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Abstract6

Time-series spatial transcriptome data with single-cell resolution provide an opportunity to7

study cell differentiation, proliferation and migration in physical space over time. Due to the8

destructive nature of sequencing, reconstruction of spatiotemporal dynamics from data remains9

challenging. Especially, the inference of migration in physical space remains a difficult task, as10

samples obtained at different temporal snapshots might not be in the same coordinate system11

due to the difference of biological replicates. Here we developed stVCR, a generative deep learn-12

ing model, which integrates the dynamical optimal transport (OT) with the unbalanced setting,13

the density matching invariant to rigid body transformations as well as priors to model known14

biology and preserve spatial structure. stVCR achieves the end-to-end simultaneous recon-15

struction of continuous cell differentiation, proliferation, physical space migration, and spatial16

coordinates alignment from spatial transcriptome snapshots. In addition, stVCR allows the17

interpretable study of complex interactions between cell phenotype transition, spatial migration18

and proliferation. Through benchmarking on both simulation data and real datasets, we vali-19

dated the effectiveness and robustness of stVCR and demonstrated its advantages over static20

OT or linear interpolation methods. We applied stVCR to dissect spatiotemporal dynamics21

underlying axolotl brain regeneration and 3D Drosophila embryo development.22

Introduction23

The development of a fertilized egg into a complete embryo is a highly complex and important24

process in biology [1–4]. This process involves intricate interactions between the dynamic regulation25

of gene expression, cell differentiation, cell division, apoptosis, as well as cell migration within26

physical space [5, 6].27

The advent of spatial transcriptome (ST) technology has allowed obtaining both gene expres-28

sion data and spatial coordinates [7–11]. As technology advances, spatial resolution has reached29

the single-cell or even subcellular level, exemplified by methods such as Stereo-seq [10] and 10x30

Visium HD [11]. However, due to the destructive nature of sequencing, ST data can only provide31

snapshots rather than a continuous trajectory. If ST sequencing technology is likened to an ultra-32

wide-angle camera, it can take pictures of living organisms but lacks video recording capability.33

Especially, when sequencing at multiple time points during embryonic development, the result-34

ing time-series ST data often come from different biological replicates, therefore yielding multiple35

unpaired snapshots.36

Recovering cells’ dynamic trajectories from single-cell sequencing data or ST data is a challeng-37

ing task. RNA velocity [12] utilizes unspliced/spliced RNA to infer the developmental direction of38

each cell. This inspired a series of subsequent works using unspliced/spliced RNA to more accu-39

rately infer RNA velocity [13–18]. These methods suffer from scale invariance due to the lack of40

temporal information [19]. Metabolic labeling scRNA-seq introduces temporal information into the41

data by distinguishing new/old RNA [20–27]. Dynamo [28] designed parameter inference meth-42

ods for metabolic labeling scRNA-seq data based on steady-state assumptions and deterministic43

models, and Storm [29] extended it to be independent of steady-state assumptions and stochastic44

models. Time-series scRNA-seq data introduces temporal information into the data in another way.45
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Waddington-OT [30] pioneered the use of optimal transport(OT) for modeling time-series scRNA-46

seq data, finding the optimal mapping in cells at two adjacent time points. However, it approximates47

cell proliferation by using growth hallmark genes, which largely depends on the choice of database.48

Targeted for time-series scRNA data, TrajectoryNet [31] combines dynamical OT [32] and49

normalizing flows to infer continuous trajectories of cell and takes cell proliferation into account50

through a separated static OT. MIOFlow [33] follows the geometry by operating in the latent51

space of an geodesic autoencoder. TIGON [34] uses dynamical unbalanced OT [35] to reconstructs52

dynamic trajectories and population growth simultaneously. Since the usual scRNA-seq data do53

not include the spatial coordinates of the cells, these methods have limitations to directly model cell54

migration in physical space. Some work considers stochastic cellular dynamics, such as FBSDE [36]55

and PI-SDE [37]. Additionally, DeepRUOT extends even further to the stochastic unbalanced56

case [38].57

The availability of time-series ST data has made it possible to study how cells migrate in physical58

space. PASTE [39] uses fused Gromov-Wasserstein(GW) OT [40] to align 2D adjacent tissue ST59

slices to reconstruct the 3D structure of the tissue. Moscot [41] uses a similar fused GW-OT to find60

the optimal mapping of cells between slices at two adjacent time points, incorporating penalties for61

unbalanced and entropy regularization and employing a low-rank OT [42] to accommodate larger62

data sizes. Spateo [43] aligns the spatial coordinates of two adjacent time points by optimal mapping63

to obtain cell migration velocity and then learns a vector field of continuous spatial coordinates.64

However, it does not fully address the interplay between gene expression and spatial location, and65

processes such as cell division and apoptosis. DeST-OT [44] considers how to model cell proliferation66

in the static OT setting, in particular ST data. TopoVelo [45] uses spatial coordinates to model67

cellular neighborhoods when inferring usual RNA velocity based on unspliced/spliced RNA, and68

designs post-processing steps to infer cell migration velocity. STT [46] characterizes multistability69

in space by integrating unspliced/spliced RNA and ST through a multiscale dynamical model.70

Reconstructing dynamical trajectories of cell differentiation, proliferation, and migration in71

physical space simultaneously for time-series ST data is a challenging task. Especially for quanti-72

fying the migration in physical space, improper treatment might introduce pseudo movements of73

cells as the cell coordinates obtained at different temporal snapshots are not in same coordinate74

system. Analogous to recovering a video from multiple photos, we aim to reconstruct the entire75

cellular developmental dynamics from multiple unpaired ST snapshots, thus obtaining a contin-76

uous spatiotemporal developmental trajectory. To achieve this goal, we developed an algorithm77

called spatio-temporal Video Cassette Recorder (stVCR), which is a dynamical optimal transport78

algorithm for resolving the issue of alignment of ST section data and unbalanced populations at79

different snapshots, and incorporation of biological structure priors in an integrative manner. As80

the result, stVCR reconstructs the spatiotemporal dynamical process for the considered system81

from multiple ST snapshots. Furthermore, stVCR also reveals the complex regulatory mechanisms82

behind the overall cellular dynamics, including how gene expression and spatial location affect each83

other, and how they affect cell proliferation.84

Results85

Overview of stVCR86

In stVCR, we adopt the dynamical OT formulation as a framework, yet with special treatments for87

different types of data (Fig. 1A). Specifically, for gene expression counts, we use the Wasserstein OT88

to model the temporal coupling of distributions (Fig. 1A Left and Methods). For spatial coordinates89

of cells, since rotations and translations may be involved to prevent a direct comparison of cell90

coordinates at different instants, we use the rigid-body transformation invariant OT to make the91

spatial alignment in time (Fig. 1A Middle and Methods). For the number of cells, due to the cell92

division and apoptosis, we use the unbalanced OT to model the unbalanced populations (Fig. 1A93

Right and Methods). Additionally, stVCR optionally takes known cell type transition prior (Fig.94

1B Left) as well as the spatial structure preserving prior for specific cell types (or organs) (Fig.95

1B) to produce more biologically meaningful results (Methods). We unified all three necessary96

modules and two optional modules into the form of dynamical OT, allowing us to study how a97

population of cells changes in gene expression, how they migrate in physical space, and how they98

divide and apoptose over time (Figure 1A,B,C and Methods). We take the spatial coordinates of99

cells at the first time point t = t0 as the reference coordinates system, and the state of considered100

cell group at time t is described by a time-dependent distribution ρt(x, q), where ρt depends on the101

spatial coordinates x ∈ Rds (ds = 2 or 3) of the cells in the reference coordinates system and the102

gene expression variable q ∈ Rdg after dimensionality reduction. Generally, ρt is not a probability103
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distribution though we take normalization at t = t0. stVCR finds the optimal rigid rotation matrix104

Rk and translation vector rk for the coordinate system at time point t = tk except t0, and uses105

the transport-with-growth PDE106

∂tρt +∇ · ((vt,pt)ρt) = gtρt (1)

to interpolate the empirical density ρ̂(k) and cell number nk of the snapshot spatial transcriptomic107

data at t = tk after rigid body transformation (Fig. 1C), where vt, pt, and gt are parameterized to108

be learned by neural networks. In physical meaning, vt = dx/dt describes the migration velocity of109

cells in physical space, pt = dq/dt describes the RNA velocity of cells in (reduced) gene expression110

space, and gt ∈ R describes cell proliferation (Fig. 1C, D).111

stVCR parameterizes the 2D rotation matrix by using rotation angle (or Euler angle for 3D112

case), and simultaneously finds the optimal rigid body transformations and parameterized dynam-113

ics by minimizing a total loss composed of dynamics loss, matching loss and optional spatial114

structure preserving loss115

L = LDyn + λMchLMch + λSSPL(opt)
SSP . (2)

The dynamics loss LDyn further contains three parts116

LDyn = LSpa + αExpLExp + αGroLGro, (3)

promoting the least consumption of kinetic energy of spatial migration and gene expression change,117

and growth energy, respectively. The matching loss LMch promotes the cell dynamics to match118

the aligned ST data as well as possible at different time points, and the optional spatial structure119

preserving loss L(opt)
SSP promotes a stable spatial structure for the the user-specified organ or cell120

type by encouraging adjacent cells to have similar spatial velocities, thereby preventing arbitrary121

deformations. (Fig. 1D and Methods). The training process involves OT optimization and inte-122

grating ODEs represented by neural networks, which we solve using the POT [47] and torchdiffeq123

packages [48], respectively.124

Once we have completed the entire training process to obtain the optimal rigid-body transfor-125

mation and parameterized dynamics, we can first apply the optimal rigid-body transformation to126

align the spatial coordinates of cells at different time points to the reference coordinate system,127

and then perform a series of downstream analyses (Fig. 1E and Methods): (1) Interpolation and128

prediction. We evolve forward or backward from the nearest observations to the interested time129

point (between observations or in the future) based on learned cellular dynamics (Fig. 1E Top130

left and Methods). (2) Gene-space interactions. We study cell-specific gene-gene, gene-space and131

space-space interactions by calculating the Jacobian matrices of learned spatial migration dynam-132

ics and gene expression dynamics and further calculating the directional derivatives along the cell133

migration direction of interest (Fig. 1E Bottom left and Methods). (3) Proliferation driver genes134

and migration direction. We study the effects of genes and migration on growth by calculating the135

gradient of the learned growth dynamics and further calculating the similar directional derivatives136

(Fig. 1E Top right and Methods). (4) Lineage inference/generation. For originally annotated data,137

we can infer temporal developmental lineages by learning a time-dependent classifier to annotate138

unobserved cells generated by interpolation or prediction (Fig. 1E Bottom right and Methods).139
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Fig. 1: Overview of stVCR. A. stVCR adopts dynamical OT framework yet with special
treatments for different types of data in the spatial transcriptome. Specifically we use Wasserstein
OT for gene expression data (Left), rigid body transformation invariant OT for spatial coordinates
(Middle), and unbalanced OT for cell number change due to cell division and apoptosis (Right). B.
stVCR can optionally model prior knowledge, including biological priors for known type transitions
(Left) and spatial structure preserving priors (Right). C. stVCR unifies the three necessary modules
and two optional modules into a dynamical OT. The input spatial transcriptome snapshots are
described as distributions ρ(k), and the permissible rotations and translations are characterized by
(Rk, rk) at t = tk. The modeling density ρt is governed by a partial differential equation involving
spatial velocity v, RNA velocity p, and growth rate g. D. stVCR solves the problem in B based
on deep learning. vt(x, q), pt(x, q) and gt(x, q) are modeled by three neural networks. The loss
function includes three parts: dynamics loss, matching loss and spatial structure preserving loss.
E. stVCR can perform downstream analyses, including interpolation and prediction (Top left),
studying cell-specific gene-gene, gene-space, space-space interactions (Bottom left), exploring the
cell-specific effects of gene expression and spatial variations of growth rates (Top right) and inferring
temporal cell-type developmental lineages (Bottom right).

Benchmark on the simulated time-series ST data for accuracy,140

scalability and robustness141

To demonstrate the necessity of aligning the spatial coordinates of different temporal snapshots into142

the same coordinate system, and benchmark the ability of the stVCR to recover spatiotemporal143

dynamics and reveal key regulatory mechanisms, we generated the simulated dataset of gene circuits144

and two spatial dimensions (Fig. 2A, B and Methods). The three genes are named Red, Green145

and Blue genes. There are regulatory relationships between different genes and different spatial146

coordinates, in addition, gene expression and cell migration also affect cell proliferation (Fig. 2A).147

Red and Green genes form a toggle switch circuit and they have opposite effects on growth. In148

addition, the difference in spatial location makes them unequal in status (Fig. 2A, B and Methods).149
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In the simulated dataset, there are three groups of cells at the initial moment (Fig. 2 B). The150

first group highly expressed gene Blue and was in steady state (Fig. 2 B). The second and third151

groups had similar low gene expression at the initial moment, but their different spatial locations152

determined their different fates of transition and growth (Fig. 2B). Without spatial information,153

it is not possible to distinguish between the second and third group at the initial moment, which154

would lead to erroneous trajectories (Fig. 2B Left and Fig. S4 last row). If cell proliferation is155

ignored, it will lead to incorrect cell trajectories of the small number group to the large number156

group (Fig. 2B Right and Fig. S5 last row). The input data totaled 6 time points, and we rotated157

the spatial coordinates by different angles to simulate the possible rotation of tissues by spatial158

transcriptome sequencing (Fig. 2C and Fig. S1A).159

To illustrate the ability of stVCR to align the spatial coordinates of different temporal snap-160

shots and reconstruct the entire spatiotemporal dynamics, we took the data from the first time161

point and evolved them according to the learned dynamics, demonstrating consistency with real162

dynamics (Supplementary Video 1; Fig. 2D and Fig. S1B). Specifically, the first group of cells163

remained virtually unchanged. The second group of cells gradually overexpressed the Red gene,164

moved outwards in the horizontal direction, and continuously proliferated. The third group of cells165

gradually overexpressed Green gene and continued apoptosis. In addition, we observed that in the166

aligned space by stVCR, cells only moved horizontally and did not rotate, indicating that we found167

the optimal rigid body transformation to align the data at different time points while finding the168

optimal dynamics of cell evolution (Supplementary Video 1, Fig. 2D and Fig. S1B). In addition,169

stVCR interpolated the unobserved intermediate moments t = 0.25, 0.75, 1.25, 1.75 and 2.25 and170

predicted the future moments t = 2.75 based on the learned dynamics, and the results are close to171

ground truth (Fig. 2E,F and Fig. S1C).172

To investigate the ability of stVCR to restore the effects of gene interactions, we compared the173

partial derivatives of Green gene velocity with respect to Red gene expression with ground truth,174

and visualized them in spatial coordinates (Fig. 2G Left). Qualitatively, they were consistent, and175

Green gene inhibited Red gene expression mainly in the second and third group of cells.176

Next, to investigate the ability of stVCR to restore the cell migration effects on gene expression,177

we calculated the directional derivative of Red gene expression for the given direction n = (1, 0)178

(i.e., cells moving horizontally to the right) for both learned and true dynamics (Fig. 2G Right).179

Cells at the right end of the second group moving to the right will promote gene Red expression,180

and cells at the left end moving to the right will inhibit gene Red expression, which overall suggests181

that moving horizontally outward in the second group of cells will promote Red expression.182

To evaluate the spatial variability of cell proliferation and the effect of cell migration on growth,183

we compared the true and learned cell proliferation rates (Fig. 2H Left). The results show that the184

first group of cells has a growth rate close to 0, the second group has a large positive growth rate,185

and the third group has a large negative growth rate. Additionally we calculated the directional186

derivative of the growth rate g with respect to a given direction n = (1, 0), similarly showing that187

cells moving outward in the horizontal direction will promote cell proliferation (Fig. 2H Right).188

Finally, we checked the scalability and the robustness with respect to important hyperparam-189

eters of the stVCR. We first performed a scalability analysis, which shows that stVCR is scalable190

for dataset size, model size, and number of observation times when the proper sample batch size is191

chosen (Fig. S2). Next, we tested the robustness of stVCR with respect to the important hyperpa-192

rameters λMch (Fig. S3 and Supplementary Video 2), κExp (Fig. S4 and Supplementary Video 3),193

and αGro (Fig. S5 and Supplementary Video 4), where λMch measures the importance of the match-194

ing loss, κExp weighs the importance of gene expression and spatial coordinates in the matching195

term and αGro measures the flexibility of cell proliferation. The results show that stVCR is robust196

over a wide range of these parameters.197

In summary, our benchmark tests on this simulated data show that (1) it is necessary to align198

the spatial coordinates of different time snapshots to the same coordinate system; (2) stVCR simul-199

taneously reconstructs cell transition, migration and growth are the keys to reconstructing correct200

spatiotemporal dynamics; (3) and stVCR can accurately reconstruct key regulatory mechanisms.201

In addition, stVCR is a scalable and robust algorithm under key hyperparameters tuning.202
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Fig. 2: Benchmark of stVCR on the simulated time-series ST data. A. Regulation rela-
tionship diagram to generate simulation data. B. Dynamic diagram of cell evolution over time.
Left: Dynamics of the second group and third group of cells over time in r (red gene expression), g
(green gene expression ) and |x| (absolute values of spatial coordinates) dimension. Right: Dynam-
ics of all cells over time in r, g and b (blue gene expression) dimension. C. Input data to stVCR
at t = 0.0, 1.0 and 2.5. The color was determined by the expression of three genes Red, Green and
Blue. D. The reconstructed results at t = 0.0, 1.0 and 2.5 of cells at t = 0.0 according to learned
dynamics using stVCR. E. Results of stVCR interpolation at t = 0.25 and t = 1.25 and compar-
ison with ground truth. Left: ground truth; Right: stVCR. F. Similar to E, but for the results of
stVCR prediction at t = 2.75. G. Left: Derivative of Green gene velocity with respect to Red gene
on cells at t = 2.5 of true dynamics and learned dynamics. Right: similar to Left, but for deriva-
tive of Red with respect to given direction n, where n = (1, 0). H. Left: Growth rates of cells at
t = 2.5 of true dynamics and learned dynamics. Right: similar to Left, but for derivative of cell
proliferation with respect to given direction n, where n = (1, 0).
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stVCR reconstructs cell transition and growth dynamics of axolotl brain203

regeneration204

To validate stVCR’s capability to learn complex continuous dynamics from spatial snapshots, we205

next applied stVCR for the axolotl brain regeneration dataset using single-cell Stereo-seq technol-206

ogy [49]. The dataset includes brain samples at 2, 5, 10, 15, 20, 30, and 60 days post-injury (DPI)207

to dissect both immediate wound responses and later regeneration processes. According to the208

original study [49], the regeneration process is mainly concentrated in 2 DPI to 20 DPI, so we took209

the data of 5 temporal points at 2, 5, 10, 15 and 20 and reconstructed the dynamic regeneration210

process using stVCR (Fig. 3, Fig. S6 and Fig. S7).211

To inspect stVCR’s effect in aligning different samples, we demonstrated the aligned coordinate212

at different time points Fig. 3A and Fig. S6A. stVCR aligns the spatial coordinates of the data213

collected at different time points to the same coordinate system making them blend well (Fig. 3B).214

We further compared the spatial coordinates of each time point before and after the stVCR align-215

ment (Fig. 3B and Fig. S6B), and observed that at each time point the data were adjusted to216

varying degrees based on the inferred rigid-body transformation, especially for the 20 DPI data217

(Fig. 3C). This suggests the necessity of sample alignment to infer dynamics correctly.218

To further illustrate the continuous dynamics reconstructed, we trained a classifier based on219

existing cell annotations using a neural network, which allowed us to annotate cells at unobserved220

time points (Methods). stVCR recovered the gene expression, physical location, possible division221

and apoptosis, and possible transformation of the cell type of each cell at each moment (Supplemen-222

tary Video S5). We visualized the calculated spatial velocity in coordinate space and observed cells223

in the vicinity of the wound migrating toward the wound when the wound was not yet fully healed,224

showing a response to injury, especially reactive ependymoglial cell (reaEGC) and microglial cell225

(MCG) (Fig. 3D).226

Consistent with cell transition dynamics in response to the injury, we studied the spatial dis-227

tribution of cell proliferation rates (Fig. 3E and Fig. S6D), which showed that cell proliferation228

rates in the injured hemispheres were significantly higher than those in the uninjured hemispheres229

especially near the wound site (Fig. 3E), implying that cell division was more active in the injured230

hemispheres. This phenomenon may be due to the need to compensate for cells lost due to injury.231

In addition, we show the interpolation results at 3.5, 7.5, 12.5 and 17.5 DPI (Fig. 3F and Fig. S6C).232

To highlight stVCR’s function to generate unobserved lineage dynamics, we calculated the233

number of cells of each type over time based on reconstructed continuous trajectories (Fig. S7A).234

Interestingly, the inferred number of many types of cells does not simply vary monotonically and235

linearly outside the observed time point. Among the three ependymoglial cell (EGC) types, the236

number of reaEGC are increasing first and then decreasing, while the population of Wnt+ EGC237

(wntEGC) and Sfrp+ (sfrpEGC) are decreasing first and followed by increasing trend. Such a trend238

coincides with the original study [49] which revealed that sfrpEGC and wntEGC are transitioned239

into reaEGC in the earlier stage of immediate wound responses. In contrast, later reaEGC are240

transitioned into mature neurons (Fig. S7B). In particular, the number of wntEGC decreased while241

reaEGC population expanded synchronously from 5DPI to 10DPI (Fig. 3G Top).242

To better visualize the lineage dynamics inferred by stVCR, we constructed the temporal devel-243

opmental lineage of wntEGC from 5DPI to 10DPI, which allowed us to study the transformation244

of cell types at time periods other than the observed time points (Fig. 3H Top). The results showed245

that wntEGC were indeed partially transformed into reaEGC. Next we constructed the temporal246

developmental profile of reaEGC from 15DPI to 20DPI, and the results showed that it transformed247

into wntEGC and some neurons in intermediate and mature states (Fig. 3H Bottom), which also248

coincided with the trend of their cell number (Fig. 3G Bottom). In addition, we noticed a rapid249

increase in the number of immature neuron (IMN) and dorsal palliumexcitatory neuron (dpEX)250

when the number of regeneration intermediate progenitor cell (rIPC)1 and rIPC2 was sharply251

decreasing (Fig. S7C). Therefore, we constructed temporal developmental lineages of rIPC1 and252

rIPC2 from 15DPI to 20DPI, and the results showed that rIPC1 were mainly transitioned into253

IMN and rIPC2 were mainly transitioned into dpEX (Fig. S7D), which is also consistent with the254

experimental observations [49].255

In summary, stVCR describes the complex dynamics of axolotl brain regeneration. In the early256

wound response phase of an injury, stVCR revealed that sfrpEGC and wntEGC transitioned into257

reaEGC, and the proliferation of cells in the injured hemisphere became active, especially EGC258

types in the vicinity of the wound. In addition, reaEGC moved toward the wound. As the wound259

gradually healed, reaEGC transformed back to wntEGC or differentiated into certain intermediate-260

state neurons. Eventually, neurons in the intermediate state are then transitioned into mature261

neurons to compensate for the loss of mature neurons due to injury.262
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Fig. 3: stVCR reconstructs spatiotemporal dynamics of axolotl brain regeneration. A.
stVCR aligns the spatial coordinates of data at different time points to the same coordinate sys-
tem. Top 2DPI; Bottom: 15DPI. Cell type annotations come from the original study. dpEX,dorsal
palliumexcitatory neuron; IMN, immature neuron; MCG, microglial cell; MSN, medium spiny neu-
ron; nptxEX, Nptx+ lateral pallium excitatory neuron; EGC, ependymoglial cell; reaEGC, reactive
EGC; ribEGC, ribosomal EGC; rIPC, regeneration intermediate progenitor cell; sfrpEGC, Sfrp+

EGC; tlNBL, telencephalon neuroblast; VLMC, vascular leptomeningeal cell; wntEGC, Wnt+

EGC. B. Comparison of spatial coordinates of the data for all time points before and after stVCR
alignment. Left: Before stVCR. Right: After stVCR. C. Comparison of spatial coordinates of 20
DPI data before and after alignment. D. stVCR inferred spatial cell migration velocity at 2DPI
and 5DPI injured hemispheres. Left: Streamline plot; Right: Locally amplified grid velocity. E.
stVCR inferred cell proliferation rate at 2DPI and 15DPI data. F. stVCR interpolated snapshots
at 3.5DPI and 17.5DPI. Cell type annotations come from the stVCR’s time-dependent classifier
based on the generated continuous gene expression values. G. Changes in cell number over time.
Top: reaEGC and wntEGC from 5DPI to 10DPI. Bottom: reaEGC, wntEGC, rIPC4 and tlNBL
from 15DPI to 20DPI. H. stVCR reconstructs the time-varying developmental lineages. The num-
ber in parentheses is the number of cells. Top: wntEGC from 5DPI to 10DPI; Bottom: reaEGC
from 15DPI to 20DPI.
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Gene-level mechanisms of axolotl brain regeneration revealed by stVCR263

stVCR reconstructed the dynamics of axolotl brain regeneration process, in which cell migration264

and reaEGC proliferation play important roles. To further reveal the mechanism on the gene level,265

we performed stVCR analysis of these two biological processes based on the learned kinetics, and266

in addition, reconstructed the regulatory network between key genes (Fig. 4, Fig. S8 and Fig. S9).267

To infer gene-spatial interactions, we used stVCR to identify the top 100 migration driver genes268

(Methods). Through Gene Ontology (GO) biological process analysis, we identified several pro-269

cesses associated with cell migration (Fig. 4A), including neuron migration and negative regulation270

of homotypic cell-cell adhesion. Neuron migration is a crucial process for the proper positioning271

of neurons, while the negative regulation of homotypic cell-cell adhesion facilitates cell movement272

by reducing cell interactions. Interestingly, several marker genes of EGC-type cells identified in273

the original study, were included in stVCR’s migration driver genes, such as GFAP, TNC, PTN,274

SLC1A3, GLUD1 and ECM1. We further visualized the migration driver gene score, i.e. ∂‖v‖/∂qj275

of four example genes GFAP, TNC, PTN and SLC1A3 (Fig. 4B and Fig. S8A), and showed that276

they have a promoting effect on cell migration in EGC-type cells. In addition, these genes are277

indeed highly expressed in EGC-type cells (Fig. 4C and Fig. S8B), especially the GFAP, TNC278

genes in reaEGC cells (Fig. 4C).279

Next, we used stVCR to infer cell proliferation driver genes in reaEGC and ranked the results280

to obtain the top 100 growth-promoting genes (Methods). The GO analysis identified several281

processes closely related to cell proliferation (Fig. S8C) essential for ribosome biogenesis, protein282

synthesis, and the proper targeting of proteins. Similar to the migration driver gene results, the283

growth driver genes inferred by stVCR overlapped with several marker genes for EGCs, such as284

FABP7 and SFRP1 (Fig. S8E). We visualized the growth driver gene score ∂g/∂qj of these two285

example genes (Fig. S8D), and showed that they are significantly promoting cell proliferation and286

division at EGCs in the injured hemisphere.287

Finally, to utilize stVCR’s function to infer dynamic gene interactions(Methods), we selected288

some genes (KRT18, ECM1, GFAP, VIM, TNC, S100A10 and HMOX1 ) that were highly expressed289

in reaEGC (Fig. S9A), and investigated the regulatory relationship between these genes 1) at dif-290

ferent time points and 2) in different cell types, and visualized the gene regulatory network (GRN)291

(Fig. 4D,E and Fig. S9B,C). We observed that in reaEGC these genes inhibit each other at an292

early stage (2DPI), followed by a gradual weakening of the inhibition (5DPI; 10DPI), and at a293

later stage (15DPI) they turn to promote each other (Fig. 4D and Fig. S9B). Thus, stVCR analysis294

suggests that gene regulatory relationships may be changing over time, even in the same cell type,295

which may be related to the discovery that reaEGC play different roles in early and late stages of296

injury. In addition, to investigate the gene regulatory relationships as affected by spatial distribu-297

tion, we selected wntEGC and sfrpEGC, which are closer to reaEGC, and vascular leptomeningeal298

cell (VLMC), whereas more apart from reaEGC (Fig. 4E). We recovered the regulatory relation-299

ships between these cells at 2DPI at the previously mentioned genes (Fig. 4F and Fig. S9C). The300

results showed that the regulatory relationships of these genes were close in wntEGC and sfrpEGC,301

and closer to reaEGC, although there were some minor differences (Fig. 4F Left and Middle). In302

contrast, the regulatory relationship in VLMC was distinct from reaEGC (Fig. 4F Right). Thus,303

our results suggest that gene regulatory relationships might also be influenced by cell type and304

spatial location.305

In summary, our gene-level mechanism of axolotl brain regeneration datasets demonstrates the306

ability of the stVCR to (1) find migration-driven and growth-driven genes; and (2) infer time-307

dependent and cell type- dependent GRN, suggesting its advantages over static OT-based methods.308
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Fig. 4: stVCR gene-level analysis of axolotl brain regeneration. A. GO biological process
enrichment analysis of the top 100 migration-promoting genes in all cells. B. The partial derivative
of the norm of spatial velocity ‖vz‖ with respect to gene expression. Two example genes in A, GFAP
(Left) and TNC (Right). C. Violin plots of gene GFAP (Left) and TNC (Right) expression in
reaEGC, wntEGC and VLMC cells. D. Gene regulatory networks in reaEGC cells for genes highly
expressed in reaEGC. From left to right: 2DPI, 5DPI, 10DPI and 15DPI. E. Spatial distribution of
reaEGC, wntEGC, sfrpEGC and VLMC cells at 2 DPI. F. Similar to D, but for sfrpEGC (Left),
wntEGC (Middle) and VLMC (Right) cells at 2 DPI.

stVCR analysis of 3D Drosophila embryos and organs with optional prior309

To illustrate the necessity of incorporating known biological priors for ST data with sparse temporal310

observations, we begin with a specially designed simulation dataset for benchmarking (Methods and311

Supplementary Note 3). The data consists of three types of cells named type 1, type 2, and type 3312

(Fig. 5A), where type 3 cells express the Red and Green genes moderately and are at steady state.313

The type 1 cells will first highly express Red and Green genes, gradually decrease the expression314

of green genes, and migrate over time, transitioning to the type 2 cells that highly express only315

the Red gene. When there are sufficient observations and the time intervals are small enough, the316

correct result can be inferred by stVCR without any prior (Fig. S11 and Supplementary Video317

S8). Indeed, we can theoretically prove that the stVCR reconstructed dynamics will converge to318

the true dynamics when the sampling time intervals between consecutive observations converge to319

zero, which provides a rigorous guarantee for the algorithm (Supplementary Note 4). Meanwhile,320

due to the high cost of ST sequencing, the number of measurement time points is usually fewer321
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and at longer intervals in real experiments. Thus we develop the strategy to allow users to assign322

known biology priors such as cell state-transition relations and structural continuity of tissues into323

stVCR (Methods).324

To show the effects of adding biological priors, we only input two observations at t = 0 and325

t = 1 (Fig. 5A,C) to stVCR. Without prior knowledge, stVCR would infer the wrong type 1 to326

type 3 and type 3 to type 2 transitions rather than the correct type 1 to type 2 transition (Fig. 5,327

Supplementary video S6-S7). In comparison, the interpolation results show that stVCR with a type328

1 to type 2 state-transition prior is closer to the ground truth at unobserved time points (Fig. 5D329

and Fig. S10). Overall, the above experimental results illustrate the benefit of adding the correct330

biological prior into datasets with fewer observations and longer intervals for more accurate results.331

In order to validate the effectiveness of the strategy of combining biological prior and spatial332

structure preserving prior on real datasets, we next applied stVCR priors for the 3D Drosophila333

embryos and organs dataset using single-cell Stereo-seq technology [43]. This datasets include only334

two time points E7-9h and E9-10h. We set the former moment (E7-9h) in the 3D Drosophila embryo335

data to t = 8h and the latter moment (E9-10h) to t = 9.5h. The data contains 9 tissues (Fig 5E),336

and we added biological priors central nervous system (CNS) transition to CNS, midgut transition337

to midgut, and amnioserosa transition to amnioserosa. Additionally, we added the spatial structure338

preserving priors for CNS and midgut. We aligned the two observations of data and reconstructed339

the dynamics between the two moments using the stVCR with the above priors (Supplementary340

video S9). Fig. 5E shows the aligned 3D Drosophila embryo. We focused on the CNS and midgut341

(Fig. 5F). We observed that the anterior of the CNS of Drosophila at the latter moment overlapped342

with the posterior of the CNS at the former moment (Fig. 5F Left), and the midgut consisted of343

two parts at the former moment and only one part at the latter moment (Fig. 5F Right).344

To benchmark stVCR with other static OT-based methods and highlight its unique function345

to model continuous dynamics, we compared the spatial migration dynamic trajectories of CNS346

reconstructed by stVCR with Spateo [43] and Moscot [41] (Supplementary video S10-S12 and347

Fig. 5G). Since both Spateo and Moscot are based on static OT and do not directly reconstruct348

the intermediate process, we obtained the intermediate process by linear interpolation based on349

the inferred static optimal map. In the spatial trajectory reconstructed by stVCR, the cells in350

the posterior of CNS gradually migrated to the anterior along the internal structure of the CNS351

(Supplementary video S10 and Fig. 5G Top row). In Spateo, the cells at the posterior of the352

CNS were disconnected from the main body and then migrated to the anterior to merge into one353

part (Supplementary video S11 and Fig. 5G Middle row). One possible explanation is that Spateo354

is based on static OT and does not constrain the consistency of the intermediate trajectory. In355

Moscot, cells migrate and aggregate to a few locations (Supplementary video S12 and Fig. 5G356

Bottom row). We speculate the possible reason is that Moscot tackles the unbalanced OT problem357

by adding the KL divergence penalty, so that the cells at the first moment correspond to a few358

cells at the second moment. In addition, we reconstructed the spatial trajectory of midgut using359

stVCR and compared it with Spateo and Moscot (Supplementary video S13-S15 and Fig. S12).360

The results showed that both stVCR and Spateo observed that two parts of the midgut at the361

first moment merged into one part at the later moment (Supplementary video 13-14 and Fig. S11C362

First two row). In Moscot, the spatial trajectories of midgut migrated and aggregated to a small363

number of locations similarly to the CNS results.364

In summary, we demonstrate the theoretical convergence of stVCR in large sample cases through365

mathematical derivations. We also highlight the benefit of adding known state-transition priors366

and spatial structure-preserving priors in case of limited observations through computations on367

simulated data. The application in 3D Drosophila datasets indicates the superiority of stVCR368

compared to existing methods based on static OT.369

11



Fig. 5: stVCR analysis of 3D Drosophila embryos and organs with biological state-
transition prior and spatial structure preserving prior. A. Dynamic diagram of cell
evolution over time in simulated data. Longer observation intervals and lack of biological knowl-
edge guidance will result in incorrect type 3 to type 1 and type 2 transitions rather than type 1 to
type 2 transitions. B. True dynamics of simulated data. Yellow type 1 cells transition and migrate
to become red type 2 cells. Brown cells in the background are in steady state. The color was deter-
mined by the expression of three genes Red, Green and Blue. C. Input data to stVCR at only two
time points. Left: t = 0.0. Right: t = 1.0. D. Interpolation results at t = 0.5 of stVCR with and
without biological prior compared to the ground truth. Left: ground truth. Middle: stVCR with-
out prior. Right: stVCR with prior. E. Spatial coordinates of 3D Drosophila embryos after stVCR
alignment. Left: E7-9h. Right: E9-10h. CNS, central nervous system. F. Spatial coordinates of
3D Drosophila organs after stVCR alignment. Left: CNS. Right: Midgut. G. Comparison of spa-
tial migration trajectories of CNS cells. From left to right: E8.0h, E8.3h, E8.6h, E8.9h, E9.2h and
E9.5h. From top to bottom: stVCR, Spateo [43] and Moscot [41].

Discussion370

Time-series spatial transcriptomics data has made it possible to reconstruct the entire spatiotem-371

poral dynamic process of cell fate determination. To dynamically connect unpaired snapshots and372

align temporal slices from various coordinate systems, we present stVCR to (1) simultaneously373

reconstruct and continuously generate cell differentiation, migration in physical space as well as374

division and apoptosis; (2) align spatial coordinates from data collected at different time points375

and (3) investigate the complex interactions between cell phenotype transitions, spatial migration,376

and proliferation.377
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Compared to existing methods that reconstruct trajectories from time-series spatial transcrip-378

tomics data [41, 43, 44], stVCR employs Rigid body transformation invariant OT, rather than379

GW-OT, making it the first algorithm to use dynamic OT modeling for time-series spatial tran-380

scriptomics data. Additionally, stVCR can model optional known biological priors and spatial381

structure-preserving priors. Once the entire dynamic process is reconstructed, stVCR can further382

perform a series of downstream analyses that are not feasible with static OT.383

stVCR can be improved and extended from several aspects. For instance, learning both the384

low-dimensional representation of gene expression and the dynamics in the low-dimensional simul-385

taneously may yield better results [18]. In addition, integrating ODE represented by neural386

networks is costly, and some work has attempted to construct simulation-free methods in time-387

series single-cell transcriptome data [50], which may also be generalized to spatial transcriptome388

data. Incorporating more intrinsic dynamics of gene expression (such as transcription, splicing, and389

degradation) and cellular interactions[51, 52] may yield deeper insights into the realistic biologi-390

cal processes. Lastly, integrating other modalities such as lineage information [53] and multi-omics391

measurements [54] could further enhance the trajectory inference. Due to the limitations of 3D time-392

series spatial transcriptome data availability, further applications and performance evaluations on393

more challenging datasets are needed and will be addressed in future research.394

Overall, stVCR provides a unified and robust method for generative modeling of time-series395

spatial transcriptomics data, which reconstructs the entire spatiotemporal processes of single cells396

from a few given snapshots and investigates the complex space-gene regulatory mechanisms.397

Methods398

Basic optimal transport formulation setup399

In essential aspects, we utilize the dynamical optimal transport (OT) formulation to reconstruct400

the spatiotemporal dynamics of single cells for snapshot spatial transcriptomics data. Let us first401

state the basic OT setup for simple case.402

Let α =
∑n

i=1 aiδ(x − xi) and β =
∑m

j=1 bjδ(y − yj) be two probability distributions with403

normalized positive vectors a = (ai) and b = (bj), where δ(·) stands for the Dirac’s δ-function.404

One typically couples α and β (or a and b) through the Kantorovich’s OT problem405

Lc(α, β) = min
P∈U(a,b)

〈C,P 〉 :=

n∑
i=1

m∑
j=1

cijpij , (4)

where U(a, b) :=
{
P ∈ Rn×m+ : P1m = a and PT

1n = b
}

and C = (cij) is the cost matrix. When406

cij = c(xi,yj) with c(x,y) = ‖x−y‖pp, where ‖x‖p is the vector `p norm, the p-Wasserstein distance407

is defined as Wp(α, β) = (Lc(α, β))1/p. The optimal coupling matrix component pij characterizes408

the probability that xi will be transported to yj [55].409

A special case is p = 2, i.e., c(x,y) = ‖x− y‖22. In this case, the above OT formulation has an410

equivalent dynamic form (Benamou-Brenier form [32]) by minimizing the transport kinetic energy411

(
W2(α, β)

)2
= min

(αt(x),vt(x))

∫ 1

0

∫
Rd

‖vt(x)‖2 αt(x) dxdt, (5)

where αt,vt satisfies the continuity partial differential equation (PDE)412

∂tαt(x) +∇ · (vt(x)αt(x))) = 0, such that αt=0 = α, αt=1 = β. (6)

The vector field {vt(x)}t∈[0,1] is to be optimized such that the boundary conditions are satisfied413

and the minimal kinetic energy is achieved.414

The dynamic formulation can be generalized to the case when the total mass of α and β are not415

equal (unbalanced setting). A common approach is to consider the so-called Wasserstein-Fisher-Rao416

(WFR) distance [35, 56, 57]417

(
WFR (α, β)

)2
= min

(αt(x),vt(x),gt(x))

∫ 1

0

∫
Rd

(
‖vt(x)‖2 + τ ‖gt(x)‖2

)
αt(x) dxdt, (7)
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where αt,vt, gt satisfies the PDE418

∂tαt(x) +∇ · (vt(x)αt(x)) = gt(x)αt(x), such that αt=0 = α, αt=1 = β (8)

See Supplementary Note 1 for a detailed description of the above algorithm.419

Data preprocessing420

For gene expression count matrix, we first normalized the raw counts data using size factor. Then421

we selected the top 2000 highly variable genes. Finally, we utilize an Autocoder to project highly422

variable genes to low dimensions. Specifically, we represent an encoder qemb = fenc(qori, θenc) and a423

decoder q̃ori = fdec(qemb, θdec) using neural networks, where the input of the encoder is the original424

gene expression qori and the output is the low-dimensional embedding qemb, and the decoder is the425

opposite. The loss function is taken as426

L(θenc, θdec) =
1

N

N∑
i=1

‖qori,i − q̃ori,i‖22, (9)

where N refers to the total number of cells. In actual computations, we take the dimension of the427

low-dimensional embedding qemb to be 10. Also for simplicity of notation, we still use q to refer to428

qemb to denote the low-dimensional embedding of gene expression unless otherwise stated.429

Notation conventions in stVCR430

We use the notation x = (x1, x2, . . . , xds) ∈ Rds , q = (q1, q2, . . . , qdg ) ∈ Rdg for spatial and431

gene expression variables, respectively. For the considered spatio-temporal transcriptome data, we432

assume there are nk cells at time t = tk for k = 0, 1, . . . ,K. We denote the available datasets by433

X(k) = (x
(k)
1 ,x

(k)
2 , . . . ,x(k)

nk
) ∈ Rds×nk , Q(k) = (q

(k)
1 , q

(k)
2 , . . . , q(k)

nk
) ∈ Rdg×nk (10)

at t = tk, where ds is the dimension of the spatial coordinates, usually 2 or 3, and dg is the434

dimension of the embedded gene expression space (dg = 10 in our setup). In the data analysis, we435

often need to consider the spatial coordinates after alignment with rigid body transformations at436

time points t = t1, . . . , tK , which we denote by437

X̂(k) = (x̂
(k)
1 , x̂

(k)
2 , . . . , x̂(k)

nk
), Q̂(k) = Q(k), k = 1, 2, . . . ,K. (11)

When only rotation R and translation r are considered, x̂(k) = Rx(k) + r. The data (empirical)438

distribution formed by the dataset (X(k), Q(k)) is denoted by439

ρ(k)(x, q) =
1

nk

nk∑
i=1

δ(x− x
(k)
i , q − q

(k)
i ), (12)

where δ(·) stands for the Dirac’s δ-function in (x, q)-space. Correspondingly, we can define ρ̂(k) for440

the dataset (X̂(k), Q̂(k)) after alignment. Both ρ(k) and ρ̂(k) are probability distributions.441

We use the notation ft(x, q) or the shorthand ft to denote the time dependence of a function442

f(x, q, t), while for time dependent coordinates (x(t), q(t)), we use the notation (x(t), q(t)) to be443

consistent with the notation (X(k), Q(k)). All of the vectors are bold-faced, while the matrices are444

in normal fonts.445

Spatial alignment for temporal snapshots446

Due to the unknown deformation of the tissue during spatial transcriptome (ST) sequencing, we447

need to align the spatial coordinates of the ST data at different time points before the subsequent448

analysis. We assume the large scale deformation of the observed coordinates contains only rigid449

body transformations (i.e., rotations and translations) in this work. We do not follow the Gromov-450

Wasserstein (GW) optimal transport framework for its over-generality and large computational451

cost. Yet, we adopt the optimal transport approach in [58] by explicitly modeling the set of invariant452

14



manipulations G, and simultaneously finding the optimal matching of distributions and the optimal453

transformation through the optimization problem:454

(P ?, g?) = arg min
P∈U(a,b),g∈G

〈C(g), P 〉 def.
=

M∑
i=1

N∑
j=1

pijd
(
xi, g(yj)

)
. (13)

It can be solved by an iterative algorithm

P (n) = arg min
P∈U(a,b)

M∑
i=1

N∑
j=1

pijd
(
xi, g

(n)(yj)
)
, (14)

g(n+1) = arg min
g∈G

M∑
i=1

N∑
j=1

p
(n)
ij d

(
xi, g(yj)

)
. (15)

The subproblem (14) is to solve a static OT.455

When we take the set G = {(R, r)} as the rigid body transformations, and the distance function456

d as the Euclidean distance, that is, d(x,y) = ‖x − y‖22, the subproblem (15) is a weighted457

Procrustes problem [59]458

(R(n+1), r(n+1)) = arg min
R∈Rds×ds ,r∈Rds

RTR=I, detR=1

∑
i,j

p
(n)
ij ‖xi − (Ryj + r)‖22 , (16)

where R refers to a rotation matrix, and r refers to a translation vector.459

We call this problem rigid body transformation invariant optimal transport, and it explicitly460

models unknown rigid body transformation, making it possible to compute ground cost functions461

between distributions at different time points. It can be easily modified to model more general462

cases, e.g., if affine transformations are allowed in the tissue measuring process.463

Dynamics loss in stVCR464

We are concerned with the entire dynamics of cell population evolution and therefore use dynamical465

optimal transport. Since the number of cell population is constantly changing due to cell division466

and apoptosis during evolution, unbalanced setting is necessary.467

stVCR reconstructs ρt(x, q) by interpolating the input population densities ρ(k) up to a468

normalization at t = tk using a transport-with-growth PDE469

∂tρt(x, q) +∇ ·
((

vt(x, q),pt(x, q)
)
ρt(x, q)

)
= gt(x, q)ρt(x, q), (17)

where vt(x, q) refers to the spatial velocity, pt(x, q) refers to the RNA velocity of cells, and gt(x, q)470

refers to the proliferation rate of cells. We take the coordinate system at t0 as the reference, and471

assume that the coordinate system at tk (k = 1, 2, . . . ,K) differs from the coordinate system at472

t0 by a rotation Rk and translation rk. Thus the feasible state space S for the arguments under473

constraints is474

S(X(0:K),Q(0:K)) :=
{

(ρt,vt,pt, gt;R1:K , r1:K)
∣∣ ∂tρt +∇ · ((vt,pt)ρt) = gtρt,

ρt0 = ρ(0), ‖ρtk‖1 = nk/n0, ρ̄tk = ρ̂(k), RTkRk = I, detRk = 1, k = 1, 2, . . . ,K
}
,

(18)

where ρ̂(k) refers to the distribution formed by (X̂(k), Q̂(k)) after alignment through rigid body475

transformation (Rk, rk) at tk, ρ̄t := ρt/‖ρt‖1 and ‖ρt‖1 :=
∫
ρtdxdq is the total mass of ρt. The476

notation 0:K is a shorthand for the indices {0, 1, . . . ,K}. Same rule applies to similar notations in477

other places.478

Borrowing the idea of Wasserstein-Fisher-Rao (WFR) distance for unbalanced optimal trans-479

port [34], we obtain the optimal dynamics (ρt,vt,pt, gt) and the optimal rigid body transformation480

(Rk, rk) for k = 1, 2, . . . ,K by minimizing the kinetic and growth energy481 ∫ tK

t0

∫
Rdg+ds

(
‖vt‖2 + αExp ‖pt‖2 + αGro ‖gt‖2

)
ρt(x, q)dxdqdt (19)
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for (ρt,vt,pt, gt;R1:K , r1:K) ∈ S(X(0:K), Q(0:K)). Direct derivation of the solution of the Feynman-482

Kac type PDE (17) by characteristics [34, 60] shows the above loss function can be rewritten as483

the following dynamics loss484

LDyn = E(x(t0),q(t0))∼ρ(0)

∫ tK

t0

(
‖vt(x(t), q(t))‖2 + αExp‖pt(x(t), q(t))‖2

+ αGro‖gt(x(t), q(t))‖2
)
wt[x, q]dt,

(20)

where x(t), q(t) satisfies the characteristic ordinary differential equations (ODEs)485

dx(t)

dt
= vt(x

(t), q(t)),
dq(t)

dt
= pt(x

(t), q(t)), (x(t), q(t))|t=t0 = (x(t0), q(t0)) (21)

and the weights wt[x, q] = e
∫ t
t0
gs(x(s),q(s))ds

satisfies the ODE486

d lnwt
dt

= gt(x
(t), q(t)), wt|t=t0 = 1. (22)

In fact, the density ρt has the representation ρt(x, q) = E(x(t0),q(t0))∼ρ(0)δ(x−x(t), q−q(t))wt[x, q]487

with the total mass ‖ρt‖1 = E(x(t0),q(t0))∼ρ(0)wt[x, q]. The three parts in LDyn correspond to the488

kinetic energy of spatial migration, LSpa, kinetic energy of gene expression change, LExp, and489

growth energy, LGro, respectively, considered in Eq. (3).490

The formulation (20) is suitable for the numerical evaluation of the loss function through Monte491

Carlo particle simulations instead of density estimation in high dimensional space. We also remark492

that the evolution of (17) can be implemented in the forward (from t0 to tK) or backward (from493

tK to t0) way, and similar formulations as above can be obtained correspondingly. Both directions494

are taken in our computations for a more robust performance.495

Matching loss in stVCR496

The constraints ‖ρtk‖1 = nk/n0 and ρ̄tk = ρ̂(k) in (18) are indeed realized as soft penalties to497

perform distribution matching. This matching between the total mass, {ρ̄tk}k=1:K and ρ̂(1:K),498

and the determination of {(R1:K , r1:K)} are obtained simultaneously in terms of the rigid body499

transformation invariant OT.500

Define the weights wt,j = wt[xj , qj ] for the cell j with initial state (x
(0)
j , q

(0)
j ) at t = t0. With

this notation, we have the evolved distribution

ρt =
1

n0

n0∑
j=1

wt,jδ(x− x
(t)
j , q − q

(t)
j ).

The total mass of ρt is
∑n0

j=1 wt,j/n0, which no longer corresponds to a probability distribution.501

This non-normalization is due to the cell proliferation.502

The matchings between the total mass, and the normalized distributions {ρ̄tk}k and {ρ̂(k)}k is503

performed through the loss function504

LMch =

K∑
k=1

(
W2(ρ̄tk , ρ̂

(k))
)2

+ κGro

K∑
k=1

|
∑n0

j=1 wtk,j − nk|
nk

, (23)

where the second term penalizes the total mass mismatch through their relative error, and the
first term penalizes the normalized distribution mismatch which we take as the square of the
2-Wasserstein distance between {ρ̄tk}k and {ρ̂(k)}k:(

W2(ρ̄tk , ρ̂
(k))
)2

:= min
P∈U(ρ̄tk ,ρ̂

(k))
〈C(k), P 〉.

Naturally, we take the cost matrix C(k) by integrating gene expression and spatial coordinates with
components

c
(k)
ij = κExp‖q(tk)

i − q̂
(k)
j ‖

2
2 + (1− κExp)‖x(tk)

i − x̂
(k)
j ‖

2
2, i = 1 : n0, j = 1 : nk
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where x̂
(k)
j = Rkx

(k)
j +rk is the coordinate after the alignment manipulation, κExp is an adjustable505

hyperparameter that measures the importance of gene expression or spatial coordinates.506

Modeling known cell type transition prior507

Modeling known biological prior can help to infer the spatiotemporal dynamics of single cells more508

accurately, especially for situations where there are few observed time points or long time intervals509

between adjacent time points. For known permissible cell type transitions, we grouped cells with510

permissible transitions at different time points into the same type. We use ρ̂
(k)
c to refer to the511

empirical distribution of type c cells in the observed data (after rotation and translation) at the512

time point tk, and ρ̄tk,c to refer to the normalized distribution of type c cells evolving from t0 to513

tk. Assuming a total of C types, we realize the distribution matching for each known permissible514

cell type transitions, i.e.,515

‖ρtk,c‖1 = nk,c/n0,c, ρ̄tk,c = ρ̂(k)
c , k = 1 : K, c = 1 : C, (24)

where n0,c and nk,c are the number of type c cells at time t0 and tk, respectively. In this cir-516

cumstance, the feasible state space S(X(0:K), Q(0:K)) must be modified correspondingly, and the517

matching loss (23) has to be revised as518

LMch =

K∑
k=1

C∑
c=1

(
W2(ρ̄tk,c, ρ̂

(k)
c )
)2

+ κGro

K∑
k=1

C∑
c=1

|
∑n0,c

j=1 wtk,j − nk,c|
nk,c

, (25)

Modelling spatial structure preserving prior519

Organ development obeys physical rules, and its spatial structure cannot change at will. For exam-520

ple, some organs remain connected as they develop without breaking into multiple parts. However,521

when the time interval between observations is long, usual OT-methods often produce results that522

violate the physical rules in order to minimize the energy, so we need to explicitly model this prior523

to maintain the spatial structure of the specified organ. For the organs that need to be spatially524

structure-preserved, we first construct a graph according to spatial coordinates and gene expres-525

sion. More specifically, at t = t0, we first construct a kspa nearest-neighbor graph using the spatial526

coordinates, and then find the knbr cells with the closest gene expression as the final neighbors527

from the kspa spatial neighbors of each cell in the specified structure to complete the graph con-528

struction. We denote the index set of these knbr neighbor cells, which is a subset of {1 : n0},529

by N (x(t0), q(t0)) for each cell (x(t0), q(t0)) in the specified structure at t = t0. In order to keep530

the specified organ development obeying the physical rules, we add the optional spatial structure531

preserving loss function532

L(opt)
SSP =

nss

n0
E(x(t0),q(t0))∼ρ̃(0)

1

knbr

∑
i∈N (x(t0),q(t0))

∫ tK

t0

∥∥∥ d

dt
|x(t)
i − x(t)|

∥∥∥2

wt[x, q]dt, (26)

where ρ̃(0) is the probability distribution for the cells in the specified structure and nss is the is533

the number of cells in the specified structure. L(opt)
SSP preservers spatial structure by promoting as534

little change as possible in the distance between spatial trajectories of neighboring cells. It can be535

understood as a continuous time limit of the Gromov-Wasserstein OT distance.536

Deep learning-based solver in stVCR537

Optimizing the total loss L in (2) is generally difficult, we use deep learning to find an approximate
solution. For the arguments (ρt,vt,pt, gt;R1:K , r1:K) in the optimization, ρt is indeed determined
by (vt,pt, gt). We suppose that changes in gene expression, cell migration, and cell proliferation
depend on current gene expression and spatial location, and are parameterized by neural networks,
i.e., vt(x, q) = v(x, q, t; θv), pt(x, q) = p(x, q, t; θp) and gt(x, q) = g(x, q, t; θg), where θ :=
(θv, θp, θg) are the parameters of the neural networks. For the rigid body transformations, the
rotation matrix R can be explicitly parameterized. In 2D case, we take

R =

(
cosα − sinα
sinα cosα

)
,
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where α is the rotation angle. In 3D case, we parameterize the rotation matrix R by the Euler
angles α, β, and γ with R = Rx(α)Ry(β)Rz(γ), where

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 , Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 , Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 .

Therefore, the overall parameters we need to optimize are the neural network parameters θ, as well538

as the rotation angles αk (or Euler angles αk, βk and γk in 3D case) and translation vectors rk for539

k = 1 : K.540

With the above parameterization, the constraint PDE ∂tρt +∇ · ((vt,pt)ρt) = gtρt with initial541

value ρt=t0 = ρ(0) can be solved by the particle approximations through the ODEs (21) and (22) by542

replacing the functions (vt,pt, gt) with (v(x, q, t; θv),p(x, q, t; θp), g(x, q, t; θg)). The evaluation of543

the integral in (20) can be also performed by numerical quadrature in time with the parameterized544

(v,p, g). Finally, the overall loss545

L(θ, α1:K , β1:K , γ1:K , r1:K) = LDyn + λMchLMch + λSSPL(opt)
SSP (27)

can be evaluated through the deep learning approximations. The optimization of the parameters546

are achieved by the Adam optimizer [61]. In (27), LDyn and LMch are required and L(opt)
SSP is optional.547

Whether or not to include cell type transition prior in LMch is also optional.548

Parameter initialization and training details549

The structure of our neural networks v(x, q, t; θv), p(x, q, t; θp) and g(x, q, t; θg) use multilayer550

perceptron (MLP) with 128 neurons per layer for a total of 6 layers. To obtain an initial rotation and551

translation, We downsample 5000 cells in the data, and then use static rigid-body transformation552

invariant OT on the downsampled data. The training process involves solving the ODEs represented553

by the neural network, that is neural ODE, which we implement using the torchdiffeq package [48].554

It also involves computing the static OT distance, which we implement using the POT package [47].555

Finally, in order to enhance the matching with the observed data at each time point and improve556

the robustness of the algorithm (the new organs or cell types may appear in later time points),557

we not only compute the loss function defined by (27) by sampling the data from t0 to later time558

points, but also compute a similar loss function by sampling the data from other time points tk,559

evolving forward and backward. In actual computations, we choose to sample from the first time560

point t0 and the last time point tK to balance the accuracy and computational overhead.561

Time-dependent cell type classifier562

After we recovered the entire cell dynamics, we could obtain the gene expression and spatial location563

of cells at unobserved moments. In order to obtain type annotations for these cells at unobserved564

moments, we train a time-dependent cell type classifier using a neural network in cells that already565

have cell type annotations, so that we can use it for cell type annotation at unobserved moments.566

Specifically, we represent a classifier by a neural network f = ftype(x, q, t; θtype). The inputs are567

gene expression q, spatial coordinates x, and time t, and the outputs are probability distributions568

indicating the probability with which the cell (x, q) at time t belongs to each cell type. The loss569

function is taken as570

L(θtype) =
1

N

N∑
i=1

(
H(yi,fi) + λ

∥∥∥∂fi
∂t

∥∥∥
1

)

=
1

N

N∑
i=1

((
−

Kt∑
j=1

yi,j log(fi,j)
)

+ λ
∥∥∥∂fi
∂t

∥∥∥
1

)
,

(28)

where H(·, ·) is the cross entropy, fi := f(xi, qi, t), yi is the annotated cell type for cell i, Kt is the571

total number of cell types, and yi,j , fi,j is the annotated and trained probabilities that the cell i is572

of type j. The first term in (28) is to force the trained classifier to be consistent with the known573

cell type annotations, while the second term is a regularization to promote the smoothness of the574

neural network classifier in time through an `1 norm of the time derivative on observation points.575
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Downstream analysis576

For notational simplicity, we omit the notation for the parameters of the neural networks in the577

following description. When we use the stVCR to obtain the spatial velocity v(x, qemb, t), the gene578

expression velocity pemb(x, qemb, t) in the embedded space, the cell proliferation rate g(x, qemb, t),579

and the time-dependent classifier ftype(x, qemb, t), we can perform a series of downstream analyses,580

including interpolation, prediction, and study of cell-specific gene-gene, gene-space and space-space581

interaction and the effects of gene and spatial migration on cell proliferation, etc. Below we give a582

detailed description of some downstream analysis tasks.583

Recovery of cell evolution rates in original space584

As stated in the data preprocessing step, the original gene expression and its dimension-reduced585

expression value in embedded space, qori and qemb, are related by the trained encoder-decoder586

neural network fenc, fdec as qemb = fenc(qori) and qori = fdec(qemb). With this representation, we587

can easily recover the spatial velocity, gene expression velocity and proliferation rate in original588

gene expression space:589

pori(x, qori, t) =
1

2δt

(
fdec

(
fenc(qori) + δtpemb(x, fenc(qori), t)

)
− fdec

(
fenc(qori)− δtpemb(x, fenc(qori), t)

))
,

v(x, qori, t) =v(x, fenc(qori), t), g(x, qori, t) = g(x, fenc(qori), t).

(29)

Interpolation and prediction590

For some interpolation time tint which the user is interested in, we choose the observation time tobs591

that is closest to tint. Without losing generality, we assume that tobs < tint. We take the observed592

data qi and xi at tobs as the initial values, and then evolve according to the dynamics learned by593

stVCR to obtain the interpolation result. More specifically, for the ith cell to evolve from time t to594

t+ δt, we first compute595

x
(t+δt)
i = x

(t)
i + vt(x

(t)
i , q

(t)
i,emb)δt, q

(t+δt)
i,emb = q

(t)
i,emb + pt(x

(t)
i , q

(t)
i,emb)δt, (30)

then generate a random number U ∼ Uniform[0, 1]: if gt(x
(t)
i , q

(t)
i,emb) > 0 and U < gt(x

(t)
i , q

(t)
i,emb)δt,596

perform cell division; if gt(x
(t)
i , q

(t)
i,emb) < 0 and U < −gt(x(t)

i , q
(t)
i,emb)δt, then perform cell apoptosis.597

The prediction task is completely similar to the interpolation task, which only needs to take the598

data of the last time point as the initial value.599

Cell specific gene-gene, gene-space and space-space interaction600

We can study the interaction between genes and space from the learned quantities. For a cell i, as601

well as the target gene j and the source gene k of interest, we can calculate ∂pjt/∂q
k|(x,q)=(xi,qi),602

which represents how increased expression of gene k changes the velocity of gene j in cell i. If it is603

positive, it means that gene k promotes gene j in cell i, otherwise gene k inhibits gene j.604

Similarly, for cell i, and axes j and k of interest, we can calculate ∂vjt /∂x
k|(x,q)=(xi,qi) to study605

space-space interaction. This is used in Spateo [43], although their spatial vector fields v(x) are606

independent of gene expression q and time t.607

In stVCR, gene expression q and spatial coordinates x interact, which means we can study
how cell migration affects gene expression. For cell i, a target gene j, and a given unit direction
n = (n1, n2, n3) (or n = (n1, n2) for 2D case), we can calculate the directional derivative

∂pjt
∂n

=
∂pjt
∂x1

n1 +
∂pjt
∂x2

n2 +
∂pjt
∂x3

n3

at (x, q) = (xi, qi), which describes how the migration of cell i to the given direction n affects the
expression of gene j, with positive values representing promotion and negative values the opposite.
In addition, we can study how gene expression affects cell migration. For cell i and gene j of
interest, we can define

ni,qj :=
(∂v1

t

∂qj
,
∂v2

t

∂qj
,
∂v3

t

∂qj

)
,
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which describes that increased expression of gene j will promote the cell i migration in the direction608

ni,qj/‖ni,qj‖ and ‖ni,qj‖ indicates the promotion intensity.609

Finally, we can define partial derivative of the norm of cell migration velocity with respect to
gene ∂‖vi‖/∂qj of cell i and gene j as migration driver gene score based on the above calculations

∂‖vi‖
∂qj

=
1

‖vi‖

(
v1
i

∂v1
i

∂qj
+ v2

i

∂v2
i

∂qj
+ v3

i

∂v3
i

∂qj

)
,

where vi := vt(xi, qi).610

Cell specific effects of gene and spatial migration on growth611

For cell i and gene j of interest, we can calculate ∂gt/∂q
j |(x,q)=(xi,qi), which describes the effect612

of gene j on cell proliferation, where a positive value means promoting, and a negative value the613

opposite. This concept is used in TIGON [34]. However, their growth function gt(q) does not614

depend on spatial coordinates x, so the effect of cell spatial migration on growth cannot be studied.615

In stVCR, cell proliferation depends on both its gene expression and its spatial location, so
we can also study how cell migration affects its growth. For cell i and a given unit direction
n = (n1, n2, n3), we can calculate the directional derivative

∂gt
∂n

=
∂gt
∂x1

n1 +
∂gt
∂x2

n2 +
∂gt
∂x3

n3,

which describes how cell migration in the direction n affects its proliferation.616

Finally, we can define partial derivatives of the cell proliferation rate with respect to gene j for617

cell i, ∂gt/∂q
j |(x,q)=(xi,qi), as growth driver gene score based on the above calculations.618

Temporal Developmental lineage construction619

Since we can interpolate for any time points of interest and can annotate cells at these unob-620

served time points with the time-dependent classifier ftype(x, qemb, t), we can construct temporal621

developmental lineages of cells of interest.622

Simulated data setup623

In this paper, two simulation data are included. The first corresponding to Fig. 2 and the second624

corresponding to Fig. 5 and Fig. S11. Below, we will introduce how these three simulation data625

are generated.626

For the first simulation data corresponding to Fig. 2, the dynamics consists of three genes Red,627

Green and Blue and two spatial coordinates x and y, whose regulation is shown in Fig. 2A. Such628

a regulatory relationship can be described by a system of stochastic differential equations for gene629

expression and spatial coordinates630

dr

dt
= f1(x)

( rn

1 + rn
+

1

1 + gn + 10bn
− r
)

+ 0.05wt,

dg

dt
= f2(x)

( gn

1 + gn
+

1

1 + rn + 10bn
− g
)

+ 0.05wt,

db

dt
=

b2

1 + b2
− 0.4b+ 0.01wt,

dx

dt
= sign(x) exp(−4b) exp(−4g)(r − 2)2r2 + 0.001wt,

dy

dt
= 0,

(31)

where r, g and b refer to gene Red, Green and Blue, f1(x) and f2(x) refer to the factors that depend631

on the coordinates x, and wt is a standard Brownian motion. In the computation, we take n = 4 to632

simulate the nonlinear regulation between genes. If we ignore these two x-related factors f1(x) and633

f2(x), r and g are a toggle switch of equal status. We hope |x| > 1, f1(x) > 1 and f2(x) = 1, this634

will promote Red expression. Conversely, when |x| < 1, f2(x) > 1 and f1(x) = 1, this will promote635

Green expression. The specific forms of f1(x) and f2(x) are detailed in the Supplementary Note 2.636
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cell proliferation modeled as division and apoptosis:637

proliferation rate = gdivision − gapoptosis =
2r

1 + r

|x|
1 + |x|

− g

1 + g
, (32)

which means that the gene Red and migrating outward in the horizontal direction will promote cell638

proliferation while the gene Green will inhibit cell proliferation. We sampled three groups of cells639

at the initial moment and discretized time in order to obtain data through numerical simulations.640

We simulate gene expression and spatial coordinates according to the forward Euler scheme and641

simulate cell division and apoptosis by numerically simulating a special Markov process, the birth642

and death process. Specific details of the sampling of initial values and numerical simulation can643

be found in the Supplementary Note 2. We evolved the cells at the initial time point from t = 0 to644

t = 3.0 according to the given dynamics and took a total of six time points at t = 0, 0.5, 1.0, 1.5, 2.0645

and 2.5 as observations. Considering that the spatial coordinates obtained at different time points646

using spatial transcriptome sequencing are not in the same coordinate system, we rotated the647

spatial coordinates of the second to sixth time points counterclockwise by 8, 16, 24, 32 and 40648

degrees, respectively.649

For the second simulation data corresponding to Fig. 4 and Fig. S11, similar to the first, the650

dynamics consists of three genes Red, Green and Blue and two spatial coordinates x and y. There651

are two types of cells in this simulation data, background cells and migratory cells. The background652

cells are in steady state, and their spatial coordinates and gene expression do not change with653

time. The migratory cells transited from high expression of Red and Green gene to high expression654

of only Red gene while moving to the right. Initial values for background cells and migratory cells655

can be found in the Supplementary Note 2. Gene expression and spatial coordinates of migrating656

cells evolve over time and obey stochastic dynamical systems657

dr

dt
= 0.05wt,

dg

dt
= 1.5

( gn

1 + gn
+

1

1 + rn + 10bn
− g
)

+ 0.05wt,

db

dt
=

b2

1 + b2
− 0.4b+ 0.01wt,

dx

dt
= 1 + 0.001wt,

dy

dt
= 0,

(33)

where we take n = 4 to model non-linear regulatory relationships. Unlike the first simulation data,658

we do not consider growth in the second simulation data. We evolved the cell at the initial time659

point from t = 0 to t = 1.0 according to the given dynamics. In Fig. 4, we took only two time660

points at t = 0 and 1.0 as observations. Additionally we rotated the spatial coordinates of the661

second time point by 8 degrees counterclockwise. In Fig. S11, we took a total of five time points662

at t = 0, 0.25, 0.5, 0.75 and 1 as observations and rotated the spatial coordinates of the second to663

fifth time points counterclockwise by 8, 16, 24 and 32 degrees, respectively.664

Details of GO enrichment analysis665

We used the python package GSEApy=1.0.3 [62] to perform GO enrichment analyses on migration666

genes and growth genes. In addition, the gene sets used were GO Biological Process 2018 (https:667

//maayanlab.cloud/Enrichr/#libraries).668

Data Availability669

All the datasets used in this paper are publicly available. The simulation datasets of synthetic670

circuits are available at https://github.com/QiangweiPeng/stVCR/tree/main/tutorial. The axolotl671

brain regeneration datasets are freely accessible in CNGB Nucleotide Sequence Archive under672

accession code CNP0002068. Processed data can be downloaded from https://db.cngb.org/stomics/673

artista/ [49]. The processed 3D Drosophila embryo datasets can be downloaded from the Spateo674

package [43] (https://www.dropbox.com/s/bvstb3en5kc6wui/E7-9h cellbin tdr v2.h5ad?dl=1 and675

https://www.dropbox.com/s/q02sx6acvcqaf35/E9-10h cellbin tdr v2.h5ad?dl=1).676
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Code Availability677

stVCR is implemented in Python and is available at https://github.com/QiangweiPeng/stVCR.678

The notebooks to reproduce all the results in the manuscript are available at https://github.com/679

QiangweiPeng/stVCR/tree/main/tutorial.680
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