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Abstract

Curriculum learning has shown promise in im-001
proving training efficiency and generalization002
in various machine learning domains, yet its po-003
tential in pretraining language models remains004
underexplored, prompting our work as the first005
systematic investigation in this area. We ex-006
perimented with different settings, including007
vanilla curriculum learning, pacing-based sam-008
pling, and interleaved curricula—guided by009
six difficulty metrics spanning linguistic and010
information-theoretic perspectives. We train011
models under these settings and evaluate their012
performance on eight diverse benchmarks. Our013
experiments reveal that curriculum learning014
consistently improves convergence in early and015
mid-training phases, and can yield lasting gains016
when used as a warmup strategy with up to017
3.5% improvement. Notably, we identify com-018
pression ratio, lexical diversity, and readability019
as effective difficulty signals across settings.020
Our findings highlight the importance of data021
ordering in large-scale pretraining and provide022
actionable insights for scalable, data-efficient023
model development under realistic training sce-024
narios.025

1 Introduction026

Scaling large language models (LLMs) yields re-027

markable performance across a wide range of natu-028

ral language processing tasks (Kaplan et al., 2020;029

Achiam et al., 2023; Anil et al., 2023). However,030

these gains come with significant computational031

and data costs, motivating a growing interest in032

improving the efficiency of pretraining methodolo-033

gies. Many efforts focus on improving data quality034

through filtering (Tirumala et al., 2023; Sorscher035

et al., 2022; Longpre et al., 2024) and optimizing036

data mixtures (Xie et al., 2023; Sachdeva et al.,037

2024). However, little attention has been paid to038

the ordering of training data, despite the fact that039

LLMs are trained to emulate human-like perfor-040

mance, yet their training processes differ markedly041
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Figure 1: Curriculum learning for LLM pretraining or-
ganizes data from easy to hard based on a difficulty
metric. This can involve strict ordering or partitioning
the data into difficulty groups (e.g., 10 groups), with
progression governed by pacing functions such as lin-
ear, quadratic, or inverse quadratic (top). Alternatively,
interleaved sampling strategies (bottom) mix difficulty
levels within each training segment. These strategies
aim to enhance data efficiency and convergence.

from human learning: from simple concepts to 042

more complex ones. 043

Among potential approaches, curriculum learn- 044

ing (CL) (Bengio et al., 2009a) offers a promis- 045

ing framework: by presenting training data in a 046

structured progression from easy to hard examples, 047

it mimics human learning process and has been 048

shown to improve optimization and generalization 049

in various domains like computer vision (Kumar 050

et al., 2010; Sinha et al., 2020). This structured 051

learning approach aims to achieve two important 052

benefits: (i) faster convergence, and (ii) improved 053

best model performance (Bengio et al., 2009a). 054

Despite its intuitive motivation, curriculum learn- 055

ing remains underexplored in the context of LLM 056

pretraining, due to key challenges in defining diffi- 057

culty measures and designing effective curriculum 058

schedulers for large-scale training (Soviany et al., 059
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2022). In this work, we seek to answer the ques-060

tion: How can we build effective curriculum learn-061

ing strategies for LLM pretraining? by providing062

actionable insights across three representative train-063

ing scenarios: limited data training, unlimited064

data training, and continual training. To our065

knowledge, this is the first comprehensive study to066

evaluate the effectiveness of curriculum learning in067

LLM pretraining under diverse sampling strategies068

and difficulty metrics.069

We experiment with three common curriculum070

learning strategies in the context of LLM pre-071

training: (i) vanilla curriculum learning of a072

fixed dataset (Bengio et al., 2009a), (ii) sampling073

guided by pacing functions (Wu et al., 2020; Na-074

gatsuka et al., 2023), and (iii) interleaved curric-075

ula (Yang et al., 2024) that mix difficulty levels076

during training. We select 6 difficulty metrics out077

of 15 candidates through correlation analysis to078

characterize training data from multiple linguistic079

and information-theoretic perspectives. Using the080

CulturaX dataset (Nguyen et al., 2024), we train081

0.5B parameter LMs under each curriculum setting082

and evaluate them on eight established benchmarks,083

spanning commonsense reasoning, language under-084

standing, and reading comprehension, and validate085

our findings on a 1B model, resulting total of more086

than 200 training runs.087

Our findings demonstrate that curriculum learn-088

ing can provide consistent advantages over random089

baselines under certain combinations of difficulty090

metrics and curriculum strategies, particularly in091

the early and mid phases of training. Moreover,092

we show that curriculum-based warmup can yield093

lasting performance gains even when followed by094

randomly sampled training with up to 3.5% im-095

provement. These results underscore the potential096

of curriculum design to enhance pretraining effi-097

ciency and open new directions for scalable, data-098

aware model development.099

Our contributions are threefold: (1) a comprehen-100

sive study of curriculum learning in LLM pretrain-101

ing under three realistic training scenarios with five102

data ordering strategies; (2) an empirical analysis103

of six difficulty metrics and their effects on model104

convergence and performance; and (3) evidence105

that curriculum-based warmup can serve as a prac-106

tical mechanism for efficient model training. Our107

work provides actionable insights for improving108

the efficiency of LLM pretraining in both academic109

and industrial settings.110

2 Related Work 111

Data-Efficient LLM Training Recent work on 112

data-efficient LLM pretraining emphasizes prun- 113

ing, reweighting, and selection to reduce training 114

costs without sacrificing performance. Perplexity- 115

based filtering (Marion et al., 2023), robust domain 116

mixing (DoReMi) (Xie et al., 2023), and embed- 117

ding or influence-based sampling (Tirumala et al., 118

2023; Yu et al., 2024) all yield strong efficiency 119

gains. Model-driven approaches like ASK-LLM 120

and DENSITY leverage quality and diversity sig- 121

nals to outperform full-data baselines with fewer 122

tokens (Sachdeva et al., 2024). Unlike these meth- 123

ods, which sample or weight data, we explore 124

curriculum-based ordering over a fixed dataset, 125

making our approach complementary and orthogo- 126

nal to prior sampling-based techniques. 127

Curriculum Learning Curriculum learning 128

(CL), introduced by (Bengio et al., 2009b), im- 129

proves convergence by training on increasingly dif- 130

ficult data. Early NLP applications include gram- 131

mar induction and machine translation (Spitkovsky 132

et al., 2009; Zhang et al., 2018). Later work ex- 133

tended CL to LSTMs (Cirik et al., 2016) and trans- 134

formers (Nagatsuka et al., 2023), though often lim- 135

ited to masked language modeling. Recent stud- 136

ies apply CL during LLM fine-tuning (Yang et al., 137

2024), or explore data-efficient schedules via skill 138

learning and model preference (Chen et al., 2023; 139

Zhang et al., 2025). Other strategies vary input 140

lengths or attention to reduce compute (Pouransari 141

et al., 2024; Kim and Lee, 2024). However, prior 142

work largely focuses on fine-tuning or narrow CL 143

setups. Our work is the first to systematically study 144

curriculum learning during LLM pretraining, eval- 145

uating multiple paradigms and difficulty metrics at 146

scale. 147

Text Difficulty Estimation Numerous studies ex- 148

plore text difficulty and quality to improve model 149

efficiency. Length-based heuristics and term fre- 150

quency are common proxies for complexity (Nagat- 151

suka et al., 2023; Spitkovsky et al., 2009; Liu et al., 152

2018). Lexical diversity metrics like MTLD and 153

vocd-D provide finer-grained signals, with MTLD 154

noted for its robustness across corpora (McCarthy 155

and Jarvis, 2010). Information-theoretic measures 156

such as compression ratio and entropy capture re- 157

dundancy and quality (Yin et al., 2024), while re- 158

cent work introduces perplexity-based preference 159

modeling and diversity coefficients to assess con- 160
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ceptual variability (Zhang et al., 2025; Miranda161

et al., 2023). Together, these approaches under-162

score the value of diverse difficulty metrics in cur-163

riculum learning.164

3 Methodology165

In this section, we discuss difficulty metrics, our166

training scenarios, as well as the curriculum learn-167

ing settings for our experiments.168

3.1 Difficulty Metrics169

To apply curriculum learning to LLM pretrain-170

ing, we first constructed a diverse pool of 15 met-171

rics, categorized into six conceptual dimensions:172

information density, lexical diversity, readability,173

fertility, model-perceived difficulty, and sequence174

length. To ensure orthogonality and avoid redun-175

dancy, we performed a Spearman correlation anal-176

ysis (see Appendix A) across these candidates.177

From this analysis, we selected six representative178

and minimally correlated metrics that capture dis-179

tinct aspects of textual complexity: Compression180

Ratio (Yin et al., 2024), measuring how compactly181

information is encoded, serving as a proxy for re-182

dundancy and structural regularity; Fertility (Ali183

et al., 2024), Measures tokenization complexity, de-184

fined as the average number of subword tokens per185

word; Flesch Reading Ease (Kincaid et al., 1975),186

capturing readability by estimating text compre-187

hensibility; Measure of Textual Lexical Diversity188

(MTLD) (McCarthy and Jarvis, 2010), captures189

lexical richness, offering a length-insensitive and190

robust estimate of vocabulary diversity; Number191

of Tokens, token level sequence length; Perplexity,192

a model-centric metric reflecting linguistic uncer-193

tainty as perceived by a pretrained language model.194

3.2 Vanilla Curriculum Learning195

We define our first training scenario of limited data196

training:197

Scenario 1 (S1) We assume to have access to a198

limited, fixed set of pretraining data, all of which199

must be utilized during training.200

Under S1, we adopt vanilla CL: a strict ordering201

of training samples from easy to hard (Bengio et al.,202

2009a). To do this, we sort the data by its difficulty203

score in ascending order. The model is then trained204

sequentially on this ordered set. This setting intro-205

duces more difficult samples at every step, aiming206

to gradually increase the model’s capacity to han-207

dle complexity by building on previously acquired 208

knowledge. 209

3.3 Curriculum Learning with Pacing 210

To apply pacing functions, we define our second 211

training scenario of unlimited data training: 212

Scenario 2 (S2) We assume to have access to a 213

large (effectively unlimited) dataset, from which we 214

are allowed to sample training data up to a fixed 215

training budget. 216

Under S2, instead of random sample training 217

data, we sample data progressively using pacing 218

functions that control the difficulty distribution over 219

time. 220

Following works like (Hacohen and Weinshall, 221

2019; Nagatsuka et al., 2023), we split the dataset 222

into N equally sized difficulty groups. At each 223

training stage, the pacing function determines the 224

number of samples drawn from each group. Sam- 225

pling is performed randomly within groups to pre- 226

serve diversity, while the pacing schedule governs 227

the gradual transition from easy to hard examples. 228

We explore three types of pacing functions, 229

which cover three common types of curriculum 230

scheduling, as shown in Figure 1. Assume we have 231

N difficulty groups, let T denote the total num- 232

ber of training tokens and ti the number of tokens 233

allocated to group i. 234

Linear Pacing.

ti =
T

N
(1) 235

The linear pacing function increases the difficulty 236

level at a constant rate over time by an equal token 237

allocation across groups. 238

Quadratic Pacing.

ti = T · (i+ 1)2∑N
j=1(j + 1)2

(2) 239

The quadratic pacing function allocates a larger por- 240

tion of the token budget to higher-difficulty groups 241

in later stages. Compared to linear pacing, this re- 242

sults in a faster increase in difficulty over training. 243

Inverse Quadratic Pacing.

ti = T · (N − i)2∑N−1
j=0 (N − j)2

(3) 244

Opposite to the quadratic approach, the inverse 245

quadratic pacing function allocates more tokens to 246

easier groups early on. 247
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3.3.1 Interleaved Curriculum Learning248

As a special case of pacing functions, we applied249

interleaved sampling. Rather than segmenting train-250

ing into distinct difficulty phases, interleaved cur-251

ricula maintain a continuous mix of difficulty lev-252

els throughout training as shown in Figure 1. The253

dataset is divided into N equally sized difficulty254

groups, and training is organized into I interleaves,255

each covering a token budget of T/I , where T is256

the total training budget. Within each interleave,257

we apply a linear pacing function to sample data in258

an easy-to-hard order, so for the current group i in259

interleave j, the number of tokens sampled ti,j is:260

ti,j =
T

I ·N
(4)261

This setup allows the model to repeatedly en-262

counter the full difficulty spectrum while preserv-263

ing a progressive structure within each interleave,264

as shown in Figure 1. Such exposure aims to im-265

prove generalization by preventing overfitting to a266

narrow band of difficulty for the model.267

3.4 Experimental setting268

Dataset We use the English subset of CulturaX269

(Nguyen et al., 2024) for pretraining, selected for270

its quality, transparency, and robust preprocess-271

ing. CulturaX integrates mC4 (v3.1.0) (Raffel272

et al., 2019) and all available OSCAR corpora up to273

v23.01 (Abadji et al., 2022), followed by extensive274

cleaning: language ID, URL filtering, metric-based275

heuristics, document refinement, and fuzzy dedu-276

plication via MinHash. These steps are guided by277

large-scale data inspection and diverse quality met-278

rics. We use the dataset as released, without further279

preprocessing.280

Model We adopt a 0.5 billion parameter decoder-281

only language model based on the LLaMA3.2282

(Grattafiori et al., 2024) architecture. The model283

comprises 16 transformer decoder layers with a284

hidden size of 1536 and 16 attention heads, using285

Multi-Query Attention (MQA) with 8 key-value286

groups. We apply rotary positional embeddings287

with a scaling factor of 1.0, θ = 105, and a rotary288

dimension of 96. The feedforward network uses289

a SwiGLU activation and an intermediate size of290

4096, and a maximum sequence length of 2048.291

For the 1B model, we use the same configuration292

as the LLaMA3.2-1B model.293

Training We train all models using the AdamW294

optimizer (Loshchilov and Hutter, 2017) with β1 =295

0.9, β2 = 0.95, weight decay of 0.1, and a fixed 296

learning rate of 2× 10−4. We apply gradient clip- 297

ping with a max norm of 1.0, mixed-precision train- 298

ing (cbfloat16), and dynamic loss scaling. The 299

global batch size is 1,081,344 tokens. Training is 300

performed on the Condor Galaxy 2 AI supercom- 301

puter (see Appendix F), and evaluations are run on 302

NVIDIA A10 GPUs. 303

To ensure reproducibility across hardware, we 304

conducted additional experiments comparing mod- 305

els trained on both platforms and observed consis- 306

tent performance (Appendix F). 307

Evaluation We evaluate each model using LM- 308

Eval (Gao et al., 2024), on a comprehensive set of 309

8 benchmarks from different categories, we report 310

the average of all benchmarks. The details of the 311

benchmarks are listed below: 312

• Commonsense Reasoning: PIQA (Bisk et al., 313

2020), COPA (Gordon et al., 2012), Open- 314

BookQA (Mihaylov et al., 2018). 315

• Language Understanding: Hellaswag 316

(Zellers et al., 2019), WinoGrande (Sakaguchi 317

et al., 2021), xwinograd_en (Tikhonov and 318

Ryabinin, 2021). 319

• Reading Comprehension: BoolQ (Clark 320

et al., 2019). 321

• World Knowledge: ArcChallenge (Clark 322

et al., 2018). 323

All benchmarks are evaluated with 0-shot. 324

4 Experiments 325

In this section, we show our experiments in de- 326

tail on the three curriculum scenarios and report 327

the average evaluation accuracy. Since Training or 328

validation loss reflects token prediction accuracy 329

on current dataset but poorly captures generaliza- 330

tion, often showing weak correlation with down- 331

stream task performance (Liu et al., 2023; Hu et al., 332

2024). In contrast, benchmark evaluations directly 333

assess real-world capabilities like reasoning and 334

comprehension, offering a more reliable basis for 335

comparing LLMs (Tay et al., 2021). 336

4.1 Experiment 1: Strict ordering 337

Setup Under S1, we first construct our fixed train- 338

ing set. Following the scaling laws of model perfor- 339

mance (Kaplan et al., 2020), we sample 10B tokens 340

from CulturaX to pretrain a 0.5B parameter model. 341
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Figure 2: Evaluation accuracy of models trained with vanilla curriculum learning across 6 difficulty metrics,
compared to a randomly shuffled baseline. CL settings offer a notable performance boost in early to mid stages,
particularly under MTLD and Number of Tokens metrics, the models consistently outperform the baseline.
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Figure 3: Evaluation accuracy of models trained with pacing-based curriculum learning across 3 pacing functions
and 6 difficulty metrics. Compression Ratio, MTLD, and Fertility benefit most from linear pacing. Flesch Reading
Ease and Number of Tokens yield best performance with quadratic pacing, with Flesch Reading Ease showing a
consistent upward trend across all pacing functions.

For the 6 selected difficulty metrics, we construct342

six training subsets by sorting the data based on343

difficulty score. As a baseline, we randomly shuf-344

fled this fixed dataset. We pretrain one model for345

each of the 7 training sets.346

Results At the early stage of training, eas-347

ier samples—according to most difficulty met-348

rics—facilitate more efficient learning.349

Figure 2 presents the average accuracy of all350

evaluation benchmarks for models trained with351

strict ordering under 6 difficulty metrics, compared352

to the baseline. Except for Flesch Reading Ease,353

models trained on CL subsets consistently outper-354

form the random baseline during the early stages355

of training (up to approximately 4B tokens). The356

advantage of curriculum learning narrows as train-357

ing progresses, with performances converging or358

remaining slightly higher than the baseline by the 359

end of training. 360

This early-stage advantage of CL narrows as 361

training progresses and gradually converges to sim- 362

ilar performance as the baseline. However, MTLD 363

and Number of Tokens settings maintain bene- 364

fits throughout training, with MTLD achieving 365

1.8% higher best performance than baseline using 366

17.9% fewer training steps, and Number of Tokens 367

achieves similar performance but with 27.5% fewer 368

steps. 369

Interestingly, for Flesch Reading Ease initially 370

underperforms and but gradually catches up at a 371

constant rate in later stages, we observe a similar 372

pattern in the following setting, which we will an- 373

alyze later. Perplexity-based ordering, although 374

showing strong early gains, exhibits a noticeable 375

drop in performance during the later phases. We 376
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Figure 4: Evaluation accuracy of models trained with interleaved curriculum learning across 6 difficulty metrics.
Interleaving consistently boosts performance for Compression Ratio and Number of Tokens, with the rest similar or
slightly worse than the baseline.

hypothesize that high-perplexity samples that are377

often both difficult and noisy, which could degrade378

the model’s learning stability.379

4.2 Experiment 2: Pacing Functions380

Setup In this setting, we follow S2 to randomly381

sample and shuffle 10B tokens from CulturaX as382

the baseline. As CL settings, for each difficulty383

metric, we first partition the dataset into 10 diffi-384

culty groups of equal size. We then apply linear,385

quadratic, and inverse quadratic pacing functions386

to sample data from each group, gradually build-387

ing the training set to 10B tokens. We train one388

model for each combination of pacing function and389

difficulty metric.390

Results Compared with naive curriculum learn-391

ing, a steady, progressive exposure to increasingly392

dense and structured text groups while keeping vari-393

ation within groups improves model performance394

more effectively for metrics capturing linguistic395

richness. And model trained on data ordered by396

Flesch Reading Ease show consistent improvement397

without a sign of convergence.398

Figure 3 shows results grouped by difficulty met-399

rics. CL settings differs more to the baseline in400

early to mid training stages.401

Compression Ratio, Fertility, and402

MTLD—metrics tied to linguistic richness403

and redundancy—benefit most from linear pacing,404

especially in the mid-training stage. Compression405

Ratio reaches baseline peak accuracy with 39.5%406

fewer steps; MTLD with 31.7% fewer steps; and407

Fertility achieves 99.5% of baseline best using408

45.3% fewer steps.409

For Number of Tokens, all pacing strategies 410

outperform the baseline between 3B–8B tokens, 411

with quadratic pacing delivering the most stable 412

gains: 29.8% fewer steps to reach the baseline 413

peak, 99.5% of its best performance in 44.8% 414

fewer steps, and a final score 1.1% higher than 415

the baseline. 416

For Flesch Reading Ease, interestingly, 3 pacing 417

functions show a similar trend as shown in Exper- 418

iment 1: model performance increases with con- 419

stant speed and doesn’t show a sign of convergence, 420

with quadratic pacing yielding the best result: 1.6% 421

above the baseline at the final checkpoint. 422

In contrast, Perplexity performs best under in- 423

verse quadratic pacing; linear and quadratic pacing 424

fall behind, likely due to noisy high-perplexity sam- 425

ples—consistent with findings from Experiment 1. 426

4.3 Experiment 3: Interleave Curriculum 427

Learning 428

Setup In this setting, we apply interleaved cur- 429

riculum learning under S2. As before, for each 430

difficulty metric, the dataset is partitioned into 10 431

equal-sized difficulty groups. We then construct 10 432

interleaved subsets, each consisting of 1B tokens 433

sampled linearly across all difficulty groups. These 434

subsets are concatenated to form a 10B-token train- 435

ing set, allowing the model to encounter a mix of 436

difficulties throughout training while preserving a 437

progressive structure within each interleave. 438

Results Only the Compression Ratio and Number 439

of Tokens setting showed a consistent advantage 440

over the baseline, while others remain similar or 441

have slightly worse performance 442
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Figure 4 reports the averaged accuracy. Our re-443

sults show that the compression ratio setting bene-444

fits the most from interleaved CL, where the model445

outperforms the baseline throughout the training446

by a large margin, with 2.2% higher performance447

achieved, and the best random baseline perfor-448

mance is reached with 41.7% fewer steps. A sim-449

ilar pattern can be seen for Number of Tokens,450

where the model consistently outperforms the base-451

line and reached the best baseline performance with452

23.5% less data.453

In contrast, other metrics yield nearly the same454

performance as the random baseline and the MTLD455

setting has worse performance during training.456

5 Ablation Study457

In this section, we conduct several ablation studies458

to further explore the effectiveness of curriculum459

learning in LLM training.460

5.1 Curriculum Learning as model warmup461

Given that training with CL is usually one-shot:462

once the training set is organized by CL, it is diffi-463

cult to add new data to the dataset unless we reor-464

ganize the enlarged dataset again. So we consider465

the third training scenario of continual training:466

Scenario 3 (S3) The training consists of multi467

phases, where in the first phase the model is trained468

with a data budget, for later phases it can be fur-469

ther trained on more data.470

The S3 involves cases like continual training471

where CL can only apply to the first phase because472

organizing data from easy to hard is one-shot, and473

massive data training where organizing the entire474

dataset with CL is computationally hard.475

Setup In these cases, we consider CL as a476

warmup phase for model training where we first477

train the model with a fixed data organized under478

CL, then continue training it with more data under479

the conventional training setting.480

For the CL training phase, we choose 3 CL481

settings that previously showed promising results:482

compression ratio, Number of Tokens with vanilla483

CL and Flesch Reading Ease with quadratic pacing.484

For the second training phase, we continue training485

the models of each setting and the baseline using486

the same 10B new data which is randomly shuffled.487

For curriculum learning settings, we choose two488

checkpoints to continue training: the best one and489

the last one, if they are not the same.490

Figure 5: Performance of models trained with curricu-
lum learning as a warmup phase, followed by continued
training on randomly shuffled data, using MTLD as the
difficulty metric, both best and last checkpoint warmups
yield sustained advantages over the baseline.

Results Using curriculum learning as warmup 491

consistently improves performance in later training 492

phases by a large margin, allowing the model reach 493

a higher convergence point. 494

We show the result for the MTLD setting in 495

Figure 5; models that transition from CL training to 496

random training maintain a consistent performance 497

advantage over the baseline. While the baseline 498

performance converges, the MTLD warmup setting 499

still shows an improving trend regardless of starting 500

from the best or last checkpoint. Specifically, the 501

starting from the best and last lead to 3.5% and 502

2.6% higher than the baseline, respectively, and 503

the baseline never surpasses the first phase of CL 504

training with double the data. More results are in 505

Appendix B. 506

5.2 Number of difficulty groups 507

In our main experiments, we chose 10 difficulty 508

groups when splitting the dataset to balance smooth 509

difficulty transitions with sufficient intra-group di- 510

versity for effective learning. 511

Following (Nagatsuka et al., 2023), we split the 512

data into 3 difficulty groups as easy, middle, and 513

hard, to study the impact of fewer groups on the 514

linear pacing case. Detailed results are shown in 515

Appendix C, where using fewer groups leads to 516

nearly equal or worse model performance. 517

We also tested the case with 20 groups in the 518

early stage of training, showing no improvement 519

compared to 10 groups. This indicates that when 520

applying pacing functions, the results are less sen- 521

sitive to the choice of the number of groups. We 522

assume fewer groups lead to coarser transitions and 523

potential overfitting, while more groups exhibit di- 524

minishing returns, behaving similarly to strict or- 525

dering. Thus, we use 10 groups in our experiments, 526
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which act as a balance between smooth difficulty527

transitions and sufficient intra-group diversity.528

5.3 Robustness of Curriculum Learning529

To evaluate the robustness of our curriculum530

learning strategies, we repeat the baseline and531

key experiments across six high-performing set-532

tings—spanning different difficulty metrics and533

pacing types—twice, with each independent from534

each other during all stages from data sampling to535

model training. A detailed analysis is provided in536

the Appendix D.537

We observe consistent trends across runs, the538

previous findings with the curriculum learning set-539

tings still hold on average, even when account-540

ing for variability across runs. This low variance541

across repetitions confirms that the observed gains542

are stable and not due to chance, demonstrating543

that curriculum learning is a reliable approach for544

improving LLM pretraining efficiency.545

5.4 Data sampling vs Curriculum Learning546

We observed that in some settings, the model con-547

verges faster than the baseline but shows a perfor-548

mance drop at the end few steps. The best practice549

is to select the best checkpoint from CL training,550

but ordered datasets, later-stage data can sometimes551

act as noisy or overly difficult samples, which may552

not further improve the model. So we ask the fol-553

lowing question: are the early convergence or per-554

formance peaks results from the data filtering effect555

of curriculum learning?556

To answer the question, we conduct additional557

experiments on selected settings that exhibit early558

convergence: MTLD, Number of Tokens with559

vanilla CL and Compression Ratio with linear pac-560

ing. Specifically, we extract training data used561

before the best-performing checkpoint, randomly562

shuffle it, and train the model again on this shuffled563

subset. A detailed comparison of the model’s per-564

formance on the shuffled subset versus the original565

ordered setting is provided in the Appendix E.566

Our results show that using the early stage data567

of curriculum learning indeed act as a data filter-568

ing and lead to improvement compared with the569

random baseline, but still fall behind the ordered570

data setting, showing the effectiveness of data or-571

dering during the training of the model.572

5.5 Scale Curriculum Learning573

In order to investigate how well our findings scale574

up with model size, we trained the 1B model on: (i)575

the vanilla curriculum learning setting, (ii)Flesch 576

Reading Ease with quadratic pacing and (iii) cur- 577

riculum learning as warmup from MTLD vanilla 578

CL and Flesch Reading Ease with quadratic pac- 579

ing setting. Each model was trained on 20B to- 580

kens. Full training configurations and results are 581

presented in Appendix G. 582

Our results indicate that the benefits of curricu- 583

lum learning extend to larger models. In particular, 584

the warmup setting consistently delivers sustained 585

performance improvements throughout training, 586

demonstrating the generalizability of curriculum 587

learning across model scales and training scenarios. 588

6 Discussion and Conclusion 589

Our study provides the first systematic study of cur- 590

riculum learning in LLM pretraining. We explore 591

three curriculum paradigms—vanilla CL, pacing- 592

based sampling, and interleaved curricula—guided 593

by six diverse difficulty metrics. Across these 594

paradigms, we observe that CL can indeed accel- 595

erate convergence and improves data efficiency 596

as well as boost model performance. By defin- 597

ing three representative training scenarios—limited 598

data, unlimited data, and continual training—we 599

show how each CL setting aligns with a specific 600

use case, providing practical guidance for real- 601

world applications. 602

Among the metrics, Compression Ratio, 603

MTLD, Flesch Reading Ease prove to be most 604

effective, suggesting that linguistic diversity and 605

information density are strong indicators for 606

curriculum structuring. Linear pacing and in- 607

terleaved curricula further enhance training by 608

smoothly introducing complexity and maintaining 609

generalization. 610

Through extensive ablations, we show that CL’s 611

benefits stem not just from implicit data filtering, 612

but from data ordering. These advantages remain 613

robust across seeds, scale with model size, and 614

are not sensitive to the precise number of diffi- 615

culty groups. 616

In conclusion, curriculum learning is a simple 617

yet powerful strategy for improving the efficiency 618

of LLM pretraining. It introduces no architectural 619

changes, is orthogonal to data selection and pruning 620

strategies, and integrates seamlessly into modern 621

training pipelines. Future work includes explor- 622

ing more effective difficulty metrics, adaptive or 623

model-aware curriculum learning, and task-specific 624

curriculum learning. 625
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Limitations626

This work focuses on LLM pretraining via cur-627

riculum learning by training 0.5B and 1B parame-628

ter models on various combinations of curriculum629

strategies and difficulty metrics. While our findings630

consistently demonstrate the benefits of curriculum631

learning (CL) across training scenarios, several lim-632

itations remain:633

First, our experiments are constrained to decoder-634

only architectures (LLaMA3.2-like models) and635

English-language data (CulturaX subset), which636

may limit the generalizability of our results to637

encoder-based models or multilingual settings. Fu-638

ture work should evaluate CL across diverse model639

families and linguistic contexts.640

Second, we apply static, precomputed difficulty641

scores and do not explore adaptive or dynamic642

curricula that respond to the model’s evolving ca-643

pabilities. More sophisticated scheduling tech-644

niques, such as model-aware or task-informed pac-645

ing, could yield further gains.646

Third, while we test six difficulty metrics, our647

metric selection is based on correlation analysis,648

and some potentially useful signals (e.g., syntactic649

depth or coherence) were not explored. Addition-650

ally, metrics like perplexity may conflate difficulty651

with noise, reducing their reliability.652

Fourth, this work focuses exclusively on the653

pretraining phase and does not examine the im-654

pact of curriculum learning on downstream fine-655

tuning. Evaluating how curriculum-pretrained mod-656

els transfer to various fine-tuning regimes remains657

an important direction for future study.658
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A Metrics Selection930

To choose a set of difficulty metrics for our curricula, we began with fifteen candidate metrics spanning931

six conceptual categories: Information Density (Compression Ratio), Lexical Diversity (TTR (Richards,932

1987), MTLD, HD-D (McCarthy and Jarvis, 2010)), Readability (Flesch Reading Ease, Flesch–Kincaid933

Grade (Kincaid et al., 1975), Coleman–Liau Index (Coleman and Liau, 1975), automated readability934

index(ARI) (Smith and Senter, 1967), Dale–Chall (Dale and Chall, 1948), Linsear Write (McCannon,935

2019), Gunning Fog (Gunning, 1969), SMOG (Mc Laughlin, 1969)), Sequence Length (Number of936

Tokens), Fertility (Fertility Score), and Perplexity. Perlexity from KenLM (Heafield, 2011)937

We computed Spearman rank correlations on our pretraining data to assess monotonic relationships938

among these metrics. Results are presented in Figure 6. Strong positive correlations (ρ ≈ 1) appear among939

the various readability formulas, indicating redundancy; moderate correlations (ρ ≈ 0.3–0.5) cluster940

the diversity measures; and near-zero coefficients suggest orthogonality (notably between Perplexity or941

Fertility and most others).942

Guided by these patterns, we retained one representative from each highly inter-correlated block and943

preserved metrics that capture unique aspects of text complexity. Our final six signals are Compression944

Ratio, Flesch Reading Ease, MTLD, Perplexity, Fertility, and Number of Tokens—ensuring broad coverage945

of linguistic and information-theoretic difficulty.946
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Figure 6: Spearman correlation matrix of the fifteen candidate metrics. Cell shading encodes correlation strength
(red = strong positive; blue = strong negative), highlighting the correlations across the different metrics: Density
(red), Readability (green), Diversity (blue), Lexical (purple), Fertility (orange), and Perplexity (brown).
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B Curriculum Learning as Warmup 947

Figure 7: The average accuracy of models continually trained on two curriculum learning settings: Flesch Reading
Ease with quadratic pacing (left) and Number of Tokens with vanilla CL (right), we select the best checkpoint and
the last checkpoints (they can be the same) from the CL settings to start continual training.

In Figure 7 we show two more experiments that use curriculum learning as warmup: the Flesch Reading 948

Ease with quadratic pacing and Number of Tokens with vanilla curriculum learning. The models trained 949

on both settings and their baselines are then continually trained on randomly shuffled data. 950

For the model trained on Flesch Reading Ease with quadratic pacing setting, we continue training the 951

model from the last checkpoint since it is also the best. We observed a similar pattern as in Figure 5: CL 952

as warmup setting consistently outperforms the baseline by a large margin, especially in the continual 953

training phase. Specifically, this setting achieves 1.5% higher accuracy and reaches the best baseline 954

performance with 40.0% fewer steps. 955

For the model trained on Number of Tokens with vanilla CL setting, we chose both the best and last 956

checkpoint to start continual training. The models trained from both checkpoints show close performance 957

throughout training, with the model starting from the best checkpoint slightly better than the model 958

starting from the last checkpoint. Overall the CL as warmup settings achieve 2.2% higher accuracy than 959

the baseline and reached the best baseline performance with 20.7% fewer steps. 960

C Number of difficulty groups 961
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Figure 8: The comparison of the average accuracy for models trained via CL on 6 difficulty metrics under the linear
pacing function with 3 and 10 difficulty groups.

We investigate the influence of using a different number of difficulty groups, and show the results when 962

using 3 difficulty groups compared with our default 10 difficulty groups with the linear pacing CL setting 963

in Figure 10. Though 3 difficulty groups can be seen as easy, middle and hard groups intuitively, the 964

performance is generally worse or similar to 10 groups with a small difference. We hypothesize that 3 965

groups lead to coarser transitions between groups and potentially lead to model overfitting to each group, 966
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which can be harmful for model training. But overall, we consider the result is less sensitive to the choice967

of the number of groups.968

D Robustness of Curriculum Learning969
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Figure 9: Performance comparisons between baseline (black) and curriculum learning (blue) across six high-
performing settings. Accuracy is averaged over three runs, with shaded areas denoting standard deviations. Results
confirm the robustness of curriculum learning, with consistent improvements and minimal overlap in variation with
the baseline.

We select 6 settings that previously showed strong performance: Compression Ratio, MTLD, Fertility970

and Flesch Reading Ease with linear pacing; Number of Tokens and Compression Ratio with interleave971

pacing, and we repeat two more times for each setting, as well as the baseline. Figure 9 shows the results972

with average performance across runs and the standard deviations. For all tested settings, the previously973

established findings still hold on average, even considering the standard deviation, as there are very small974

part of overlapping between the variation range for CL settings and the baseline. This shows the robustness975

of our defined CL settings.976

E Sampling vs Ordering977
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Figure 10: Results sampling

We conduct a controlled comparison to disentangle the effects of data selection from data ordering. We978

select 3 CL settings where the model reached best performance early but experience a performance drop979

at last steps: MTLD, Number of Tokens with vanilla curriculum learning and Compression Ratio with980

linear pacing. For each, we extract the training data used before the best-performing checkpoint, then981

randomly shuffle this subset and retrain the model. While these shuffled subsets outperform the full random982

baseline—suggesting a filtering effect—the ordered curriculum versions still achieve superior performance.983

This indicates that the benefits of curriculum learning arise not only from selecting informative data but984

also from the order in which it is presented during training.985
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F Cerebras 986

CS-2 systems are purpose-built network-attached AI accelerators. Each CS-2 features 40 GB of SRAM 987

and a peak of 62.5 AI PetaFLOPs, providing a total of 4 ExaFLOPs of AI compute across 64 systems in 988

the CG-2 supercomputer. Utilizing the weight streaming mode of the Cerebras software stack, the Condor 989

Galaxy supercomputers can flexibly schedule multiple jobs based on hardware resource requirements 990

and priority. The number of CS-2s allocated to a job can be dynamically adjusted during training, with 991

performance scaling linearly up to 64 CS-2s per job. This scalability is facilitated by the Cerebras software 992

stack’s use of pure data parallelism to distribute the workload across multiple CS-2s. Jobs are managed by 993

a priority queue system, ensuring efficient allocation of computational resources. 994

MemoryX is a large-capacity off-wafer memory service used to store all model weights, gradients, 995

and optimizer states. SwarmX is a broadcast/reduce fabric that connects the memory service MemoryX 996

to each of the CS-2 systems in a wafer-scale cluster. SwarmX coordinates the broadcast of the model 997

layer weights, giving each CS-2 a local copy, and it receives and aggregates (by addition) the independent 998

weight gradients coming from the CS-2 systems during backpropagation. At the end of each iteration, the 999

aggregated gradients are sent to MemoryX for weight update. 1000

F.1 Reproducibility on Nvidia GPUs 1001

To further eliminate the difference between models trained on the Cerebras System and Nvidia GPUs, we 1002

trained two 0.5B models with 10B tokens using Cerebras CS-2 System and Nvidia A100 GPU respectively, 1003

and evaluate the model performance on eight benchmarks, as shown in Table 1, we report the evaluation 1004

result for both models and the relative difference compared with model trained on Cerebras. Across all 1005

benchmarks, the relative difference is less than 0.5%, so we consider the model trained on both hardware 1006

makes no difference regarding model performance. 1007

Benchmark Cerebras NVIDIA A100 ∆% vs Cerebras
ArcChallenge 0.1928 0.1932 0.21
BoolQ 0.6101 0.6125 0.39
COPA 0.6900 0.6902 0.03
Hellaswag 0.3087 0.3092 0.16
OpenBookQA 0.1820 0.1823 0.16
PIQA 0.6561 0.6572 0.17
WinoGrande 0.4893 0.4903 0.20
xwinograd_en 0.5939 0.5948 0.15

Table 1: Performance comparison of NVIDIA A100 relative to Cerebras across multiple benchmarks.

G Scale Curriculum Learning 1008

We evaluate the scalability of our findings by replicating key curriculum learning settings using a 1B 1009

model following the Llama3.2 1B model configuration. The training hyperparameters are the same as 1010

previous experiments. 1011

G.1 Vanilla Curriculum Learning 1012

In this section, we experiment with the vanilla CL setting, we use the same set of difficulty metrics and 1013

instead of selecting a dataset of 10B, we select 20B tokens according to the scaling law, and create 6 1014

strictly ordered training set as well as a baseline set, we train a model for each set. 1015

Figure 11 shows the results. We observe similar findings to our previous experiments: (1) the CL 1016

settings and the baseline differentiate the most in the early to mid training stages, with most CL settings 1017

reaching the best performance faster than the baseline; (2) the MTLD setting consistently outperforms the 1018

baseline during the training; (3) Number of Tokens setting has a faster performance improvement in the 1019

early and mid stage of training; (4) Flesch Reading Ease setting keeps a constant improvement rate of 1020

performance, interestingly, outperforms the baseline by a large margin at the end of training. 1021
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Figure 11: Performance of vanilla curriculum learning at scale using 1B model trained on 20B tokens compared to
the baseline. Most settings show a faster improvement in the early to mid stage, with MTLD and Flesch Reading
Ease showing a strong performance.

G.2 Flesch Reading Ease with quadratic pacing1022

Since the Flesch Reading Ease setting showed promising and unique results from all previous settings: a1023

constant rate of model performance improvement and didn’t show a sign of convergence. We want to test1024

this specifically for a larger model, thus, we chose the setting that shows the biggest improvement rate and1025

final performance-quadratic pacing-to train a 1B model.1026

Figure 12: Performance of using Flesch Reading Ease with quadratic pacing, the model shows stable, non-convergent
performance improvements across the full training horizon.

As shown in Figure 12, we observed again a stable performance gain till the end of the training for1027

Flesch Reading Ease with quadratic pacing setting, and still no sign of convergence. The model trained on1028

this setting achieves 2.5% higher accuracy, showing again the potential of this difficulty metric.1029
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G.3 Curriculum Learning as Warmup 1030

We are also interested in applying CL under S3 that use CL as a warmup phase of training, which 1031

previously showed impressive results. 1032
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Figure 13: The average accuracy of models continually trained on two curriculum learning settings: Flesch Reading
Ease with quadratic pacing (left) and MTLD with vanilla CL (right), the models were trained using 20B tokens for
CL warmup, then we select the best checkpoint and the last checkpoints (they can be the same) from the CL settings
to start continual training for the next 10B tokens.

We tested two settings: Flesch Reading Ease with quadratic pacing and MTLD with vanilla CL to serve 1033

as CL warmup pretraining with 20B tokens, then we continue training the model from either the best or 1034

the last chekcpoint for 10B tokens which are randomly shuffled. Our results is shown in Figure 13, where 1035

we observe same pattern as the 0.5B model: CL warmup lead the model achieves higher performance 1036

throughout the training, especially the continual training phase. 1037
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