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Abstract
The local structure of a protein strongly impacts
its function and interactions with other molecules.
Therefore, a concise, informative representation
of a local protein environment is essential for mod-
eling and designing proteins and biomolecular
interactions. However, these environments’ ex-
tensive structural and chemical variability makes
them challenging to model, and such representa-
tions remain under-explored. In this work, we
propose a novel representation for a local protein
environment derived from the intermediate fea-
tures of atomistic foundation models (AFMs). We
demonstrate that this embedding effectively cap-
tures both local structure (e.g., secondary motifs),
and chemical features (e.g., amino-acid identity
and protonation state). We further show that the
AFM-derived representation sp ace exhibits mean-
ingful structure, enabling the construction of data-
driven priors over the distribution of biomolecular
environments. Finally, in the context of biomolec-
ular NMR spectroscopy, we demonstrate that the
proposed representations enable a first-of-its-kind
physics-informed chemical shift predictor that
achieves state-of-the-art accuracy. Our results
demonstrate the surprising effectiveness of atom-
istic foundation models and their emergent repre-
sentations for protein modeling beyond traditional
molecular simulations. We believe this will open
new lines of work in constructing effective func-
tional representations for protein environments.

1. Introduction
Proteins are complex three-dimensional structures com-
posed of hundreds to thousands of atoms, arranged in a
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specific manner in space. These molecular architectures as
well as their dynamic fluctuations are crucial for the function
of a protein. Local environments within a protein are highly
diverse, due to the variability of the sequence of amino acids
and the fold of the amino-acid chain to a 3D object. Com-
putationally representing these inherently heterogeneous,
dynamic, and chemically diverse environments is challeng-
ing, yet very important: many key properties of proteins
critically rely on these local enviroments, for example the
ability of a protein to bind a ligand or perform enzymatic
activity. Dynamics of a protein is ultimately rooted in the
packing in 3D space, and is generally considered crucial for
function. In this context, biomolecular nuclear magnetic
resonance (NMR) spectroscopy is a powerful technique, al-
lowing to probe protein dynamics and interactions at atomic
resolution.

The principal NMR observables are chemical shifts of cer-
tain atomic nuclei endowed with non-zero spin (e.g.,1H, 13C,
15N atoms). The chemical shift of an atom is exquisitely
sensitive to its local electronic environment and is criti-
cally dependent on local structural features, such as the
type of amino acid, the dihedral angles between bonds (and,
thus, secondary structure), the orientation of side chains,
hydrogen bonding, and solvent exposure. These parameters,
averaged over time, impact the chemical shift in a complex
manner, and while the chemical shift is exquisitely sensitive
to them, interpreting chemical shifts in terms of structure is
hampered by this complexity.

There is a strong need for accurate computational prediction
of chemical shifts, with enormous potential in several di-
rections: accurately predicted chemical shifts from a given
protein structure largely facilitates the assignment of ob-
served NMR signals to individual atoms; moreover, the
inverse direction of determining structures and dynamics
from experimentally observed chemical shifts hinges on the
ability to predict chemical shifts with high accuracy.

Existing chemical-shift prediction approaches (Neal et al.,
2003; Shen & Bax, 2008; Zhou et al., 2023) use experimen-
tally determined chemical shifts and experimental 3D struc-
tures; these structures are parametrized with hand-crafted
descriptors to represent the local environment (e.g. dihedral
angles, hydrogen bonds, ring-current shifts). Likewise, pre-
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dictors of the protonation state of titratable groups equally
employ hand-crafted features (Olsson et al., 2011). These
tools face limitations in adaptability and accuracy. This
highlights the need for more expressive, effective, and gen-
eralizable representations of local protein environments.

In computational chemistry, descriptors like Parrinello-
Behler symmetry functions (Behler, 2011; Behler & Par-
rinello, 2007; Behler, 2016) and Smooth Overlap of Atomic
Positions (SOAP) are widely used to represent molecular
environments (Jäger et al., 2018). These methods encode
atomic interactions and geometry into concise, invariant
representations suited for geometric modeling. Modern
atomistic machine learning techniques (Schütt et al., 2018;
2021) implicitly learn similar representations within neural
network layers, achieving accuracy comparable to density
functional theory (DFT) (Deng et al., 2023) in tasks like
molecular dynamics (MD) simulations.

Recent advances have shifted neural-network interatomic
potentials from element-specific models to universal atom-
istic foundation models1 (AFMs) trained on large datasets of
molecules with DFT-simulated energies. ANI-2x pioneered
this transition, covering biologically relevant elements (H,
C, N, O, F, S, Cl) with DFT-level accuracy across millions of
organic molecules (Smith et al., 2018). Three recent model
families – Multiplicative Atomic Convolutional Equivariant
network (MACE) (Batatia et al., 2022), OrbNet (Qiao et al.,
2020), and AIMNet (Zubatyuk et al., 2019) – have further
advanced the field: MACE combines equivariant message
passing with high-order many-body terms for materials sci-
ence applications; OrbNet enhances graph neural networks
with semi-empirical orbital features, reducing data require-
ments for DFT-level accuracy by an order of magnitude; and
AIMNet-2 extends ANI with learned atomic embeddings
and multitask training (energies, charges, spin), improving
transferability to charged and open-shell systems.

In this study, atomistic foundation models are used to de-
scribe local protein structure. While typically applied to
molecular simulations (Kapil et al., 2024; Lahey et al.,
2020), our focus is different: analyzing AFM internal repre-
sentations to reveal the biochemical and biophysical infor-
mation they encode.

Contributions and Summary of Results In what follows,
we outline our major contributions and provide a summary
of results.

Canonical local environments and AFM representations.
Protein environments vary widely, making their direct com-

1We use “atomistic foundation models” to denote transferable
force fields and universal neural-network potentials. Analogous
to foundation models in vision and language, they learn compact
representations of atomistic systems that can be reused for a variety
of downstream tasks as we demonstrate here.

parison challenging. To make residue-level representations
comparable, we introduce canonical environments: regions
centered on a focus residue and containing every amino acid
whose atom coordinates lie within 5Å (Hausdorff distance)
of a focus residue. We then construct transferable envi-
ronment representations from the AFM embeddings of the
backbone atoms and their bonded hydrogens – N, CA, CB,
C, O, H, HA – whose roles are conserved across residues
(see Fig. 1). To our knowledge, this is the first use of AFMs
to characterize local protein structure.

AFM representations effectively capture local protein
structure and chemistry. By analyzing over 165K protein
environments extracted from 1327 non-redundant chains,
we demonstrate that their embeddings reveal secondary-
structure features and amino-acid identities (see Fig. A.6).
In addition, we train lightweight task networks on these em-
beddings to predict protonation states obtained from a Pois-
son–Boltzmann solver (Reis et al., 2020), and find that they
achieve higher accuracy than pKa-ANI (Gokcan & Isayev,
2022) and propKa (Olsson et al., 2011) (see Table B.3).

AFM representations allow computation of similarity met-
rics and calculating likelihoods. We show that AFM embed-
dings have a meaningful latent space. Specifically, distances
between environment embeddings reflect both geometric
similarity and chemical context, enabling intuitive clustering
of related local motifs. We construct likelihood and condi-
tional likelihoods in the AFM embedding space and show
that they effectively capture the distribution of biomolecular
environments (see Fig. A.7, A.13). We show that the defined
likelihoods capture subtle structural deformations in protein
structure and allow capturing distributions of shifts, making
them valuable for structural quality assessment, uncertainty
estimation, anomaly detection, dataset curation, and poten-
tially in guiding Boltzmann generators (Noé et al., 2019).
Furthermore, leveraging the AFM embedding space, we in-
troduce a similarity metric to compare protein environments
(see Appendix G.1).

AFMs enable physics-grounded accurate chemical shift
predictor. In the context of biomolecular NMR, we leverage
AFM embeddings to predict chemical shifts in proteins. We
demonstrate that a lightweight downstream network receiv-
ing these embeddings as the inputs outperforms the current
state-of-the-art chemical shift predictor, UCBShift2-X, on
backbone and side-chain atoms (see Fig. 3). We conduct a
case study examining the ring current effects produced by
aromatic side chains on chemical shifts of neighboring nu-
clei, and demonstrate that our predictor follows physically
consistent trends, whereas UCBShift2-X shows unphysical
behavior (see Fig. 2). We also pair the predictor with AFM-
derived likelihoods to assign confidence scores, yielding a
reliable uncertainty measure around the predicted shifts (see
Fig. A.13).
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Figure 1: Proposed construction of local protein environment descriptors and their use. A focus residue is used as
the center of an environment including full amino acids located in the 5Å range from it. The atoms are embedded by
an atomistic foundational model (AFM), producing a descriptor for each atom in the environment influenced by all the
other atoms. The embeddings corresponding to the principal atoms of the focus residue form a canonical descriptor of the
environment and may comprise zeroth and higher-order irreducible representation components. These descriptors are then
used by downstream models predicting atom, residue, or environment properties.

Interpreting AFM representations. We probe the content
of AFM embeddings in two controlled settings. Firstly, we
systematically modify side chain orientations and track how
the embeddings respond (see Fig. 2 and A.5). Secondly, we
follow an unfolding simulation in which a seven-residue
α-helix extends into a strand (see Fig. A.8, A.12). In both
cases, principal-component analysis uncovers clear latent
directions that mirror the underlying structural changes. We
then ask whether an environment descriptor alone suffices to
reconstruct the local structure. By optimizing AlphaFold3
(Abramson et al., 2024) structures with only this descrip-
tor, we obtain alternative conformations that reproduce the
backbone arrangement and many side-chain orientations,
although fine-grained details remain imperfect (Maddipatla
et al., 2025; 2024; Levy et al., 2025). This partial recov-
ery suggests that AFM embeddings encode most—but not
all—of the information required to rebuild a protein envi-
ronment (see Appendix. I.1).

Benchmarking different AFMs. We benchmark three
model families—MACE & EGRET, OrbNet, and AIM-
Net—on tasks defined on protein environment that include
secondary-structure assignment, amino-acid identification,
acid dissociation constant (pKa) and chemical-shift predic-
tion (see Tables B.2, B.1, B.4). MACE-based embeddings
perform best on every task except pKa prediction, where
AIMNet exhibits superior performance (see Table B.3).

These findings show that AFM embeddings compactly and
effectively describe complex biomolecular environments,
we believe this would inspire future studies of local protein
structure with AFMs. The rest of the paper is organized
as follows: In Section 2 we provide a brief introduction
to AFMs and dedicate Section 3 to the construction of the
proposed local environment descriptors. In Section 4, we

demonstrate that the proposed representations capture local
protein structure and chemistry. In Section 5, we discuss
the evaluation of likelihood and similarity of protein envi-
ronments. Section 6 is dedicated to the prediction of NMR
chemical shifts from AFM representations. In Section 7, we
discuss the interpretation of the proposed representations.
Section 8 briefly overviews related work and Section 9 dis-
cusses limitations and future research directions. We en-
courage the reader to have a detailed look at the main and
supplementary figures visualizing the main findings of the
paper.

2. Background on Atomistic Foundation
Models

Force field models approximate a system’s potential energy
from atomic positions and types. The gradient of this energy
with respect to atomic positions defines the forces acting
on each atom. Traditional force fields were modelled by
empirically computing interatomic potentials or using DFTs
to analytically determine interatomic forces (Finnis, 2003).
More recently, AFMs, have been developed to approximate
the energy function and force fields from computational
quantum mechanical data. In this work, we use the follow-
ing AFMs (detailed summary in Table B.5 in Appendix):

MACE (Batatia et al., 2022; Kovács et al., 2023) is based on
the body-ordered Atomic Cluster Expansion (ACE) (Dus-
son et al., 2022) with higher-order (many-body) equivariant
message passing to capture complex atomic interactions. It
constructs atomic energies using symmetry-preserving ba-
sis functions and updates them through rotation-equivariant
neural interactions. MACE is trained on datasets containing
small molecules and tripeptides to predict the energies and
forces of DFT relaxation trajectories. Introduced recently,
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Figure 2: Synthetic example showing the influence of a phenylalanine sidechain aromatic ring on surrounding
chemical shifts. (A) The magnitude of change of backbone CA chemical shifts over different ring orientations as predicted
using the proposed MACE-based predictor (left) and UCB Shift X (right). A 7Å sphere indicates the radius from the
ring center at which the influence of the ring current is expected to become negligible. Note that UCB Shift X predicts
much longer-range, albeit small, ring influence extending beyond 20Å. (B) Locations of three nearby CA atoms; and (C)
their predicted chemical shifts plotted vs. the ring orientation. Note the smooth 180◦-periodic behavior of the Mace shift
prediction and the decay of the effect scale with the distance from the ring.

Egret (Wagen et al., 2025) shares a similar higher-order
equivariant message-passing architecture with MACE, but
introduces architectural optimizations that improve compu-
tational efficiency and scalability.

OrbNet (Qiao et al., 2020) enhances graph neural networks
by incorporating quantum-derived features calculated using
fast approximate quantum chemistry methods. These fea-
tures include symmetry-adapted atomic orbital overlaps and
elements of the Fock matrix (Szabo & Ostlund, 1996), which
capture important information about the electronic structure.
OrbNet is trained on DFT relaxation trajectories and quan-
tum chemistry datasets (containing small molecules and
materials) to predict molecular energies and properties.

AIMNet (Zubatyuk et al., 2019) uses message passing
over atomic environment descriptors and iterative updates
inspired by charge equilibration schemes. Through these
updates, AIMNet captures both short- and long-range inter-
actions and builds a joint, information-rich representation
of each atom in its molecular context. The model is trained

on diverse quantum mechanical datasets to predict molec-
ular energies, forces, and other properties across diverse
chemical systems.

3. Representing protein local environments
with AFMs

Notation. Denote a residue in a protein as a, and the
all-atom representation of the protein structure as X =
{(x1, z1) . . . (xm, zm)}, where xj ∈ R3 and zj are the lo-
cation and atomic number of jth atom in X , respectively.
Let fθ : X → Y be the AFM with parameters θ, and
Y = {(y1, z1), . . . , (ym, zm)} the atom-wise feature rep-
resentations of the AFM, where y ∈ Rd. The local envi-
ronment of a focus residue a is denoted by Xa ⊆ X . The
subset of atoms in residue a used for predicting biochemical
properties is denoted as Aa. Given a subset of atom indices
Aa, we denote by YAa

= { (yi, zi) | i ∈ Aa} ⊆ Y the
restriction of Y to those atoms.

We seek a representation of a local protein environment to
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be (i) sensitive to local changes, (ii) insensitive to global
variations, (iii) fast to compute, (iv) canonical, enabling
direct comparison across diverse environments, and (v) ef-
fective and generalizable to unseen environments. Encoding
full proteins with several thousand atoms with AFMs is com-
putationally inefficient and redundant since we are solely
interested in locally sensitive features. To construct such
representations, we propose to construct a local environment
around a focus residue to be encoded later by the AFM.

Creating local environments. To balance computational
efficiency while retaining local structural context, given a
focus residue a, we construct the environment Xa as the
union of all residues whose atoms are at most 5Å away from
the atoms of a. The procedure is described in Algorithm 1.

AFM representations. Given an environment Xa, AFMs
produce atom-level features over the layers of the network.
These learned atomistic features are contextual, influenced
not only by the atom itself but also by the other atoms
in the environment due to the message-passing operations
within AFMs. Given Xa, atom-wise feature representations
are extracted from the final layer of the AFM. Each AFM
produces representations of shape N × d, where N = |Xa|
and d is the dimension of the representation. In order to
construct representations that are canonical, i.e., comparable
across residues, the representations corresponding to atoms
in A are retained, yielding contextualized representations
of their local chemical environments per residue. Given a
protein structure, this process is performed for each residue
in the sequence, and residue-wise features are curated. A
visual depiction of this procedure is presented in Fig. 1.

4. AFM representations capture local protein
structure and chemistry

In what follows, we investigate how AFM representations
of local environments can be leveraged to predict a range of
structural and chemical properties.

Amino acid identity & secondary structure. A protein’s
primary structure is a linear sequence of amino acids con-
nected by covalent peptide bonds. The twenty standard
proteinogenic amino acids (Kawashima & Kanehisa, 2000)
share a backbone of four heavy atoms: the α-carbon (CA),
amide nitrogen (N), carbonyl carbon (C), and carbonyl oxy-
gen (O), with variable side chains (R-group). A protein’s
secondary structure is a local motif of backbone confor-
mation, stabilized by hydrogen bonds between atoms of
non-adjacent amino acids (Kabsch & Sander, 1983), with
the most common types being α-helices (H) and β-strands
(E).

To examine the information encoded by the AFM represen-
tations, the atomistic features from MACE were projected
into a two dimensional space using Uniform Manifold Ap-

proximation and Projection (UMAP) (McInnes et al., 2018).
The resulting embeddings, shown in Fig. A.6, are annotated
with amino acid labels, secondary structure, and dihedral
angles. Notably, features corresponding to α-helices and
β-strands form distinct clusters in the UMAP space. A sim-
ilar pattern of separation is observed when embeddings are
annotated by amino acid identity and backbone dihedral
angles, indicating that chemically and structurally distinct
features are well-represented in the feature space.

To quantitatively assess this capability, we train classifiers
to predict the secondary structures and the amino acid iden-
tities. Further details on the loss function, target label space,
and the definition ofAa can be found in Appendix F.1, while
a comprehensive description of the model architecture is
provided in Appendix F.3. Classifier accuracy was evaluated
using precision, recall, and F1 scores. Results for secondary
structure prediction are summarized in Table B.1, while
amino acid classification results are presented in Table B.2.
For secondary structure, models trained with MACE and
Egret features consistently achieve superior prediction on
average. For amino acid prediction, models trained using
Egret features consistently outperform those trained with
alternative representations.

Acid dissociation constants (pKa). pKa quantifies the ten-
dency of a titratable group (such as the carboxylic acid
group of an Asp side chain) to donate a proton, serving
as a measure of its acidity. When the solvent pH is lower
than pKa, the molecule will be primarily in its protonated
form, while being increasingly deprotonated at pH higher
than pKa. The pKa value is the pH value at which the
group is half protonated over the ensemble of molecules.
Although each amino acid has a canonical pKa value in
isolation, its actual value within a protein can deviate due
to variations in the local chemical environment. External
factors such as (i) the presence of nearby charged residues,
polar atoms, or functional groups, and (ii) limited solvent
accessibility—particularly in buried regions—can influence
protonation behavior. This makes pKa prediction an ideal
test case for evaluating whether atomistic features can en-
code meaningful local chemical information.

For quantitative assessment, a regression model was trained
on amino acids with ionizable, proton-transferring side
chains to predict their pKa values. Ground-truth pKa values
were estimated using a Poisson–Boltzmann solver (Reis
et al., 2020). The evaluation focused on glutamic acid
(GLU) and aspartic acid (ASP), which tend to deprotonate,
and lysine (LYS) and histidine (HIS), which tend to proto-
nate. Additional training details are provided in Appendix F.
As shown in Table B.3, models trained with AIMNet fea-
tures outperform those using alternative features because it
is trained to predict multiple molecular properties simultane-
ously. All AFM-based regressors outperform conventional
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baselines such as PropKA (Olsson et al., 2011) and pKa-
ANI (Gokcan & Isayev, 2022).

5. Computing likelihoods and measuring
similarity of protein environments

The AFM embedding space encodes local biomolecular
structure, capturing structural and chemical context. We
leverage the richness of AFM embedding spaces to define
a distribution over biomolecular environments. Given a set
of reference environments Eref = {X1, . . . ,Xn} and a refer-
ence atom setA, we define the likelihood of an environment
Xa at a focus residue a as

p(Xa) =
1

|Eref|
∑

Xa′∈Eref

exp

(
−∥fθ(Xa)|YA − fθ(Xa′)|YA∥2

2σ2

)
,

(1)
where σ refers to the bandwidth, and it controls the influence
of each reference environment on Xa. This is equivalent to
performing kernel-density estimation in the AFM embed-
ding space, with a radial basis function kernel. Intuitively,
the likelihood measures how typical Xa is among the ref-
erence environments Eref. Subsequently, the conditional
likelihoods can be defined similarly to Eq. 1 by curating an
appropriate set of reference environments that satisfy the
chosen conditioning.

Measuring distribution shifts. To evaluate the quality of
unconditional likelihood estimation and its ability to de-
tect subtle distribution shifts in the local structure, we cu-
rated a set of reference environments randomly sampling
10, 000 environments from 1, 100 protein structures that
were relaxed using the Amber99 force field (Hornak et al.,
2006). We then measured the likelihoods of each environ-
ment sampled from a test set of 225 proteins, before and
after performing Amber99 relaxation. The results shown in
Fig. A.13 demonstrate that the likelihood function is sensi-
tive to subtle conformational changes. Relaxed structures
consistently receive higher likelihoods, and the distribution
of the paired differences captures fine-grained structural
variations. This makes the approach well-suited for detect-
ing out-of-distribution conformations and assessing local
structural quality.

Secondary-structure conditioned likelihoods. To fur-
ther evaluate the sensitivity of conditional likelihoods,
we randomly sampled 1000 environments from secondary
structures annotated as α-helix (H), β-strand (E), and
turn (T) by DSSP, and constructed conditional likelihoods
p(X|H), p(X|E), and p(X|T), respectively. Fig. A.7
depicts the projections of conditional likelihood triplets
(log p(Xi|E), log p(Xi|H), log p(Xi|T)) of 8, 163 environ-
ments from the test set. The results highlight a clear sepa-
ration by true secondary structure of the environment. The
one-dimensional marginal distributions further emphasize

the distinct statistical profiles of each structural class.

We further direct the reader to Fig. A.10 and Appendix G.1
for a detailed analysis of the use of AFM embeddings to
evaluate chemical environment similarity.

6. Physics-grounded chemical shift prediction
for proteins

Background and prior art. We refer an uninitiated reader
to Appendix C for a short background on chemical shifts
and biomolecular NMR. Several computational methods
have been developed to predict NMR chemical shifts from
molecular structures (Shen & Bax, 2008; Neal et al., 2003;
Han et al., 2011; Li & Brüschweiler, 2012; 2015; Kohlhoff
et al., 2009; Meiler, 2003; Moon & Case, 2007), with recent
approaches increasingly relying on machine learning. The
current state-of-the-art, UCBShift (Zhou et al., 2023), com-
bines sequence and structure alignment with a random forest
model, using reference proteins and structural descriptors to
guide predictions. Its latest iteration, UCBShift 2.0 (Ptaszek
et al., 2024), extends this framework to include side-chain
atoms alongside backbone predictions. Despite their effec-
tiveness, these methods depend on reference-based similar-
ity measures, which limits their generalizability.

AFM-based shift predictor. Chemical shift prediction is
formulated as a downstream task over AFM embeddings.
A lightweight graph neural network takes AFM represen-
tations as input and predicts the chemical shifts of a target
atom. Separate models are trained for the N, CA, C, H, and
HA backbone atoms, as well as the CB, CG, CD, CD2, CG2,
and CE side-chain atoms. Dataset curation, model archi-
tecture, and training details are provided in Appendix D,
F.3.

As evident from Fig. 3 , the proposed predictor outperforms
UCBShift2 for both backbone and side-chain heavy atoms
with the exception of the hydrogen HA. A comprehensive
quantitative comparison of chemical shift prediction accu-
racy across different AFM variants is provided in Table. B.4.
We observe that MACE-based models consistently achieve
the best performance.

To further probe the shift predictor and evaluate whether it
correctly captures the local structural influence on the shift,
we carefully design the following three case studies.

Effects of ring currents. An external magnetic field in-
duces a flow of delocalized π electrons in an aromatic ring,
which in turn produces its own magnetic field. Because
chemical shifts depend on the net magnetic field produced
by the local structural environment, they are strongly in-
fluenced by such ring currents. As the phenylalanine ring
has a C2 symmetry, states separated by rotation of the ring
by 180◦ are indistinguishable. To probe whether our shift
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Figure 3: Chemical shift prediction errors for different atom types evaluated on a test set of 132, 228 environments
from 203 non-redundant BMRB records with experimentally determined chemical shifts used as the reference. The median
prediction error in ppm and the 25%− 75% (boxes) and 5%− 95% (whiskers) confidence intervals are depicted.

predictor captures ring-current effects accurately, we syn-
thetically modified the side chain of a Phe (residue 50 in
PDB ID: 1ZV6) by rotating its aromatic ring ring about
the χ2 dihedral angle from −180◦ to 180◦. Fig. 2 depicts
the studied environments and the predicted chemical shifts.
Our AFM-based shift predictor shows the expected 180◦

periodicity (Haigh & Mallion, 1979) in the chemical shifts
of backbone CA atoms in the vicinity of the ring, with the
ring current influence decaying smoothly as the distance
from the ring increases and becoming negligible after 7Å.
In contrast, UCBShift extends this influence beyond the
expected range and fails to reproduce the smoothness and
periodicity expected in theory.

Helix unfolding into a strand. Chemical shifts of CA
and CB have distinct behaviors in helices and strands. We
perform an MD simulation of a 7-residue peptide unfolding
from a helix to a strand. Predicted chemical shifts along
the trajectory are depicted in Fig. A.12. We note that our
method correctly reproduces the experimentally observed
chemical shift distributions for CA and CB atoms. It clearly
captures the characteristic pattern where CA shifts decrease
in strands compared to helices, while CB shifts exhibit the
opposite trend.

Alternative conformations. We evaluate our shift predic-
tor over a 100 ns MD simulation of the protein 4OLE:B
from (Rosenberg et al., 2024), which features two stable
conformers: conformer A containing a helix and conformer
B with a linearly structured loop (Fig. A.9). Our method
captures distinct secondary chemical shift distributions for
lysine 63 CA and CB atoms. The helical conformer exhibits
the expected increase in CA secondary shift and decrease in
CB secondary shift.

Next, we investigate whether the aforementioned likelihood
computation for an environment can reliably anticipate the
resulting chemical shift prediction error.

Uncertainty estimation. We first build the unconditional
likelihood model p(X ) for biomolecular environments on
the training set used for shift prediction. We then evaluate
this likelihood for every test environment and record the cor-
responding chemical shift prediction error. Fig. 4 reports the
distribution of errors, stratified by likelihood. Environments
with lower likelihoods consistently exhibit larger prediction
errors, indicating that the likelihood can serve as a practical
measure of confidence in chemical shift prediction tasks. To
the best of our knowledge, ours is the first chemical shift
predictor to supply such a confidence score.

We summarize by concluding that AFM-based shift predic-
tion not only delivers better accuracy, but is also physics-
grounded and allows us to provide confidence estimates for
each prediction.

7. Interpreting AFM representations
While atomistic features from AFMs excel at representing
local protein structure and chemistry, it remains unclear how
their internal representations respond to structural perturba-
tions or whether they encode meaningful physical properties.
To address this, the behavior of AFM representations under
specific conformational changes is examined. Such changes
induce smooth, interpretable trajectories in the embedding
space, suggesting that the features capture physical motions
and respect constraints such as locality, continuity, and sym-
metry. These properties are explored in the following case
studies.
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Figure 4: Chemical shift prediction accuracy of CA (left) and N (right) atoms stratified by the KDE-estimated likelihood
of the corresponding MACE descriptors. Depicted are the median and 25%-50% confidence intervals. Higher-likelihood
environments correspond to lower prediction error and can be used as an uncertainty measure.

Rotated phenylalanine sidechain aromatic ring. Using
the synthetically modified phenylalanine described above,
we perform PCA on the MACE embeddings obtained at
every χ2 angle for the nearby CA atoms (residues 50 and 51
of PDB ID: 1ZV6). We observe that the first two principal
components trace a smooth, one-dimensional curve, captur-
ing the expected 180◦ periodicity of the rotation. However,
the effect diminishes with distance: residue 49 begins to
deviate from the periodic pattern, while distant residue 40
exhibits no discernible structure, illustrating the spatial lo-
cality of the descriptor’s sensitivity.

Helix unfolding. In context of MD simulations of helix-to-
strand transition described earlier (Fig. A.8), we perform
PCA on the MACE embeddings of CA atoms in residues 6
and 7, and obseve that they follow smooth, non-intersecting
trajectories. These trajectories reflect the gradual unfold-
ing process, indicating that the descriptor space encodes
continuous and interpretable structural transitions.

Further exploration of reconstructing protein environments
from AFM embeddings is presented in Appendix. I.1.

8. Related Work
Recent work has highlighted the versatility of pretrained
AFMs as learned representations for molecular tasks. (Sh-
iota et al., 2024) use MACE and M3GNet features to predict
chemical shifts in small molecules, while (Elijošius et al.,
2024) employ MACE embeddings for zero-shot molecular
generation via evolutionary search. Unlike these small-
molecule applications, our method is specifically designed
for proteins — large, structurally diverse biomolecules re-
quiring environment-specific representations to capture their
complex local chemistry. Similar to our idea, (Gokcan &
Isayev, 2022) predict protein pKa values using ANI-2x AFM

representations; as shown in Table B.3, our approach out-
performs theirs in pKa prediction accuracy.

9. Discussion
In this work, we introduced a new representation for local
environments in proteins, and demonstrated its effectiveness
across applications. While our downstream models used
frozen AFM embeddings, task-specific fine-tuning of AFMs
is a promising direction that may yield further gains. More-
over, our chemical shift prediction for HA, while accurate,
still slightly lags behind UCBShift, pointing to opportunities
for future improvement. Notwithstanding these limitations,
we believe that the proposed fully differentiable chemical
shift predictor can be used to guide AlphaFold and similar
generative models (Maddipatla et al., 2025) for determining
structure from experimentally measured chemical shifts – an
important task in protein NMR that has so far been hindered
by the complexity of structure-to-chemical-shift relation.

Impact Statement
The work presented here attempts to advance protein rep-
resentation, since proteins are fundamental ingredients of
life and are implicated in health and disease, the potential
impact on basic and applied research may be profound. We
do not see any special ethical concerns worth highlighting.
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A. Additional Figures

CA49

CA50 CA51

PC2

PC1

PC2

PC1

PC2

PC1

CA49

CA50

CA51

0˚ 45˚
90˚
135˚

0˚ 180˚ 360˚45˚ 135˚ 225˚ 315˚90˚ 270˚

CA40

Figure A.5: Structure of the MACE embedding space for the rotating phenylalanine aromatic ring from Fig. 2. Left: a
fragment of a protein with simulated rotation of the phenylalanine sidechain ring. Right: Mace embeddings of backbone CA
atoms projected onto the first two principal components. The vertical axis separates the different rotation angles for visual
clarity. Note that residues close to the ring (50 and 51) exhibit a one-dimensional structure with nearly perfect 180-degree
periodicity. The farther residue 49 shows some breakdown of this structure, while residue 40, uninfluenced by the ring
current, manifests a lack of relation between ring rotation and the embedding space structure.
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Figure A.6: MACE embedding space reveals meaningful structural and chemical information. Depicted are two-
dimensional UMAP coordinates of 165, 913 protein environments from 1327 non-redundant chains predicted by AlphaFold2
(Jumper et al., 2021), labeled left-to-right, top-to-bottom according to the DSSP secondary structure class (Table B.6), amino
acid chemical identity, the pair of backbone dihedral angles (ϕ, ψ), and CA secondary chemical shift (relative to a random
coil).
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Figure A.7: Estimated likelihoods of Mace embeddings of backbone CA atoms in different secondary structures.
The two-dimensional plots show projections of the log-likelihoods (log p(xi|E), log p(xi|H), log p(xi|T) of 8163 Mace
embeddings xi in strands (E), helices (H), and turns (T). The one-dimensional plots depict the KDE-estimated marginal
distributions of each of the log-likelihoods.
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PC2
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Figure A.8: Structure of the MACE embedding space for the unfolding helix from Fig. A.12. Depicted are Mace
embeddings of the backbone CA atoms of residues 6 and 7 projected onto the first two principal components. Observe an
essentially one-dimensional structure of the trajectory in the PCA space.

[A][B]

LYS63

Figure A.9: Distribution of the secondary chemical shifts of the two stable conformers of 4OLE. Left: 100 ns MD
simulations (Rosenberg et al., 2024) of the two conformers (marked as A (containing a helix) and B (containing a linearly
structured loop) according to the original PDB annotation). Lysine 63 is highlighted. Right: secondary shift distributions of
lysine 63 CA (top) and CB (bottom) atoms over the MD trajectory. Note that the helical conformer exhibits an expected
excess in the CA secondary shift and a defect in the CB secondary shift.
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MACE LocoHD

Figure A.10: Similarity of local protein environments using MACE and LoCoHD. In each plot, environments belonging
to different class labels are represented as points while pairwise Euclidean distances approximate the dissimilarities as
measured using the LoCoHD metric (Fazekas et al., 2024) and a metric between MACE likelihoods. Circles indicate each
class variability as seen by the metric. Shown is conditioning by secondary structure (top row) and amino acid identity
(bottom row). We conclude that MACE captures much better the similarities between related chemical and structural classes,
even if LoCoHD has been explicitly designed for these tasks.
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Figure A.11: Optimized structure prediction using MACE descriptors. Shown in green is the structure of the protein
4OLE:B as predicted by AlphaFold3. The structure has an alternative conformation in the region 60− 68, (shown in red is
the crystallographic structure from the PDB), whose MACE environment descriptors were used to optimize the AlphaFold
prediction. The solution of the optimization problem is depicted in pink.
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Figure A.12: Simulated molecular dynamics trajectory of a helix unfolding into a strand. Depicted are the chemical
shifts of the CA and CB atoms in the middle of the helix as predicted by Mace and UCBShift2-X. Marginal plots show the
experimentally-determined chemical shift distributions of the same atoms in helices (left) and strands (right). The known
tendency of CA’s to have smaller shifts in strands than in helices and the opposite CB tendency is clearly visible.
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Figure A.13: MACE-based likelihood captures structurally subtle distribution shifts in protein environments. Left
panel: the histogram of likelihoods of CA MACE representations of 26000 protein environments curated from 225 protein
structures in the test set, before (red) and after (blue) relaxing the protein structures with an Amber99 force-field (Hornak
et al., 2006). Right panel: the relative likelihood of the same environment before and after relaxation.
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B. Quantitative Results & Tables

Table B.1: Secondary structure prediction accuracy. Reported are precision, recall, and F1 scores, each calculated with
respect to the ground truth DSSP secondary structure classes. The best-performing model for each metric is indicated in
bold.

AFM-Features + GNN (Ours)

Metric Class LocoHD Egret MACE OrbNet AIMNet

Precision [%]

Weighted Mean 76.947 95.685 95.694 92.500 94.716
Mean 76.424 95.540 95.528 92.233 94.522
α-helix 80.493 96.466 96.657 93.900 95.762
β-strand 75.623 96.248 95.969 93.749 95.494
Other 73.158 93.905 93.958 89.049 92.309

Recall [%]

Weighted Mean 77.334 98.636 95.717 92.574 94.752
Mean 75.532 98.508 95.355 91.977 94.335
α-helix 87.227 97.546 97.522 95.548 96.805
β-strand 89.035 97.967 97.947 96.276 97.481
Other 50.333 90.512 90.597 84.106 88.720

F1 [%]

Weighted Mean 76.323 98.633 95.693 92.509 94.720
Mean 75.048 98.552 95.427 92.073 94.412
α-helix 83.725 97.003 97.087 94.717 96.281
β-strand 81.783 97.100 96.948 94.996 96.477
Other 59.636 92.177 92.247 86.507 90.479

Table B.2: Amino acid prediction accuracy. Reported are precision, recall, and F1 scores, each calculated with respect
to the ground truth amino acid class. The best-performing model for each metric is indicated in bold. Unlike secondary
structure prediction, per-class performance is not reported here due to the large number (20) of amino acid types.

AFM-Features + GNN (Ours)

Metric Class LocoHD Egret MACE OrbNet AIMNet

Precision [%] Weighted Mean 97.794 99.129 98.448 95.967 98.665
Mean 98.012 98.758 98.031 95.090 98.407

Recall [%] Weighted Mean 97.805 99.133 98.431 95.955 98.664
Mean 97.699 98.932 98.262 95.072 98.457

F1 [%] Weighted Mean 97.785 99.130 98.435 95.959 98.663
Mean 97.839 98.842 98.137 95.078 98.431

Table B.3: Acid Dissociation constant (pKa) prediction accuracy. Reported are mean absolute errors (MAE) relative
to the pKa values estimated using the Poisson-Boltzmann solver PypKa (Reis et al., 2020) on four amino acids. The
best-performing model for each metric is indicated in bold.

AFM-Features + GNN (Ours)

Residues # Samples PropKa pKa-ANI MACE OrbNet AIMNet

Glutamic acid 12592 0.551 0.445 0.306 0.306 0.265
Aspartic acid 9841 0.469 0.473 0.280 0.284 0.267
Lysine 12009 0.393 0.401 0.320 0.282 0.270
Histidine 1182 0.561 0.426 0.424 0.441 0.380
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Table B.4: Chemical shift prediction accuracy. Reported is the mean absolute error (MAE), in ppm, relative to the
experimentally measured chemical shift values from RefDB (Zhang et al., 2003) for different atoms. The best-performing
model for each metric is indicated in bold.

AFM-features + GNN (Ours)

Atom UCB Shift LocoHD ESM MACE Egret Orb AIMNet

HA 0.165 N/A 0.247 0.180 0.176 0.200 0.201
H 0.324 N/A 0.402 0.300 0.295 0.333 0.325
CA 0.653 1.333 0.872 0.584 0.599 0.683 0.660
N 1.891 2.877 2.455 1.642 1.667 2.015 1.875
CB 0.758 1.140 0.923 0.716 0.705 0.792 0.780
C 0.827 1.297 1.011 0.744 0.743 0.847 0.824
CG 0.595 0.647 0.690 0.567 0.563 0.638 0.611
CD 0.615 0.512 0.550 0.456 0.448 0.521 0.482
CD2 1.116 1.195 1.335 1.035 1.085 1.201 1.749
CG2 0.773 0.833 0.927 0.713 0.720 0.760 0.742
CE 0.519 2.295 0.568 0.447 0.436 0.451 0.446

Table B.5: Atomistic Foundation Model (AFM) metadata. Listed are the model type, dimensionality, geometric properties
of the representations, and training dataset – these include QM9 (Ramakrishnan et al., 2014), MD22 (Chmiela et al., 2023),
ANI-1x (Smith et al., 2018), GDB13 (Cheng et al., 2019), DrugBank (Law et al., 2014), QM24 (Ruddigkeit et al., 2012) –
for AFMs in Section 2.

Model Name Dimension Properties Dataset

MACE large 448 Sn & O(3) invariant QM9 , MD22, ANI-1x
OrbNet-v2 256 Sn & E(3) invariant QM9, GDB13, DrugBank
AIMNet2 256 Sn & E(3) invariant ANI-1x
Egret1 384 Sn & O(3) invariant QM9, MD22 , ANI-1x, QM24

Table B.6: Protein Secondary Structure Codes. Summary of the standard single-letter codes used to represent protein
secondary structure elements, as defined by the DSSP classification (Frishman & Argos, 1995).

Symbol Name

H α-helix
T Turn
G 310-helix
I π-helix
E β-strand (extended)
B Isolated β-hridge
S Bend
– Coil
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Table B.7: Secondary Structure Prediction Ablation. Evaluation of secondary structure prediction accuracy when using a
single Egret atom descriptor compared to using multiple Egret atom descriptors. The best-performing model for each metric
is indicated in bold.

Metric Class Aa = {CA} Aa = {C, CA, CB, N, H, HA}

Precision [%]

Weighted mean 94.822 95.685
Mean 94.679 95.554
α-helix 95.809 96.466
β-strand 95.232 96.248
Other 92.997 93.905

Recall [%]

Weighted mean 94.853 98.636
Mean 94.552 98.508
α-helix 96.759 97.546
β-strand 97.971 99.467
Other 88.925 90.512

F1 [%]

Weighted mean 94.817 98.633
Mean 94.593 98.552
α-helix 96.282 97.003
β-strand 96.582 97.103
Other 90.915 92.177

Table B.8: Amino acid prediction ablation. Evaluation of amino acid prediction accuracy when using a single Egret atom
descriptor compared to using multiple Egret atom descriptors. The best-performing model for each metric is indicated in
bold.

Metric Class Aa = {CA} Aa = {C, CA, CB, N, H, HA}

Precision [%] Weighted mean 95.897 99.129
Mean 94.327 98.758

Recall [%] Weighted mean 95.912 99.133
Mean 94.069 98.932

F1 [%] Weighted mean 95.629 99.135
Mean 93.765 98.842
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C. Extended Background
Chemical shifts. The resonance frequency of a nuclear spin, ν, depends directly on the splitting of its energy levels in a
magnetic field. This is given as ν ∝ γB, where B is the strength of the magnetic field that the nucleus experiences and γ is
the gyromagnetic ratio of the nucleus, a characteristic of an atom’s nucleus (e.g., 1H, 13C). In Nuclear Magnetic Resonance
(NMR) experiments, B is primarily determined by the externally applied magnetic field B0, but at the level of an observed
atom it is slightly perturbed by local magnetic fields ∆B induced by the surrounding electron cloud. These perturbations,
which are typically several orders of magnitude weaker than B0, cause small shifts in the resonance frequency—known
as chemical shifts. The chemical shift reflects subtle variations in the local electronic environment and is therefore highly
informative about molecular structure and composition. The chemical change of an atom is often reported in relative terms
as δ = 106 · ν−ν0

ν0
, where ν is the observed resonance frequency and ν0 is the resonance frequency of the same type of

nucleus in a reference compound – commonly the 1H signal of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) is used for the
1H chemical-shift scale. Although dimensionless, chemical shifts δ are conventionally expressed in parts per million (ppm),
hence the 106 scaling factor in the definition.

The electronic environment that gives rise to chemical shifts is influenced by factors such as the nature of chemical bonds,
the identities of neighboring atoms, and their three-dimensional spatial arrangement. Additionally, dihedral angles2 play a
significant role in modulating electron density around nuclei and thereby affect chemical shifts. Other factors that influence
the chemical shift include hydrogen bonding interactions, ligand binding, or proximity to solvent molecules. Therefore,
chemical shifts provide site-specific information about the local environment at the atomic-level. The chemical shift reports
the time-averaged environment over all motions on time scales shorter than milliseconds. Chemical shifts are particularly
valuable for inferring atomic connectivity, identifying functional groups, and detecting conformational changes, due to their
sensitivity to fine variations in electronic structure (Claridge, 2016; Günther, 2013). Accurate chemical shift prediction plays
a critical role in applications like automated NMR resonance assignment, molecular structure determination and validation,
and the analysis of complex chemical systems (Wishart, 2011; Bermel et al., 2015). Despite this, reliable chemical shift
prediction remains a challenge due to the sensitivity of chemical shifts to nuanced changes in molecular environment
(Kuprov et al., 2007; Case, 2013).

ESM-based descriptors (Lin et al., 2023). Evolutionary Scale Modeling (ESM) is a family of transformer-based protein
language models trained on a large-scale dataset of protein amino acid sequences using masked language modeling, similar
to BERT (Devlin et al., 2019) for natural language. Unlike traditional methods that rely on multiple sequence alignments
(MSAs) or co-evolutionary profiles, ESM models learn context-aware representations directly from amino acid sequences,
enabling them to capture biochemical, structural, and evolutionary patterns within a protein sequence without explicit
alignment.

Given an input amino acid sequence a of length L, a pre-trained ESM model produces a d-dimensional representation
for each amino acid. These embeddings capture the identity of each amino acid and its contextual dependencies within
the sequence. In this work, we use per-residue representations from the ESM-2 model (output from the 33rd layer of
the 2B parameter model) as local environment descriptors, leveraging the model’s ability to capture the evolutionary and
biochemical context for each residue.

MACE and Egret descriptors (Batatia et al., 2022; Wagen et al., 2025). Message passing neural networks (Gilmer et al.,
2017; Schütt et al., 2017) typically exchange messages between pairs of nodes in a graph. In contrast, the MACE family
of models (MACE, Egret) generalizes this framework by learning equivariant messages involving a system of n (order
parameter) nodes (or atoms) at a time. This enables richer geometric and chemical modeling by operating directly over
higher-order interactions. Formally, for a given node at layer t of the graph, MACE first learns the following Sn-invariant
and O(3)-equivariant features between pairs of atoms:

A
(t)
i,kl3m3

=
∑

l1m1,l2m2

Cl3m3

l1m1,l2m2

∑
j∈N (i)

R
(t)
kl1l2l3

(rji)Y
m1

l1
(r̂ij)

∑
k̃

W
(t)

kk̃l2
h
(t)

j,k̃l2m2
(2)

Here, R is a learnable radial function that encodes the distance between atoms i and j; Y is the spherical harmonic function
that encodes the unit vector from atom i to atom j. The summation over the neighbors N (i) guarantees permutation
invariance in the local aggregation. Additionally, A(t)

i,kl3m3
incorporates information from learned node embeddings at

the previous layer using
∑

k̃W
(t)

kk̃l2
h
(t)

j,k̃l2m2
. Lastly,

∑
l1m1,l2m2

Cl3m3

l1m1,l2m2
(Clebsch-Gordan coefficients) ensure O(3)-

2The torsion angle about the bond between atoms B and C in a four-atom segment A–B–C–D
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equivariance is preserved when radial and spherical features are combined. The indices l1, l2, l3,m1,m2,m3 generalize
equivariant messages across higher-dimensional irreducible representations of O(3). It must be noted that A(t)

i,kl3m3
captures

pairwise directional and distance-based interactions, forming the building blocks for higher-order representations. Formally,

B
(t)
i,ηνkLM =

∑
lm

CLM
ην ,lm

ν∏
ξ=1

∑
k̃

w
(t)

kk̃lξ
A

(t)

i,k̃lξmξ
, lm = (l1m1, . . . lnmn). (3)

The above equation lifts the pairwise Sn (permutation-) invariant and O(3)-equivariant features in A
(t)
i,kl3m3

to an n-

body representation while preserving the geometric properties. The high-order tensor B(t)
i,ηνkLM forms the core MACE

representation. The update and readout steps are similar to regular message passing frameworks. As a special case, we set
L = 0 (scalar representation of O(3)) in Equation 3, we project the equivariant features to a invariant representation of O(3)
via scalar coupling. Hence,

B
(t)
i,ηνk,00

=
∑
lm

C00
ην ,lm

ν∏
ξ=1

∑
k̃

w
(t)

kk̃lξ
A

(t)

i,k̃lξmξ
, lm = (l1m1, . . . lnmn). (4)

Here C00
ηn,lm

would enforce scalar coupling of lower-order equivariant components. In this work, we will use descriptors
(448 dimensional) that are invariant to both Sn and O(3) transformations by setting L = 0.

AIMNet2-based descriptors (Zubatyuk et al., 2019). AIMNet constructs Atomic Feature Vectors (AFVs) by iteratively
embedding the local atomic environments and updating atomic representations using geometric information. Given the
atomic coordinates R and atomic number Z, an initial atomic feature vector A

(0)
i is derived for atom i. The initial

embeddings are parametrized as learnable vectors that depend on atomic number Zi of each atom.

The local environment of atom i is encoded using symmetry functions that capture the spatial arrangement and types of
neighboring atoms. This produces an atomic environment vector (AEV).

G
(t)
i = AEV({Ri −Rj , Zj}j∈N (i)). (5)

An AEV is constructed to be invariant to permutations (Sn) and 3D translations and rotations (E(3)). This is typically
via a message-passing framework. Next, the geometry and atom-type information are fused by computing an interaction
descriptor

f
(t)
i = MLP

∑
j∈Ni

G
(t)
ij ⊗A

(t)
j

 (6)

This vector encodes the influence of neighboring atoms on atom i in a way that is independent of the number of chemical
species. Lastly, the atomistic feature vectors A(t)

j and fi are combined to form an updated atomistic feature vector

A
(t+1)
i = U(A

(t)
i , f

(t)
i ). (7)

This process is repeated over multiple iterations, enabling information to propagate beyond the local neighborhood and
capture non-local effects such as charge redistribution and polarization. After several refinement steps, AIMNet produces
AFVs of fixed dimensionality (256), which are used to predict various molecular and atomic properties. Training is performed
in a multitask setting, where the network jointly learns to predict a variety of molecular and atomic properties—including
energies, forces, partial charges, and dipole moments—using shared representations to improve generalization. The model is
trained on large datasets of quantum mechanical calculations, with regularization techniques to ensure stability and prevent
overfitting.

OrbNet-based descriptors (Qiao et al., 2020). In similar spirit to semi-empirical molecular force-fields, OrbNet constructs
feature vectors by leveraging symmetry-adapted atomic orbitals (AO), which capture local electronic structure information
obtained from quantum calculations while respecting the symmetries inherent in molecular systems. Using mean-field
quantum mechanics, OrbNet derives overlap matrices S, Fock matrix F, density matrix D, and the Hamiltonian H. Each
matrix element Oνµ corresponds to interactions between atomic orbitals ν and µ, and blocks Oij represent interactions
between atoms i and j.
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These matrices produce features that are Sn invariant and E(3) invariant by projecting these orbital block matrices into a
symmetry-adapted basis. The atom-wise feature vector is then constructed by aggregating contributions from its neighboring
orbital interactions

fi =
∑
j

MLP(Oi,j). (8)

In OrbNet, the atomic structure is represented as a graph where nodes correspond to an atom (initialized using fi) and edges
model interatomic relationships. The model employs the following message passing scheme

h
(t+1)
i = U (t)

h
(t)
i ,

∑
j∈N (i)

M (t)(h
(t)
i ,h

(t)
j ,Oij)

 , (9)

where h
(t)
i is hidden feature of atom i at layer t, Oij encodes the orbital-based edge features derived from orbital feature

matrices, M (t) is the message function, and U is the update function for node embeddings. After multiple layers of message
passing, the final atomic features fi ∈ R256 serves as a descriptor of an atom’s local environment. This formulation enables
OrbNet to encode both local chemical environments and long-range quantum effects efficiently. In contrast to models like
MACE, which explicitly encode geometric equivariance and higher-order correlations, OrbNet uses pairwise orbital-based
features and rely on message passing to capture more complex interactions.

LoCoHD (Fazekas et al., 2024) is a method for quantifying chemical and structural differences between protein environments.
Unlike alignment-based or purely geometric measures, LoCoHD characterizes each local environment as a distribution
of chemical “primitive types” such as atom types or residue centroids within a specified radius. The similarity between
two environments is then measured using the Hellinger distance between their respective distributions. In this paper, to test
the effectiveness of LoCoHD descriptors in representing local environments, we construct LocoHD embeddings using its
representation of a local environment while computing the similarity metric. Each embedding is computed by aggregating
statistics of the primitive types, weighted by their distance from the central residue. This results in a purely structural and
chemical descriptor of the local environment.

D. Data curation
The dataset used within the scope of this paper was sourced from RefDB (Zhang et al., 2003) which is a subset of the
Biomolecular Magnetic Resonance Databank (BMRB) (Hoch et al., 2023). RefDB is a curated list of BMRB entries with
calibrated chemical shifts. We select monomers from the RefDB and perform sequence redundancy filtering with mmseqs
via,

mmseqs easy-cluster sequences.fasta -min-seq-id 0.5 -c 0.8 -cov-mode 5,

which results in sequence clusters. We then split the clusters to define train and test sets. Our final dataset consists of 1048
BMRB entries in RefDB (225 test + 823 train), from where we collected the amino acid sequences, and the experimental
chemical shifts. The structures are obtained by running AlphaFold2 (Jumper et al., 2021) via OpenFold (Ahdritz et al., 2024).
Using AlphaFold offers two advantages: (i) it avoids structural inconsistencies that may be inherent in crystal structures,
and (ii) it allows predicting shifts for structures that do not have a crystal structure deposited to the PDB. The local protein
environments are obtained from each protein structure are extracted as described in Algorithm 1. We obtain the random-coil
chemical shifts used in our shift predictor from UCBShift2 (Ptaszek et al., 2024).
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E. Environment construction and AFM embedding
This section elaborates on the amino-acid centric environment construction algorithm discussed in Section 3.

Algorithm 1 Amino-Acid Centric Environment Extraction

Input: Protein dataset D, radius rmax = 5Å
E ← ∅
for each structure X ∈ D do

for each amino acid a ∈ X do
for each atom xi ∈ a do
Xa ← {a} X ∈ RNatoms×3,xi ∈ R3

for each amino acid a′ ∈ X do
if ∃xj ∈ a′ s.t. ∥xi − xj∥ ≤ rmax then
Xa ← Xa ∪ {a′} All atoms in a′

end if
end for
E ← E ∪ Xa

end for
end for

end for
Return E

F. Predicting amino acid, secondary structure, and pKa

In what follows, we provide additional details for experiments and results described in Section 4.

F.1. Secondary Structure and Amino Acid Prediction

Target variables. In these tasks, the target space of the target y is categorical variable.

• In amino acid prediction, the target variable y holds one of the following categories:
{A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }, each representing a standard twenty amino acids (cf.
(Kawashima & Kanehisa, 2000) for further explanation).

• In secondary structure prediction, the target variable y can assume one of the following categories: {H,E,O},
where H denotes an α-helix, E denotes a β-strand, and O corresponds to all other secondary structure types (see Table
B.6). Although more secondary structure types exist, we are primarily interested in α-helices and β-strands due to their
structural prominence.

Loss function. To train models for these tasks, we employ a cross entropy loss written as

L(ŷi, yi) = −
|y|∑
c=1

yic log

(
exp(ŷic)∑|y|
j=1 exp(ŷij)

)
, (10)

where ŷi is the predicted logit for each class and yi is the one-hot encoding of the true class label for sample i.

Evaluation metrics. To evaluate the model’s performance, we use the following metrics.

• Precision: For a given class i, precision is defined as

Precisioni =
True Positivei

True Positivei + False Positivei
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• Recall: For a given class i, recall is defined as

Recalli =
True Positivei

True Positivei + False Negativei

• F1 score: For a given class i, the F1 score is the harmonic mean of its Precision and Recall:

F1i = 2 · Precisioni · Recalli
Precisioni + Recalli

For secondary structure prediction we report the precision, recall, and F1 score for each class in y. In addition, we report an
unweighted average and a weighted average (mean weighted by number of instances in each class) for the respective tasks.

Ablation study. We conduct an ablation study on the set of atoms Aa to evaluate the effect of including descriptors
from multiple atoms within amino acid a on secondary structure and amino acid prediction performance. Specifically,
two configurations are compared: one where Aa = {C, CA, CB, N, H, HA}, and a reduced version Aa = {CA}. For this
ablation, identical models are trained using Egret descriptors, varying only the atom set. Egret descriptors are used because
as shown in Tables B.1 and B.2, they consistently outperform other atom-level descriptor types. The ablation results for
secondary structure prediction are presented in Table B.7 and for amino acid prediction in Table B.8. Clearly, incorporating
a larger set of atoms in Aa leads to a substantial improvement in prediction accuracy.

F.2. Acid dissociation constant (pKa) prediction

Loss function. We treat pKa prediction as a regression problem. To train pKa regressors, we train a graph neural network
to minimize the mean absolute error (MAE) as follows,

L1 =
1

N

N∑
i=1

|yi − ŷi|, (11)

where N is the number of samples in the dataset, y∗i is the groundtruth pKa value of a protonated site in a protein obtained
by solving the Poisson-Boltzmann equation from (Reis et al., 2020), and ŷi is the predicted pKa.

Evaluation metrics. To quantitatively evaluate the accuracy of the model, we report the mean absolute error measured on
the test set.

F.3. Model Architecture

Across all three tasks, we used a consistent model architecture with little changes in hyperparameters. To incorporate the
spatial and relation information between atomistic features, we constructed a fully connected graph between the atoms of the
same residue. We propose to use a graph convolution network (GCN) (Kipf & Welling, 2016) to predict the specific class
type. The update rule at layer l ∈ N is defined as,

X(l+1) = σ(ĀX(l)W(l)) (12)

Here, Ā = (I + A) is the normalized adjacency matrix that serves as a low-pass filter when aggregating information
over the neighbors. A is the graph’s adjacency matrix, and I is an identity matrix. Also, W(l) is the learnable weight
matrix to transform the features at layer l, X is the node feature matrix defined for layer l of the GNN. We used SiLU
(Sigmoid Linear Unit) (Elfwing et al., 2018) as the non-linear activation function and we applied layer normalization after
each graph convolution operation to stabilize training. The operation in Eq. 12 is repeated for L = 10 layers. The initial
input X(0) consists of the atomistic features for each atom. At the final layer (l = L− 1), in the case of classification, the
network outputs a vector of shape |y| representing class-wise logits, and the network outputs a scalar for regression tasks.
Lastly, we use dropout (Srivastava et al., 2014) for every intermediate layer to prevent overfitting. Below is the table of
hyper-parameters used for these experiments.

• Aa = {C,CA,CB,N,H,HA}
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• Batch size: 256

• Number of Epochs: 800

• Optimizer

– Type: Adam (Kingma & Ba, 2014)
– Learning Rate: 1× 10−4

• Learning Rate Scheduler

– Type: Step Learning Rate
– Decay Factor (γ): 0.5
– Step Size: 10

• Number of GCN layers: 10

• Dropout probability: 0.3

• Hidden dimension of GCN (per layer): 128

In addition, we employed gradient clipping with a maximum norm of 5, an exponential moving average (EMA) weighted
model with a decay rate of 0.999, and a StepLR learning rate scheduler incorporating 7500 warm-up steps and a step size of
10.

F.4. Computation details

All experiments were performed on a single NVIDIA H100 GPU. Individual runs required one hour to complete, with a
maximum GPU memory usage of approximately 15 GB.

G. Using likelihoods to define environment similarity measure
We employ the conditional likelihoods defined in Section 5 to define a similarity metric to compare protein environments.

G.1. Similarity metric

We analyzed a large collection of protein chemical environments by comparing them using MACE embeddings. For each
attribute—such as amino acid type or secondary structure—we estimated a likelihood around each embedding via kernel
density estimation with a fixed bandwidth as described in Section 5. These likelihoods were converted into distances
using a scaled negative exponential, where higher similarity corresponded to smaller distances. Since each pairwise
distance arises from a distribution—based on multiple environments belonging to the same attribute—we applied stochastic
multidimensional scaling (MDS) (Rosenberg et al., 2022; Boyarski & Bronstein, 2021), which takes into account both the
mean and standard deviation of these distances. The resulting embeddings revealed meaningful clustering that not only
separated different amino acid types and secondary structures but also captured finer relationships within them. Chemically
or structurally related amino acids and secondary structures exhibited higher similarity, demonstrating that the MACE-based
comparison effectively reflects the underlying chemical and structural properties. Additional details and visualizations are
provided in Figure A.10.

H. Details of the chemical shift prediction experiments
Target variable. The goal of the chemical shift prediction is to predict the calibrated chemical shift y of an atom of
interest given the environment. We train our models to predict the secondary shift, i.e. the difference in the experimental and
random-coil chemical shifts, given the sequence.

Loss function. We train our shift prediction models to minimize the mean absolute shift prediction error, defined as

LL1 =
1

N

N∑
i=1

|yi − ŷi| , (13)
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where N is the number of data points, yi and ŷi are the groundtruth and predicted chemical shifts, respectively.

Evaluation metrics. To quantitatively evaluate the accuracy of the model, we report the mean absolute error measured on
the test set.

H.1. Model architecture

We used the same architecture as before (Appendix F.3) with slightly different hyperparameters as described below.

• Aa = {b}, where b is the atom type for which we are predicting the chemical shift value.

• Batch size: 500

• Number of Epochs: 2000

• Optimizer

– Type: Adam (Kingma & Ba, 2014)
– Learning Rate: 1× 10−4

• Learning Rate Scheduler

– Type: Step Learning Rate
– Decay Factor (γ): 0.5
– Step Size: 10

• Number of GCN layers: 5

• Dropout probability: 0.3

• Hidden dimension of GCN (per layer): 256

In addition, we employed gradient clipping with a maximum norm of 5, an exponential moving average (EMA) with a decay
rate of 0.999, and a StepLR learning rate scheduler incorporating 7500 warm-up steps and a step size of 10.

H.2. Computation details

All experiments were performed on a single NVIDIA H100 GPU. Individual runs required three hours to complete, with a
maximum GPU memory usage of approximately 15 GB.

I. Extended AFM interpretations
I.1. Inverting MACE embeddings

In a similar spirit to Maddipatla et al. (Maddipatla et al., 2025), we investigate whether MACE features can serve not only as
representations of protein structures but also as tools to decode them. Specifically, we are interested in using the information
contained in the descriptors to select between alternate conformers (altlocs) within a single protein. We therefore treat the
MACE features as latent representations from which protein conformers can be reconstructed. As a test case, we examine the
PDB structure 4OLE:B resolved to 2.52 Å, which contains a region of 9 amino acids (60− 68) modeled as a superposition
of two alternate conformations – one helix and the other a loop. Starting from the helix, we iteratively optimize the positions
to align the MACE features of the loop conformation, thereby assessing the potential of these descriptors for structure
recovery and conformational transitions.

The optimization loss function quantifies the discrepancy between the descriptors of the current and target structures and is
computed for each atom within the optimized region. In particular, we define each local atomic environment as all atoms
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within a 5 Å radius around the atom of interest. The resulting descriptors capture both geometric and chemical context at
multiple equivariant orders. The loss is composed of three terms, each corresponding to a different equivariant order:

L = α
∥∥∥Bi,ηνk,00 −Btarget

i,ηνk,00

∥∥∥
2
+ β

1

N

N∑
i=1

∥∥∥Bi
i,ηνk,1M −Btarget,i

i,ηνk,1M

∥∥∥
2

+ γ
∑
i

∥∥∥Bi
i,ηνk,2M −Btarget,i

i,ηνk,2M

∥∥∥
F

where Bi
i,ηνk,LM and Btarget

i,ηνk,LM denote the L-th order MACE embeddings of the optimized and target conformations,
computed as described in Equation 3. For a given L, the Clebsch-Gordan coefficients CLM

ην ,lm
select the valid combinations

of input angular momenta. Note that while the second and the third terms are not rotation-invariant, global alignment of the
source configuration with the target ensures validity of the comparison.

This combined loss (weighted by α, β, γ) drives the structural optimization by progressively aligning the descriptor
representations of the initial and target altloc conformations.

Fig. A.11 illustrates the result of this optimization. While the backbone atom positions are recovered with high accuracy,
the side chains of glutamic acid (GLU) 62 and lysine (LYS) 63 adopt incorrect orientations. We hypothesize that this
discrepancy arises because MACE features primarily capture the local chemical environment within a given radius. Within
this range, distinct side-chain rotamers can produce similar local environments, resulting in ambiguous representations. As a
result, the descriptors lack the resolution necessary to distinguish between different side-chain conformations.

These results suggest that while MACE features reliably capture the backbone geometry, are less sensitive to side-chain
orientations, as distinct rotameric states can yield similar local environments. Recovering both backbone and side-chain
configurations would require further exploration. Success in this direction could enable the use of MACE features (and other
atomistic features) for coarse-grained protein modeling with minimal loss of structural fidelity.
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