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st VCR: Spatiotemporal dynamics of single cells

Qiangwei Peng', Peijie Zhou?", Tiejun Li%*"

'LMAM and School of Mathematical Sciences, Peking University.
2Center for Machine Learning Research, Peking University.

*Corresponding author(s). E-mail(s): pjzhou@pku.edu.cn; tieli@pku.edu.cn;

Abstract

Time-series spatial transcriptome data with single-cell resolution provide an opportunity to
study cell differentiation, proliferation and migration in physical space over time. Due to the
destructive nature of sequencing, reconstruction of spatiotemporal dynamics from data remains
challenging. Especially, the inference of migration in physical space remains a difficult task, as
samples obtained at different temporal snapshots might not be in the same coordinate system
due to the difference of biological replicates. Here we developed stVCR, a generative deep learn-
ing model, which integrates the dynamical optimal transport (OT) with the unbalanced setting,
the density matching invariant to rigid body transformations as well as priors to model known
biology and preserve spatial structure. stVCR achieves the end-to-end simultaneous recon-
struction of continuous cell differentiation, proliferation, physical space migration, and spatial
coordinates alignment from spatial transcriptome snapshots. In addition, stVCR allows the
interpretable study of complex interactions between cell phenotype transition, spatial migration
and proliferation. Through benchmarking on both simulation data and real datasets, we vali-
dated the effectiveness and robustness of stVCR and demonstrated its advantages over static
OT or linear interpolation methods. We applied stVCR, to dissect spatiotemporal dynamics
underlying axolotl brain regeneration and 3D Drosophila embryo development.

Introduction

The development of a fertilized egg into a complete embryo is a highly complex and important
process in biology [1-4]. This process involves intricate interactions between the dynamic regulation
of gene expression, cell differentiation, cell division, apoptosis, as well as cell migration within
physical space [5, 6].

The advent of spatial transcriptome (ST) technology has allowed obtaining both gene expres-
sion data and spatial coordinates [7-11]. As technology advances, spatial resolution has reached
the single-cell or even subcellular level, exemplified by methods such as Stereo-seq [10] and 10x
Visium HD [11]. However, due to the destructive nature of sequencing, ST data can only provide
snapshots rather than a continuous trajectory. If ST sequencing technology is likened to an ultra-
wide-angle camera, it can take pictures of living organisms but lacks video recording capability.
Especially, when sequencing at multiple time points during embryonic development, the result-
ing time-series ST data often come from different biological replicates, therefore yielding multiple
unpaired snapshots.

Recovering cells’ dynamic trajectories from single-cell sequencing data or ST data is a challeng-
ing task. RNA velocity [12] utilizes unspliced/spliced RNA to infer the developmental direction of
each cell. This inspired a series of subsequent works using unspliced/spliced RNA to more accu-
rately infer RNA velocity [13-18]. These methods suffer from scale invariance due to the lack of
temporal information [19]. Metabolic labeling scRNA-seq introduces temporal information into the
data by distinguishing new/old RNA [20-27]. Dynamo [28] designed parameter inference meth-
ods for metabolic labeling scRNA-seq data based on steady-state assumptions and deterministic
models, and Storm [29] extended it to be independent of steady-state assumptions and stochastic
models. Time-series scRNA-seq data introduces temporal information into the data in another way.
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Waddington-OT [30] pioneered the use of optimal transport(OT) for modeling time-series scRNA-
seq data, finding the optimal mapping in cells at two adjacent time points. However, it approximates
cell proliferation by using growth hallmark genes, which largely depends on the choice of database.

Targeted for time-series scRNA data, TrajectoryNet [31] combines dynamical OT [32] and
normalizing flows to infer continuous trajectories of cell and takes cell proliferation into account
through a separated static OT. MIOFlow [33] follows the geometry by operating in the latent
space of an geodesic autoencoder. TIGON [34] uses dynamical unbalanced OT [35] to reconstructs
dynamic trajectories and population growth simultaneously. Since the usual scRNA-seq data do
not include the spatial coordinates of the cells, these methods have limitations to directly model cell
migration in physical space. Some work considers stochastic cellular dynamics, such as FBSDE [36]
and PI-SDE [37]. Additionally, DeepRUOT extends even further to the stochastic unbalanced
case [38].

The availability of time-series ST data has made it possible to study how cells migrate in physical
space. PASTE [39] uses fused Gromov-Wasserstein(GW) OT [40] to align 2D adjacent tissue ST
slices to reconstruct the 3D structure of the tissue. Moscot [41] uses a similar fused GW-OT to find
the optimal mapping of cells between slices at two adjacent time points, incorporating penalties for
unbalanced and entropy regularization and employing a low-rank OT [42] to accommodate larger
data sizes. Spateo [43] aligns the spatial coordinates of two adjacent time points by optimal mapping
to obtain cell migration velocity and then learns a vector field of continuous spatial coordinates.
However, it does not fully address the interplay between gene expression and spatial location, and
processes such as cell division and apoptosis. DeST-OT [44] considers how to model cell proliferation
in the static OT setting, in particular ST data. TopoVelo [45] uses spatial coordinates to model
cellular neighborhoods when inferring usual RNA velocity based on unspliced/spliced RNA, and
designs post-processing steps to infer cell migration velocity. STT [46] characterizes multistability
in space by integrating unspliced/spliced RNA and ST through a multiscale dynamical model.

Reconstructing dynamical trajectories of cell differentiation, proliferation, and migration in
physical space simultaneously for time-series ST data is a challenging task. Especially for quanti-
fying the migration in physical space, improper treatment might introduce pseudo movements of
cells as the cell coordinates obtained at different temporal snapshots are not in same coordinate
system. Analogous to recovering a video from multiple photos, we aim to reconstruct the entire
cellular developmental dynamics from multiple unpaired ST snapshots, thus obtaining a contin-
uous spatiotemporal developmental trajectory. To achieve this goal, we developed an algorithm
called spatio-temporal Video Cassette Recorder (stVCR), which is a dynamical optimal transport
algorithm for resolving the issue of alignment of ST section data and unbalanced populations at
different snapshots, and incorporation of biological structure priors in an integrative manner. As
the result, stVCR reconstructs the spatiotemporal dynamical process for the considered system
from multiple ST snapshots. Furthermore, stVCR also reveals the complex regulatory mechanisms
behind the overall cellular dynamics, including how gene expression and spatial location affect each
other, and how they affect cell proliferation.

Results
Overview of stVCR

In stVCR, we adopt the dynamical OT formulation as a framework, yet with special treatments for
different types of data (Fig. 1A). Specifically, for gene expression counts, we use the Wasserstein OT
to model the temporal coupling of distributions (Fig. 1A Left and Methods). For spatial coordinates
of cells, since rotations and translations may be involved to prevent a direct comparison of cell
coordinates at different instants, we use the rigid-body transformation invariant OT to make the
spatial alignment in time (Fig. 1A Middle and Methods). For the number of cells, due to the cell
division and apoptosis, we use the unbalanced OT to model the unbalanced populations (Fig. 1A
Right and Methods). Additionally, stVCR optionally takes known cell type transition prior (Fig.
1B Left) as well as the spatial structure preserving prior for specific cell types (or organs) (Fig.
1B) to produce more biologically meaningful results (Methods). We unified all three necessary
modules and two optional modules into the form of dynamical OT, allowing us to study how a
population of cells changes in gene expression, how they migrate in physical space, and how they
divide and apoptose over time (Figure 1A,B,C and Methods). We take the spatial coordinates of
cells at the first time point ¢t = ¢y as the reference coordinates system, and the state of considered
cell group at time ¢ is described by a time-dependent distribution p;(x, g), where p; depends on the
spatial coordinates & € R% (d, = 2 or 3) of the cells in the reference coordinates system and the
gene expression variable g € R% after dimensionality reduction. Generally, p; is not a probability
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distribution though we take normalization at ¢t = tg. st VCR finds the optimal rigid rotation matrix
Ry and translation vector rj for the coordinate system at time point ¢ = ¢ except ty, and uses
the transport-with-growth PDE

Ope + V- (v, Pe)pt) = gepr (1)

to interpolate the empirical density p*) and cell number nj, of the snapshot spatial transcriptomic
data at t = t) after rigid body transformation (Fig. 1C), where v, p:, and g; are parameterized to
be learned by neural networks. In physical meaning, v; = dz/dt describes the migration velocity of
cells in physical space, p; = dq/dt describes the RNA velocity of cells in (reduced) gene expression
space, and g; € R describes cell proliferation (Fig. 1C, D).
stVCR parameterizes the 2D rotation matrix by using rotation angle (or Euler angle for 3D
case), and simultaneously finds the optimal rigid body transformations and parameterized dynam-
ics by minimizing a total loss composed of dynamics loss, matching loss and optional spatial
structure preserving loss
L = Lpyn + AMchLrich + Asspﬁ(sgrg)- (2)

The dynamics loss Lpyy further contains three parts
LDyn = LSpa + OéExprExp + aGro£Gr07 (3)

promoting the least consumption of kinetic energy of spatial migration and gene expression change,
and growth energy, respectively. The matching loss Lyie, promotes the cell dynamics to match
the aligned ST data as well as possible at different time points, and the optional spatial structure
preserving loss E(Scél;) promotes a stable spatial structure for the the user-specified organ or cell
type by encouraging adjacent cells to have similar spatial velocities, thereby preventing arbitrary
deformations. (Fig. 1D and Methods). The training process involves OT optimization and inte-
grating ODEs represented by neural networks, which we solve using the POT [47] and torchdiffeq
packages [48], respectively.

Once we have completed the entire training process to obtain the optimal rigid-body transfor-
mation and parameterized dynamics, we can first apply the optimal rigid-body transformation to
align the spatial coordinates of cells at different time points to the reference coordinate system,
and then perform a series of downstream analyses (Fig. 1E and Methods): (1) Interpolation and
prediction. We evolve forward or backward from the nearest observations to the interested time
point (between observations or in the future) based on learned cellular dynamics (Fig. 1E Top
left and Methods). (2) Gene-space interactions. We study cell-specific gene-gene, gene-space and
space-space interactions by calculating the Jacobian matrices of learned spatial migration dynam-
ics and gene expression dynamics and further calculating the directional derivatives along the cell
migration direction of interest (Fig. 1E Bottom left and Methods). (3) Proliferation driver genes
and migration direction. We study the effects of genes and migration on growth by calculating the
gradient of the learned growth dynamics and further calculating the similar directional derivatives
(Fig. 1E Top right and Methods). (4) Lineage inference/generation. For originally annotated data,
we can infer temporal developmental lineages by learning a time-dependent classifier to annotate
unobserved cells generated by interpolation or prediction (Fig. 1E Bottom right and Methods).



140

141

142

143

144

145

146

147

148

149

A
Gene Expression

Spatial Coordinates

Cell Number

Optional prior knowledge

( Wasserstein OT  Spatial aligned OT

N

Unbalanced OT

// \‘ /
&

e 7
Known transitions Known structures

known
type
transitions

—_—

P

Dynamical -~ Formulation

Cr rigid body transformation invariant OT

stVCR Spatio-temporal continuous equation )
R) Ry
3 3. . _—
Op+ V- ((v,p)p) =gp
raw raw
% - p: Cell Mass Distribution p: RNA Velocity
—
" N . .
aligned a"%”ed v: Spatial Migration Velocity ~ g: Cell Growth
>
t1 t2 t3
\ J
D E
Deep learning-based inference New Biological Applications/Insights
(" spatial celistate ) ( Interpolation and prediction Proliferation driver genes )
coordinate transition and migration direction
ene r " - S
g @ or @ X; X, 9, Q; 9 i = (ny,n2)

expression or & P & — Yo ag dg

spatial division/ @ L 1 A LY ] 97 5= et g™
time igrati i Nonlineari NonlineArl o1
migration - apoplosts) | datat  [TAUNEY,  date2  SOURS  gradientveotor

- + + LSSP Gene-space interactions Lineage inference/generation

spatial structure

jacobian matrix

type2

preservation loss given direction I
R = i (50) type2
w/o 7 = (ny,n,) gene i, tﬁ%g‘l (50)
) Abssd Zopi _opi | Opi (100 pel  ypes |
09ROyt Oxy (50) (25)
4-/, Ft--1- 2 >
N ) U X %% %4 4 Generated L)

Fig. 1: Overview of stVCR. A. stVCR adopts dynamical OT framework yet with special
treatments for different types of data in the spatial transcriptome. Specifically we use Wasserstein
OT for gene expression data (Left), rigid body transformation invariant OT for spatial coordinates
(Middle), and unbalanced OT for cell number change due to cell division and apoptosis (Right). B.
stVCR can optionally model prior knowledge, including biological priors for known type transitions
(Left) and spatial structure preserving priors (Right). C. st VCR unifies the three necessary modules
and two optional modules into a dynamical OT. The input spatial transcriptome snapshots are
described as distributions p(*), and the permissible rotations and translations are characterized by
(R, k) at t = tg. The modeling density p; is governed by a partial differential equation involving
spatial velocity v, RNA velocity p, and growth rate g. D. stVCR solves the problem in B based
on deep learning. vi(x, q), p:(x,q) and g:(x,q) are modeled by three neural networks. The loss
function includes three parts: dynamics loss, matching loss and spatial structure preserving loss.
E. stVCR can perform downstream analyses, including interpolation and prediction (Top left),
studying cell-specific gene-gene, gene-space, space-space interactions (Bottom left), exploring the
cell-specific effects of gene expression and spatial variations of growth rates (Top right) and inferring
temporal cell-type developmental lineages (Bottom right).

Benchmark on the simulated time-series ST data for accuracy,
scalability and robustness

To demonstrate the necessity of aligning the spatial coordinates of different temporal snapshots into
the same coordinate system, and benchmark the ability of the stVCR to recover spatiotemporal
dynamics and reveal key regulatory mechanisms, we generated the simulated dataset of gene circuits
and two spatial dimensions (Fig. 2A, B and Methods). The three genes are named Red, Green
and Blue genes. There are regulatory relationships between different genes and different spatial
coordinates, in addition, gene expression and cell migration also affect cell proliferation (Fig. 2A).
Red and Green genes form a toggle switch circuit and they have opposite effects on growth. In
addition, the difference in spatial location makes them unequal in status (Fig. 2A, B and Methods).
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In the simulated dataset, there are three groups of cells at the initial moment (Fig. 2 B). The
first group highly expressed gene Blue and was in steady state (Fig. 2 B). The second and third
groups had similar low gene expression at the initial moment, but their different spatial locations
determined their different fates of transition and growth (Fig. 2B). Without spatial information,
it is not possible to distinguish between the second and third group at the initial moment, which
would lead to erroneous trajectories (Fig. 2B Left and Fig. S4 last row). If cell proliferation is
ignored, it will lead to incorrect cell trajectories of the small number group to the large number
group (Fig. 2B Right and Fig. S5 last row). The input data totaled 6 time points, and we rotated
the spatial coordinates by different angles to simulate the possible rotation of tissues by spatial
transcriptome sequencing (Fig. 2C and Fig. S1A).

To illustrate the ability of stVCR to align the spatial coordinates of different temporal snap-
shots and reconstruct the entire spatiotemporal dynamics, we took the data from the first time
point and evolved them according to the learned dynamics, demonstrating consistency with real
dynamics (Supplementary Video 1; Fig. 2D and Fig. S1B). Specifically, the first group of cells
remained virtually unchanged. The second group of cells gradually overexpressed the Red gene,
moved outwards in the horizontal direction, and continuously proliferated. The third group of cells
gradually overexpressed Green gene and continued apoptosis. In addition, we observed that in the
aligned space by stVCR, cells only moved horizontally and did not rotate, indicating that we found
the optimal rigid body transformation to align the data at different time points while finding the
optimal dynamics of cell evolution (Supplementary Video 1, Fig. 2D and Fig. S1B). In addition,
stVCR interpolated the unobserved intermediate moments ¢ = 0.25, 0.75, 1.25, 1.75 and 2.25 and
predicted the future moments ¢ = 2.75 based on the learned dynamics, and the results are close to
ground truth (Fig. 2E,F and Fig. S1C).

To investigate the ability of stVCR to restore the effects of gene interactions, we compared the
partial derivatives of Green gene velocity with respect to Red gene expression with ground truth,
and visualized them in spatial coordinates (Fig. 2G Left). Qualitatively, they were consistent, and
Green gene inhibited Red gene expression mainly in the second and third group of cells.

Next, to investigate the ability of stVCR, to restore the cell migration effects on gene expression,
we calculated the directional derivative of Red gene expression for the given direction n = (1,0)
(i.e., cells moving horizontally to the right) for both learned and true dynamics (Fig. 2G Right).
Cells at the right end of the second group moving to the right will promote gene Red expression,
and cells at the left end moving to the right will inhibit gene Red expression, which overall suggests
that moving horizontally outward in the second group of cells will promote Red expression.

To evaluate the spatial variability of cell proliferation and the effect of cell migration on growth,
we compared the true and learned cell proliferation rates (Fig. 2H Left). The results show that the
first group of cells has a growth rate close to 0, the second group has a large positive growth rate,
and the third group has a large negative growth rate. Additionally we calculated the directional
derivative of the growth rate g with respect to a given direction n = (1,0), similarly showing that
cells moving outward in the horizontal direction will promote cell proliferation (Fig. 2H Right).

Finally, we checked the scalability and the robustness with respect to important hyperparam-
eters of the stVCR. We first performed a scalability analysis, which shows that stVCR is scalable
for dataset size, model size, and number of observation times when the proper sample batch size is
chosen (Fig. S2). Next, we tested the robustness of st VCR with respect to the important hyperpa-
rameters Anvien (Fig. S3 and Supplementary Video 2), kgxp (Fig. S4 and Supplementary Video 3),
and agro (Fig. S5 and Supplementary Video 4), where Ayen, measures the importance of the match-
ing loss, KExp weighs the importance of gene expression and spatial coordinates in the matching
term and agr measures the flexibility of cell proliferation. The results show that stVCR is robust
over a wide range of these parameters.

In summary, our benchmark tests on this simulated data show that (1) it is necessary to align
the spatial coordinates of different time snapshots to the same coordinate system; (2) stVCR simul-
taneously reconstructs cell transition, migration and growth are the keys to reconstructing correct
spatiotemporal dynamics; (3) and stVCR can accurately reconstruct key regulatory mechanisms.
In addition, stVCR is a scalable and robust algorithm under key hyperparameters tuning.
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Fig. 2: Benchmark of stVCR on the simulated time-series ST data. A. Regulation rela-
tionship diagram to generate simulation data. B. Dynamic diagram of cell evolution over time.
Left: Dynamics of the second group and third group of cells over time in r (red gene expression), g
(green gene expression ) and |z| (absolute values of spatial coordinates) dimension. Right: Dynam-
ics of all cells over time in r, g and b (blue gene expression) dimension. C. Input data to stVCR
at t = 0.0, 1.0 and 2.5. The color was determined by the expression of three genes Red, Green and
Blue. D. The reconstructed results at t = 0.0, 1.0 and 2.5 of cells at t = 0.0 according to learned
dynamics using stVCR. E. Results of stVCR interpolation at ¢ = 0.25 and ¢ = 1.25 and compar-
ison with ground truth. Left: ground truth; Right: stVCR. F. Similar to E, but for the results of
stVCR prediction at t = 2.75. G. Left: Derivative of Green gene velocity with respect to Red gene
on cells at ¢ = 2.5 of true dynamics and learned dynamics. Right: similar to Left, but for deriva-
tive of Red with respect to given direction n, where n = (1,0). H. Left: Growth rates of cells at
t = 2.5 of true dynamics and learned dynamics. Right: similar to Left, but for derivative of cell
proliferation with respect to given direction n, where n = (1,0).
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stVCR reconstructs cell transition and growth dynamics of axolotl brain
regeneration

To validate stVCR’s capability to learn complex continuous dynamics from spatial snapshots, we
next applied stVCR for the axolotl brain regeneration dataset using single-cell Stereo-seq technol-
ogy [49]. The dataset includes brain samples at 2, 5, 10, 15, 20, 30, and 60 days post-injury (DPI)
to dissect both immediate wound responses and later regeneration processes. According to the
original study [49], the regeneration process is mainly concentrated in 2 DPI to 20 DPI, so we took
the data of 5 temporal points at 2, 5, 10, 15 and 20 and reconstructed the dynamic regeneration
process using stVCR (Fig. 3, Fig. S6 and Fig. S7).

To inspect st VCR’s effect in aligning different samples, we demonstrated the aligned coordinate
at different time points Fig. 3A and Fig. S6A. stVCR aligns the spatial coordinates of the data
collected at different time points to the same coordinate system making them blend well (Fig. 3B).
We further compared the spatial coordinates of each time point before and after the stVCR align-
ment (Fig. 3B and Fig. S6B), and observed that at each time point the data were adjusted to
varying degrees based on the inferred rigid-body transformation, especially for the 20 DPI data
(Fig. 3C). This suggests the necessity of sample alignment to infer dynamics correctly.

To further illustrate the continuous dynamics reconstructed, we trained a classifier based on
existing cell annotations using a neural network, which allowed us to annotate cells at unobserved
time points (Methods). stVCR recovered the gene expression, physical location, possible division
and apoptosis, and possible transformation of the cell type of each cell at each moment (Supplemen-
tary Video S5). We visualized the calculated spatial velocity in coordinate space and observed cells
in the vicinity of the wound migrating toward the wound when the wound was not yet fully healed,
showing a response to injury, especially reactive ependymoglial cell (reaEGC) and microglial cell
(MCG) (Fig. 3D).

Consistent with cell transition dynamics in response to the injury, we studied the spatial dis-
tribution of cell proliferation rates (Fig. 3E and Fig. S6D), which showed that cell proliferation
rates in the injured hemispheres were significantly higher than those in the uninjured hemispheres
especially near the wound site (Fig. 3E), implying that cell division was more active in the injured
hemispheres. This phenomenon may be due to the need to compensate for cells lost due to injury.
In addition, we show the interpolation results at 3.5, 7.5, 12.5 and 17.5 DPI (Fig. 3F and Fig. S6C).

To highlight stVCR’s function to generate unobserved lineage dynamics, we calculated the
number of cells of each type over time based on reconstructed continuous trajectories (Fig. STA).
Interestingly, the inferred number of many types of cells does not simply vary monotonically and
linearly outside the observed time point. Among the three ependymoglial cell (EGC) types, the
number of reaEGC are increasing first and then decreasing, while the population of Wnt* EGC
(wntEGC) and Sfrp™ (sfrpEGC) are decreasing first and followed by increasing trend. Such a trend
coincides with the original study [49] which revealed that sfrpEGC and wntEGC are transitioned
into reaEGC in the earlier stage of immediate wound responses. In contrast, later reaEGC are
transitioned into mature neurons (Fig. S7B). In particular, the number of wntEGC decreased while
reaEGC population expanded synchronously from 5DPI to 10DPI (Fig. 3G Top).

To better visualize the lineage dynamics inferred by stVCR, we constructed the temporal devel-
opmental lineage of wntEGC from 5DPI to 10DPI, which allowed us to study the transformation
of cell types at time periods other than the observed time points (Fig. 3H Top). The results showed
that wntEGC were indeed partially transformed into reaEGC. Next we constructed the temporal
developmental profile of reaEGC from 15DPI to 20DPI, and the results showed that it transformed
into wntEGC and some neurons in intermediate and mature states (Fig. 3H Bottom), which also
coincided with the trend of their cell number (Fig. 3G Bottom). In addition, we noticed a rapid
increase in the number of immature neuron (IMN) and dorsal palliumexcitatory neuron (dpEX)
when the number of regeneration intermediate progenitor cell (rIPC)1 and rIPC2 was sharply
decreasing (Fig. S7C). Therefore, we constructed temporal developmental lineages of rIPC1 and
rIPC2 from 15DPI to 20DPI, and the results showed that rIPC1 were mainly transitioned into
IMN and rIPC2 were mainly transitioned into dpEX (Fig. S7D), which is also consistent with the
experimental observations [49].

In summary, stVCR describes the complex dynamics of axolotl brain regeneration. In the early
wound response phase of an injury, stVCR revealed that sfrpEGC and wntEGC transitioned into
reaEGC, and the proliferation of cells in the injured hemisphere became active, especially EGC
types in the vicinity of the wound. In addition, reaEGC moved toward the wound. As the wound
gradually healed, reaEGC transformed back to wntEGC or differentiated into certain intermediate-
state neurons. Eventually, neurons in the intermediate state are then transitioned into mature
neurons to compensate for the loss of mature neurons due to injury.
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Fig. 3: st VCR reconstructs spatiotemporal dynamics of axolotl brain regeneration. A.
stVCR aligns the spatial coordinates of data at different time points to the same coordinate sys-
tem. Top 2DPI; Bottom: 15DPI. Cell type annotations come from the original study. dpEX,dorsal
palliumexcitatory neuron; IMN, immature neuron; MCG, microglial cell; MSN, medium spiny neu-
ron; nptxEX, Nptx™ lateral pallium excitatory neuron; EGC, ependymoglial cell; reaEGC, reactive
EGC; ribEGC, ribosomal EGC; rIPC, regeneration intermediate progenitor cell; sfrpEGC, Sfrp™
EGC; tINBL, telencephalon neuroblast; VLMC, vascular leptomeningeal cell; wntEGC, Wnt™
EGC. B. Comparison of spatial coordinates of the data for all time points before and after stVCR
alignment. Left: Before stVCR. Right: After stVCR. C. Comparison of spatial coordinates of 20
DPI data before and after alignment. D. stVCR inferred spatial cell migration velocity at 2DPI
and 5DPI injured hemispheres. Left: Streamline plot; Right: Locally amplified grid velocity. E.
stVCR inferred cell proliferation rate at 2DPI and 15DPI data. F. stVCR interpolated snapshots
at 3.5DPI and 17.5DPI. Cell type annotations come from the stVCR’s time-dependent classifier
based on the generated continuous gene expression values. G. Changes in cell number over time.
Top: reaEGC and wntEGC from 5DPI to 10DPI. Bottom: reaEGC, wntEGC, rIPC4 and tINBL
from 15DPI to 20DPI. H. stVCR reconstructs the time-varying developmental lineages. The num-
ber in parentheses is the number of cells. Top: wntEGC from 5DPI to 10DPI; Bottom: reaEGC
from 15DPI to 20DPI.
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Gene-level mechanisms of axolotl brain regeneration revealed by stVCR

stVCR reconstructed the dynamics of axolotl brain regeneration process, in which cell migration
and reaEGC proliferation play important roles. To further reveal the mechanism on the gene level,
we performed stVCR analysis of these two biological processes based on the learned kinetics, and
in addition, reconstructed the regulatory network between key genes (Fig. 4, Fig. S8 and Fig. S9).

To infer gene-spatial interactions, we used stVCR to identify the top 100 migration driver genes
(Methods). Through Gene Ontology (GO) biological process analysis, we identified several pro-
cesses associated with cell migration (Fig. 4A), including neuron migration and negative regulation
of homotypic cell-cell adhesion. Neuron migration is a crucial process for the proper positioning
of neurons, while the negative regulation of homotypic cell-cell adhesion facilitates cell movement
by reducing cell interactions. Interestingly, several marker genes of EGC-type cells identified in
the original study, were included in stVCR’s migration driver genes, such as GFAP, TNC, PTN,
SLC1A3, GLUD1 and ECM1. We further visualized the migration driver gene score, i.e. d||v||/dq’
of four example genes GFAP, TNC, PTN and SLC1A3 (Fig. 4B and Fig. S8A), and showed that
they have a promoting effect on cell migration in EGC-type cells. In addition, these genes are
indeed highly expressed in EGC-type cells (Fig. 4C and Fig. S8B), especially the GFAP, TNC
genes in reaEGC cells (Fig. 4C).

Next, we used stVCR to infer cell proliferation driver genes in reaEGC and ranked the results
to obtain the top 100 growth-promoting genes (Methods). The GO analysis identified several
processes closely related to cell proliferation (Fig. S8C) essential for ribosome biogenesis, protein
synthesis, and the proper targeting of proteins. Similar to the migration driver gene results, the
growth driver genes inferred by stVCR overlapped with several marker genes for EGCs, such as
FABP7 and SFRP1 (Fig. SS8E). We visualized the growth driver gene score dg/d¢’ of these two
example genes (Fig. S8D), and showed that they are significantly promoting cell proliferation and
division at EGCs in the injured hemisphere.

Finally, to utilize stVCR’s function to infer dynamic gene interactions(Methods), we selected
some genes (KRT18, ECM1, GFAP, VIM, TNC, S100A10 and HMOX1) that were highly expressed
in reaEGC (Fig. S9A), and investigated the regulatory relationship between these genes 1) at dif-
ferent time points and 2) in different cell types, and visualized the gene regulatory network (GRN)
(Fig. 4D,E and Fig. S9B,C). We observed that in reaEGC these genes inhibit each other at an
early stage (2DPI), followed by a gradual weakening of the inhibition (5DPI; 10DPI), and at a
later stage (15DPI) they turn to promote each other (Fig. 4D and Fig. S9B). Thus, stVCR analysis
suggests that gene regulatory relationships may be changing over time, even in the same cell type,
which may be related to the discovery that reaEGC play different roles in early and late stages of
injury. In addition, to investigate the gene regulatory relationships as affected by spatial distribu-
tion, we selected wntEGC and sfrpEGC, which are closer to reaEGC, and vascular leptomeningeal
cell (VLMC), whereas more apart from reaEGC (Fig. 4E). We recovered the regulatory relation-
ships between these cells at 2DPT at the previously mentioned genes (Fig. 4F and Fig. S9C). The
results showed that the regulatory relationships of these genes were close in wntEGC and sfrpEGC,
and closer to reaEGC, although there were some minor differences (Fig. 4F Left and Middle). In
contrast, the regulatory relationship in VLMC was distinct from reaEGC (Fig. 4F Right). Thus,
our results suggest that gene regulatory relationships might also be influenced by cell type and
spatial location.

In summary, our gene-level mechanism of axolotl brain regeneration datasets demonstrates the
ability of the stVCR to (1) find migration-driven and growth-driven genes; and (2) infer time-
dependent and cell type- dependent GRN, suggesting its advantages over static OT-based methods.
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Fig. 4: stVCR gene-level analysis of axolotl brain regeneration. A. GO biological process
enrichment analysis of the top 100 migration-promoting genes in all cells. B. The partial derivative
of the norm of spatial velocity ||v.|| with respect to gene expression. Two example genes in A, GFAP
(Left) and TNC (Right). C. Violin plots of gene GFAP (Left) and TNC (Right) expression in
reaEGC, wntEGC and VLMC cells. D. Gene regulatory networks in reaEGC cells for genes highly
expressed in reaEGC. From left to right: 2DPI, 5DPI, 10DPI and 15DPI. E. Spatial distribution of
reaEGC, wntEGC, sfrpEGC and VLMC cells at 2 DPIL. F. Similar to D, but for sfrpEGC (Left),
witEGC (Middle) and VLMC (Right) cells at 2 DPI.

stVCR analysis of 3D Drosophila embryos and organs with optional prior

To illustrate the necessity of incorporating known biological priors for ST data with sparse temporal
observations, we begin with a specially designed simulation dataset for benchmarking (Methods and
Supplementary Note 3). The data consists of three types of cells named type 1, type 2, and type 3
(Fig. 5A), where type 3 cells express the Red and Green genes moderately and are at steady state.
The type 1 cells will first highly express Red and Green genes, gradually decrease the expression
of green genes, and migrate over time, transitioning to the type 2 cells that highly express only
the Red gene. When there are sufficient observations and the time intervals are small enough, the
correct result can be inferred by stVCR without any prior (Fig. S11 and Supplementary Video
S8). Indeed, we can theoretically prove that the stVCR reconstructed dynamics will converge to
the true dynamics when the sampling time intervals between consecutive observations converge to
zero, which provides a rigorous guarantee for the algorithm (Supplementary Note 4). Meanwhile,
due to the high cost of ST sequencing, the number of measurement time points is usually fewer
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and at longer intervals in real experiments. Thus we develop the strategy to allow users to assign
known biology priors such as cell state-transition relations and structural continuity of tissues into
stVCR (Methods).

To show the effects of adding biological priors, we only input two observations at ¢ = 0 and
t =1 (Fig. 5A,C) to stVCR. Without prior knowledge, stVCR would infer the wrong type 1 to
type 3 and type 3 to type 2 transitions rather than the correct type 1 to type 2 transition (Fig. 5,
Supplementary video S6-S7). In comparison, the interpolation results show that stVCR with a type
1 to type 2 state-transition prior is closer to the ground truth at unobserved time points (Fig. 5D
and Fig. S10). Overall, the above experimental results illustrate the benefit of adding the correct
biological prior into datasets with fewer observations and longer intervals for more accurate results.

In order to validate the effectiveness of the strategy of combining biological prior and spatial
structure preserving prior on real datasets, we next applied stVCR priors for the 3D Drosophila
embryos and organs dataset using single-cell Stereo-seq technology [43]. This datasets include only
two time points E7-9h and E9-10h. We set the former moment (E7-9h) in the 3D Drosophila embryo
data to ¢ = 8h and the latter moment (E9-10h) to ¢ = 9.5h. The data contains 9 tissues (Fig 5E),
and we added biological priors central nervous system (CNS) transition to CNS, midgut transition
to midgut, and amnioserosa transition to amnioserosa. Additionally, we added the spatial structure
preserving priors for CNS and midgut. We aligned the two observations of data and reconstructed
the dynamics between the two moments using the stVCR with the above priors (Supplementary
video S9). Fig. 5E shows the aligned 3D Drosophila embryo. We focused on the CNS and midgut
(Fig. 5F). We observed that the anterior of the CNS of Drosophila at the latter moment overlapped
with the posterior of the CNS at the former moment (Fig. 5F Left), and the midgut consisted of
two parts at the former moment and only one part at the latter moment (Fig. 5F Right).

To benchmark stVCR with other static OT-based methods and highlight its unique function
to model continuous dynamics, we compared the spatial migration dynamic trajectories of CNS
reconstructed by stVCR with Spateo [43] and Moscot [41] (Supplementary video S10-S12 and
Fig. 5G). Since both Spateo and Moscot are based on static OT and do not directly reconstruct
the intermediate process, we obtained the intermediate process by linear interpolation based on
the inferred static optimal map. In the spatial trajectory reconstructed by stVCR, the cells in
the posterior of CNS gradually migrated to the anterior along the internal structure of the CNS
(Supplementary video S10 and Fig. 5G Top row). In Spateo, the cells at the posterior of the
CNS were disconnected from the main body and then migrated to the anterior to merge into one
part (Supplementary video S11 and Fig. 5G Middle row). One possible explanation is that Spateo
is based on static OT and does not constrain the consistency of the intermediate trajectory. In
Moscot, cells migrate and aggregate to a few locations (Supplementary video S12 and Fig. 5G
Bottom row). We speculate the possible reason is that Moscot tackles the unbalanced OT problem
by adding the KL divergence penalty, so that the cells at the first moment correspond to a few
cells at the second moment. In addition, we reconstructed the spatial trajectory of midgut using
stVCR and compared it with Spateo and Moscot (Supplementary video S13-S15 and Fig. S12).
The results showed that both stVCR and Spateo observed that two parts of the midgut at the
first moment merged into one part at the later moment (Supplementary video 13-14 and Fig. S11C
First two row). In Moscot, the spatial trajectories of midgut migrated and aggregated to a small
number of locations similarly to the CNS results.

In summary, we demonstrate the theoretical convergence of stVCR in large sample cases through
mathematical derivations. We also highlight the benefit of adding known state-transition priors
and spatial structure-preserving priors in case of limited observations through computations on
simulated data. The application in 3D Drosophila datasets indicates the superiority of stVCR
compared to existing methods based on static OT.
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Fig. 5: stVCR analysis of 3D Drosophila embryos and organs with biological state-
transition prior and spatial structure preserving prior. A. Dynamic diagram of cell
evolution over time in simulated data. Longer observation intervals and lack of biological knowl-
edge guidance will result in incorrect type 3 to type 1 and type 2 transitions rather than type 1 to
type 2 transitions. B. True dynamics of simulated data. Yellow type 1 cells transition and migrate
to become red type 2 cells. Brown cells in the background are in steady state. The color was deter-
mined by the expression of three genes Red, Green and Blue. C. Input data to stVCR at only two
time points. Left: ¢ = 0.0. Right: ¢ = 1.0. D. Interpolation results at ¢ = 0.5 of stVCR with and
without biological prior compared to the ground truth. Left: ground truth. Middle: stVCR with-
out prior. Right: st VCR with prior. E. Spatial coordinates of 3D Drosophila embryos after stVCR
alignment. Left: E7-9h. Right: E9-10h. CNS, central nervous system. F. Spatial coordinates of
3D Drosophila organs after stVCR alignment. Left: CNS. Right: Midgut. G. Comparison of spa-
tial migration trajectories of CNS cells. From left to right: E8.0h, E8.3h, E8.6h, E8.9h, E9.2h and
E9.5h. From top to bottom: stVCR, Spateo [43] and Moscot [41].

Discussion

Time-series spatial transcriptomics data has made it possible to reconstruct the entire spatiotem-
poral dynamic process of cell fate determination. To dynamically connect unpaired snapshots and
align temporal slices from various coordinate systems, we present stVCR to (1) simultaneously
reconstruct and continuously generate cell differentiation, migration in physical space as well as
division and apoptosis; (2) align spatial coordinates from data collected at different time points
and (3) investigate the complex interactions between cell phenotype transitions, spatial migration,
and proliferation.
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Compared to existing methods that reconstruct trajectories from time-series spatial transcrip-
tomics data [41, 43, 44], stVCR employs Rigid body transformation invariant OT, rather than
GW-0OT, making it the first algorithm to use dynamic OT modeling for time-series spatial tran-
scriptomics data. Additionally, stVCR can model optional known biological priors and spatial
structure-preserving priors. Once the entire dynamic process is reconstructed, stVCR, can further
perform a series of downstream analyses that are not feasible with static OT.

stVCR can be improved and extended from several aspects. For instance, learning both the
low-dimensional representation of gene expression and the dynamics in the low-dimensional simul-
taneously may yield better results [18]. In addition, integrating ODE represented by neural
networks is costly, and some work has attempted to construct simulation-free methods in time-
series single-cell transcriptome data [50], which may also be generalized to spatial transcriptome
data. Incorporating more intrinsic dynamics of gene expression (such as transcription, splicing, and
degradation) and cellular interactions[51, 52] may yield deeper insights into the realistic biologi-
cal processes. Lastly, integrating other modalities such as lineage information [53] and multi-omics
measurements [54] could further enhance the trajectory inference. Due to the limitations of 3D time-
series spatial transcriptome data availability, further applications and performance evaluations on
more challenging datasets are needed and will be addressed in future research.

Overall, stVCR provides a unified and robust method for generative modeling of time-series
spatial transcriptomics data, which reconstructs the entire spatiotemporal processes of single cells
from a few given snapshots and investigates the complex space-gene regulatory mechanisms.

Methods

Basic optimal transport formulation setup

In essential aspects, we utilize the dynamical optimal transport (OT) formulation to reconstruct
the spatiotemporal dynamics of single cells for snapshot spatial transcriptomics data. Let us first
state the basic OT setup for simple case.

Let @ = >3  aid(x — a;) and § = 37" b;d(y — y;) be two probability distributions with
normalized positive vectors a = (a;) and b = (b;), where 6(-) stands for the Dirac’s J-function.
One typically couples « and 8 (or a and b) through the Kantorovich’s OT problem

Lo(o,B) = min (C,P):= ; ; CiiPig) (4)

where U(a,b) := {P € R}*™: P1,, = a and PT1, =b} and C = (¢;;) is the cost matrix. When
cij = c(xi, y;) with c(z, y) = |[[z—y||b, where ||z||,, is the vector £” norm, the p-Wasserstein distance
is defined as W,(a, ) = (Lc(a, 8))'/P. The optimal coupling matrix component p;; characterizes
the probability that @; will be transported to y; [55].

A special case is p = 2, i.e., c(x,y) = ||& — y||3. In this case, the above OT formulation has an
equivalent dynamic form (Benamou-Brenier form [32]) by minimizing the transport kinetic energy

1
- min vi(x 2o¢t x) dx
Wafo ) = min [ [ (e P o) daar, o)

o (x),ve
where a4, v satisfies the continuity partial differential equation (PDE)
O () + V - (vi(x)ayg(x))) = 0, such that ay—g = a, =1 = . (6)

The vector field {v:(x)}:e[0,1] is to be optimized such that the boundary conditions are satisfied
and the minimal kinetic energy is achieved.

The dynamic formulation can be generalized to the case when the total mass of o and ( are not
equal (unbalanced setting). A common approach is to consider the so-called Wasserstein-Fisher-Rao
(WFR) distance [35, 56, 57]

1
(WFR(a,#))* =  min / / (les@) | + 7 e (@)]1*) () ddr, (7
(at(z),vi(x),g¢(x)) 0 R4
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where oy, v, g; satisfies the PDE
Orar(x) + V - (ve(x)ag(x)) = ge(x)ae(x), such that ay—g = a, 01 = B (8)
See Supplementary Note 1 for a detailed description of the above algorithm.

Data preprocessing

For gene expression count matrix, we first normalized the raw counts data using size factor. Then
we selected the top 2000 highly variable genes. Finally, we utilize an Autocoder to project highly
variable genes to low dimensions. Specifically, we represent an encoder gemb = fenc(Goriy Oenc) and a
decoder Gori = fdee(Gemb, fdec) using neural networks, where the input of the encoder is the original
gene expression g,,; and the output is the low-dimensional embedding gemp, and the decoder is the
opposite. The loss function is taken as

3 (9)

N
1 -
encyUdec) = R7 Qori,i — Yori,i
Lfunc-baec) = = 3| |
i=1

where N refers to the total number of cells. In actual computations, we take the dimension of the
low-dimensional embedding gemp, to be 10. Also for simplicity of notation, we still use g to refer to
Qomb to denote the low-dimensional embedding of gene expression unless otherwise stated.

Notation conventions in stVCR

We use the notation x = (2!,22,...,2%) € R%, q = (¢*,¢% ...,q%) € R% for spatial and
gene expression variables, respectively. For the considered spatio-temporal transcriptome data, we
assume there are ny cells at time ¢t = ¢ for k =0,1,..., K. We denote the available datasets by
k k k) (k
X0 = @® 2 2By e RExm Q) = (M) g, ... q)) € REx (10)

at t = ty, where ds is the dimension of the spatial coordinates, usually 2 or 3, and d, is the
dimension of the embedded gene expression space (d, = 10 in our setup). In the data analysis, we
often need to consider the spatial coordinates after alignment with rigid body transformations at
time points ¢t = tq,...,tx, which we denote by

When only rotation R and translation = are considered, &*) = Rz*) + r. The data (empirical)
distribution formed by the dataset (X®), Q(*)) is denoted by

1 &
p(k) (wa q) = ;k Z 6(m - wgk)7 q— qi(k))a (12)
i=1

where §(-) stands for the Dirac’s -function in (z, q)-space. Correspondingly, we can define p(*) for
the dataset (X(k), Q(k)) after alignment. Both p®*) and p(*) are probability distributions.

We use the notation f;(x,q) or the shorthand f; to denote the time dependence of a function
f(x,q,t), while for time dependent coordinates (z(t),q(t)), we use the notation (z®,q®) to be
consistent with the notation (X*), Q(®)). All of the vectors are bold-faced, while the matrices are
in normal fonts.

Spatial alignment for temporal snapshots

Due to the unknown deformation of the tissue during spatial transcriptome (ST) sequencing, we
need to align the spatial coordinates of the ST data at different time points before the subsequent
analysis. We assume the large scale deformation of the observed coordinates contains only rigid
body transformations (i.e., rotations and translations) in this work. We do not follow the Gromov-
Wasserstein (GW) optimal transport framework for its over-generality and large computational
cost. Yet, we adopt the optimal transport approach in [58] by explicitly modeling the set of invariant
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manipulations G, and simultaneously finding the optimal matching of distributions and the optimal
transformation through the optimization problem:

M N

* ok B def.

(P*.g") = argmin (C(g),P) = > > pyyd(zi g(y;))- (13)
PeU(a,b),geG i=1 j=1

It can be solved by an iterative algorithm

M N
P™ = argmin Z Zpijd(xivg(n) (yj))v (14)
pPeU(ab) ;7 j—
M N
g(nH) = argminz sz('?)d(wi’g(yj))' (15)

S — J=1
The subproblem (14) is to solve a static OT.

When we take the set G = {(R, 7)} as the rigid body transformations, and the distance function
d as the Euclidean distance, that is, d(x,y) = | — y||3, the subproblem (15) is a weighted
Procrustes problem [59]

(RHY (1)) —  argmin Zpgl) llx; — (Ry; + r)||§, (16)

RER?s Xds pcRds i

RTR=I, det R=1

where R refers to a rotation matrix, and r refers to a translation vector.

We call this problem rigid body transformation invariant optimal transport, and it explicitly
models unknown rigid body transformation, making it possible to compute ground cost functions
between distributions at different time points. It can be easily modified to model more general
cases, e.g., if affine transformations are allowed in the tissue measuring process.

Dynamics loss in st VCR

We are concerned with the entire dynamics of cell population evolution and therefore use dynamical
optimal transport. Since the number of cell population is constantly changing due to cell division
and apoptosis during evolution, unbalanced setting is necessary.

stVCR reconstructs p;(x,q) by interpolating the input population densities p*) up to a
normalization at ¢ = ¢, using a transport-with-growth PDE

Oipe(x,q) +V - ((vt(:mQ)mt(w,q))pt(w,q)) = gi(z,q)pi(x, q), (17)

where v;(x, q) refers to the spatial velocity, p:(x, @) refers to the RNA velocity of cells, and g;(x, q)
refers to the proliferation rate of cells. We take the coordinate system at ¢y as the reference, and
assume that the coordinate system at t (k = 1,2,..., K) differs from the coordinate system at
to by a rotation Ry and translation r;. Thus the feasible state space S for the arguments under
constraints is

S(X(O’K),Q(O:K)) = {(pt»vhphgt;Rl:erlzK)| Owpe + V- ((ve, p)pt) = gepr,

18
Pto = 0(0)7 ||ptk||1 = nk/n()?ﬁtk = pA(k)7R{Rk =l,detRp =1, k=1,2,... 7K}7 ( )
where p(F) refers to the distribution formed by (X (k),Q(k)) after alignment through rigid body
transformation (Ry,7y) at tg, pr := pi/|lpell1 and ||pel|1 := [ prdadg is the total mass of p;. The
notation 0:K is a shorthand for the indices {0, 1,..., K}. Same rule applies to similar notations in
other places.
Borrowing the idea of Wasserstein-Fisher-Rao (WFR) distance for unbalanced optimal trans-
port [34], we obtain the optimal dynamics (p¢, vt, P, g¢) and the optimal rigid body transformation
(Rg,ry) for k =1,2,..., K by minimizing the kinetic and growth energy

ti
[ (1o + an o + g 1) pu(e a)dadqds (19)
to R%gT%s
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for (p¢, ve, Pt 9t; Rk, T1.K) € S(X(O’K), Q(O’K)). Direct derivation of the solution of the Feynman-
Kac type PDE (17) by characteristics [34, 60] shows the above loss function can be rewritten as
the following dynamics loss

ti
Loyn = Eat0) qtt0))~p / (H'Ut(“’(t)a a)|? + ansp|pi(@®, 4)|?
to

(20)
+ acuollgr (@, q0) |2 )wilz, qldt,
where ®) | g(*) satisfies the characteristic ordinary differential equations (ODEs)
W0 o@®.q), L@, @0, = (@0 (21)
and the weights w;[z, q] = eJio 9@ a5 i e the ODE
dlgtw = g2, q"), wili=y, = 1. (22)

In fact, the density p; has the representation p;(x, q) = E(m(t0>7q<t0))wp<0)5(ac —x® g —q®)w[z, q]
with the total mass ||p:]|1 = E(m(t0)7q(t0)),\‘p(0)wt[m7 q|. The three parts in Lpy, correspond to the
kinetic energy of spatial migration, Lgp,, kinetic energy of gene expression change, Lgxp, and
growth energy, Layo, respectively, considered in Eq. (3).

The formulation (20) is suitable for the numerical evaluation of the loss function through Monte
Carlo particle simulations instead of density estimation in high dimensional space. We also remark
that the evolution of (17) can be implemented in the forward (from tg to tx) or backward (from
tx to tg) way, and similar formulations as above can be obtained correspondingly. Both directions
are taken in our computations for a more robust performance.

Matching loss in stVCR

The constraints ||py, |1 = nx/no and p;, = p*) in (18) are indeed realized as soft penalties to
perform distribution matching. This matching between the total mass, {p:, }r=1.x and P
and the determination of {(R1.x,71.kx)} are obtained simultaneously in terms of the rigid body
transformation invariant OT.

Define the weights w; ; = w¢[x;, q;] for the cell j with initial state (mgo), q](.o)) at t = tg. With
this notation, we have the evolved distribution

1 &
pr= e S wix -z, q—q\").
=1

The total mass of p; is Z;Lil wy ;j /Mo, which no longer corresponds to a probability distribution.
This non-normalization is due to the cell proliferation.

The matchings between the total mass, and the normalized distributions {p;, }x and {p*)}; is
performed through the loss function

u o a(k)V)2 i ‘ Z;‘lil Wty ,j — nk'
£Mch = Z (WQ(Pth )) + KGro Z ’ (23)

n
k=1 k=1 k

where the second term penalizes the total mass mismatch through their relative error, and the
first term penalizes the normalized distribution mismatch which we take as the square of the
2-Wasserstein distance between {p;, }x and {p(*¥)};:

Wa(p,, p™))? = i c®) py.
(Walpra, 1)) o= | in € )

Naturally, we take the cost matrix C*) by integrating gene expression and spatial coordinates with
components

k ~(k ~(k . .
¥ = kppllal™ — @713+ (1 — ke 2™ — 23, i=1ine,j=1:m
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where :B : ka —i—rk is the coordinate after the alignment manipulation, Kgxp is an adjustable
hyperparameter that measures the importance of gene expression or spatial coordinates.

Modeling known cell type transition prior

Modeling known biological prior can help to infer the spatiotemporal dynamics of single cells more
accurately, especially for situations where there are few observed time points or long time intervals
between adjacent time points. For known permissible cell type transitions, we grouped cells with
permissible transitions at different time points into the same type. We use p( ) to refer to the
empirical distribution of type ¢ cells in the observed data (after rotation and translation) at the
time point t;, and p¢, . to refer to the normalized distribution of type c cells evolving from ¢y to
tx. Assuming a total of C' types, we realize the distribution matching for each known permissible
cell type transitions, i.e.,

ptncllt = Nke/N0es Prpe=pF, k=1:K, c=1:C, (24)

where ng . and ny. are the number of type c cells at time to and j, respectively. In this cir-
cumstance, the feasible state space S(X (0:K) Q(0:K )) must be modified correspondingly, and the
matching loss (23) has to be revised as

n()(‘

e 2 e 1> j=1 Wty,j — M c|
£Mch:ZZ W2 Pty, aPC ) +HGrOZZ ) (25)

n
k=1 c=1 k=1 c=1 k,c

Modelling spatial structure preserving prior

Organ development obeys physical rules, and its spatial structure cannot change at will. For exam-
ple, some organs remain connected as they develop without breaking into multiple parts. However,
when the time interval between observations is long, usual OT-methods often produce results that
violate the physical rules in order to minimize the energy, so we need to explicitly model this prior
to maintain the spatial structure of the specified organ. For the organs that need to be spatially
structure-preserved, we first construct a graph according to spatial coordinates and gene expres-
sion. More specifically, at ¢ = ty, we first construct a ksp, nearest-neighbor graph using the spatial
coordinates, and then find the kyp, cells with the closest gene expression as the final neighbors
from the kg, spatial neighbors of each cell in the specified structure to complete the graph con-
struction. We denote the index set of these kyp, neighbor cells, which is a subset of {1 : ng},
by N (), q(*0)) for each cell ((*o), q(*0)) in the specified structure at t = to. In order to keep
the specified organ development obeying the physical rules, we add the optional spatial structure
preserving loss function

n 1
LE = —E gy, q(t0)~p0) T / Hd ) — ‘B(t)|H wy[x, q]d (26)
no nbr | t
ej\/(m(fo) q(io)

where 5(9) is the probability distribution for the cells in the specified structure and ng is the is
the number of cells in the specified structure. L',goslif) preservers spatial structure by promoting as
little change as possible in the distance between spatial trajectories of neighboring cells. It can be

understood as a continuous time limit of the Gromov-Wasserstein OT distance.

Deep learning-based solver in stVCR

Optimizing the total loss £ in (2) is generally difficult, we use deep learning to find an approximate
solution. For the arguments (p¢, vy, Pt, g¢; R1.x, T1.x) in the optimization, p; is indeed determined
by (vs, pt, g¢). We suppose that changes in gene expression, cell migration, and cell proliferation
depend on current gene expression and spatial location, and are parameterized by neural networks,
ie., vi(x,q) = v(zx, q,t;0,), pi(x,q) = p(x,q,t;0p) and g(x,q) = g(x,q,t;0,), where 6 =
(0v,0p,0,) are the parameters of the neural networks. For the rigid body transformations, the
rotation matrix R can be explicitly parameterized. In 2D case, we take

R = cosa —sina
“ \sina cosa /)’
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where « is the rotation angle. In 3D case, we parameterize the rotation matrix R by the Euler
angles ¢, 8, and v with R = R;(o)Ry(8)R.(7), where

1 0 0 cosf 0 sinf cosy —sinvy 0
Ry(a) = [0 cosa —sina | , Ry(B) = 0 1 0 |, R.(y)=|siny cosy 0
0 sina cosa —sinf 0 cos 0 0 1

Therefore, the overall parameters we need to optimize are the neural network parameters 0, as well
as the rotation angles o, (or Euler angles oy, B and ~y; in 3D case) and translation vectors 7y, for
k=1:K.

With the above parameterization, the constraint PDE 0ypr + V - ((vt, pt)pt) = gepr with initial
value p;—¢, = p(®) can be solved by the particle approximations through the ODEs (21) and (22) by
replacing the functions (v¢, ps, g¢) with (v(x, q,t;6,), p(x, q,t;0p), g(x, g, t;04)). The evaluation of
the integral in (20) can be also performed by numerical quadrature in time with the parameterized
(v,p,g). Finally, the overall loss

L(0,a1.x, Br:kV1:K,T1:K) = LDyn + AMchLmeh + /\SSPEéOSPFE) (27)

can be evaluated through the deep learning approximations. The optimization of the parameters
are achieved by the Adam optimizer [61]. In (27), Lpyn and Lyren are required and E(Sosppt) is optional.
Whether or not to include cell type transition prior in Lye, is also optional.

Parameter initialization and training details

The structure of our neural networks v(x,q,t;0,), p(x,q,t;0p) and g(x,q,t;0,) use multilayer
perceptron (MLP) with 128 neurons per layer for a total of 6 layers. To obtain an initial rotation and
translation, We downsample 5000 cells in the data, and then use static rigid-body transformation
invariant OT on the downsampled data. The training process involves solving the ODEs represented
by the neural network, that is neural ODE, which we implement using the torchdiffeq package [48].
Tt also involves computing the static OT distance, which we implement using the POT package [47].
Finally, in order to enhance the matching with the observed data at each time point and improve
the robustness of the algorithm (the new organs or cell types may appear in later time points),
we not only compute the loss function defined by (27) by sampling the data from ¢y to later time
points, but also compute a similar loss function by sampling the data from other time points ¢,
evolving forward and backward. In actual computations, we choose to sample from the first time
point ¢ty and the last time point tx to balance the accuracy and computational overhead.

Time-dependent cell type classifier

After we recovered the entire cell dynamics, we could obtain the gene expression and spatial location
of cells at unobserved moments. In order to obtain type annotations for these cells at unobserved
moments, we train a time-dependent cell type classifier using a neural network in cells that already
have cell type annotations, so that we can use it for cell type annotation at unobserved moments.
Specifically, we represent a classifier by a neural network f = fiype(, q,t; 8ype). The inputs are
gene expression g, spatial coordinates «, and time ¢, and the outputs are probability distributions
indicating the probability with which the cell (x,q) at time ¢ belongs to each cell type. The loss
function is taken as
)
N

(g

=1

N
of;
L(atyw) = %Z (H(yl, fi)+ )‘H 8];

=1

)

where H (-, ) is the cross entropy, f; := f(x;, qi,t), y; is the annotated cell type for cell i, K; is the
total number of cell types, and y; ;, fi ; is the annotated and trained probabilities that the cell 7 is
of type j. The first term in (28) is to force the trained classifier to be consistent with the known
cell type annotations, while the second term is a regularization to promote the smoothness of the
neural network classifier in time through an ¢! norm of the time derivative on observation points.
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Downstream analysis

For notational simplicity, we omit the notation for the parameters of the neural networks in the
following description. When we use the stVCR to obtain the spatial velocity v(x, gemb, t), the gene
expression velocity Pemb (&, gemb, t) in the embedded space, the cell proliferation rate g(x, gemb, ),
and the time-dependent classifier fiype(Z, gemn,t), we can perform a series of downstream analyses,
including interpolation, prediction, and study of cell-specific gene-gene, gene-space and space-space
interaction and the effects of gene and spatial migration on cell proliferation, etc. Below we give a
detailed description of some downstream analysis tasks.

Recovery of cell evolution rates in original space

As stated in the data preprocessing step, the original gene expression and its dimension-reduced
expression value in embedded space, oy and gemp, are related by the trained encoder-decoder
neural network fene, fdec @ @emb = fenc(Qori) and Gori = fdec(@emb). With this representation, we
can easily recover the spatial velocity, gene expression velocity and proliferation rate in original
gene expression space:

1
pori(w7 Gori, t) :Tét (fdec (fenc(qori) + 6tpemb(wa fenc<QOri>7 t))

- fdec (fenc(qori) - 6tpemb ($, fenc(qori)7 t)))a (29)
’0(13, Gori, t) :’U(fli, fenc(qori)? t)’ g(li, Gori, t) = 9(1157 fenc(qori); t)

Interpolation and prediction

For some interpolation time t;,; which the user is interested in, we choose the observation time t,ps
that is closest to tiys. Without losing generality, we assume that tons < ting. We take the observed
data q; and x; at t.ps as the initial values, and then evolve according to the dynamics learned by
stVCR to obtain the interpolation result. More specifically, for the iy, cell to evolve from time ¢ to
t + dt, we first compute

(t+41) (®) ® @

CU(»t+6t) = :cgt) + vy (ZCE ) z emb)ét qz emb T qz emb + P ( qz emb)ét (30)

7

then generate a random number U ~ Uniform|0, 1]: if g;(; ® qz( e)mb) Oand U < g¢(x (t),qT emb)0t
perform cell division; if gt(wl(- ), qg’gmb) <0and U < —gi(x (-t), q( )dt, then perform cell apoptosis.

i,emb
The prediction task is completely similar to the interpolation task which only needs to take the

data of the last time point as the initial value.

Cell specific gene-gene, gene-space and space-space interaction

We can study the interaction between genes and space from the learned quantities. For a cell , as
well as the target gene j and the source gene k of interest, we can calculate dp; /9" |(, =(2:.q:):
which represents how increased expression of gene k changes the velocity of gene j in cell 7. If it is
positive, it means that gene k promotes gene j in cell ¢, otherwise gene k inhibits gene j.

Similarly, for cell i, and axes j and k of interest, we can calculate Ov] /0z* |(2,q)=(a:.q:) tO study
space-space interaction. This is used in Spateo [43], although their spatial vector fields v(x) are
independent of gene expression g and time t.

In stVCR, gene expression g and spatial coordinates x interact, which means we can study
how cell migration affects gene expression. For cell i, a target gene j, and a given unit direction
n = (n',n%,n3) (or n = (n',n?) for 2D case), we can calculate the directional derivative

% _ %nl Ip; n2 op; n3
on Oz 0x? ox3

at (x,q) = (x;, g;), which describes how the migration of cell ¢ to the given direction n affects the
expression of gene j, with positive values representing promotion and negative values the opposite.
In addition, we can study how gene expression affects cell migration. For cell i and gene j of
interest, we can define
ot avt o}
N g = ( )
0qi’ dqi’ DI
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which describes that increased expression of gene j will promote the cell ¢ migration in the direction
1, 4 /|| ]| and ||n; 4] indicates the promotion intensity.

Finally, we can define partial derivative of the norm of cell migration velocity with respect to
gene 0||v;]|/0¢” of cell i and gene j as migration driver gene score based on the above calculations

26”1‘2

—+ v

—+ v

Ovill _ 1 (1303

LN L, 200
g’ vl \"* Og

where v; := vi(x;, q;)-

Cell specific effects of gene and spatial migration on growth

For cell i and gene j of interest, we can calculate dg;/0¢ |(z,q)=(x:,q:), Which describes the effect
of gene j on cell proliferation, where a positive value means promoting, and a negative value the
opposite. This concept is used in TIGON [34]. However, their growth function g¢;(q) does not
depend on spatial coordinates @, so the effect of cell spatial migration on growth cannot be studied.

In stVCR, cell proliferation depends on both its gene expression and its spatial location, so
we can also study how cell migration affects its growth. For cell i and a given unit direction

n = (n',n?,n?), we can calculate the directional derivative

0 0 0 19)
ﬁ — 7gt nl _|_ 791‘, n2 _|_ in?”
on  Ox! Ox? Ox3
which describes how cell migration in the direction n affects its proliferation.
Finally, we can define partial derivatives of the cell proliferation rate with respect to gene j for
cell i, 09t /04 |(@,q)=(w:,q:)» @5 growth driver gene score based on the above calculations.

Temporal Developmental lineage construction

Since we can interpolate for any time points of interest and can annotate cells at these unob-
served time points with the time-dependent classifier fiype(®, @emb,t), We can construct temporal
developmental lineages of cells of interest.

Simulated data setup

In this paper, two simulation data are included. The first corresponding to Fig. 2 and the second
corresponding to Fig. 5 and Fig. S11. Below, we will introduce how these three simulation data
are generated.

For the first simulation data corresponding to Fig. 2, the dynamics consists of three genes Red,
Green and Blue and two spatial coordinates  and y, whose regulation is shown in Fig. 2A. Such
a regulatory relationship can be described by a system of stochastic differential equations for gene
expression and spatial coordinates

dr r" 1

— = — 0.05

dt fl(x)<1+r”+l+g”+10b" T>+ s
dg g" 1 )

— = — 0.05

dt fz(x)<1+g"+1+r”+10b” g) + 000w,
db b?

— = —— —04b+0.01 (31)
dt 1+b2 0 b+00 We,

dx . 2,2

i sign(x) exp(—4b) exp(—4g)(r — 2)*r* 4+ 0.001wy,
dy

o,

dt

where r, g and b refer to gene Red, Green and Blue, f1(x) and fa(x) refer to the factors that depend
on the coordinates x, and w; is a standard Brownian motion. In the computation, we take n = 4 to
simulate the nonlinear regulation between genes. If we ignore these two z-related factors f1(z) and
fa(x), r and g are a toggle switch of equal status. We hope |z| > 1, f1(z) > 1 and fa(z) = 1, this
will promote Red expression. Conversely, when |z| < 1, fo(z) > 1 and f1(x) = 1, this will promote
Green expression. The specific forms of fi(z) and fa(z) are detailed in the Supplementary Note 2.
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cell proliferation modeled as division and apoptosis:

2r |z g

proliferation rate = Ydivision — YJapoptosis — T+r1+ |33| - 1+ gv

(32)

which means that the gene Red and migrating outward in the horizontal direction will promote cell
proliferation while the gene Green will inhibit cell proliferation. We sampled three groups of cells
at the initial moment and discretized time in order to obtain data through numerical simulations.
We simulate gene expression and spatial coordinates according to the forward Euler scheme and
simulate cell division and apoptosis by numerically simulating a special Markov process, the birth
and death process. Specific details of the sampling of initial values and numerical simulation can
be found in the Supplementary Note 2. We evolved the cells at the initial time point from ¢t = 0 to
t = 3.0 according to the given dynamics and took a total of six time points at t = 0,0.5,1.0, 1.5, 2.0
and 2.5 as observations. Considering that the spatial coordinates obtained at different time points
using spatial transcriptome sequencing are not in the same coordinate system, we rotated the
spatial coordinates of the second to sixth time points counterclockwise by 8, 16, 24, 32 and 40
degrees, respectively.

For the second simulation data corresponding to Fig. 4 and Fig. S11, similar to the first, the
dynamics consists of three genes Red, Green and Blue and two spatial coordinates z and y. There
are two types of cells in this simulation data, background cells and migratory cells. The background
cells are in steady state, and their spatial coordinates and gene expression do not change with
time. The migratory cells transited from high expression of Red and Green gene to high expression
of only Red gene while moving to the right. Initial values for background cells and migratory cells
can be found in the Supplementary Note 2. Gene expression and spatial coordinates of migrating
cells evolve over time and obey stochastic dynamical systems

% = 0.05w¢,

% =15(; ingn 1 +Tn1+ 105 ~g) +0.05u,

% = %21)2 — 0.4b + 0.01wy, (33)
(fl—f =1+ 0.001uy,

d

where we take n = 4 to model non-linear regulatory relationships. Unlike the first simulation data,
we do not consider growth in the second simulation data. We evolved the cell at the initial time
point from ¢ = 0 to t = 1.0 according to the given dynamics. In Fig. 4, we took only two time
points at ¢t = 0 and 1.0 as observations. Additionally we rotated the spatial coordinates of the
second time point by 8 degrees counterclockwise. In Fig. S11, we took a total of five time points
at t = 0,0.25,0.5,0.75 and 1 as observations and rotated the spatial coordinates of the second to
fifth time points counterclockwise by 8, 16, 24 and 32 degrees, respectively.

Details of GO enrichment analysis

We used the python package GSEApy=1.0.3 [62] to perform GO enrichment analyses on migration
genes and growth genes. In addition, the gene sets used were GO Biological Process 2018 (https:
//maayanlab.cloud/Enrichr /#libraries).

Data Availability

All the datasets used in this paper are publicly available. The simulation datasets of synthetic
circuits are available at https://github.com/QiangweiPeng/stVCR /tree/main/tutorial. The axolotl
brain regeneration datasets are freely accessible in CNGB Nucleotide Sequence Archive under
accession code CNP0002068. Processed data can be downloaded from https://db.cngb.org/stomics/
artista/ [49]. The processed 3D Drosophila embryo datasets can be downloaded from the Spateo
package [43] (https://www.dropbox.com/s/bvstb3en5kc6wui/E7-9h_cellbin_tdr_v2.h5ad?dl=1 and
https://www.dropbox.com/s/q02sx6acveqaf35/E9-10h_cellbin_tdr_v2.hbad?dl=1).
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Code Availability

stVCR is implemented in Python and is available at https://github.com/QiangweiPeng/stVCR.
The notebooks to reproduce all the results in the manuscript are available at https://github.com/
QiangweiPeng /st VCR /tree/main/tutorial.
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Supplementary Notes 1-3
Supplementary Figures S1-S11
Supplementary Videos S1-S15
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