotic manipulation tasks?
(2) Does training a shared model on many tasks improve MT-Opt’s performance? (3) Does data
sharing improve performance of the system? (4) Can we use easier tasks to bootstrap learning of
more difficult tasks? (5) Can MT-Opt quickly learn distinct new tasks by adapting learned skills?
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5.1 Experimental Setup

MT-Opt provides a general robotic skill learning framework that we use to learn multiple tasks,
including semantic picking (i.e., picking an object from a particular category), placing into various
fixtures (e.g., placing a food item onto a plate). We focus on basic manipulation tasks that require
repositioning objects relative to each other. A wide range of manipulation behaviors fall into this
category, from simple bin-picking to more complex behaviors, such as covering items with a cloth.
As described in Sec. 4, our task set grows over time allowing for more and more tasks to be similar.
To analyze and ablate various properties of MT-Opt, we focus on a set of different but similar tasks,
where multi-task learning shows maximal effectiveness. In the following experiments, we use a
set of 12 tasks for quantitative evaluation of our algorithm. These 12 tasks include a set of plastic
food objects and divided plate fixtures and they can be split into “object acquisition” and “object
manipulation” skills. Since the criteria of what constitutes a task are not well defined, in our system,
different tasks correspond to different success conditions as defined by our SD. Our most general
object acquisition task is lift-any, where the goal is to singulate and lift any object. We also define
7 semantic lifting tasks, where the goal is to search for and lift a particular object (ex: carrot).
Importantly, these semantic tasks require search in clutter and singulation before the actual picking
can be performed. The placing tasks utilize a divided plate where the simplest task is to place the
previously lifted object anywhere on the plate (place-any). Harder tasks require placing the object
into a particular section of a divided plate, oriented arbitrarily. Fig. 5 visualizes the tasks.

All polices are trained with offline RL from a large dataset summarized in Fig. 4. The resulting
policy is deployed on 7 robots attempting each task 100 times for evaluation. To reduce the variance
of the evaluation, we shuffle the bins after each episode and use a standard evaluation scene (see
Appendix, Fig. 17), where all of objects are present, hence all 12 evaluation tasks are feasible.

5.2 Quantitative and Qualitative Evaluation of MT-Opt

Parameter Sharing (Success Rate)
Model: 2-Task 12-Task
lift-any 0.82 0.89

place-any 0.63 0.85

Table 1: Parameter sharing: the pol-
icy that learns two tasks (lift-any, place
any) in addition to 10 other tasks out-
performs a policy trained only for the
two target tasks. Both policies are
trained on the same offline dataset.

Fig. 6 shows MT-Opt success rates on the 12 evaluation tasks.
We compare to three baselines: (i) single-task QT-Opt [1],
where each per-task policy is trained separately using only
data collected specifically for that task, (ii) an enhanced QT-
Opt baseline, which we call QT-Opt Multi-Task, where we
train a shared policy for all the tasks but there is no data
impersonation or re-balancing between the tasks, and (iii) a
Data-Sharing Multi-Task baseline that is based on the data-
sharing strategy presented in [65], where we also train a sin-
gle Q-Function but the data is shared across all tasks. From
the average performance across all task, we observe that MT-
Opt outperforms the baselines, in some cases with ≈ 3× average improvement. While the single
task QT-Opt baseline performs similarly to MT-Opt for the task where we have the most data (see
data statistics in Fig. 4), lift-any, its performance drastically drops (to ≈ 1%) for underrepresented
tasks, such as lift-can. Note, that we are not able run this baseline for the placing tasks, since they
require a separate task to lift the object, which is not present in the single-task baseline. A similar
observation applies to QT-Opt Multi-Task, where the performance of rare tasks increases compared
to QT-Opt, but is still ≈ 4× worse on average than MT-Opt. Sharing data across all tasks also re-
sults in a low performance for semantic lifting and placing tasks and, additionally, it appears to harm
the performance of the indiscriminate lifting and placing tasks. The MT-Opt policy, besides attain-
ing the 89% success rate on (lift-any), also performs the 7 semantic lifting tasks and the 4 placing
and rearrangement tasks at a significantly higher success rate than all baselines. Since all ablated
experiments are trained on the same exact offline dataset (except for the case where the multiple
policies are trained on the per-task shard of the dataset) and have the same computation budget, we
explain these performance gaps by the way MT-Opt shares the representations and data, and provide
a more comprehensive analysis of these factors in the following experiments. To highlight learned
behaviors, Fig. 7 shows the policy work the carrot out of the corner before picking it up.

Fig. 4, shows amounts and type of data collected for various tasks. Tasks such as lift-carrot and
lift-bottle, which have more data, especially on-policy data, have higher success rates than under-
represented tasks, such as lift-box. The performance of these underrepresented tasks could be further
improved by focusing the data collection on these tasks.
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5.3 Sharing Representations Between Tasks

To explore the benefits of training a single policy on multiple tasks, we compare the 12-task MT-Opt
policy with a 2-task policy that learns lift-any and place-any. Both of these policies are evaluated
on (lift-any and place-any). We use the same fIskill task impersonation strategy, and the same offline
dataset (i.e. both policies use the data from the extra 10 narrower tasks, which is impersonated as lift-
any and place-any data) without on-policy fine-tuning, so data-wise the experiments are identical.

The 12-task policy outperforms the 2-task policy even on the two tasks that the 2-task policy is
trained on (Table 1), suggesting that training multiple tasks not only enables the 12-task policy to
perform more tasks, but also improves its performance on the tasks through sharing representations.
This may suggest that the additional supervision provided by training on more tasks has a beneficial
effect on the shared representations.
5.4 Data Sharing Between Tasks
To test the influence of data-sharing and re-balancing on the multi-task policy’s performance, we
compare our task impersonation strategy fIskill introduced in Sec. 3.2 to a baseline impersonation
function that does not share the data between the tasks fIorig , and a baseline where each task is
impersonated for all other tasks fIall . In our skill-based task impersonation strategy fIskill , the data is
expanded only for the class of tasks having similar visuals, dynamics and goals. We also test data
re-balancing strategy, where we re-balance each training batch between the tasks as well as within
each task to keep the relative proportion of successful and unsuccessful trials the same.

Data Strategies (min, mean, max, mean of low data tasks)
Imp. Data Re-Balancing Strategy
Fn uniform sampling task re-balanced sampling
fIorig 0.10 / 0.32 / 0.94 / 0.18 0.16 / 0.55 / 0.85 / 0.42
fIall 0.07 / 0.21 / 0.62 / 0.13 0.02 / 0.35 / 0.95 / 0.21
fIskill 0.17 / 0.46 / 0.88 / 0.32 0.29 / 0.58 / 0.89 / 0.50 Ours

Table 2: Min, average and max task performance across 12 tasks, as
well as average performance across 6 tasks having least data (≈ 6K
episodes) for different data-sharing strategies. fIskill impersonation and
data re-balancing are complimentary: they both improve over the base-
lines, while the best effect is achieved by combining both. The effect is
especially pronounced for the underrepresented tasks.

The results of this experiment are
in Table 2, with the full results
reported in the Appendix, Ta-
ble 4. Sharing data among tasks
using our method of task imper-
sonation and re-balancing pro-
vides significant improvement
across all the tasks, with im-
provements of up to 10x for
some tasks. The full data-sharing
strategy performs worse than
both the no-data-sharing baseline
and our method, suggesting that
naı̈vely sharing all data across all tasks is not effective. Because of our data-collection strategy, the
resulting multi-task dataset contains much more data for broader tasks (e.g., lift-any) than for more
narrow, harder tasks (e.g., lift-box), as shown in Fig. 4. Without any additional data-sharing and
re-balancing, this data imbalance causes the baseline strategy fIorig to attain good performance for
the easier, overrepresented tasks, but poor performance on the harder, underrepresented tasks (see
Table 2, first row), whereas our method performs substantially better on these tasks.

5.5 Using Easier Tasks to Bootstrap Harder Tasks

To explore question (4), we study whether learning an easier, broader task (lift-any) helps with a
structurally related task that is harder, more specific (lift-sausage). We separate out data for lift-
sausage which consists of 5400 (nearest hundred) episodes collected for that task (i.e. 4600 failures
and 800 successes). In addition, there are 11200 episodes of successful sausage lifting and as many
as 740K failures that were collected during the lift-any task. Combining the lift-sausage data and
the extra successes from lift-any yields 16600 episodes (12000 successes and 4600 failures). To
investigate the influence of MT-Opt and task impersonation on the bootstrap problem, we compare
our 12-task MT-Opt policy to a single-task policy trained on these 16600 episodes, including the
same set of successful lift-sausage episodes as MT-Opt, but not including failures from other tasks.

The single-task policy learned from the 16600 episodes yields performance of 3%. MT-Opt, using
impersonated successes and failures, achieves 39% success for the same task, a ≈ 10× improve-
ment. Both experiments use identical data representing successful episodes. The benefits of MT-Opt
are twofold. First, we leverage an easier lift-any task to collect data for the harder lift-sausage task.
Second, MT-Opt benefits from the additional failures impersonated from other tasks. These fail-
ures, which often include successful grasps of non-target objects, when re-balanced as described
in Sec. 3.2, results in the significant task performance boost. This demonstrates the value of both
successful and unsuccessful data collected by other tasks for learning new tasks.
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5.6 Learning New Tasks with MT-Opt
In addition to retroactive relabelling of prior data, MT-Opt can learn new tasks via proactive adap-
tation of known tasks, even ones that are visually and behaviorally different than the initial training
set. To accommodate future tasks, we start learning with a larger one-hot vector. Once a new task is
defined and its success detector is trained, we allocate a next available one-hot task ID to this task.
To demonstrate this, we perform a fine-tuning experiment, bootstrapping from the MT-Opt 12-task
policy (Sec. 5.2). We use the MT-Opt policy to collect data for unseen tasks: lift-cloth and cover-
object ( Fig. 7 bottom row). Unlike lift-sausage, prior to starting collection of these new tasks, no
episodes in our offline dataset can be relabelled as successes for these tasks.

Figure 6: Quantitative evaluation of MT-Opt across
12 tasks. QT-Opt [1] trains each task individually us-
ing only data collected for that task. QT-Opt Multi-
Task [1] trains a single network for all tasks but does not
share the data between them. Data-Sharing Multi-Task
also trains a single network for all tasks and shares the
data across all tasks without further re-balancing. MT-
Opt (ours) provides a significant improvement over the
baselines, especially for the harder tasks with less data.

Figure 7: Top: Example of pick-carrot. The robot repo-
sitions the carrot out of the corner to pick it. Bottom:
cover-object. The deformable covers the object.

We follow the continuous data collection pro-
cess (Sec. 4): we define and train the suc-
cess detector for the new tasks, collect initial
data using our lift-any and a place-any poli-
cies, and fine-tune a 14-task MT-Opt model
that includes all prior as well as the newly de-
fined tasks. While the new tasks are visually
and semantically different, in practice the above
mentioned policies give reasonable success rate
necessary to start the fine-tuning. We switch
to running the new policies on the robots once
they are at parity with the lift-any and place-
any policies. After 11K pick-cloth attempts
and 3K cover-object attempts (requiring < 1
day of data collection on 7 robots), we obtain
an extended 14-task MT policy that performs
cloth picking at 70% success and object cov-
ering at 44% success. The policy trained only
for these two tasks, without support of our of-
fline dataset, yields performance of 33% and
5% respectively, confirming the hypothesis that
MT-Opt method is beneficial even if the tar-
get tasks are sufficiently different, and the tar-
get data is scarce. By collecting additional
10K pick-cloth episodes and 6K cover-object
episodes, we further increase the performance
of 14-task MT-Opt to 92% and 79%, for cloth
picking and object covering respectively. We
perform this fine-tuning procedure with other
novel tasks such as previously unseen trans-
parent bottle grasping, which reaches a perfor-
mance of 60% after 4 days of collection.

5.7 Limitations of MT-Opt
While we show successful execution of MT-Opt on a number of tasks and its potential to scale, it is
important to list limitations of this system. i) The shown tasks are short-horizon (≤ 20 steps). Long-
horizon real-world robotic tasks are still hard for RL methods; ii) The task outcome is determined
from the final episode frame. In theory, this could be extended to learned intermediate rewards; iii)
Our tasks leverage an automated reset mechanism. While this is not an assumption of the method,
we have not demonstrated learning any reset-free behaviors; iv) Learning drastically different skills
is challenging, as our method works best when adapting more similar tasks. It remains an open
question as to how far MT-Opt can be scaled to a very diverse set of skills; v) MT-Opt is 4DoF with
gripper and terminate actions. Learning higher DoF tasks is challenging yet principally possible.

6 Conclusion
We presented a general multi-task learning framework, MT-Opt, that encompasses a multi-task data
collection system, a scalable success detector framework, and a deep RL method that is able to
effectively utilize the multi-task data. Our experiments show that by sharing data and parameters
across tasks we significantly increase the data efficiency of learning individual tasks and that MT-Opt
quickly acquires new tasks via the shared multi-task representations and exploration strategies.
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7 Appendix

7.1 Neural Network Architecture
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Figure 8: The architecture of MT-Opt Q-function. The input image is processed by a stack of convolutional
layers. Action vector, state vector and one-hot vector Ti representing the task of interest are processed by several
fully connected layers, tiled over the width and height dimension of the convolutional map, and added to it.
The resulting convolutional map is further processed by a number of convolutional layers and fully connected
layers. The output is gated through a sigmoid, such that Q-values are always in the range [0, 1].
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Figure 9: Comparison of single-headed and multi-
headed neural networks approximating the Q-
function. In both cased task ID was fed as the in-
put to the network. Multi-headed architecture of the
Q-function under-performs on a wide range of tasks,
winning only on lift-any tasks which has most of the
data.

We model the Q-function for multiple tasks as
a large deep neural network whose architecture
is shown in Fig. 8. This network resembles one
from [1]. The network takes the monocular RGB
image part of the state s as input, and processes
it with 7 convolutional layers. The actions a and
additional state features (gstatus, gheight) and task
ID Ti are transformed with fully-connected lay-
ers, then merged with visual features by broad-
casted element-wise addition. After fusing state
and action representations, the Q-value Qθ(s, a)
is modeled by 9 more convolutional layers fol-
lowed by two fully-connected layers. In our sys-
tem the robot can execute multiple tasks from in
the given environment. Hence the input image
is not sufficient to deduce which task the robot
is commanded to execute. To address that, we
feed one-hot vector representing task ID into the
network to condition Q-Function to learn task-
specific control.

In addition to feeding task ID we have experimented with multi-headed architecture, where n sep-
arate heads each having 3 fully connected layers representing n tasks were formed at the output
of the network. Fig.9 shows that performance of the system with the multi-headed Q-function
architecture is worse almost for all tasks. We hypothesize that dedicated per task heads “over-
compartmentalizes” task policy, making it harder to leverage shared cross-task representations.
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7.2 Description of Scripted Policies

As discussed in Section4 we use two crude scripted policies to bootstrap easy generic tasks.

Scripted Picking Policy: To create successful picking episodes, the arm would begin the episode
in a random location above the right bin containing objects. Executing a crude, scripted policy, the
arm is programmed to move down to the bottom of the bin, close the gripper, and lift. While the
success rate of this policy is very low (≈ 10%), especially with the additional random noise injected
into actions, this is enough to bootstrap our learning process.
Scripted Placing Policy: The scripted policy programmed to perform placing would move the arm
to a random location above the left bin that contains a fixture. The arm is then programmed to
descend, open the gripper to release the object and retract. This crude policy yields a success rate of
(47%) at the task of placing on a fixture (plate), as the initial fixture is rather large. Data collected
by such a simplistic policy is sufficient to bootstrap learning.

7.3 fIskill
impersonation strategy details

Task impersonation is an important component of the MT-Opt method. Given an episode and a task
definition, the SD classifies if that episode is an example of a successful task execution according to
that particular goal definition. Importantly, both the success and the failure examples are efficiently
utilized by our algorithm. The success example determines what the task is, while the failure exam-
ple determines what the task is not (thus still implicitly providing the boundary of the task), even
if it’s an example of a success for some other task. Fig.11 shows offline success rates and Fig.12
shows by how much the per task data is expanded using the fIskill impersonation function.

In Section 3.2 we discuss a problem arising when using a naive fIall
episodes impersonation func-

tion, and suggest a solution to impersonate data only within the boundaries of a skill. Namely,
given an episode ei generated by task Ti, a skill Sj that task belongs to is detected. The ei will be
impersonated only for the tasks T{Sj} belonging to that particular skill.

Replay Buffer

Log Replay

~200x

~40x

Label with SD
f(IskillI) impersonate

Real Robots
running MDP

~6x

Bellman Update Job
(Recomputes Q-Targets per task)

~2500x

Re-balanced Sampling

Store

Read

train TPU Trainer

Qθ(s, a, Ti) 
parameters

t1 t2

tn

Unbalanced offline
data from n tasks

t1_success

t1_failure

t1_success

t1_failure

...

Push

Pull

Pull model weights

Figure 10: System overview: Task episodes from disk are continuously loaded by LogReplay job into task
replay buffers. LogReplay process assigns binary reward signal to episodes using available Success Detectors
and impersonates episodes using fIskill (or other strategy). Impersonated episodes are compartmentalized into
dedicated per task buffers, further split into successful and failure groups. Bellman Update process samples
tasks using re-balancing strategy to ensure per task training data balancing and computes Q-targets for individ-
ual transitions, which are placed into train buffer. These transitions (s,a, Ti) are sampled by the train workers
to update the model weights. The robot fleet and Bellman Update jobs are reloading the most up to date model
weights frequently.

Note, that sometimes impersonation for all T{Sj} tasks within a skill could result in too excessive
data sharing. For example, the bulk of the data for our object-acquisition skill represents variants
of tasks involving foods objects. If we want to learn a new task within the same skill using visually
significantly different objects, e.g. transparent bottles, all offline episodes involving the plastic ob-
jects will be (correctly) impersonated as failures for the lift-transparent-bottle task. That is, a few
intrinsic failures for that task will be diluted in large set of artificially created negatives.
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Primary SD
Name

Total
Count

Success
Count

Failure
Count

Success
Rate

F. Neg.
Rate

F. Pos.
Rate

Other F.
Neg. Rate

Other F.
Pos. Rate

lift-any 16064 7395 8672 46% 1% 2% 0% 0%
lift-banana 6255 510 5745 8% 2% 1% 0% 1%
lift-bottle 6472 430 6042 7% 5% 1% 0% 1%

lift-sausage 6472 461 6011 7% 3% 0% 0% 1%
lift-milk 6472 158 6314 2% 7% 0% 3% 9%
lift-box 6467 487 5980 8% 1% 1% 0% 2%
lift-can 6467 270 6197 4% 2% 0% 3% 3%

lift-carrot 6481 911 5570 14% 0% 1% 0% 0%
place-any 3087 1363 1724 44% 1% 2% 0% 0%

place-bottom 2893 693 2200 24% 2% 1% 1% 3%
place-top-left 2895 346 2549 12% 10% 0% 3% 8%

place-top-right 2897 312 2585 11% 4% 0% 0% 5%

Table 3: Success detection holdout data statistics. Table shows success detector error rate for held out labelled
success detector data. We split out the evaluation dataset based on the robot, e.g. all data generated by Robot #1
is used for evaluations and not for training. This strategy results in a much better test of generalization power
of the success detector, compared to the conventional way to split out 20% of the data randomly for evaluation.
The Other Task False [Positive/Negative] Rates columns indicates how well the success detector for a task A
classifies outcomes for all other tasks. For example we want to ensure that a successful lift-carrot episode
does not trigger lift-banana success, i.e. not only a success detector should manifest its dedicated task success,
but also reliably reason about other related tasks. This “contrastiveness” property of the success detectors is
of great importance in our system. As success detectors determine tasks data routing and experience sharing,
an error in this tasks data assignment would drive anti-correlated examples for each task, resulting in a poor
performance of the system.

Figure 11: Effective success rate for each task in our
offline dataset. This plot represents the distribution of
successes within the entirety of our offline dataset col-
lected over time from many policies, not the perfor-
mance of any particular policy.

Figure 12: Practical effect of task impersonation for
successful outcomes. Dark blue indicates data specif-
ically collected for a task; light blue indicates episodes
impersonated from some other tasks which happen to
be a success for the target task.

To solve this issue we introduce a stochastic im-
personation function. An impersonated episode
candidate will be routed to training with the
probability ps if it’s a success, or with proba-
bility pf if it’s a failure. We experiment with
ps = 1.0, and pf <= 1.0. The reasoning is
that it’s always desirable to utilize surplus im-
personated examples of a successful task execu-
tion, but it could be better to utilize only a frac-
tion of the surplus failures to balance intrinsic
v.s. artificial failures for that task.

This gives rise to the fIskill
(ps, pf ) imperson-

ation function which is suitable in some situa-
tions explained above.

7.4 Distributed Asynchronous System

Fig.10 provides an overview of our large scale
distributed Multi-Task Reinforcement Learning
system.

8 Reward Specification
with Multi-Task Success Detector

Training a visual success detector is an iterative
process, as a new task initially has no data to
train from. We have two strategies to efficiently
create an initial SD training dataset for a new
task. 1) We collect 5Hz videos from 3 different
camera angles where every frame of the video a
human is demonstrating task success, and then
a short video demonstrating failure (see exam-
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Overhead Camera Right Camera Left Camera

Figure 13: SD training images. Each row represents
a set of images captured at the same time that are
fed into the SD model. These images demonstrate
our train-time SD data augmentation process as they
have been distorted via cropping, brightening, rotat-
ing, and superimposing of shadows.

place-anywhere success examples:

place-anywhere failure examples:

Figure 14: Video frames for the place-anywhere
task. Success and failure videos are iteratively cap-
tured in pairs to mitigate correlations with spurious
workspace features such as hands of the user, back-
grounds, bins, and distractor objects.

ples in Fig. 14. Note that the user shows the de-
sired and non-desired outcome of the task, not
to be confused with demonstrations of how the task needs to be done.

The intention here is to de-correlate spurious parts of the scene from task-specifics. This process is
repeated for approximately 30 minutes per task. 2) We relabel data from a policy that occasionally
generated success for the new task (e.g., relabel lift-any data for lift-carrot task.).

The user would then change the lighting, switch out the objects and background, and then collect
another pair of example videos (see Fig. 14 for example one video where there is always something
on a plate being moved around paired with another video where there is never anything on a plate).

Once the initial SD is trained, we can train an RL policy, and begin on-policy collection. We
continue to label on-policy data which keeps coming for the new task until SD is reliable. Table 3
shows false positive and false negative error rates on holdout data for the SD model used in our
ablations. Our holdout data consisted of all images from a particular robot.

During the SD training process, the data is artificially augmented to improve generalization, which
involves cropping, brightening, rotating, and superimposing random shadows onto the images.

Fig. 13 shows training images after these distortions have been applied. Our success detector model
is trained using supervised learning, where we balance the data between success and failures as well
as tasks. We use the architecture that is based on that from [67] with the exception of the action
conditioning as it is not needed for this classification task. For each task the network outputs the
probability representing whether a given state was a success or failure for the corresponding task.
The model receives three images as an input that come from an over-the-shoulder camera (same
image as RL policy), and two additional side cameras. These side camera images are only used
by the SD model, not the RL model. The additional cameras ensured that the task goals would
be unambiguous, with a single camera, it was often difficult for a human to discern from an image
whether or not the task had succeeded.

A breakdown of the labelled SD training data is provided in Fig. 15. While training SD, we incor-
porated data sharing logic based on task feasibility. For example any success for lift-carrot would
also be marked as failure for all other instance lifting tasks, and as a success for lift-any. In this
manner, the original set of labelled data shown in Fig. 15 could act effectively as a much larger
dataset for all tasks, where successes of one task often worked an interesting negatives for other
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tasks. Additionally we balanced the proportion of success and failure examples per task seen by the
model during training.

9 Robot Setup
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Figure 15: Counts of labelled SD training data
by task and outcome. This data was generated ei-
ther from human video demonstration, or by la-
belling terminal images from episodes produced
by a robot. Note, that not all of the negatives were
hand-labelled. As we may know dependencies be-
tween the tasks, e.g. that a success for lift-carrot
is always a failure for lift-banana, we can auto-
matically generate negative examples. Similarly,
all successes for the semantic lifting tasks are also
successes for the lift-any task.

In order for our system to be able to learn a vision-
based RL policy that can accomplish multiple tasks,
we need to collect a large, diverse, real-robot dataset
that represents data for various tasks.

To achieve this goal, we set up an automated, multi-
robot data collection system where each robot picks
a task Ti to collect the data for. Collected episode
is stored on disk along with the Ti bit of informa-
tion. Our learning system can then use this episode
collected Ti for to train a set of other tasks utiliz-
ing MT-Opt data impersonation algorithm. Once the
episode is finished, our data collection system de-
cides whether to continue with another task or per-
form an automated reset of the workspace.

In particular, we utilize 7 KUKA IIWA arms with
two-finger grippers and 3 RGB cameras (left, right,
and over the shoulder). In order to be able to au-
tomatically reset the environment, we create an ac-
tuated resettable bin, which further allows us to au-
tomate the data collection process. More precisely,
the environment consists of two bins (with the right
bin containing all the source objects and the left
bin containing a plate fixture magnetically attached
anywhere on the workbench) that are connected via
a motorized hinge so that after an episode ends,
the contents of the workbench can be automatically
shuffled and then dumped back into the right bin to start the next episode. Fig. 16 depicts the physi-
cal setup for data collection and evaluation. This data collection process allows us to collect diverse
data at scale: 24 hours per day, 7 days a week across multiple robots.

One episode has ≈ 10 steps on average, taking ≈ 25 seconds to be generated on a robot, including
environment reset time. This accounts to≈ 3300 episodes/day collected on a single robot, or≈ 23K
episodes/day collected across our fleet of 7 robots.

9.1 Details of Data Collection to bootstrap a Multi-Task System

This section contains more details on the data collection process introduced in Section 9.1.
Real world robot data is noisy. For this project nearly 800,000 episodes were collected through the
course of 16 months. The data was collected over different:

1. Locations: Three different physical lab locations.
2. Time of day: Robots ran as close to 24x7 as we could enable.
3. Robots: 6-7 KUKAs with variations in background, lighting, and slight variation in camera

pose.
4. Success Detectors: We iteratively improved our success detectors.
5. RL training regimes: We developed better training loops hyper-parameters and architec-

tures as time went on.
6. Policies: Varied distribution of scripted, epsilon greedy, and on-policy data collection over

time.

Our data collection started in an original physical lab location, was paused due to COVID-19, and
the robots were later setup at a different physical lab location affecting lighting and backgrounds.
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Task Name #Eps. QT-Opt fIorig , rand fIorig , rebal fIall , rand
QT-Opt DataShare

MultiTask MultiTask
lift-any 635K 0.88 0.94 0.85 0.62
lift-banana 9K 0.04 0.13 0.38 0.09
lift-bottle 11K 0.02 0.16 0.66 0.15
lift-sausage 5K 0.02 0.10 0.38 0.15
lift-milk 6K 0.01 0.13 0.42 0.13
lift-box 6K 0.00 0.12 0.16 0.08
lift-can 6K 0.01 0.16 0.46 0.07
lift-carrot 80K 0.71 0.41 0.72 0.37
place-any 30K N/A 0.86 0.74 0.30
place-bottom 5K N/A 0.43 0.57 0.30
place-top-right 4K N/A 0.16 0.55 0.08
place-top-left 4K N/A 0.23 0.75 0.19
Min 0.00 0.10 0.16 0.07
25-th percentile 0.00 0.13 0.41 0.09
Median 0.01 0.16 0.56 0.15
Mean 0.14 0.32 0.55 0.21
75-th percentile 0.03 0.42 0.73 0.30
Max 0.88 0.94 0.85 0.62
Mean (low data) 0.01 0.18 0.42 0.13

Task Name fIall , rebal fIskill(1, 0.15) , rebal fIskill(1, 1) , rand fIskill(1, 1) , rebal
(ours)

lift-any 0.95 0.80 0.88 0.89
lift-banana 0.30 0.58 0.62 0.33
lift-bottle 0.48 0.68 0.55 0.69
lift-sausage 0.39 0.42 0.28 0.38
lift-milk 0.27 0.27 0.52 0.51
lift-box 0.22 0.12 0.28 0.29
lift-can 0.28 0.47 0.43 0.43
lift-carrot 0.75 0.52 0.71 0.70
place-any 0.24 0.83 0.57 0.85
place-bottom 0.02 0.62 0.17 0.87
place-top-right 0.10 0.26 0.27 0.54
place-top-left 0.16 0.39 0.22 0.53
Min 0.02 0.12 0.17 0.29
25-th percentile 0.20 0.36 0.28 0.42
Median 0.28 0.50 0.48 0.54
Mean 0.35 0.49 0.46 0.58
75-th percentile 0.41 0.64 0.58 0.74
Max 0.95 0.83 0.88 0.89
Mean (low data) 0.21 0.36 0.32 0.5

Table 4: Quantitative evaluation of MT-Opt with different data impersonation and re-balancing strategies. This
table reports performance of 7 different models on the 12 ablation tasks, trained on identical offline dataset,
with identical computation budget, and evaluated executing 100 attempts for each task for each strategy on the
real robots (totaling to 12*100*7=8400 evaluations). In all cases a shared policy for all 12 tasks is learned. The
difference across the strategies is in the way the data is impersonated (expanded), and in the way the imperson-
ated data is further re-balanced. The last column is our best strategy featuring skill-level data impersonation
and further data re-balancing. This strategy outperforms other strategies on many different percentiles across
all 12 tasks; however the effect of that strategy is even more pronounced for the tasks having scarce data, e.g.
lift-can, lift-box, place-top-right, see Mean (low data) statistic. The column #2 indicates the number of episodes
which were collected for each task.
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Initially scripted policies were run collecting data for the lift-anything and place-anywhere tasks.
Once performance of our learned policy for these tasks out-performed the scripted policy we shifted
to a mix of epsilon greedy and pure on-policy data collection. The majority of our episodes were
collected for the lift-anything and place-anywhere tasks with learned policies. It is worth mentioning
that over the course of data collection many good and bad ideas where tried and evaluated via
on-policy collection. All of these episodes are included in our dataset. Additional tasks being
incorporated over time.

After we had a policy capable of the lift-anything and place-anywhere tasks we introduced more
specific variations of pick and place tasks where either a specific object needed to be picked, or
an object needed to be placed in a specific location on the plate. At this point, our data collection
process consisted of executing a randomly selected pick task followed by a randomly selected place
task.

As a result of the collection process described above, we were left with a 800,000+ episode offline
dataset, very diverse along tasks, policies, success rate dimensions.

10 Details for real world experiments

Left and Right RGB 
Shoulder Cameras

Overhead 
RGB Camera Actuated Bins and 

Magnetic Fixtures

Figure 16: Robot workspace consisting of an
overhead camera (red), two over the shoulder
cameras (brown), and a pair of articulated reset-
table bins with a plate fixture that can be magnet-
ically attached to the bin (blue).

Figure 17: Representative evaluation scenes used
for ablation experiments. Contains one of three
different color plates. And nine graspable objects:
One of each object from our seven object cate-
gories with two extra toy food objects sometimes
from the seven object categories, sometimes not.

The robot workspace setup for the 12 task ablations
is shown in Fig 17. Table 4 summarizes studies
of 7 different data impersonation and re-balancing
strategies for 12 tasks. The last column features the
model which on average outperforms other strate-
gies. Note that this strategy is not the best across
the board. For example, due to big imbalance of
our offline dataset, the native data management strat-
egy (column #3) yields best performance for the over
represented tasks, but very bad performance for un-
derrepresented tasks.
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