

1 stVCR: Spatiotemporal dynamics of single cells

2 Qiangwei Peng¹, Peijie Zhou^{2*}, Tiejun Li^{1,2*}

3 ¹LMAM and School of Mathematical Sciences, Peking University.

4 ²Center for Machine Learning Research, Peking University.

5 *Corresponding author(s). E-mail(s): pjzhou@pku.edu.cn; tieli@pku.edu.cn;

6 Abstract

7 Time-series spatial transcriptome data with single-cell resolution provide an opportunity to
8 study cell differentiation, proliferation and migration in physical space over time. Due to the
9 destructive nature of sequencing, reconstruction of spatiotemporal dynamics from data remains
10 challenging. Especially, the inference of migration in physical space remains a difficult task, as
11 samples obtained at different temporal snapshots might not be in the same coordinate system
12 due to the difference of biological replicates. Here we developed stVCR, a generative deep learning
13 model, which integrates the dynamical optimal transport (OT) with the unbalanced setting,
14 the density matching invariant to rigid body transformations as well as priors to model known
15 biology and preserve spatial structure. stVCR achieves the end-to-end simultaneous recon-
16 struction of continuous cell differentiation, proliferation, physical space migration, and spatial
17 coordinates alignment from spatial transcriptome snapshots. In addition, stVCR allows the
18 interpretable study of complex interactions between cell phenotype transition, spatial migration
19 and proliferation. Through benchmarking on both simulation data and real datasets, we vali-
20 dated the effectiveness and robustness of stVCR and demonstrated its advantages over static
21 OT or linear interpolation methods. We applied stVCR to dissect spatiotemporal dynamics
22 underlying axolotl brain regeneration and 3D Drosophila embryo development.

23 Introduction

24 The development of a fertilized egg into a complete embryo is a highly complex and important
25 process in biology [1–4]. This process involves intricate interactions between the dynamic regulation
26 of gene expression, cell differentiation, cell division, apoptosis, as well as cell migration within
27 physical space [5, 6].

28 The advent of spatial transcriptome (ST) technology has allowed obtaining both gene expres-
29 sion data and spatial coordinates [7–11]. As technology advances, spatial resolution has reached
30 the single-cell or even subcellular level, exemplified by methods such as Stereo-seq [10] and 10x
31 Visium HD [11]. However, due to the destructive nature of sequencing, ST data can only provide
32 snapshots rather than a continuous trajectory. If ST sequencing technology is likened to an ultra-
33 wide-angle camera, it can take pictures of living organisms but lacks video recording capability.
34 Especially, when sequencing at multiple time points during embryonic development, the result-
35 ing time-series ST data often come from different biological replicates, therefore yielding multiple
36 unpaired snapshots.

37 Recovering cells' dynamic trajectories from single-cell sequencing data or ST data is a challeng-
38 ing task. RNA velocity [12] utilizes unspliced/spliced RNA to infer the developmental direction of
39 each cell. This inspired a series of subsequent works using unspliced/spliced RNA to more accu-
40 rately infer RNA velocity [13–18]. These methods suffer from scale invariance due to the lack of
41 temporal information [19]. Metabolic labeling scRNA-seq introduces temporal information into the
42 data by distinguishing new/old RNA [20–27]. Dynamo [28] designed parameter inference meth-
43 ods for metabolic labeling scRNA-seq data based on steady-state assumptions and deterministic
44 models, and Storm [29] extended it to be independent of steady-state assumptions and stochastic
45 models. Time-series scRNA-seq data introduces temporal information into the data in another way.

46 Waddington-OT [30] pioneered the use of optimal transport(OT) for modeling time-series scRNA-
47 seq data, finding the optimal mapping in cells at two adjacent time points. However, it approximates
48 cell proliferation by using growth hallmark genes, which largely depends on the choice of database.

49 Targeted for time-series scRNA data, TrajectoryNet [31] combines dynamical OT [32] and
50 normalizing flows to infer continuous trajectories of cell and takes cell proliferation into account
51 through a separated static OT. MIOFlow [33] follows the geometry by operating in the latent
52 space of an geodesic autoencoder. TIGON [34] uses dynamical unbalanced OT [35] to reconstructs
53 dynamic trajectories and population growth simultaneously. Since the usual scRNA-seq data do
54 not include the spatial coordinates of the cells, these methods have limitations to directly model cell
55 migration in physical space. Some work considers stochastic cellular dynamics, such as FBSDE [36]
56 and PI-SDE [37]. Additionally, DeepRUOT extends even further to the stochastic unbalanced
57 case [38].

58 The availability of time-series ST data has made it possible to study how cells migrate in physical
59 space. PASTE [39] uses fused Gromov-Wasserstein(GW) OT [40] to align 2D adjacent tissue ST
60 slices to reconstruct the 3D structure of the tissue. Moscot [41] uses a similar fused GW-OT to find
61 the optimal mapping of cells between slices at two adjacent time points, incorporating penalties for
62 unbalanced and entropy regularization and employing a low-rank OT [42] to accommodate larger
63 data sizes. Spateo [43] aligns the spatial coordinates of two adjacent time points by optimal mapping
64 to obtain cell migration velocity and then learns a vector field of continuous spatial coordinates.
65 However, it does not fully address the interplay between gene expression and spatial location, and
66 processes such as cell division and apoptosis. DeST-OT [44] considers how to model cell proliferation
67 in the static OT setting, in particular ST data. TopoVelo [45] uses spatial coordinates to model
68 cellular neighborhoods when inferring usual RNA velocity based on unspliced/spliced RNA, and
69 designs post-processing steps to infer cell migration velocity. STT [46] characterizes multistability
70 in space by integrating unspliced/spliced RNA and ST through a multiscale dynamical model.

71 Reconstructing dynamical trajectories of cell differentiation, proliferation, and migration in
72 physical space simultaneously for time-series ST data is a challenging task. Especially for quanti-
73 fying the migration in physical space, improper treatment might introduce pseudo movements of
74 cells as the cell coordinates obtained at different temporal snapshots are not in same coordinate
75 system. Analogous to recovering a video from multiple photos, we aim to reconstruct the entire
76 cellular developmental dynamics from multiple unpaired ST snapshots, thus obtaining a continu-
77 ous spatiotemporal developmental trajectory. To achieve this goal, we developed an algorithm
78 called spatio-temporal Video Cassette Recorder (stVCR), which is a dynamical optimal transport
79 algorithm for resolving the issue of alignment of ST section data and unbalanced populations at
80 different snapshots, and incorporation of biological structure priors in an integrative manner. As
81 the result, stVCR reconstructs the spatiotemporal dynamical process for the considered system
82 from multiple ST snapshots. Furthermore, stVCR also reveals the complex regulatory mechanisms
83 behind the overall cellular dynamics, including how gene expression and spatial location affect each
84 other, and how they affect cell proliferation.

85 Results

86 Overview of stVCR

87 In stVCR, we adopt the dynamical OT formulation as a framework, yet with special treatments for
88 different types of data (Fig. 1A). Specifically, for gene expression counts, we use the Wasserstein OT
89 to model the temporal coupling of distributions (Fig. 1A Left and [Methods](#)). For spatial coordinates
90 of cells, since rotations and translations may be involved to prevent a direct comparison of cell
91 coordinates at different instants, we use the rigid-body transformation invariant OT to make the
92 spatial alignment in time (Fig. 1A Middle and [Methods](#)). For the number of cells, due to the cell
93 division and apoptosis, we use the unbalanced OT to model the unbalanced populations (Fig. 1A
94 Right and [Methods](#)). Additionally, stVCR optionally takes known cell type transition prior (Fig.
95 1B Left) as well as the spatial structure preserving prior for specific cell types (or organs) (Fig.
96 1B) to produce more biologically meaningful results ([Methods](#)). We unified all three necessary
97 modules and two optional modules into the form of dynamical OT, allowing us to study how a
98 population of cells changes in gene expression, how they migrate in physical space, and how they
99 divide and apoptose over time (Figure 1A,B,C and [Methods](#)). We take the spatial coordinates of
100 cells at the first time point $t = t_0$ as the reference coordinates system, and the state of considered
101 cell group at time t is described by a time-dependent distribution $\rho_t(\mathbf{x}, \mathbf{q})$, where ρ_t depends on the
102 spatial coordinates $\mathbf{x} \in \mathbb{R}^{d_s}$ ($d_s = 2$ or 3) of the cells in the reference coordinates system and the
103 gene expression variable $\mathbf{q} \in \mathbb{R}^{d_q}$ after dimensionality reduction. Generally, ρ_t is not a probability

104 distribution though we take normalization at $t = t_0$. stVCR finds the optimal rigid rotation matrix
 105 R_k and translation vector \mathbf{r}_k for the coordinate system at time point $t = t_k$ except t_0 , and uses
 106 the transport-with-growth PDE

$$\partial_t \rho_t + \nabla \cdot ((\mathbf{v}_t, \mathbf{p}_t) \rho_t) = g_t \rho_t \quad (1)$$

107 to interpolate the empirical density $\hat{\rho}^{(k)}$ and cell number n_k of the snapshot spatial transcriptomic
 108 data at $t = t_k$ after rigid body transformation (Fig. 1C), where \mathbf{v}_t , \mathbf{p}_t , and g_t are parameterized to
 109 be learned by neural networks. In physical meaning, $\mathbf{v}_t = d\mathbf{x}/dt$ describes the migration velocity of
 110 cells in physical space, $\mathbf{p}_t = d\mathbf{q}/dt$ describes the RNA velocity of cells in (reduced) gene expression
 111 space, and $g_t \in \mathbb{R}$ describes cell proliferation (Fig. 1C, D).

112 stVCR parameterizes the 2D rotation matrix by using rotation angle (or Euler angle for 3D
 113 case), and simultaneously finds the optimal rigid body transformations and parameterized dynamics
 114 by minimizing a total loss composed of dynamics loss, matching loss and optional spatial
 115 structure preserving loss

$$\mathcal{L} = \mathcal{L}_{\text{Dyn}} + \lambda_{\text{Mch}} \mathcal{L}_{\text{Mch}} + \lambda_{\text{SSP}} \mathcal{L}_{\text{SSP}}^{(\text{opt})}. \quad (2)$$

116 The dynamics loss \mathcal{L}_{Dyn} further contains three parts

$$\mathcal{L}_{\text{Dyn}} = \mathcal{L}_{\text{Spa}} + \alpha_{\text{Exp}} \mathcal{L}_{\text{Exp}} + \alpha_{\text{Gro}} \mathcal{L}_{\text{Gro}}, \quad (3)$$

117 promoting the least consumption of kinetic energy of spatial migration and gene expression change,
 118 and growth energy, respectively. The matching loss \mathcal{L}_{Mch} promotes the cell dynamics to match
 119 the aligned ST data as well as possible at different time points, and the *optional* spatial structure
 120 preserving loss $\mathcal{L}_{\text{SSP}}^{(\text{opt})}$ promotes a stable spatial structure for the user-specified organ or cell
 121 type by encouraging adjacent cells to have similar spatial velocities, thereby preventing arbitrary
 122 deformations. (Fig. 1D and [Methods](#)). The training process involves OT optimization and integrating
 123 ODEs represented by neural networks, which we solve using the POT [47] and torchdiffeq
 124 packages [48], respectively.

125 Once we have completed the entire training process to obtain the optimal rigid-body transformation
 126 and parameterized dynamics, we can first apply the optimal rigid-body transformation to
 127 align the spatial coordinates of cells at different time points to the reference coordinate system,
 128 and then perform a series of downstream analyses (Fig. 1E and [Methods](#)): (1) Interpolation and
 129 prediction. We evolve forward or backward from the nearest observations to the interested time
 130 point (between observations or in the future) based on learned cellular dynamics (Fig. 1E Top
 131 left and [Methods](#)). (2) Gene-space interactions. We study cell-specific gene-gene, gene-space and
 132 space-space interactions by calculating the Jacobian matrices of learned spatial migration dynamics
 133 and gene expression dynamics and further calculating the directional derivatives along the cell
 134 migration direction of interest (Fig. 1E Bottom left and [Methods](#)). (3) Proliferation driver genes
 135 and migration direction. We study the effects of genes and migration on growth by calculating the
 136 gradient of the learned growth dynamics and further calculating the similar directional derivatives
 137 (Fig. 1E Top right and [Methods](#)). (4) Lineage inference/generation. For originally annotated data,
 138 we can infer temporal developmental lineages by learning a time-dependent classifier to annotate
 139 unobserved cells generated by interpolation or prediction (Fig. 1E Bottom right and [Methods](#)).

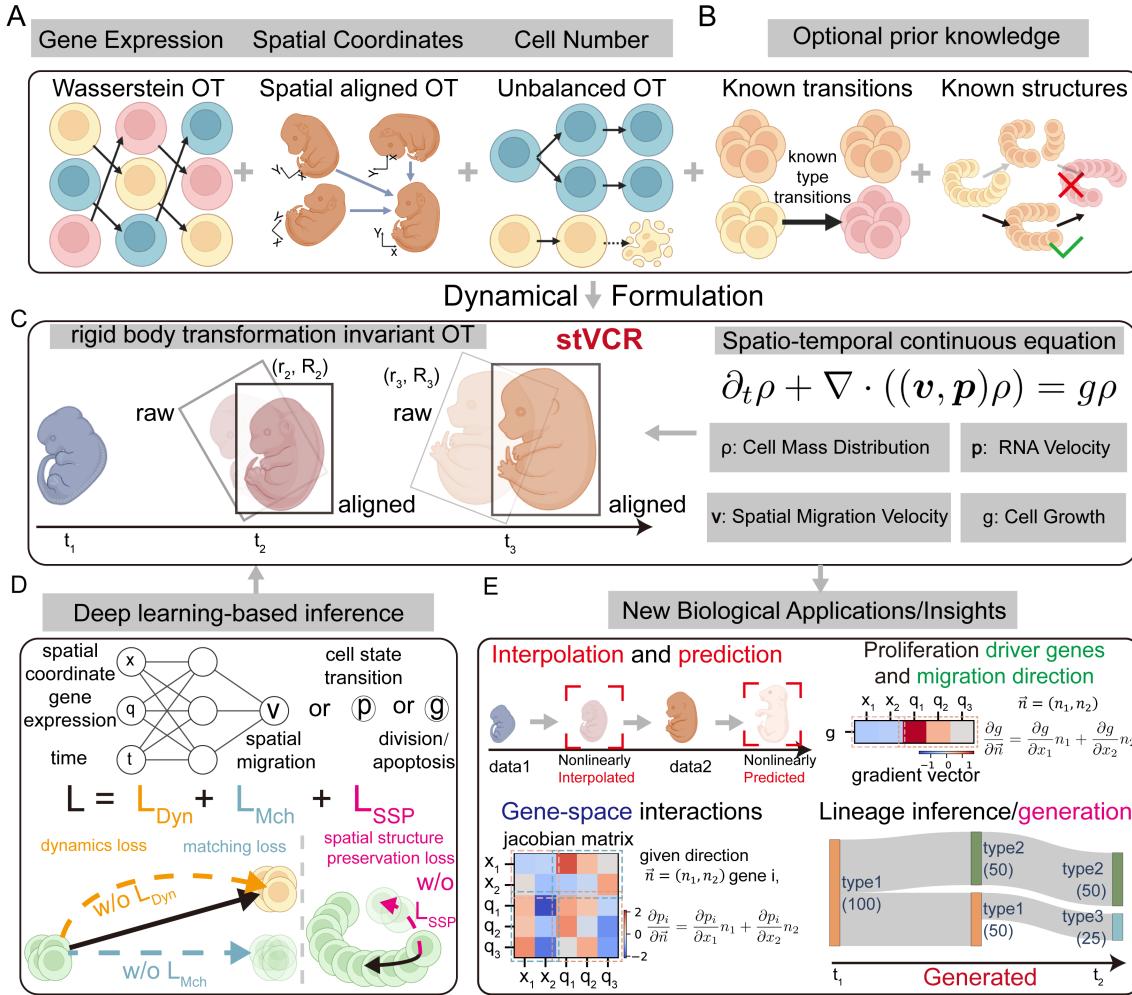


Fig. 1: Overview of stVCR. **A.** stVCR adopts dynamical OT framework yet with special treatments for different types of data in the spatial transcriptome. Specifically we use Wasserstein OT for gene expression data (Left), rigid body transformation invariant OT for spatial coordinates (Middle), and unbalanced OT for cell number change due to cell division and apoptosis (Right). **B.** stVCR can optionally model prior knowledge, including biological priors for known type transitions (Left) and spatial structure preserving priors (Right). **C.** stVCR unifies the three necessary modules and two optional modules into a dynamical OT. The input spatial transcriptome snapshots are described as distributions $\rho^{(k)}$, and the permissible rotations and translations are characterized by (R_k, r_k) at $t = t_k$. The modeling density ρ_t is governed by a partial differential equation involving spatial velocity v , RNA velocity p , and growth rate g . **D.** stVCR solves the problem in **B** based on deep learning. $v_t(x, q)$, $p_t(x, q)$ and $g_t(x, q)$ are modeled by three neural networks. The loss function includes three parts: dynamics loss, matching loss and spatial structure preserving loss. **E.** stVCR can perform downstream analyses, including interpolation and prediction (Top left), studying cell-specific gene-gene, gene-space, space-space interactions (Bottom left), exploring the cell-specific effects of gene expression and spatial variations of growth rates (Top right) and inferring temporal cell-type developmental lineages (Bottom right).

140 **Benchmark on the simulated time-series ST data for accuracy,**
141 **scalability and robustness**

142 To demonstrate the necessity of aligning the spatial coordinates of different temporal snapshots into
143 the same coordinate system, and benchmark the ability of the stVCR to recover spatiotemporal
144 dynamics and reveal key regulatory mechanisms, we generated the simulated dataset of gene circuits
145 and two spatial dimensions (Fig. 2A, B and [Methods](#)). The three genes are named *Red*, *Green*
146 and *Blue* genes. There are regulatory relationships between different genes and different spatial
147 coordinates, in addition, gene expression and cell migration also affect cell proliferation (Fig. 2A).
148 *Red* and *Green* genes form a toggle switch circuit and they have opposite effects on growth. In
149 addition, the difference in spatial location makes them unequal in status (Fig. 2A, B and [Methods](#)).

150 In the simulated dataset, there are three groups of cells at the initial moment (Fig. 2 B). The
151 first group highly expressed gene *Blue* and was in steady state (Fig. 2 B). The second and third
152 groups had similar low gene expression at the initial moment, but their different spatial locations
153 determined their different fates of transition and growth (Fig. 2B). Without spatial information,
154 it is not possible to distinguish between the second and third group at the initial moment, which
155 would lead to erroneous trajectories (Fig. 2B Left and Fig. S4 last row). If cell proliferation is
156 ignored, it will lead to incorrect cell trajectories of the small number group to the large number
157 group (Fig. 2B Right and Fig. S5 last row). The input data totaled 6 time points, and we rotated
158 the spatial coordinates by different angles to simulate the possible rotation of tissues by spatial
159 transcriptome sequencing (Fig. 2C and Fig. S1A).

160 To illustrate the ability of stVCR to align the spatial coordinates of different temporal snap-
161 shots and reconstruct the entire spatiotemporal dynamics, we took the data from the first time
162 point and evolved them according to the learned dynamics, demonstrating consistency with real
163 dynamics (Supplementary Video 1; Fig. 2D and Fig. S1B). Specifically, the first group of cells
164 remained virtually unchanged. The second group of cells gradually overexpressed the *Red* gene,
165 moved outwards in the horizontal direction, and continuously proliferated. The third group of cells
166 gradually overexpressed *Green* gene and continued apoptosis. In addition, we observed that in the
167 aligned space by stVCR, cells only moved horizontally and did not rotate, indicating that we found
168 the optimal rigid body transformation to align the data at different time points while finding the
169 optimal dynamics of cell evolution (Supplementary Video 1, Fig. 2D and Fig. S1B). In addition,
170 stVCR interpolated the unobserved intermediate moments $t = 0.25, 0.75, 1.25, 1.75$ and 2.25 and
171 predicted the future moments $t = 2.75$ based on the learned dynamics, and the results are close to
172 ground truth (Fig. 2E,F and Fig. S1C).

173 To investigate the ability of stVCR to restore the effects of gene interactions, we compared the
174 partial derivatives of *Green* gene velocity with respect to *Red* gene expression with ground truth,
175 and visualized them in spatial coordinates (Fig. 2G Left). Qualitatively, they were consistent, and
176 *Green* gene inhibited *Red* gene expression mainly in the second and third group of cells.

177 Next, to investigate the ability of stVCR to restore the cell migration effects on gene expression,
178 we calculated the directional derivative of *Red* gene expression for the given direction $\mathbf{n} = (1, 0)$
179 (i.e., cells moving horizontally to the right) for both learned and true dynamics (Fig. 2G Right).
180 Cells at the right end of the second group moving to the right will promote gene *Red* expression,
181 and cells at the left end moving to the right will inhibit gene *Red* expression, which overall suggests
182 that moving horizontally outward in the second group of cells will promote *Red* expression.

183 To evaluate the spatial variability of cell proliferation and the effect of cell migration on growth,
184 we compared the true and learned cell proliferation rates (Fig. 2H Left). The results show that the
185 first group of cells has a growth rate close to 0, the second group has a large positive growth rate,
186 and the third group has a large negative growth rate. Additionally we calculated the directional
187 derivative of the growth rate g with respect to a given direction $\mathbf{n} = (1, 0)$, similarly showing that
188 cells moving outward in the horizontal direction will promote cell proliferation (Fig. 2H Right).

189 Finally, we checked the scalability and the robustness with respect to important hyperparam-
190 eters of the stVCR. We first performed a scalability analysis, which shows that stVCR is scalable
191 for dataset size, model size, and number of observation times when the proper sample batch size is
192 chosen (Fig. S2). Next, we tested the robustness of stVCR with respect to the important hyperpa-
193 rameters λ_{Mch} (Fig. S3 and Supplementary Video 2), κ_{Exp} (Fig. S4 and Supplementary Video 3),
194 and α_{Gro} (Fig. S5 and Supplementary Video 4), where λ_{Mch} measures the importance of the match-
195 ing loss, κ_{Exp} weighs the importance of gene expression and spatial coordinates in the matching
196 term and α_{Gro} measures the flexibility of cell proliferation. The results show that stVCR is robust
197 over a wide range of these parameters.

198 In summary, our benchmark tests on this simulated data show that (1) it is necessary to align
199 the spatial coordinates of different time snapshots to the same coordinate system; (2) stVCR sim-
200 taneously reconstructs cell transition, migration and growth are the keys to reconstructing correct
201 spatiotemporal dynamics; (3) and stVCR can accurately reconstruct key regulatory mechanisms.
202 In addition, stVCR is a scalable and robust algorithm under key hyperparameters tuning.

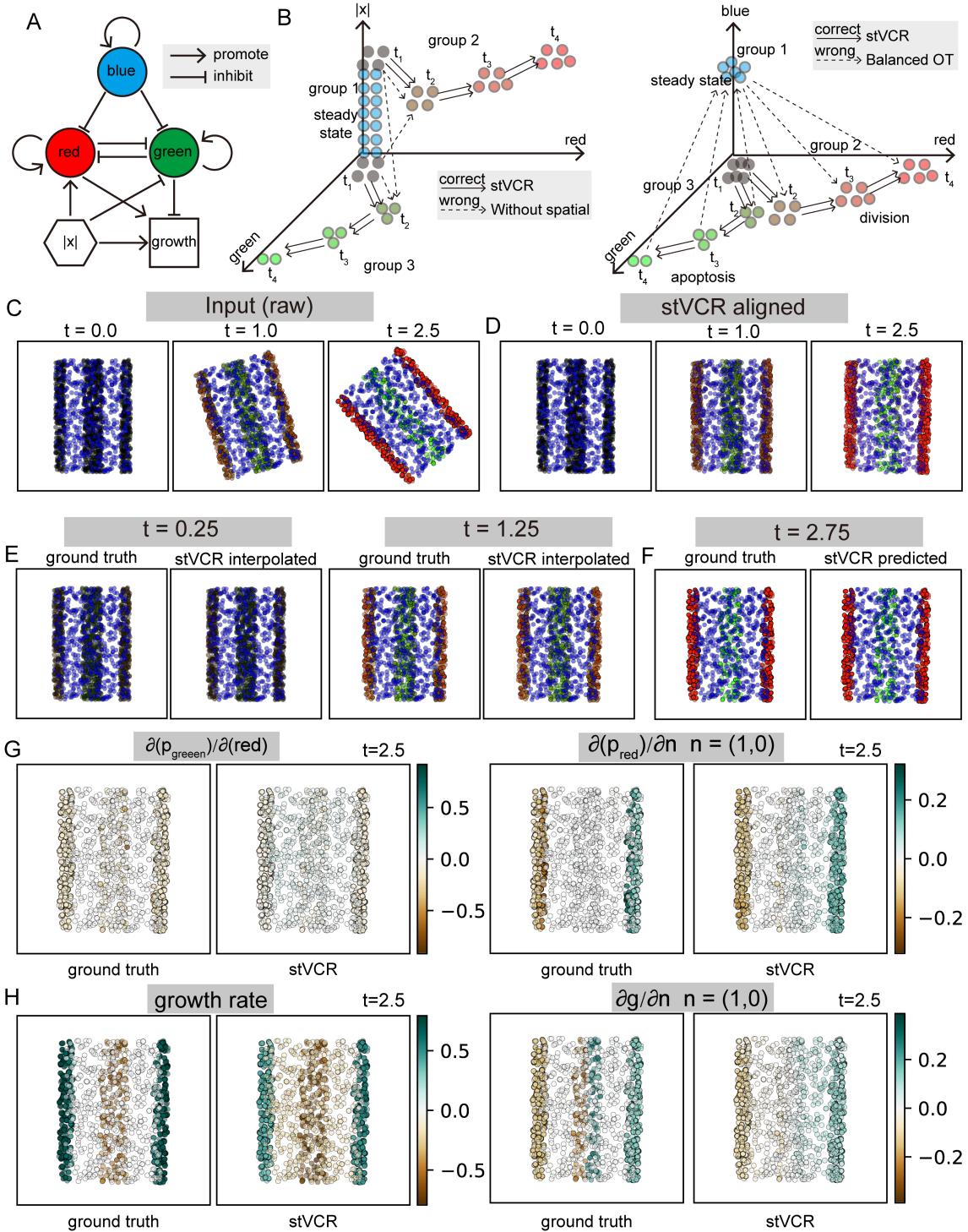


Fig. 2: Benchmark of stVCR on the simulated time-series ST data. **A.** Regulation relationship diagram to generate simulation data. **B.** Dynamic diagram of cell evolution over time. Left: Dynamics of the second group and third group of cells over time in r (red gene expression), g (green gene expression) and $|x|$ (absolute values of spatial coordinates) dimension. Right: Dynamics of all cells over time in r , g and b (blue gene expression) dimension. **C.** Input data to stVCR at $t = 0.0$, 1.0 and 2.5 . The color was determined by the expression of three genes *Red*, *Green* and *Blue*. **D.** The reconstructed results at $t = 0.0$, 1.0 and 2.5 of cells at $t = 0.0$ according to learned dynamics using stVCR. **E.** Results of stVCR interpolation at $t = 0.25$ and $t = 1.25$ and comparison with ground truth. Left: ground truth; Right: stVCR. **F.** Similar to E, but for the results of stVCR prediction at $t = 2.75$. **G.** Left: Derivative of *Green* gene velocity with respect to *Red* gene on cells at $t = 2.5$ of true dynamics and learned dynamics. Right: similar to Left, but for derivative of *Red* with respect to given direction \mathbf{n} , where $\mathbf{n} = (1, 0)$. **H.** Left: Growth rates of cells at $t = 2.5$ of true dynamics and learned dynamics. Right: similar to Left, but for derivative of cell proliferation with respect to given direction \mathbf{n} , where $\mathbf{n} = (1, 0)$.

203 **stVCR reconstructs cell transition and growth dynamics of axolotl brain
204 regeneration**

205 To validate stVCR's capability to learn complex continuous dynamics from spatial snapshots, we
206 next applied stVCR for the axolotl brain regeneration dataset using single-cell Stereo-seq technol-
207 ogy [49]. The dataset includes brain samples at 2, 5, 10, 15, 20, 30, and 60 days post-injury (DPI)
208 to dissect both immediate wound responses and later regeneration processes. According to the
209 original study [49], the regeneration process is mainly concentrated in 2 DPI to 20 DPI, so we took
210 the data of 5 temporal points at 2, 5, 10, 15 and 20 and reconstructed the dynamic regeneration
211 process using stVCR (Fig. 3, Fig. S6 and Fig. S7).

212 To inspect stVCR's effect in aligning different samples, we demonstrated the aligned coordinate
213 at different time points Fig. 3A and Fig. S6A. stVCR aligns the spatial coordinates of the data
214 collected at different time points to the same coordinate system making them blend well (Fig. 3B).
215 We further compared the spatial coordinates of each time point before and after the stVCR align-
216 ment (Fig. 3B and Fig. S6B), and observed that at each time point the data were adjusted to
217 varying degrees based on the inferred rigid-body transformation, especially for the 20 DPI data
218 (Fig. 3C). This suggests the necessity of sample alignment to infer dynamics correctly.

219 To further illustrate the continuous dynamics reconstructed, we trained a classifier based on
220 existing cell annotations using a neural network, which allowed us to annotate cells at unobserved
221 time points (Methods). stVCR recovered the gene expression, physical location, possible division
222 and apoptosis, and possible transformation of the cell type of each cell at each moment (Supplemen-
223 tary Video S5). We visualized the calculated spatial velocity in coordinate space and observed cells
224 in the vicinity of the wound migrating toward the wound when the wound was not yet fully healed,
225 showing a response to injury, especially reactive ependymoglia cell (reaEGC) and microglial cell
226 (MCG) (Fig. 3D).

227 Consistent with cell transition dynamics in response to the injury, we studied the spatial dis-
228 tribution of cell proliferation rates (Fig. 3E and Fig. S6D), which showed that cell proliferation
229 rates in the injured hemispheres were significantly higher than those in the uninjured hemispheres
230 especially near the wound site (Fig. 3E), implying that cell division was more active in the injured
231 hemispheres. This phenomenon may be due to the need to compensate for cells lost due to injury.
232 In addition, we show the interpolation results at 3.5, 7.5, 12.5 and 17.5 DPI (Fig. 3F and Fig. S6C).

233 To highlight stVCR's function to generate unobserved lineage dynamics, we calculated the
234 number of cells of each type over time based on reconstructed continuous trajectories (Fig. S7A).
235 Interestingly, the inferred number of many types of cells does not simply vary monotonically and
236 linearly outside the observed time point. Among the three ependymoglia cell (EGC) types, the
237 number of reaEGC are increasing first and then decreasing, while the population of Wnt^+ EGC
238 ($wntEGC$) and $Sfrp^+$ ($sfrpEGC$) are decreasing first and followed by increasing trend. Such a trend
239 coincides with the original study [49] which revealed that $sfrpEGC$ and $wntEGC$ are transitioned
240 into reaEGC in the earlier stage of immediate wound responses. In contrast, later reaEGC are
241 transitioned into mature neurons (Fig. S7B). In particular, the number of $wntEGC$ decreased while
242 reaEGC population expanded synchronously from 5DPI to 10DPI (Fig. 3G Top).

243 To better visualize the lineage dynamics inferred by stVCR, we constructed the temporal devel-
244 opmental lineage of $wntEGC$ from 5DPI to 10DPI, which allowed us to study the transformation
245 of cell types at time periods other than the observed time points (Fig. 3H Top). The results showed
246 that $wntEGC$ were indeed partially transformed into reaEGC. Next we constructed the temporal
247 developmental profile of reaEGC from 15DPI to 20DPI, and the results showed that it transformed
248 into $wntEGC$ and some neurons in intermediate and mature states (Fig. 3H Bottom), which also
249 coincided with the trend of their cell number (Fig. 3G Bottom). In addition, we noticed a rapid
250 increase in the number of immature neuron (IMN) and dorsal palliumexcitatory neuron (dpEX)
251 when the number of regeneration intermediate progenitor cell (rIPC1) and rIPC2 was sharply
252 decreasing (Fig. S7C). Therefore, we constructed temporal developmental lineages of rIPC1 and
253 rIPC2 from 15DPI to 20DPI, and the results showed that rIPC1 were mainly transitioned into
254 IMN and rIPC2 were mainly transitioned into dpEX (Fig. S7D), which is also consistent with the
255 experimental observations [49].

256 In summary, stVCR describes the complex dynamics of axolotl brain regeneration. In the early
257 wound response phase of an injury, stVCR revealed that $sfrpEGC$ and $wntEGC$ transitioned into
258 reaEGC, and the proliferation of cells in the injured hemisphere became active, especially EGC
259 types in the vicinity of the wound. In addition, reaEGC moved toward the wound. As the wound
260 gradually healed, reaEGC transformed back to $wntEGC$ or differentiated into certain intermediate-
261 state neurons. Eventually, neurons in the intermediate state are then transitioned into mature
262 neurons to compensate for the loss of mature neurons due to injury.

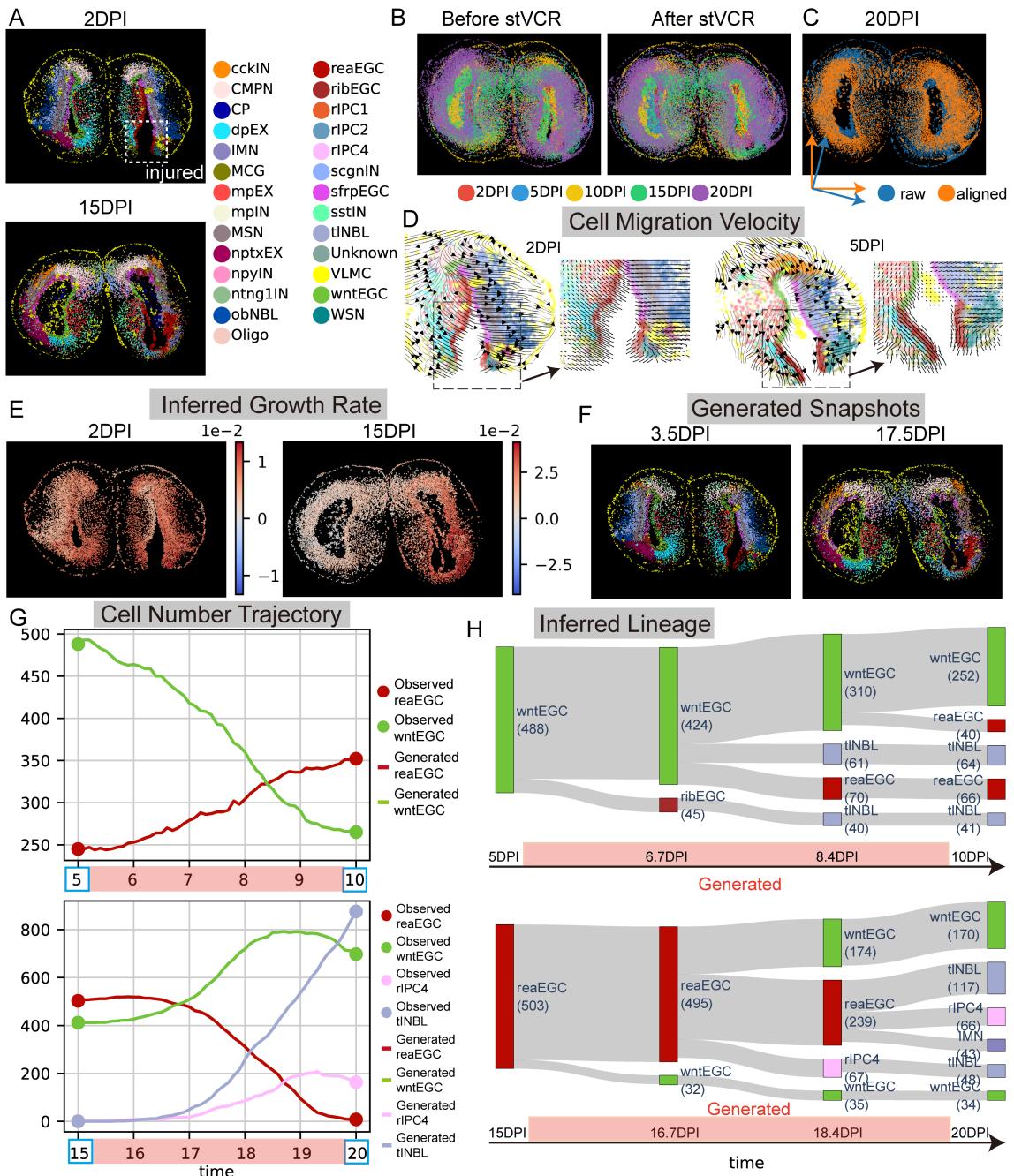


Fig. 3: stVCR reconstructs spatiotemporal dynamics of axolotl brain regeneration. **A.** stVCR aligns the spatial coordinates of data at different time points to the same coordinate system. Top 2DPI; Bottom: 15DPI. Cell type annotations come from the original study. dpEX, dorsal palliumexcitatory neuron; IMN, immature neuron; MCG, microglial cell; MSN, medium spiny neuron; nptxEX, Nptx⁺ lateral pallium excitatory neuron; EGC, ependymoglia cell; reaEGC, reactive EGC; ribEGC, ribosomal EGC; rIPC, regeneration intermediate progenitor cell; sfrpEGC, Sfrp⁺ EGC; tINBL, telencephalon neuroblast; VLMC, vascular leptomeningeal cell; wntEGC, Wnt⁺ EGC. **B.** Comparison of spatial coordinates of the data for all time points before and after stVCR alignment. Left: Before stVCR. Right: After stVCR. **C.** Comparison of spatial coordinates of 20DPI data before and after alignment. **D.** stVCR inferred spatial cell migration velocity at 2DPI and 5DPI injured hemispheres. Left: Streamline plot; Right: Locally amplified grid velocity. **E.** stVCR inferred cell proliferation rate at 2DPI and 15DPI data. **F.** stVCR interpolated snapshots at 3.5DPI and 17.5DPI. Cell type annotations come from the stVCR's time-dependent classifier based on the generated continuous gene expression values. **G.** Changes in cell number over time. Top: reaEGC and wntEGC from 5DPI to 10DPI. Bottom: reaEGC, wntEGC, rIPC4 and tINBL from 15DPI to 20DPI. **H.** stVCR reconstructs the time-varying developmental lineages. The number in parentheses is the number of cells. Top: wntEGC from 5DPI to 10DPI; Bottom: reaEGC from 15DPI to 20DPI.

263 **Gene-level mechanisms of axolotl brain regeneration revealed by stVCR**

264 stVCR reconstructed the dynamics of axolotl brain regeneration process, in which cell migration
265 and reaEGC proliferation play important roles. To further reveal the mechanism on the gene level,
266 we performed stVCR analysis of these two biological processes based on the learned kinetics, and
267 in addition, reconstructed the regulatory network between key genes (Fig. 4, Fig. S8 and Fig. S9).

268 To infer gene-spatial interactions, we used stVCR to identify the top 100 migration driver genes
269 ([Methods](#)). Through Gene Ontology (GO) biological process analysis, we identified several pro-
270 cesses associated with cell migration (Fig. 4A), including neuron migration and negative regulation
271 of homotypic cell-cell adhesion. Neuron migration is a crucial process for the proper positioning
272 of neurons, while the negative regulation of homotypic cell-cell adhesion facilitates cell movement
273 by reducing cell interactions. Interestingly, several marker genes of EGC-type cells identified in
274 the original study, were included in stVCR's migration driver genes, such as *GFAP*, *TNC*, *PTN*,
275 *SLC1A3*, *GLUD1* and *ECM1*. We further visualized the migration driver gene score, i.e. $\partial\|\mathbf{v}\|/\partial q^j$
276 of four example genes *GFAP*, *TNC*, *PTN* and *SLC1A3* (Fig. 4B and Fig. S8A), and showed that
277 they have a promoting effect on cell migration in EGC-type cells. In addition, these genes are
278 indeed highly expressed in EGC-type cells (Fig. 4C and Fig. S8B), especially the *GFAP*, *TNC*
279 genes in reaEGC cells (Fig. 4C).

280 Next, we used stVCR to infer cell proliferation driver genes in reaEGC and ranked the results
281 to obtain the top 100 growth-promoting genes ([Methods](#)). The GO analysis identified several
282 processes closely related to cell proliferation (Fig. S8C) essential for ribosome biogenesis, protein
283 synthesis, and the proper targeting of proteins. Similar to the migration driver gene results, the
284 growth driver genes inferred by stVCR overlapped with several marker genes for EGCs, such as
285 *FABP7* and *SFRP1* (Fig. S8E). We visualized the growth driver gene score $\partial g/\partial q^j$ of these two
286 example genes (Fig. S8D), and showed that they are significantly promoting cell proliferation and
287 division at EGCs in the injured hemisphere.

288 Finally, to utilize stVCR's function to infer dynamic gene interactions ([Methods](#)), we selected
289 some genes (*KRT18*, *ECM1*, *GFAP*, *VIM*, *TNC*, *S100A10* and *HMOX1*) that were highly expressed
290 in reaEGC (Fig. S9A), and investigated the regulatory relationship between these genes 1) at dif-
291 ferent time points and 2) in different cell types, and visualized the gene regulatory network (GRN)
292 (Fig. 4D,E and Fig. S9B,C). We observed that in reaEGC these genes inhibit each other at an
293 early stage (2DPI), followed by a gradual weakening of the inhibition (5DPI; 10DPI), and at a later
294 stage (15DPI) they turn to promote each other (Fig. 4D and Fig. S9B). Thus, stVCR analysis
295 suggests that gene regulatory relationships may be changing over time, even in the same cell type,
296 which may be related to the discovery that reaEGC play different roles in early and late stages of
297 injury. In addition, to investigate the gene regulatory relationships as affected by spatial distribu-
298 tion, we selected wntEGC and sfrpEGC, which are closer to reaEGC, and vascular leptomeningeal
299 cell (VLMC), whereas more apart from reaEGC (Fig. 4E). We recovered the regulatory relation-
300 ships between these cells at 2DPI at the previously mentioned genes (Fig. 4F and Fig. S9C). The
301 results showed that the regulatory relationships of these genes were close in wntEGC and sfrpEGC,
302 and closer to reaEGC, although there were some minor differences (Fig. 4F Left and Middle). In
303 contrast, the regulatory relationship in VLMC was distinct from reaEGC (Fig. 4F Right). Thus,
304 our results suggest that gene regulatory relationships might also be influenced by cell type and
305 spatial location.

306 In summary, our gene-level mechanism of axolotl brain regeneration datasets demonstrates the
307 ability of the stVCR to (1) find migration-driven and growth-driven genes; and (2) infer time-
308 dependent and cell type- dependent GRN, suggesting its advantages over static OT-based methods.

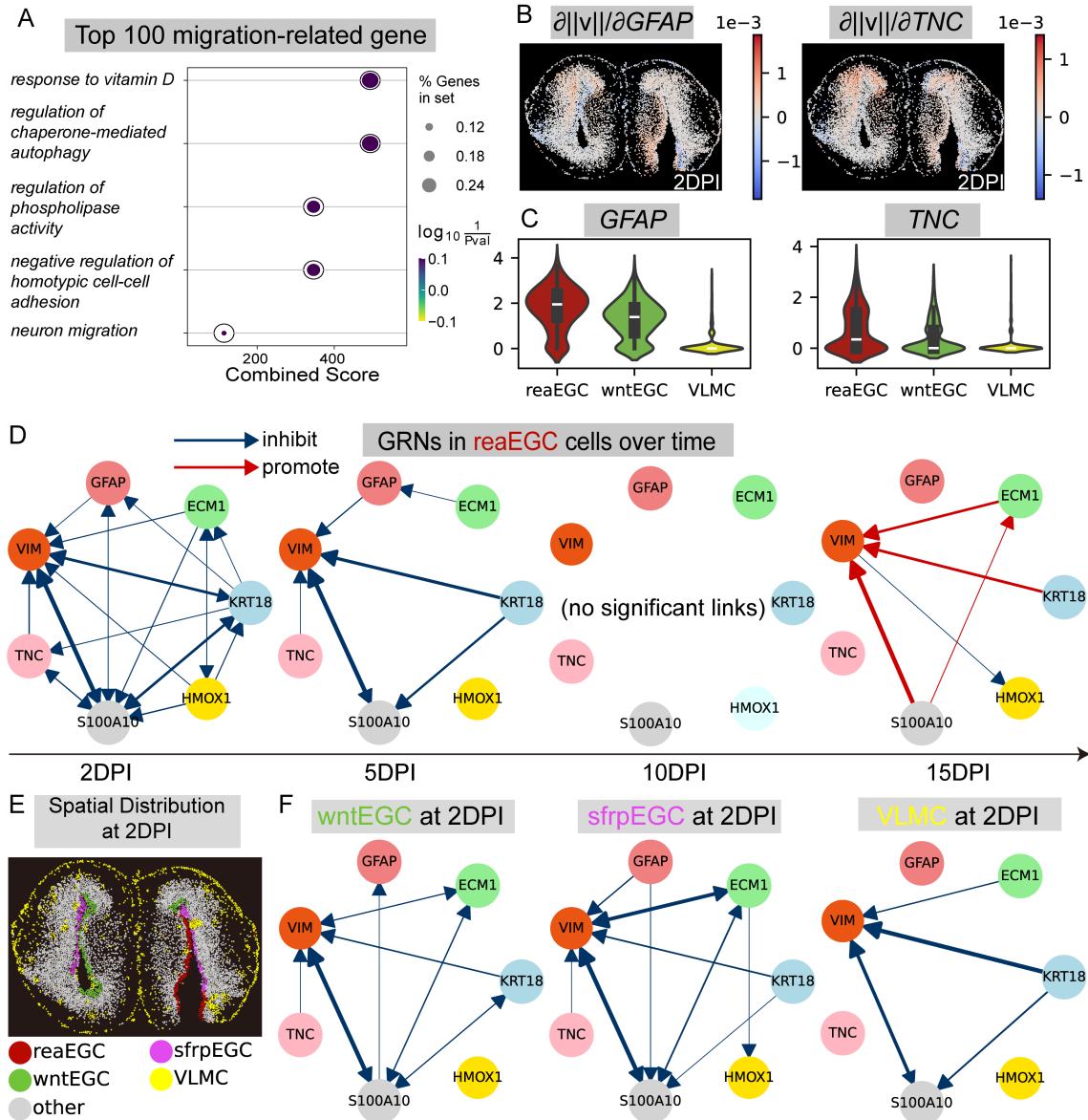


Fig. 4: stVCR gene-level analysis of axolotl brain regeneration. **A.** GO biological process enrichment analysis of the top 100 migration-promoting genes in all cells. **B.** The partial derivative of the norm of spatial velocity $\|v_z\|$ with respect to gene expression. Two example genes in **A**, *GFAP* (Left) and *TNC* (Right). **C.** Violin plots of gene *GFAP* (Left) and *TNC* (Right) expression in reaEGC, wntEGC and VLMC cells. **D.** Gene regulatory networks in reaEGC cells for genes highly expressed in reaEGC. From left to right: 2DPI, 5DPI, 10DPI and 15DPI. **E.** Spatial distribution of reaEGC, wntEGC, sfrpEGC and VLMC cells at 2 DPI. **F.** Similar to **D**, but for sfrpEGC (Left), wntEGC (Middle) and VLMC (Right) cells at 2 DPI.

309 stVCR analysis of 3D Drosophila embryos and organs with optional prior

310 To illustrate the necessity of incorporating known biological priors for ST data with sparse temporal
 311 observations, we begin with a specially designed simulation dataset for benchmarking (Methods and
 312 Supplementary Note 3). The data consists of three types of cells named type 1, type 2, and type 3
 313 (Fig. 5A), where type 3 cells express the *Red* and *Green* genes moderately and are at steady state.
 314 The type 1 cells will first highly express *Red* and *Green* genes, gradually decrease the expression
 315 of *green* genes, and migrate over time, transitioning to the type 2 cells that highly express only
 316 the *Red* gene. When there are sufficient observations and the time intervals are small enough, the
 317 correct result can be inferred by stVCR without any prior (Fig. S11 and Supplementary Video
 318 S8). Indeed, we can theoretically prove that the stVCR reconstructed dynamics will converge to
 319 the true dynamics when the sampling time intervals between consecutive observations converge to
 320 zero, which provides a rigorous guarantee for the algorithm (Supplementary Note 4). Meanwhile,
 321 due to the high cost of ST sequencing, the number of measurement time points is usually fewer

322 and at longer intervals in real experiments. Thus we develop the strategy to allow users to assign
323 known biology priors such as cell state-transition relations and structural continuity of tissues into
324 stVCR ([Methods](#)).

325 To show the effects of adding biological priors, we only input two observations at $t = 0$ and
326 $t = 1$ (Fig. 5A,C) to stVCR. Without prior knowledge, stVCR would infer the wrong type 1 to
327 type 3 and type 3 to type 2 transitions rather than the correct type 1 to type 2 transition (Fig. 5,
328 Supplementary video S6-S7). In comparison, the interpolation results show that stVCR with a type
329 1 to type 2 state-transition prior is closer to the ground truth at unobserved time points (Fig. 5D
330 and Fig. [S10](#)). Overall, the above experimental results illustrate the benefit of adding the correct
331 biological prior into datasets with fewer observations and longer intervals for more accurate results.

332 In order to validate the effectiveness of the strategy of combining biological prior and spatial
333 structure preserving prior on real datasets, we next applied stVCR priors for the 3D Drosophila
334 embryos and organs dataset using single-cell Stereo-seq technology [43]. This datasets include only
335 two time points E7-9h and E9-10h. We set the former moment (E7-9h) in the 3D Drosophila embryo
336 data to $t = 8$ h and the latter moment (E9-10h) to $t = 9.5$ h. The data contains 9 tissues (Fig 5E),
337 and we added biological priors central nervous system (CNS) transition to CNS, midgut transition
338 to midgut, and amnioserosa transition to amnioserosa. Additionally, we added the spatial structure
339 preserving priors for CNS and midgut. We aligned the two observations of data and reconstructed
340 the dynamics between the two moments using the stVCR with the above priors (Supplementary
341 video S9). Fig. 5E shows the aligned 3D Drosophila embryo. We focused on the CNS and midgut
342 (Fig. 5F). We observed that the anterior of the CNS of Drosophila at the latter moment overlapped
343 with the posterior of the CNS at the former moment (Fig. 5F Left), and the midgut consisted of
344 two parts at the former moment and only one part at the latter moment (Fig. 5F Right).

345 To benchmark stVCR with other static OT-based methods and highlight its unique function
346 to model continuous dynamics, we compared the spatial migration dynamic trajectories of CNS
347 reconstructed by stVCR with Spateo [43] and Moscot [41] (Supplementary video S10-S12 and
348 Fig. 5G). Since both Spateo and Moscot are based on static OT and do not directly reconstruct
349 the intermediate process, we obtained the intermediate process by linear interpolation based on
350 the inferred static optimal map. In the spatial trajectory reconstructed by stVCR, the cells in
351 the posterior of CNS gradually migrated to the anterior along the internal structure of the CNS
352 (Supplementary video S10 and Fig. 5G Top row). In Spateo, the cells at the posterior of the
353 CNS were disconnected from the main body and then migrated to the anterior to merge into one
354 part (Supplementary video S11 and Fig. 5G Middle row). One possible explanation is that Spateo
355 is based on static OT and does not constrain the consistency of the intermediate trajectory. In
356 Moscot, cells migrate and aggregate to a few locations (Supplementary video S12 and Fig. 5G
357 Bottom row). We speculate the possible reason is that Moscot tackles the unbalanced OT problem
358 by adding the KL divergence penalty, so that the cells at the first moment correspond to a few
359 cells at the second moment. In addition, we reconstructed the spatial trajectory of midgut using
360 stVCR and compared it with Spateo and Moscot (Supplementary video S13-S15 and Fig. [S12](#)).
361 The results showed that both stVCR and Spateo observed that two parts of the midgut at the
362 first moment merged into one part at the later moment (Supplementary video 13-14 and Fig. [S11C](#)
363 First two row). In Moscot, the spatial trajectories of midgut migrated and aggregated to a small
364 number of locations similarly to the CNS results.

365 In summary, we demonstrate the theoretical convergence of stVCR in large sample cases through
366 mathematical derivations. We also highlight the benefit of adding known state-transition priors
367 and spatial structure-preserving priors in case of limited observations through computations on
368 simulated data. The application in 3D Drosophila datasets indicates the superiority of stVCR
369 compared to existing methods based on static OT.

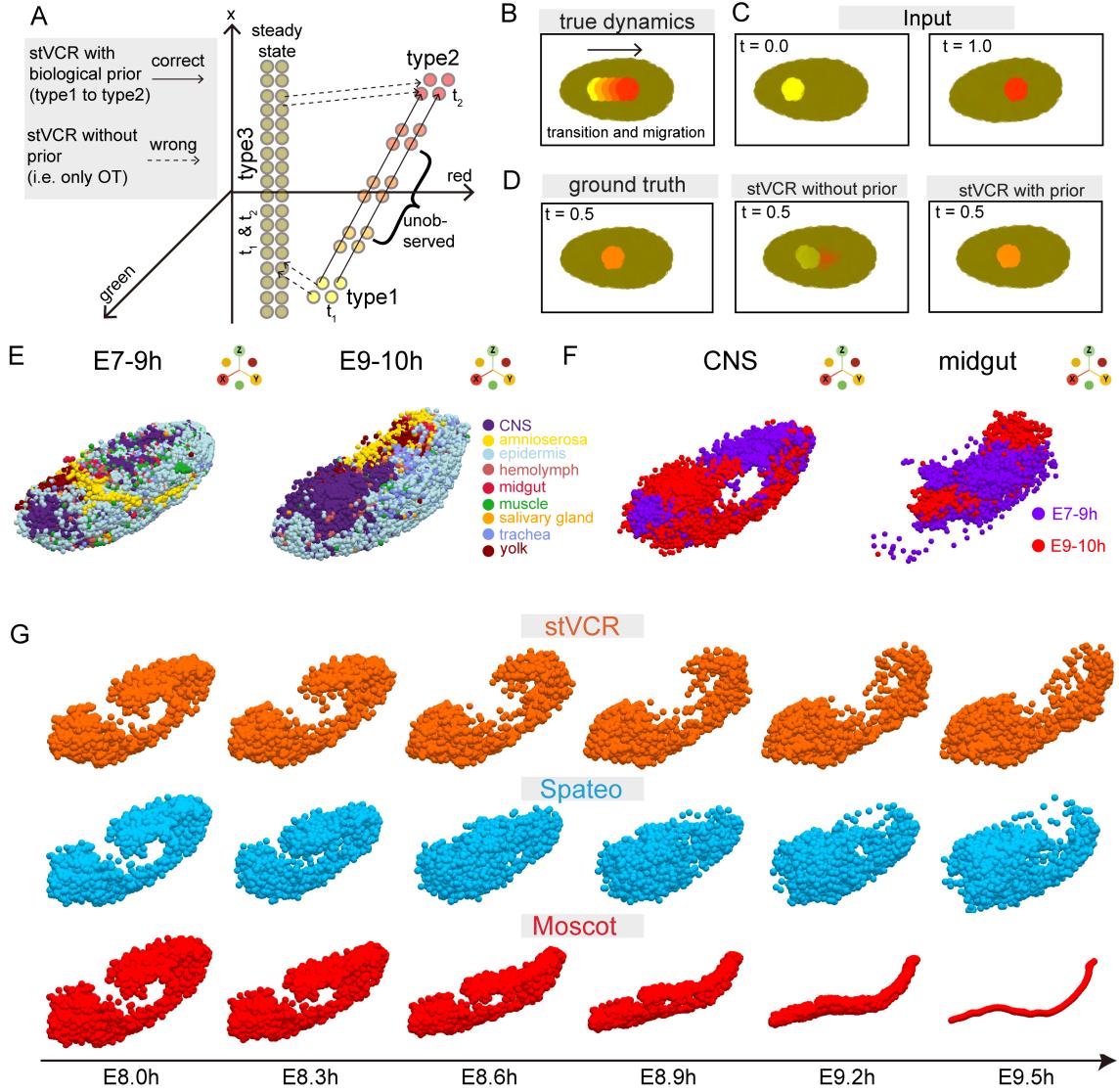


Fig. 5: stVCR analysis of 3D Drosophila embryos and organs with biological state-transition prior and spatial structure preserving prior. **A.** Dynamic diagram of cell evolution over time in simulated data. Longer observation intervals and lack of biological knowledge guidance will result in incorrect type 3 to type 1 and type 2 transitions rather than type 1 to type 2 transitions. **B.** True dynamics of simulated data. Yellow type 1 cells transition and migrate to become red type 2 cells. Brown cells in the background are in steady state. The color was determined by the expression of three genes *Red*, *Green* and *Blue*. **C.** Input data to stVCR at only two time points. Left: $t = 0.0$. Right: $t = 1.0$. **D.** Interpolation results at $t = 0.5$ of stVCR with and without biological prior compared to the ground truth. Left: ground truth. Middle: stVCR without prior. Right: stVCR with prior. **E.** Spatial coordinates of 3D Drosophila embryos after stVCR alignment. Left: E7-9h. Right: E9-10h. CNS, central nervous system. **F.** Spatial coordinates of 3D Drosophila organs after stVCR alignment. Left: CNS. Right: Midgut. **G.** Comparison of spatial migration trajectories of CNS cells. From left to right: E8.0h, E8.3h, E8.6h, E8.9h, E9.2h and E9.5h. From top to bottom: stVCR, Spateo [43] and Moscot [41].

370 Discussion

371 Time-series spatial transcriptomics data has made it possible to reconstruct the entire spatiotem-
372 poral dynamic process of cell fate determination. To dynamically connect unpaired snapshots and
373 align temporal slices from various coordinate systems, we present stVCR to (1) simultane-
374 ously reconstruct and continuously generate cell differentiation, migration in physical space as well as
375 division and apoptosis; (2) align spatial coordinates from data collected at different time points
376 and (3) investigate the complex interactions between cell phenotype transitions, spatial migration,
377 and proliferation.

378 Compared to existing methods that reconstruct trajectories from time-series spatial transcriptomics data [41, 43, 44], stVCR employs Rigid body transformation invariant OT, rather than
 379 GW-OT, making it the first algorithm to use dynamic OT modeling for time-series spatial transcriptomics data. Additionally, stVCR can model optional known biological priors and spatial
 380 structure-preserving priors. Once the entire dynamic process is reconstructed, stVCR can further
 381 perform a series of downstream analyses that are not feasible with static OT.

382 stVCR can be improved and extended from several aspects. For instance, learning both the
 383 low-dimensional representation of gene expression and the dynamics in the low-dimensional simulta-
 384 neously may yield better results [18]. In addition, integrating ODE represented by neural
 385 networks is costly, and some work has attempted to construct simulation-free methods in time-
 386 series single-cell transcriptome data [50], which may also be generalized to spatial transcriptome
 387 data. Incorporating more intrinsic dynamics of gene expression (such as transcription, splicing, and
 388 degradation) and cellular interactions[51, 52] may yield deeper insights into the realistic biological
 389 processes. Lastly, integrating other modalities such as lineage information [53] and multi-omics
 390 measurements [54] could further enhance the trajectory inference. Due to the limitations of 3D time-
 391 series spatial transcriptome data availability, further applications and performance evaluations on
 392 more challenging datasets are needed and will be addressed in future research.

393 Overall, stVCR provides a unified and robust method for generative modeling of time-series
 394 spatial transcriptomics data, which reconstructs the entire spatiotemporal processes of single cells
 395 from a few given snapshots and investigates the complex space-gene regulatory mechanisms.

398 Methods

399 Basic optimal transport formulation setup

400 In essential aspects, we utilize the dynamical optimal transport (OT) formulation to reconstruct
 401 the spatiotemporal dynamics of single cells for snapshot spatial transcriptomics data. Let us first
 402 state the basic OT setup for simple case.

403 Let $\alpha = \sum_{i=1}^n a_i \delta(\mathbf{x} - \mathbf{x}_i)$ and $\beta = \sum_{j=1}^m b_j \delta(\mathbf{y} - \mathbf{y}_j)$ be two probability distributions with
 404 normalized positive vectors $\mathbf{a} = (a_i)$ and $\mathbf{b} = (b_j)$, where $\delta(\cdot)$ stands for the Dirac's δ -function.
 405 One typically couples α and β (or \mathbf{a} and \mathbf{b}) through the Kantorovich's OT problem

$$\mathcal{L}_c(\alpha, \beta) = \min_{P \in U(\mathbf{a}, \mathbf{b})} \langle C, P \rangle := \sum_{i=1}^n \sum_{j=1}^m c_{ij} p_{ij}, \quad (4)$$

406 where $U(\mathbf{a}, \mathbf{b}) := \{P \in \mathbb{R}_+^{n \times m} : P \mathbb{1}_m = \mathbf{a} \text{ and } P^T \mathbb{1}_n = \mathbf{b}\}$ and $C = (c_{ij})$ is the cost matrix. When
 407 $c_{ij} = c(\mathbf{x}_i, \mathbf{y}_j)$ with $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_p^p$, where $\|\mathbf{x}\|_p$ is the vector ℓ^p norm, the p -Wasserstein distance
 408 is defined as $W_p(\alpha, \beta) = (\mathcal{L}_c(\alpha, \beta))^{1/p}$. The optimal coupling matrix component p_{ij} characterizes
 409 the probability that \mathbf{x}_i will be transported to \mathbf{y}_j [55].

410 A special case is $p = 2$, i.e., $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2^2$. In this case, the above OT formulation has an
 411 equivalent dynamic form (Benamou-Brenier form [32]) by minimizing the transport kinetic energy

$$(W_2(\alpha, \beta))^2 = \min_{(\alpha_t(\mathbf{x}), \mathbf{v}_t(\mathbf{x}))} \int_0^1 \int_{\mathbb{R}^d} \|\mathbf{v}_t(\mathbf{x})\|^2 \alpha_t(\mathbf{x}) \, d\mathbf{x} dt, \quad (5)$$

412 where α_t, \mathbf{v}_t satisfies the continuity partial differential equation (PDE)

$$\partial_t \alpha_t(\mathbf{x}) + \nabla \cdot (\mathbf{v}_t(\mathbf{x}) \alpha_t(\mathbf{x})) = 0, \text{ such that } \alpha_{t=0} = \alpha, \alpha_{t=1} = \beta. \quad (6)$$

413 The vector field $\{\mathbf{v}_t(\mathbf{x})\}_{t \in [0,1]}$ is to be optimized such that the boundary conditions are satisfied
 414 and the minimal kinetic energy is achieved.

415 The dynamic formulation can be generalized to the case when the total mass of α and β are not
 416 equal (unbalanced setting). A common approach is to consider the so-called Wasserstein-Fisher-Rao
 417 (WFR) distance [35, 56, 57]

$$(WFR(\alpha, \beta))^2 = \min_{(\alpha_t(\mathbf{x}), \mathbf{v}_t(\mathbf{x}), g_t(\mathbf{x}))} \int_0^1 \int_{\mathbb{R}^d} \left(\|\mathbf{v}_t(\mathbf{x})\|^2 + \tau \|g_t(\mathbf{x})\|^2 \right) \alpha_t(\mathbf{x}) \, d\mathbf{x} dt, \quad (7)$$

418 where $\alpha_t, \mathbf{v}_t, g_t$ satisfies the PDE

$$\partial_t \alpha_t(\mathbf{x}) + \nabla \cdot (\mathbf{v}_t(\mathbf{x}) \alpha_t(\mathbf{x})) = g_t(\mathbf{x}) \alpha_t(\mathbf{x}), \text{ such that } \alpha_{t=0} = \alpha, \alpha_{t=1} = \beta \quad (8)$$

419 See Supplementary Note 1 for a detailed description of the above algorithm.

420 Data preprocessing

421 For gene expression count matrix, we first normalized the raw counts data using size factor. Then
422 we selected the top 2000 highly variable genes. Finally, we utilize an Autocoder to project highly
423 variable genes to low dimensions. Specifically, we represent an encoder $\mathbf{q}_{\text{emb}} = f_{\text{enc}}(\mathbf{q}_{\text{ori}}, \theta_{\text{enc}})$ and a
424 decoder $\tilde{\mathbf{q}}_{\text{ori}} = f_{\text{dec}}(\mathbf{q}_{\text{emb}}, \theta_{\text{dec}})$ using neural networks, where the input of the encoder is the original
425 gene expression \mathbf{q}_{ori} and the output is the low-dimensional embedding \mathbf{q}_{emb} , and the decoder is the
426 opposite. The loss function is taken as

$$L(\theta_{\text{enc}}, \theta_{\text{dec}}) = \frac{1}{N} \sum_{i=1}^N \|\mathbf{q}_{\text{ori},i} - \tilde{\mathbf{q}}_{\text{ori},i}\|_2^2, \quad (9)$$

427 where N refers to the total number of cells. In actual computations, we take the dimension of the
428 low-dimensional embedding \mathbf{q}_{emb} to be 10. Also for simplicity of notation, we still use \mathbf{q} to refer to
429 \mathbf{q}_{emb} to denote the low-dimensional embedding of gene expression unless otherwise stated.

430 Notation conventions in stVCR

431 We use the notation $\mathbf{x} = (x^1, x^2, \dots, x^{d_s}) \in \mathbb{R}^{d_s}$, $\mathbf{q} = (q^1, q^2, \dots, q^{d_g}) \in \mathbb{R}^{d_g}$ for spatial and
432 gene expression variables, respectively. For the considered spatio-temporal transcriptome data, we
433 assume there are n_k cells at time $t = t_k$ for $k = 0, 1, \dots, K$. We denote the available datasets by

$$X^{(k)} = (\mathbf{x}_1^{(k)}, \mathbf{x}_2^{(k)}, \dots, \mathbf{x}_{n_k}^{(k)}) \in \mathbb{R}^{d_s \times n_k}, Q^{(k)} = (\mathbf{q}_1^{(k)}, \mathbf{q}_2^{(k)}, \dots, \mathbf{q}_{n_k}^{(k)}) \in \mathbb{R}^{d_g \times n_k} \quad (10)$$

434 at $t = t_k$, where d_s is the dimension of the spatial coordinates, usually 2 or 3, and d_g is the
435 dimension of the embedded gene expression space ($d_g = 10$ in our setup). In the data analysis, we
436 often need to consider the spatial coordinates after alignment with rigid body transformations at
437 time points $t = t_1, \dots, t_K$, which we denote by

$$\hat{X}^{(k)} = (\hat{\mathbf{x}}_1^{(k)}, \hat{\mathbf{x}}_2^{(k)}, \dots, \hat{\mathbf{x}}_{n_k}^{(k)}), \hat{Q}^{(k)} = Q^{(k)}, k = 1, 2, \dots, K. \quad (11)$$

438 When only rotation R and translation \mathbf{r} are considered, $\hat{\mathbf{x}}^{(k)} = R\mathbf{x}^{(k)} + \mathbf{r}$. The data (empirical)
439 distribution formed by the dataset $(X^{(k)}, Q^{(k)})$ is denoted by

$$\rho^{(k)}(\mathbf{x}, \mathbf{q}) = \frac{1}{n_k} \sum_{i=1}^{n_k} \delta(\mathbf{x} - \mathbf{x}_i^{(k)}, \mathbf{q} - \mathbf{q}_i^{(k)}), \quad (12)$$

440 where $\delta(\cdot)$ stands for the Dirac's δ -function in (\mathbf{x}, \mathbf{q}) -space. Correspondingly, we can define $\hat{\rho}^{(k)}$ for
441 the dataset $(\hat{X}^{(k)}, \hat{Q}^{(k)})$ after alignment. Both $\rho^{(k)}$ and $\hat{\rho}^{(k)}$ are probability distributions.

442 We use the notation $f_t(\mathbf{x}, \mathbf{q})$ or the shorthand f_t to denote the time dependence of a function
443 $f(\mathbf{x}, \mathbf{q}, t)$, while for time dependent coordinates $(\mathbf{x}(t), \mathbf{q}(t))$, we use the notation $(\mathbf{x}^{(t)}, \mathbf{q}^{(t)})$ to be
444 consistent with the notation $(X^{(k)}, Q^{(k)})$. All of the vectors are bold-faced, while the matrices are
445 in normal fonts.

446 Spatial alignment for temporal snapshots

447 Due to the unknown deformation of the tissue during spatial transcriptome (ST) sequencing, we
448 need to align the spatial coordinates of the ST data at different time points before the subsequent
449 analysis. We assume the large scale deformation of the observed coordinates contains only rigid
450 body transformations (i.e., rotations and translations) in this work. We do not follow the Gromov-
451 Wasserstein (GW) optimal transport framework for its over-generality and large computational
452 cost. Yet, we adopt the optimal transport approach in [58] by explicitly modeling the set of invariant

453 manipulations \mathcal{G} , and simultaneously finding the optimal matching of distributions and the optimal
454 transformation through the optimization problem:

$$(P^*, g^*) = \arg \min_{P \in U(\mathbf{a}, \mathbf{b}), g \in \mathcal{G}} \langle C(g), P \rangle \stackrel{\text{def.}}{=} \sum_{i=1}^M \sum_{j=1}^N p_{ij} d(\mathbf{x}_i, g(\mathbf{y}_j)). \quad (13)$$

It can be solved by an iterative algorithm

$$P^{(n)} = \arg \min_{P \in U(\mathbf{a}, \mathbf{b})} \sum_{i=1}^M \sum_{j=1}^N p_{ij} d(\mathbf{x}_i, g^{(n)}(\mathbf{y}_j)), \quad (14)$$

$$g^{(n+1)} = \arg \min_{g \in \mathcal{G}} \sum_{i=1}^M \sum_{j=1}^N p_{ij}^{(n)} d(\mathbf{x}_i, g(\mathbf{y}_j)). \quad (15)$$

455 The subproblem (14) is to solve a static OT.

456 When we take the set $\mathcal{G} = \{(R, \mathbf{r})\}$ as the rigid body transformations, and the distance function
457 d as the Euclidean distance, that is, $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2^2$, the subproblem (15) is a weighted
458 Procrustes problem [59]

$$(R^{(n+1)}, \mathbf{r}^{(n+1)}) = \arg \min_{\substack{R \in \mathbb{R}^{d_s \times d_s}, \mathbf{r} \in \mathbb{R}^{d_s} \\ R^T R = I, \det R = 1}} \sum_{i,j} p_{ij}^{(n)} \|\mathbf{x}_i - (R\mathbf{y}_j + \mathbf{r})\|_2^2, \quad (16)$$

459 where R refers to a rotation matrix, and \mathbf{r} refers to a translation vector.

460 We call this problem *rigid body transformation invariant optimal transport*, and it explicitly
461 models unknown rigid body transformation, making it possible to compute ground cost functions
462 between distributions at different time points. It can be easily modified to model more general
463 cases, e.g., if affine transformations are allowed in the tissue measuring process.

464 Dynamics loss in stVCR

465 We are concerned with the entire dynamics of cell population evolution and therefore use dynamical
466 optimal transport. Since the number of cell population is constantly changing due to cell division
467 and apoptosis during evolution, unbalanced setting is necessary.

468 stVCR reconstructs $\rho_t(\mathbf{x}, \mathbf{q})$ by interpolating the input population densities $\rho^{(k)}$ up to a
469 normalization at $t = t_k$ using a transport-with-growth PDE

$$\partial_t \rho_t(\mathbf{x}, \mathbf{q}) + \nabla \cdot ((\mathbf{v}_t(\mathbf{x}, \mathbf{q}), \mathbf{p}_t(\mathbf{x}, \mathbf{q})) \rho_t(\mathbf{x}, \mathbf{q})) = g_t(\mathbf{x}, \mathbf{q}) \rho_t(\mathbf{x}, \mathbf{q}), \quad (17)$$

470 where $\mathbf{v}_t(\mathbf{x}, \mathbf{q})$ refers to the spatial velocity, $\mathbf{p}_t(\mathbf{x}, \mathbf{q})$ refers to the RNA velocity of cells, and $g_t(\mathbf{x}, \mathbf{q})$
471 refers to the proliferation rate of cells. We take the coordinate system at t_0 as the reference, and
472 assume that the coordinate system at t_k ($k = 1, 2, \dots, K$) differs from the coordinate system at
473 t_0 by a rotation R_k and translation \mathbf{r}_k . Thus the feasible state space \mathcal{S} for the arguments under
474 constraints is

$$\begin{aligned} \mathcal{S}(X^{(0:K)}, Q^{(0:K)}) := & \{(\rho_t, \mathbf{v}_t, \mathbf{p}_t, g_t; R_{1:K}, \mathbf{r}_{1:K}) \mid \partial_t \rho_t + \nabla \cdot ((\mathbf{v}_t, \mathbf{p}_t) \rho_t) = g_t \rho_t, \\ & \rho_{t_0} = \rho^{(0)}, \|\rho_{t_k}\|_1 = n_k/n_0, \bar{\rho}_{t_k} = \hat{\rho}^{(k)}, R_k^T R_k = I, \det R_k = 1, k = 1, 2, \dots, K\}, \end{aligned} \quad (18)$$

475 where $\hat{\rho}^{(k)}$ refers to the distribution formed by $(\hat{X}^{(k)}, \hat{Q}^{(k)})$ after alignment through rigid body
476 transformation (R_k, \mathbf{r}_k) at t_k , $\bar{\rho}_t := \rho_t / \|\rho_t\|_1$ and $\|\rho_t\|_1 := \int \rho_t d\mathbf{x} d\mathbf{q}$ is the total mass of ρ_t . The
477 notation $0:K$ is a shorthand for the indices $\{0, 1, \dots, K\}$. Same rule applies to similar notations in
478 other places.

479 Borrowing the idea of Wasserstein-Fisher-Rao (WFR) distance for unbalanced optimal trans-
480 port [34], we obtain the optimal dynamics $(\rho_t, \mathbf{v}_t, \mathbf{p}_t, g_t)$ and the optimal rigid body transformation
481 (R_k, \mathbf{r}_k) for $k = 1, 2, \dots, K$ by minimizing the kinetic and growth energy

$$\int_{t_0}^{t_K} \int_{\mathbb{R}^{d_g + d_s}} \left(\|\mathbf{v}_t\|^2 + \alpha_{\text{Exp}} \|\mathbf{p}_t\|^2 + \alpha_{\text{Gro}} \|g_t\|^2 \right) \rho_t(\mathbf{x}, \mathbf{q}) d\mathbf{x} d\mathbf{q} dt \quad (19)$$

482 for $(\rho_t, \mathbf{v}_t, \mathbf{p}_t, g_t; R_{1:K}, \mathbf{r}_{1:K}) \in \mathcal{S}(X^{(0:K)}, Q^{(0:K)})$. Direct derivation of the solution of the Feynman-
483 Kac type PDE (17) by characteristics [34, 60] shows the above loss function can be rewritten as
484 the following dynamics loss

$$\mathcal{L}_{\text{Dyn}} = \mathbb{E}_{(\mathbf{x}^{(t_0)}, \mathbf{q}^{(t_0)}) \sim \rho^{(0)}} \int_{t_0}^{t_K} \left(\|\mathbf{v}_t(\mathbf{x}^{(t)}, \mathbf{q}^{(t)})\|^2 + \alpha_{\text{Exp}} \|\mathbf{p}_t(\mathbf{x}^{(t)}, \mathbf{q}^{(t)})\|^2 \right. \\ \left. + \alpha_{\text{Gro}} \|g_t(\mathbf{x}^{(t)}, \mathbf{q}^{(t)})\|^2 \right) w_t[\mathbf{x}, \mathbf{q}] dt, \quad (20)$$

485 where $\mathbf{x}^{(t)}, \mathbf{q}^{(t)}$ satisfies the characteristic ordinary differential equations (ODEs)

$$\frac{d\mathbf{x}^{(t)}}{dt} = \mathbf{v}_t(\mathbf{x}^{(t)}, \mathbf{q}^{(t)}), \quad \frac{d\mathbf{q}^{(t)}}{dt} = \mathbf{p}_t(\mathbf{x}^{(t)}, \mathbf{q}^{(t)}), \quad (\mathbf{x}^{(t)}, \mathbf{q}^{(t)})|_{t=t_0} = (\mathbf{x}^{(t_0)}, \mathbf{q}^{(t_0)}) \quad (21)$$

486 and the weights $w_t[\mathbf{x}, \mathbf{q}] = e^{\int_{t_0}^t g_s(\mathbf{x}^{(s)}, \mathbf{q}^{(s)}) ds}$ satisfies the ODE

$$\frac{d \ln w_t}{dt} = g_t(\mathbf{x}^{(t)}, \mathbf{q}^{(t)}), \quad w_t|_{t=t_0} = 1. \quad (22)$$

487 In fact, the density ρ_t has the representation $\rho_t(\mathbf{x}, \mathbf{q}) = \mathbb{E}_{(\mathbf{x}^{(t_0)}, \mathbf{q}^{(t_0)}) \sim \rho^{(0)}} \delta(\mathbf{x} - \mathbf{x}^{(t)}, \mathbf{q} - \mathbf{q}^{(t)}) w_t[\mathbf{x}, \mathbf{q}]$
488 with the total mass $\|\rho_t\|_1 = \mathbb{E}_{(\mathbf{x}^{(t_0)}, \mathbf{q}^{(t_0)}) \sim \rho^{(0)}} w_t[\mathbf{x}, \mathbf{q}]$. The three parts in \mathcal{L}_{Dyn} correspond to the
489 kinetic energy of spatial migration, \mathcal{L}_{Spa} , kinetic energy of gene expression change, \mathcal{L}_{Exp} , and
490 growth energy, \mathcal{L}_{Gro} , respectively, considered in Eq. (3).

491 The formulation (20) is suitable for the numerical evaluation of the loss function through Monte
492 Carlo particle simulations instead of density estimation in high dimensional space. We also remark
493 that the evolution of (17) can be implemented in the forward (from t_0 to t_K) or backward (from
494 t_K to t_0) way, and similar formulations as above can be obtained correspondingly. Both directions
495 are taken in our computations for a more robust performance.

496 Matching loss in stVCR

497 The constraints $\|\rho_{t_k}\|_1 = n_k/n_0$ and $\bar{\rho}_{t_k} = \hat{\rho}^{(k)}$ in (18) are indeed realized as soft penalties to
498 perform distribution matching. This matching between the total mass, $\{\bar{\rho}_{t_k}\}_{k=1:K}$ and $\hat{\rho}^{(1:K)}$,
499 and the determination of $\{(R_{1:K}, \mathbf{r}_{1:K})\}$ are obtained simultaneously in terms of the rigid body
500 transformation invariant OT.

500 Define the weights $w_{t,j} = w_t[\mathbf{x}_j, \mathbf{q}_j]$ for the cell j with initial state $(\mathbf{x}_j^{(0)}, \mathbf{q}_j^{(0)})$ at $t = t_0$. With
this notation, we have the evolved distribution

$$\rho_t = \frac{1}{n_0} \sum_{j=1}^{n_0} w_{t,j} \delta(\mathbf{x} - \mathbf{x}_j^{(t)}, \mathbf{q} - \mathbf{q}_j^{(t)}).$$

501 The total mass of ρ_t is $\sum_{j=1}^{n_0} w_{t,j}/n_0$, which no longer corresponds to a probability distribution.
502 This non-normalization is due to the cell proliferation.

503 The matchings between the total mass, and the normalized distributions $\{\bar{\rho}_{t_k}\}_k$ and $\{\hat{\rho}^{(k)}\}_k$ is
504 performed through the loss function

$$\mathcal{L}_{\text{Mch}} = \sum_{k=1}^K \left(W_2(\bar{\rho}_{t_k}, \hat{\rho}^{(k)}) \right)^2 + \kappa_{\text{Gro}} \sum_{k=1}^K \frac{|\sum_{j=1}^{n_0} w_{t_k,j} - n_k|}{n_k}, \quad (23)$$

where the second term penalizes the total mass mismatch through their relative error, and the
first term penalizes the normalized distribution mismatch which we take as the square of the
2-Wasserstein distance between $\{\bar{\rho}_{t_k}\}_k$ and $\{\hat{\rho}^{(k)}\}_k$:

$$\left(W_2(\bar{\rho}_{t_k}, \hat{\rho}^{(k)}) \right)^2 := \min_{P \in U(\bar{\rho}_{t_k}, \hat{\rho}^{(k)})} \langle C^{(k)}, P \rangle.$$

Naturally, we take the cost matrix $C^{(k)}$ by integrating gene expression and spatial coordinates with
components

$$c_{ij}^{(k)} = \kappa_{\text{Exp}} \|\mathbf{q}_i^{(t_k)} - \hat{\mathbf{q}}_j^{(k)}\|_2^2 + (1 - \kappa_{\text{Exp}}) \|\mathbf{x}_i^{(t_k)} - \hat{\mathbf{x}}_j^{(k)}\|_2^2, \quad i = 1 : n_0, j = 1 : n_k$$

505 where $\hat{\mathbf{x}}_j^{(k)} = R_k \mathbf{x}_j^{(k)} + \mathbf{r}_k$ is the coordinate after the alignment manipulation, κ_{Exp} is an adjustable
506 hyperparameter that measures the importance of gene expression or spatial coordinates.

507 Modeling known cell type transition prior

508 Modeling known biological prior can help to infer the spatiotemporal dynamics of single cells more
509 accurately, especially for situations where there are few observed time points or long time intervals
510 between adjacent time points. For known permissible cell type transitions, we grouped cells with
511 permissible transitions at different time points into the same type. We use $\hat{\rho}_c^{(k)}$ to refer to the
512 empirical distribution of type c cells in the observed data (after rotation and translation) at the
513 time point t_k , and $\bar{\rho}_{t_k, c}$ to refer to the normalized distribution of type c cells evolving from t_0 to
514 t_k . Assuming a total of C types, we realize the distribution matching for each known permissible
515 cell type transitions, i.e.,

$$\|\rho_{t_k, c}\|_1 = n_{k, c} / n_{0, c}, \quad \bar{\rho}_{t_k, c} = \hat{\rho}_c^{(k)}, \quad k = 1 : K, \quad c = 1 : C, \quad (24)$$

516 where $n_{0, c}$ and $n_{k, c}$ are the number of type c cells at time t_0 and t_k , respectively. In this cir-
517 cumstance, the feasible state space $\mathcal{S}(X^{(0:K)}, Q^{(0:K)})$ must be modified correspondingly, and the
518 matching loss (23) has to be revised as

$$\mathcal{L}_{\text{Mch}} = \sum_{k=1}^K \sum_{c=1}^C (W_2(\bar{\rho}_{t_k, c}, \hat{\rho}_c^{(k)}))^2 + \kappa_{\text{Gro}} \sum_{k=1}^K \sum_{c=1}^C \frac{|\sum_{j=1}^{n_{0, c}} w_{t_k, j} - n_{k, c}|}{n_{k, c}}, \quad (25)$$

519 Modelling spatial structure preserving prior

520 Organ development obeys physical rules, and its spatial structure cannot change at will. For exam-
521 ple, some organs remain connected as they develop without breaking into multiple parts. However,
522 when the time interval between observations is long, usual OT-methods often produce results that
523 violate the physical rules in order to minimize the energy, so we need to explicitly model this prior
524 to maintain the spatial structure of the specified organ. For the organs that need to be spatially
525 structure-preserved, we first construct a graph according to spatial coordinates and gene expres-
526 sion. More specifically, at $t = t_0$, we first construct a k_{spa} nearest-neighbor graph using the spatial
527 coordinates, and then find the k_{nbr} cells with the closest gene expression as the final neighbors
528 from the k_{spa} spatial neighbors of each cell in the specified structure to complete the graph con-
529 struction. We denote the index set of these k_{nbr} neighbor cells, which is a subset of $\{1 : n_0\}$,
530 by $\mathcal{N}(\mathbf{x}^{(t_0)}, \mathbf{q}^{(t_0)})$ for each cell $(\mathbf{x}^{(t_0)}, \mathbf{q}^{(t_0)})$ in the specified structure at $t = t_0$. In order to keep
531 the specified organ development obeying the physical rules, we add the optional spatial structure
532 preserving loss function

$$\mathcal{L}_{\text{SSP}}^{(\text{opt})} = \frac{n_{\text{ss}}}{n_0} \mathbb{E}_{(\mathbf{x}^{(t_0)}, \mathbf{q}^{(t_0)}) \sim \tilde{\rho}^{(0)}} \frac{1}{k_{\text{nbr}}} \sum_{i \in \mathcal{N}(\mathbf{x}^{(t_0)}, \mathbf{q}^{(t_0)})} \int_{t_0}^{t_K} \left\| \frac{d}{dt} |\mathbf{x}_i^{(t)} - \mathbf{x}^{(t)}| \right\|^2 w_t[\mathbf{x}, \mathbf{q}] dt, \quad (26)$$

533 where $\tilde{\rho}^{(0)}$ is the probability distribution for the cells in the specified structure and n_{ss} is the
534 is the number of cells in the specified structure. $\mathcal{L}_{\text{SSP}}^{(\text{opt})}$ preserves spatial structure by promoting as
535 little change as possible in the distance between spatial trajectories of neighboring cells. It can be
536 understood as a continuous time limit of the Gromov-Wasserstein OT distance.

537 Deep learning-based solver in stVCR

Optimizing the total loss \mathcal{L} in (2) is generally difficult, we use deep learning to find an approximate
solution. For the arguments $(\rho_t, \mathbf{v}_t, \mathbf{p}_t, g_t; R_{1:K}, \mathbf{r}_{1:K})$ in the optimization, ρ_t is indeed determined
by $(\mathbf{v}_t, \mathbf{p}_t, g_t)$. We suppose that changes in gene expression, cell migration, and cell proliferation
depend on current gene expression and spatial location, and are parameterized by neural networks,
i.e., $\mathbf{v}_t(\mathbf{x}, \mathbf{q}) = \mathbf{v}(\mathbf{x}, \mathbf{q}, t; \theta_v)$, $\mathbf{p}_t(\mathbf{x}, \mathbf{q}) = \mathbf{p}(\mathbf{x}, \mathbf{q}, t; \theta_p)$ and $g_t(\mathbf{x}, \mathbf{q}) = g(\mathbf{x}, \mathbf{q}, t; \theta_g)$, where $\theta :=$
 $(\theta_v, \theta_p, \theta_g)$ are the parameters of the neural networks. For the rigid body transformations, the
rotation matrix R can be explicitly parameterized. In 2D case, we take

$$R = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix},$$

where α is the rotation angle. In 3D case, we parameterize the rotation matrix R by the Euler angles α , β , and γ with $R = R_x(\alpha)R_y(\beta)R_z(\gamma)$, where

$$R_x(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}, \quad R_y(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}, \quad R_z(\gamma) = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

538 Therefore, the overall parameters we need to optimize are the neural network parameters θ , as well
539 as the rotation angles α_k (or Euler angles α_k , β_k and γ_k in 3D case) and translation vectors \mathbf{r}_k for
540 $k = 1 : K$.

541 With the above parameterization, the constraint PDE $\partial_t \rho_t + \nabla \cdot ((\mathbf{v}_t, \mathbf{p}_t) \rho_t) = g_t \rho_t$ with initial
542 value $\rho_{t=t_0} = \rho^{(0)}$ can be solved by the particle approximations through the ODEs (21) and (22) by
543 replacing the functions $(\mathbf{v}_t, \mathbf{p}_t, g_t)$ with $(\mathbf{v}(\mathbf{x}, \mathbf{q}, t; \theta_v), \mathbf{p}(\mathbf{x}, \mathbf{q}, t; \theta_p), g(\mathbf{x}, \mathbf{q}, t; \theta_g))$. The evaluation of
544 the integral in (20) can be also performed by numerical quadrature in time with the parameterized
545 $(\mathbf{v}, \mathbf{p}, g)$. Finally, the overall loss

$$\mathcal{L}(\theta, \alpha_{1:K}, \beta_{1:K}, \gamma_{1:K}, \mathbf{r}_{1:K}) = \mathcal{L}_{\text{Dyn}} + \lambda_{\text{Mch}} \mathcal{L}_{\text{Mch}} + \lambda_{\text{SSP}} \mathcal{L}_{\text{SSP}}^{(\text{opt})} \quad (27)$$

546 can be evaluated through the deep learning approximations. The optimization of the parameters
547 are achieved by the Adam optimizer [61]. In (27), \mathcal{L}_{Dyn} and \mathcal{L}_{Mch} are required and $\mathcal{L}_{\text{SSP}}^{(\text{opt})}$ is optional.
548 Whether or not to include cell type transition prior in \mathcal{L}_{Mch} is also optional.

549 Parameter initialization and training details

550 The structure of our neural networks $\mathbf{v}(\mathbf{x}, \mathbf{q}, t; \theta_v)$, $\mathbf{p}(\mathbf{x}, \mathbf{q}, t; \theta_p)$ and $g(\mathbf{x}, \mathbf{q}, t; \theta_g)$ use multilayer
551 perceptron (MLP) with 128 neurons per layer for a total of 6 layers. To obtain an initial rotation and
552 translation, We downsample 5000 cells in the data, and then use static rigid-body transformation
553 invariant OT on the downsampled data. The training process involves solving the ODEs represented
554 by the neural network, that is neural ODE, which we implement using the torchdiffeq package [48].
555 It also involves computing the static OT distance, which we implement using the POT package [47].
556 Finally, in order to enhance the matching with the observed data at each time point and improve
557 the robustness of the algorithm (the new organs or cell types may appear in later time points),
558 we not only compute the loss function defined by (27) by sampling the data from t_0 to later time
559 points, but also compute a similar loss function by sampling the data from other time points t_k ,
560 evolving forward and backward. In actual computations, we choose to sample from the first time
561 point t_0 and the last time point t_K to balance the accuracy and computational overhead.

562 Time-dependent cell type classifier

563 After we recovered the entire cell dynamics, we could obtain the gene expression and spatial location
564 of cells at unobserved moments. In order to obtain type annotations for these cells at unobserved
565 moments, we train a time-dependent cell type classifier using a neural network in cells that already
566 have cell type annotations, so that we can use it for cell type annotation at unobserved moments.
567 Specifically, we represent a classifier by a neural network $\mathbf{f} = \mathbf{f}_{\text{type}}(\mathbf{x}, \mathbf{q}, t; \theta_{\text{type}})$. The inputs are
568 gene expression \mathbf{q} , spatial coordinates \mathbf{x} , and time t , and the outputs are probability distributions
569 indicating the probability with which the cell (\mathbf{x}, \mathbf{q}) at time t belongs to each cell type. The loss
570 function is taken as

$$\begin{aligned} L(\theta_{\text{type}}) &= \frac{1}{N} \sum_{i=1}^N \left(H(\mathbf{y}_i, \mathbf{f}_i) + \lambda \left\| \frac{\partial \mathbf{f}_i}{\partial t} \right\|_1 \right) \\ &= \frac{1}{N} \sum_{i=1}^N \left(\left(- \sum_{j=1}^{K_t} y_{i,j} \log(f_{i,j}) \right) + \lambda \left\| \frac{\partial \mathbf{f}_i}{\partial t} \right\|_1 \right), \end{aligned} \quad (28)$$

571 where $H(\cdot, \cdot)$ is the cross entropy, $\mathbf{f}_i := \mathbf{f}(\mathbf{x}_i, \mathbf{q}_i, t)$, \mathbf{y}_i is the annotated cell type for cell i , K_t is the
572 total number of cell types, and $y_{i,j}$, $f_{i,j}$ is the annotated and trained probabilities that the cell i is
573 of type j . The first term in (28) is to force the trained classifier to be consistent with the known
574 cell type annotations, while the second term is a regularization to promote the smoothness of the
575 neural network classifier in time through an ℓ^1 norm of the time derivative on observation points.

576 **Downstream analysis**

577 For notational simplicity, we omit the notation for the parameters of the neural networks in the
 578 following description. When we use the stVCR to obtain the spatial velocity $\mathbf{v}(\mathbf{x}, \mathbf{q}_{\text{emb}}, t)$, the gene
 579 expression velocity $\mathbf{p}_{\text{emb}}(\mathbf{x}, \mathbf{q}_{\text{emb}}, t)$ in the embedded space, the cell proliferation rate $g(\mathbf{x}, \mathbf{q}_{\text{emb}}, t)$,
 580 and the time-dependent classifier $f_{\text{type}}(\mathbf{x}, \mathbf{q}_{\text{emb}}, t)$, we can perform a series of downstream analyses,
 581 including interpolation, prediction, and study of cell-specific gene-gene, gene-space and space-space
 582 interaction and the effects of gene and spatial migration on cell proliferation, etc. Below we give a
 583 detailed description of some downstream analysis tasks.

584 **Recovery of cell evolution rates in original space**

585 As stated in the data preprocessing step, the original gene expression and its dimension-reduced
 586 expression value in embedded space, \mathbf{q}_{ori} and \mathbf{q}_{emb} , are related by the trained encoder-decoder
 587 neural network $f_{\text{enc}}, f_{\text{dec}}$ as $\mathbf{q}_{\text{emb}} = f_{\text{enc}}(\mathbf{q}_{\text{ori}})$ and $\mathbf{q}_{\text{ori}} = f_{\text{dec}}(\mathbf{q}_{\text{emb}})$. With this representation, we
 588 can easily recover the spatial velocity, gene expression velocity and proliferation rate in original
 589 gene expression space:

$$\begin{aligned} \mathbf{p}_{\text{ori}}(\mathbf{x}, \mathbf{q}_{\text{ori}}, t) &= \frac{1}{2\delta_t} \left(f_{\text{dec}}(f_{\text{enc}}(\mathbf{q}_{\text{ori}}) + \delta_t \mathbf{p}_{\text{emb}}(\mathbf{x}, f_{\text{enc}}(\mathbf{q}_{\text{ori}}), t)) \right. \\ &\quad \left. - f_{\text{dec}}(f_{\text{enc}}(\mathbf{q}_{\text{ori}}) - \delta_t \mathbf{p}_{\text{emb}}(\mathbf{x}, f_{\text{enc}}(\mathbf{q}_{\text{ori}}), t)) \right), \\ \mathbf{v}(\mathbf{x}, \mathbf{q}_{\text{ori}}, t) &= \mathbf{v}(\mathbf{x}, f_{\text{enc}}(\mathbf{q}_{\text{ori}}), t), \quad g(\mathbf{x}, \mathbf{q}_{\text{ori}}, t) = g(\mathbf{x}, f_{\text{enc}}(\mathbf{q}_{\text{ori}}), t). \end{aligned} \quad (29)$$

590 **Interpolation and prediction**

591 For some interpolation time t_{int} which the user is interested in, we choose the observation time t_{obs}
 592 that is closest to t_{int} . Without losing generality, we assume that $t_{\text{obs}} < t_{\text{int}}$. We take the observed
 593 data \mathbf{q}_i and \mathbf{x}_i at t_{obs} as the initial values, and then evolve according to the dynamics learned by
 594 stVCR to obtain the interpolation result. More specifically, for the i^{th} cell to evolve from time t to
 595 $t + \delta t$, we first compute

$$\mathbf{x}_i^{(t+\delta t)} = \mathbf{x}_i^{(t)} + \mathbf{v}_t(\mathbf{x}_i^{(t)}, \mathbf{q}_{i,\text{emb}}^{(t)})\delta t, \quad \mathbf{q}_{i,\text{emb}}^{(t+\delta t)} = \mathbf{q}_{i,\text{emb}}^{(t)} + \mathbf{p}_t(\mathbf{x}_i^{(t)}, \mathbf{q}_{i,\text{emb}}^{(t)})\delta t, \quad (30)$$

596 then generate a random number $U \sim \text{Uniform}[0, 1]$: if $g_t(\mathbf{x}_i^{(t)}, \mathbf{q}_{i,\text{emb}}^{(t)}) > 0$ and $U < g_t(\mathbf{x}_i^{(t)}, \mathbf{q}_{i,\text{emb}}^{(t)})\delta t$,
 597 perform cell division; if $g_t(\mathbf{x}_i^{(t)}, \mathbf{q}_{i,\text{emb}}^{(t)}) < 0$ and $U < -g_t(\mathbf{x}_i^{(t)}, \mathbf{q}_{i,\text{emb}}^{(t)})\delta t$, then perform cell apoptosis.
 598 The prediction task is completely similar to the interpolation task, which only needs to take the
 599 data of the last time point as the initial value.

600 **Cell specific gene-gene, gene-space and space-space interaction**

601 We can study the interaction between genes and space from the learned quantities. For a cell i , as
 602 well as the target gene j and the source gene k of interest, we can calculate $\partial p_t^j / \partial q^k|_{(\mathbf{x}, \mathbf{q})=(\mathbf{x}_i, \mathbf{q}_i)}$,
 603 which represents how increased expression of gene k changes the velocity of gene j in cell i . If it is
 604 positive, it means that gene k promotes gene j in cell i , otherwise gene k inhibits gene j .

605 Similarly, for cell i , and axes j and k of interest, we can calculate $\partial v_t^j / \partial x^k|_{(\mathbf{x}, \mathbf{q})=(\mathbf{x}_i, \mathbf{q}_i)}$ to study
 606 space-space interaction. This is used in Spateo [43], although their spatial vector fields $\mathbf{v}(\mathbf{x})$ are
 607 independent of gene expression \mathbf{q} and time t .

608 In stVCR, gene expression \mathbf{q} and spatial coordinates \mathbf{x} interact, which means we can study
 609 how cell migration affects gene expression. For cell i , a target gene j , and a given unit direction
 610 $\mathbf{n} = (n^1, n^2, n^3)$ (or $\mathbf{n} = (n^1, n^2)$ for 2D case), we can calculate the directional derivative

$$\frac{\partial p_t^j}{\partial \mathbf{n}} = \frac{\partial p_t^j}{\partial x^1} n^1 + \frac{\partial p_t^j}{\partial x^2} n^2 + \frac{\partial p_t^j}{\partial x^3} n^3$$

611 at $(\mathbf{x}, \mathbf{q}) = (\mathbf{x}_i, \mathbf{q}_i)$, which describes how the migration of cell i to the given direction \mathbf{n} affects the
 612 expression of gene j , with positive values representing promotion and negative values the opposite.
 613 In addition, we can study how gene expression affects cell migration. For cell i and gene j of
 614 interest, we can define

$$\mathbf{n}_{i,q^j} := \left(\frac{\partial v_t^1}{\partial q^j}, \frac{\partial v_t^2}{\partial q^j}, \frac{\partial v_t^3}{\partial q^j} \right),$$

608 which describes that increased expression of gene j will promote the cell i migration in the direction
 609 $\mathbf{n}_{i,q^j}/\|\mathbf{n}_{i,q^j}\|$ and $\|\mathbf{n}_{i,q^j}\|$ indicates the promotion intensity.

Finally, we can define partial derivative of the norm of cell migration velocity with respect to gene $\partial\|\mathbf{v}_i\|/\partial q^j$ of cell i and gene j as migration driver gene score based on the above calculations

$$\frac{\partial\|\mathbf{v}_i\|}{\partial q^j} = \frac{1}{\|\mathbf{v}_i\|} \left(v_i^1 \frac{\partial v_i^1}{\partial q^j} + v_i^2 \frac{\partial v_i^2}{\partial q^j} + v_i^3 \frac{\partial v_i^3}{\partial q^j} \right),$$

610 where $\mathbf{v}_i := \mathbf{v}_i(\mathbf{x}_i, \mathbf{q}_i)$.

611 Cell specific effects of gene and spatial migration on growth

612 For cell i and gene j of interest, we can calculate $\partial g_t/\partial q^j|_{(\mathbf{x}, \mathbf{q})=(\mathbf{x}_i, \mathbf{q}_i)}$, which describes the effect
 613 of gene j on cell proliferation, where a positive value means promoting, and a negative value the
 614 opposite. This concept is used in TIGON [34]. However, their growth function $g_t(\mathbf{q})$ does not
 615 depend on spatial coordinates \mathbf{x} , so the effect of cell spatial migration on growth cannot be studied.

In stVCR, cell proliferation depends on both its gene expression and its spatial location, so we can also study how cell migration affects its growth. For cell i and a given unit direction $\mathbf{n} = (n^1, n^2, n^3)$, we can calculate the directional derivative

$$\frac{\partial g_t}{\partial \mathbf{n}} = \frac{\partial g_t}{\partial x^1} n^1 + \frac{\partial g_t}{\partial x^2} n^2 + \frac{\partial g_t}{\partial x^3} n^3,$$

616 which describes how cell migration in the direction \mathbf{n} affects its proliferation.

617 Finally, we can define partial derivatives of the cell proliferation rate with respect to gene j for
 618 cell i , $\partial g_t/\partial q^j|_{(\mathbf{x}, \mathbf{q})=(\mathbf{x}_i, \mathbf{q}_i)}$, as growth driver gene score based on the above calculations.

619 Temporal Developmental lineage construction

620 Since we can interpolate for any time points of interest and can annotate cells at these unob-
 621 served time points with the time-dependent classifier $f_{\text{type}}(\mathbf{x}, \mathbf{q}_{\text{emb}}, t)$, we can construct temporal
 622 developmental lineages of cells of interest.

623 Simulated data setup

624 In this paper, two simulation data are included. The first corresponding to Fig. 2 and the second
 625 corresponding to Fig. 5 and Fig. S11. Below, we will introduce how these three simulation data
 626 are generated.

627 For the first simulation data corresponding to Fig. 2, the dynamics consists of three genes *Red*,
 628 *Green* and *Blue* and two spatial coordinates x and y , whose regulation is shown in Fig. 2A. Such
 629 a regulatory relationship can be described by a system of stochastic differential equations for gene
 630 expression and spatial coordinates

$$\begin{aligned} \frac{dr}{dt} &= f_1(x) \left(\frac{r^n}{1+r^n} + \frac{1}{1+g^n+10b^n} - r \right) + 0.05w_t, \\ \frac{dg}{dt} &= f_2(x) \left(\frac{g^n}{1+g^n} + \frac{1}{1+r^n+10b^n} - g \right) + 0.05w_t, \\ \frac{db}{dt} &= \frac{b^2}{1+b^2} - 0.4b + 0.01w_t, \\ \frac{dx}{dt} &= \text{sign}(x) \exp(-4b) \exp(-4g) (r-2)^2 r^2 + 0.001w_t, \\ \frac{dy}{dt} &= 0, \end{aligned} \tag{31}$$

631 where r , g and b refer to gene *Red*, *Green* and *Blue*, $f_1(x)$ and $f_2(x)$ refer to the factors that depend
 632 on the coordinates x , and w_t is a standard Brownian motion. In the computation, we take $n = 4$ to
 633 simulate the nonlinear regulation between genes. If we ignore these two x -related factors $f_1(x)$ and
 634 $f_2(x)$, r and g are a toggle switch of equal status. We hope $|x| > 1$, $f_1(x) > 1$ and $f_2(x) = 1$, this
 635 will promote *Red* expression. Conversely, when $|x| < 1$, $f_2(x) > 1$ and $f_1(x) = 1$, this will promote
 636 *Green* expression. The specific forms of $f_1(x)$ and $f_2(x)$ are detailed in the Supplementary Note 2.

637 cell proliferation modeled as division and apoptosis:

$$\text{proliferation rate} = g_{\text{division}} - g_{\text{apoptosis}} = \frac{2r}{1+r} \frac{|x|}{1+|x|} - \frac{g}{1+g}, \quad (32)$$

638 which means that the gene *Red* and migrating outward in the horizontal direction will promote cell
 639 proliferation while the gene *Green* will inhibit cell proliferation. We sampled three groups of cells
 640 at the initial moment and discretized time in order to obtain data through numerical simulations.
 641 We simulate gene expression and spatial coordinates according to the forward Euler scheme and
 642 simulate cell division and apoptosis by numerically simulating a special Markov process, the birth
 643 and death process. Specific details of the sampling of initial values and numerical simulation can
 644 be found in the Supplementary Note 2. We evolved the cells at the initial time point from $t = 0$ to
 645 $t = 3.0$ according to the given dynamics and took a total of six time points at $t = 0, 0.5, 1.0, 1.5, 2.0$
 646 and 2.5 as observations. Considering that the spatial coordinates obtained at different time points
 647 using spatial transcriptome sequencing are not in the same coordinate system, we rotated the
 648 spatial coordinates of the second to sixth time points counterclockwise by 8, 16, 24, 32 and 40
 649 degrees, respectively.

650 For the second simulation data corresponding to Fig. 4 and Fig. S11, similar to the first, the
 651 dynamics consists of three genes *Red*, *Green* and *Blue* and two spatial coordinates x and y . There
 652 are two types of cells in this simulation data, background cells and migratory cells. The background
 653 cells are in steady state, and their spatial coordinates and gene expression do not change with
 654 time. The migratory cells transited from high expression of *Red* and *Green* gene to high expression
 655 of only *Red* gene while moving to the right. Initial values for background cells and migratory cells
 656 can be found in the Supplementary Note 2. Gene expression and spatial coordinates of migrating
 657 cells evolve over time and obey stochastic dynamical systems

$$\begin{aligned} \frac{dr}{dt} &= 0.05w_t, \\ \frac{dg}{dt} &= 1.5 \left(\frac{g^n}{1+g^n} + \frac{1}{1+r^n + 10b^n} - g \right) + 0.05w_t, \\ \frac{db}{dt} &= \frac{b^2}{1+b^2} - 0.4b + 0.01w_t, \\ \frac{dx}{dt} &= 1 + 0.001w_t, \\ \frac{dy}{dt} &= 0, \end{aligned} \quad (33)$$

658 where we take $n = 4$ to model non-linear regulatory relationships. Unlike the first simulation data,
 659 we do not consider growth in the second simulation data. We evolved the cell at the initial time
 660 point from $t = 0$ to $t = 1.0$ according to the given dynamics. In Fig. 4, we took only two time
 661 points at $t = 0$ and 1.0 as observations. Additionally we rotated the spatial coordinates of the
 662 second time point by 8 degrees counterclockwise. In Fig. S11, we took a total of five time points
 663 at $t = 0, 0.25, 0.5, 0.75$ and 1 as observations and rotated the spatial coordinates of the second to
 664 fifth time points counterclockwise by 8, 16, 24 and 32 degrees, respectively.

665 Details of GO enrichment analysis

666 We used the python package GSEAp=1.0.3 [62] to perform GO enrichment analyses on migration
 667 genes and growth genes. In addition, the gene sets used were GO Biological Process 2018 (<https://maayanlab.cloud/Enrichr/#libraries>).

669 Data Availability

670 All the datasets used in this paper are publicly available. The simulation datasets of synthetic
 671 circuits are available at <https://github.com/QiangweiPeng/stVCR/tree/main/tutorial>. The axolotl
 672 brain regeneration datasets are freely accessible in CNGB Nucleotide Sequence Archive under
 673 accession code CNP0002068. Processed data can be downloaded from <https://db.cngb.org/stomics/artista/> [49]. The processed 3D Drosophila embryo datasets can be downloaded from the Spateo
 674 package [43] (https://www.dropbox.com/s/bvstb3en5kc6wui/E7-9h_cellbin_tdr_v2.h5ad?dl=1) and
 675 https://www.dropbox.com/s/q02sx6acvcqaf35/E9-10h_cellbin_tdr_v2.h5ad?dl=1).

677 **Code Availability**

678 stVCR is implemented in Python and is available at <https://github.com/QiangweiPeng/stVCR>.
679 The notebooks to reproduce all the results in the manuscript are available at <https://github.com/QiangweiPeng/stVCR/tree/main/tutorial>.

681 **Supporting Information**

682 **Supplementary Notes 1-3**

683 **Supplementary Figures S1-S11**

684 **Supplementary Videos S1-S15**

685 **Acknowledgments**

686 The authors thank the anonymous referees for careful reading and constructive suggestions.
687 TL and QP acknowledge the support from National Key R&D Program of China under
688 grant 2021YFA1003301, and National Science Foundation of China under grant 12288101. PZ
689 acknowledge the support from National Science Foundation of China under grants 12288101,
690 8206100646, and the Fundamental Research Funds for the Central Universities. We also thank the
691 High-performance Computing Platform of Peking University .

692 **Contribution**

693 All authors conceived the project. QP designed and implemented the algorithm, and performed data
694 analysis. All authors interpreted the results and wrote the manuscript. QP wrote the supplementary
695 materials. PZ and TL supervised the research.

References

- [1] Gerri, C., Menchero, S., Mahadevaiah, S. K., Turner, J. M. & Niakan, K. K. Human embryogenesis: a comparative perspective. *Annual Review of Cell and Developmental Biology* **36**, 411–440 (2020).
- [2] Briggs, J. A. *et al.* The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. *Science* **360**, eaar5780 (2018).
- [3] Farrell, J. A. *et al.* Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. *Science* **360**, eaar3131 (2018).
- [4] Tyser, R. C. *et al.* Single-cell transcriptomic characterization of a gastrulating human embryo. *Nature* **600**, 285–289 (2021).
- [5] Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. *Cell* **84**, 359–369 (1996).
- [6] Yamada, K. M. & Sixt, M. Mechanisms of 3d cell migration. *Nature Reviews Molecular Cell Biology* **20**, 738–752 (2019).
- [7] Ståhl, P. L. *et al.* Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. *Science* **353**, 78–82 (2016).
- [8] Rodrigues, S. G. *et al.* Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. *Science* **363**, 1463–1467 (2019).
- [9] Stickels, R. R. *et al.* Highly sensitive spatial transcriptomics at near-cellular resolution with slide-seqv2. *Nature Biotechnology* **39**, 313–319 (2021).
- [10] Chen, A. *et al.* Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. *Cell* **185**, 1777–1792 (2022).

- [11] Oliveira, M. F. *et al.* Characterization of immune cell populations in the tumor microenvironment of colorectal cancer using high definition spatial profiling. *BioRxiv* 2024–06 (2024).
- [12] La Manno, G. *et al.* RNA velocity of single cells. *Nature* **560**, 494–498 (2018).
- [13] Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. *Nature Biotechnology* **38**, 1408–1414 (2020).
- [14] Gao, M., Qiao, C. & Huang, Y. Unitvelo: temporally unified RNA velocity reinforces single-cell trajectory inference. *Nature Communications* **13**, 6586 (2022).
- [15] Cui, H. *et al.* Deepvelo: deep learning extends RNA velocity to multi-lineage systems with cell-specific kinetics. *Genome Biology* **25**, 27 (2024).
- [16] Li, S. *et al.* A relay velocity model infers cell-dependent RNA velocity. *Nature Biotechnology* **42**, 99–108 (2024).
- [17] Gayoso, A. *et al.* Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells. *Nature Methods* **21**, 50–59 (2024).
- [18] Farrell, S., Mani, M. & Goyal, S. Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics. *Cell Reports Methods* **3** (2023).
- [19] Li, T., Shi, J., Wu, Y. & Zhou, P. On the mathematics of RNA velocity I: theoretical analysis. *BioRxiv* 2020–09 (2020).
- [20] Battich, N. *et al.* Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. *Science* **367**, 1151–1156 (2020).
- [21] Erhard, F. *et al.* scSLAM-seq reveals core features of transcription dynamics in single cells. *Nature* **571**, 419–423 (2019).
- [22] Qiu, Q. *et al.* Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq. *Nature Methods* **17**, 991–1001 (2020).
- [23] Cao, J., Zhou, W., Steemers, F., Trapnell, C. & Shendure, J. Sci-fate characterizes the dynamics of gene expression in single cells. *Nature Biotechnology* **38**, 980–988 (2020).
- [24] Hendriks, G.-J. *et al.* NASC-seq monitors RNA synthesis in single cells. *Nature Communications* **10**, 3138 (2019).
- [25] Xu, Z., Sziraki, A., Lee, J., Zhou, W. & Cao, J. Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens. *Nature Biotechnology* 1–6 (2023).
- [26] Holler, K. *et al.* Spatio-temporal mRNA tracking in the early zebrafish embryo. *Nature Communications* **12**, 3358 (2021).
- [27] Lin, S. *et al.* Well-temp-seq as a microwell-based strategy for massively parallel profiling of single-cell temporal RNA dynamics. *Nature Communications* **14**, 1272 (2023).
- [28] Qiu, X. *et al.* Mapping transcriptomic vector fields of single cells. *Cell* **185**, 690–711 (2022).
- [29] Peng, Q., Qiu, X. & Li, T. Storm: Incorporating transient dynamics to infer the RNA velocity with metabolic labeling information. *BioRxiv* 2023–06 (2023).
- [30] Schiebinger, G. *et al.* Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. *Cell* **176**, 928–943 (2019).
- [31] Tong, A., Huang, J., Wolf, G., Van Dijk, D. & Krishnaswamy, S. Daumé III, H. & Singh, A. (eds) *Trajectorynet: A dynamic optimal transport network for modeling cellular dynamics*. (eds Daumé III, H. & Singh, A.) *International Conference on Machine Learning*, Vol. 119, 9526–9536 (PMLR, 2020).

[32] Benamou, J.-D. & Brenier, Y. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. *Numerische Mathematik* **84**, 375–393 (2000).

[33] Huguet, G. *et al.* Manifold interpolating optimal-transport flows for trajectory inference. *Advances in Neural Information Processing Systems* **35**, 29705–29718 (2022).

[34] Sha, Y., Qiu, Y., Zhou, P. & Nie, Q. Reconstructing growth and dynamic trajectories from single-cell transcriptomics data. *Nature Machine Intelligence* **6**, 25–39 (2024).

[35] Chizat, L., Peyré, G., Schmitzer, B. & Vialard, F.-X. An interpolating distance between optimal transport and Fisher–Rao metrics. *Foundations of Computational Mathematics* **18**, 1–44 (2018).

[36] Zhang, K., Zhu, J., Kong, D. & Zhang, Z. Modeling single cell trajectory using forward-backward stochastic differential equations. *PLOS Computational Biology* **20**, e1012015 (2024).

[37] Jiang, Q. & Wan, L. A physics-informed neural SDE network for learning cellular dynamics from time-series scRNA-seq data. *Bioinformatics* **40**, ii120–ii127 (2024).

[38] Zhang, Z., Li, T. & Zhou, P. Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport. *arXiv preprint arXiv:2410.00844* (2024).

[39] Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data. *Nature Methods* **19**, 567–575 (2022).

[40] Mémoli, F. Gromov–Wasserstein distances and the metric approach to object matching. *Foundations of Computational Mathematics* **11**, 417–487 (2011).

[41] Klein, D. *et al.* Mapping cells through time and space with moscot. *BioRxiv* 2023–05 (2023).

[42] Scetbon, M. & Cuturi, M. Low-rank optimal transport: Approximation, statistics and debiasing. *Advances in Neural Information Processing Systems* **35**, 6802–6814 (2022).

[43] Qiu, X. *et al.* Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics. *BioRxiv* 2022–12 (2022).

[44] Halmos, P. *et al.* Ma, J. (ed.) *Dest-ot: Alignment of spatiotemporal transcriptomics data*. (ed. Ma, J.) *International Conference on Research in Computational Molecular Biology*, 434–437 (Springer, 2024).

[45] Liu, J., Gu, Y., Li, C. & Welch, J. D. Mapping cell fate transition in space and time. *BioRxiv* 2024–02 (2024).

[46] Zhou, P., Bocci, F., Li, T. & Nie, Q. Spatial transition tensor of single cells. *Nature Methods* 1–10 (2024).

[47] Flamary, R. *et al.* POT: Python optimal transport. *Journal of Machine Learning Research* **22**, 1–8 (2021). URL <http://jmlr.org/papers/v22/20-451.html>.

[48] Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. *Advances in Neural Information Processing Systems* **31** (2018).

[49] Wei, X. *et al.* Single-cell stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. *Science* **377**, eabp9444 (2022).

[50] Tong, A. *et al.* Conditional flow matching: Simulation-free dynamic optimal transport. *arXiv preprint arXiv:2302.00482* **2** (2023).

[51] Jin, S. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nature Communications* **12**, 1088 (2021).

[52] Cang, Z. *et al.* Screening cell–cell communication in spatial transcriptomics via collective optimal transport. *Nature Methods* **20**, 218–228 (2023).

- [53] Wang, K. *et al.* PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. *Nature Biotechnology* **42**, 778–789 (2024).
- [54] Li, C., Virgilio, M. C., Collins, K. L. & Welch, J. D. Multi-omic single-cell velocity models epigenome–transcriptome interactions and improves cell fate prediction. *Nature Biotechnology* **41**, 387–398 (2023).
- [55] Peyré, G. & Cuturi, M. *Computational Optimal Transport: With Applications to Data Science* Vol. 11 of *Foundations and Trends in Machine Learning* (now Publishers Inc., 2019).
- [56] Liero, M., Mielke, A. & Savaré, G. Optimal transport in competition with reaction: The Hellinger–Kantorovich distance and geodesic curves. *SIAM Journal on Mathematical Analysis* **48**, 2869–2911 (2016).
- [57] Kondratyev, S., Monsaingeon, L. & Vorotnikov, D. A new optimal transport distance on the space of finite radon measures. *Advances in Differential Equations* **21**, 1117 – 1164 (2016).
- [58] Cohen, S. & Guibasm, L. Werner, B. (ed.) *The earth mover’s distance under transformation sets.* (ed. Werner, B.) *Proceedings of the Seventh IEEE International Conference on Computer Vision*, Vol. 2, 1076–1083 (IEEE, 1999).
- [59] Schönemann, P. H. A generalized solution of the orthogonal procrustes problem. *Psychometrika* **31**, 1–10 (1966).
- [60] Shi, J., Aihara, K., Li, T. & Chen, L. Energy landscape decomposition for cell differentiation with proliferation effect. *National Science Review* **9**, nwac116 (2022).
- [61] Bishop, C. M. & Bishop, H. *Deep Learning: Foundations and Concepts* (Springer Nature Switzerland, Switzerland, 2024).
- [62] Fang, Z., Liu, X. & Peltz, G. GSEAp: a comprehensive package for performing gene set enrichment analysis in Python. *Bioinformatics* **39**, btac757 (2023).