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Abstract—We present a stylized model with feedback
loops for the evolution of a population’s wealth over
generations. Individuals have both talent and wealth: talent
is a random variable distributed identically for everyone,
but wealth is a random variable that is dependent on the
population one is born into. Individuals then apply to a
downstream agent, which we treat as a university through-
out the paper (but could also represent an employer) who
makes a decision about whether to admit them or not. The
university does not directly observe talent or wealth, but
rather a signal (representing e.g. a standardized test) that
is a convex combination of both. The university knows the
distributions from which an individual’s type and wealth
are drawn, and makes its decisions based on the posterior
distribution of the applicant’s characteristics conditional
on their population and signal. Each population’s wealth
distribution at the next round then depends on the fraction
of that population that was admitted by the university at
the previous round.

We study wealth dynamics in this model, and give con-
ditions under which the dynamics have a single attracting
fixed point (which implies population wealth inequality
is transitory), and conditions under which it can have
multiple attracting fixed points (which implies that pop-
ulation wealth inequality can be persistent). In the case in
which there are multiple attracting fixed points, we study
interventions aimed at eliminating or mitigating inequality,
including increasing the capacity of the university to admit
more people, aligning the signal generated by individuals
with the preferences of the university, and making direct
monetary transfers to the less wealthy population.

Index Terms—Wealth Dynamics, Feedback Loops, Col-
lege Admissions, Fairness, Interventions for Fairness

I. INTRODUCTION

The wealth of a population evolves over generations
as a function of the opportunities available to it. Op-
portunities available to a generation depend not only
on their talent, but also on the wealth of the previous
generation. In such a dynamical system, the initial wealth
of a population determines how wealth evolves and what
it will be in the limit. Understanding this system can
help illuminate when and why inequalities can arise and
persist.

In this paper we define and analyze a simple,
mathematically-tractable model for this feedback system,
before considering possible interventions to make its

behavior more equitable. To discuss the main conclu-
sions of our paper, we first need to provide a sketch
of our model. Individuals are divided across multiple
populations, and have both a type (an abstraction of
talent) and a wealth. Within a single population, the
distribution of wealth and types are given by Gaussians
with known means and variances. Types are distributed
identically across populations, but each population has
its own distribution of wealth. An individual from
a particular population is sampled by sampling their
type T from the (universal) type distribution, and their
wealth W from the wealth distribution particular to
their population. An individual then generates a signal
S = βT + (1 − β)W , i.e., some convex combination
of their wealth and type. This signal could represent
e.g. an individual’s score on a standardized test, or the
rating that results from an interview. Here we allow that
the signal might have a dependence on wealth rather
than just type because of the indirect effects it can have
on evaluations: for example, the ability to engage in
additional test preparation. Downstream, a university1

observes the signal, and forms a posterior belief about
the applicant’s type and wealth. This signal conflating
wealth and type is the only information the university gets.
It gets no additional information about the wealth or type
of an individual except through the signal. The university
seeks to select individuals for whom another convex
combination αT + (1 − α)W exceeds some threshold
τ , and so selects exactly those applicants for whom
E[αT + (1−α)W |S] ≥ τ . Here again we allow that the
university might have an explicit preference for a mixture
of wealth and type (and not purely for type). This might
represent e.g. a desire for full tuition payments or future
alumni donations, or a more nebulous desire for “culture
fit” or for skills associated with wealth (e.g. students
who can walk on to the sailing or squash team). For

1Throughout this paper we describe the downstream agent as
a university admitting students. However we could also view the
downstream agent as an employer hiring employees, or any other
agent allocating opportunities based on evidence that conflates talent
and wealth that have effects on the long-term wealth of the selected
individuals.



each population we then let the mean wealth of the next
generation be a non-decreasing function of the fraction
of people admitted to the university at the previous round.
We also assume that the distribution of types (or talent)
remains unchanged over generations and is identical for
all individuals, independent of their population.

First, we consider the fixed points of these wealth
dynamics. If there is only a single fixed point (and
the dynamics converge to it), this implies that wealth
inequality across population groups is transitory, and that
over time it will equalize (as the mean wealth of all
populations move to the single attracting fixed point). On
the other hand, if there are multiple fixed points of the
wealth dynamics, then wealth inequality can persist, with
different populations “stuck” at different fixed points. We
regard the existence of multiple fixed points for different
populations as unfairly propagating inequality, since in
our model we assume that both populations have the
same type distribution. Our focus is on understanding the
conditions under which such unfairness can arise, and
ways of mitigating it with a limited budget.

We give conditions under which the dynamics corre-
spond to a contraction map and have a single fixed point
(implying that wealth inequality is transitory). These
conditions in particular include the case when α = 1 —
i.e. when the university is selecting entirely based on
inferred type. On the other hand, there are other situations
(in which, necessarily the university places some weight
(1−α) > 0 in its objective on wealth) in which case there
can be two attracting fixed points (and a third unstable
fixed point), which can result in persistent inequality
absent intervention: one population can be “trapped” in
the less wealthy fixed point, while the other one is in
the more wealthy fixed point. We also briefly consider
an extension of our model in which the university is
additionally bound by a capacity constraint in setting
its admissions rule. Technically this corresponds to a
modification of the decision rule of the university using
a threshold on the posterior expectation of each student
that can change from round to round as a function of
the wealth of the two populations. We remind the reader
that in all of the cases discussed, the preferences of
the university as parameterized by α do not necessarily
correspond to the degree to which the signal conflates
type and wealth, which is parameterized by β.

We then turn our attention to interventions. We focus
our study of interventions on ways to move a population’s
wealth from the lower fixed point to the higher fixed
point, or to modify the dynamics so that there is a single
attracting fixed point (which leads to wealth equality).

We consider three types of interventions:
1) Increasing The Capacity of the University: We

consider what happens when the university is able
to admit more applicants (by lowering its threshold
τ ). We show that doing this has positive effects:
either it shifts the dynamics from the regime in
which there are multiple fixed points to the regime
in which there is a single fixed point (thus leading
to long-term wealth equality), or it raises the wealth
of both attracting fixed points.

2) Changing the Design of the Signal S: We con-
sider what happens if we are able to better align the
signal the university receives with the university’s
objective function (by shifting β closer to α —
i.e. by having the signal weight type and wealth
more similarly to how they are weighted in the
university’s objective function). We show that as
β is moved closer to α the disparity between the
two fixed points is reduced. Notably, and perhaps
counter-intuitively, making the signal depend more
on type (by increasing β) is not always the way
to reduce disparities (despite the fact that type is
distributed identically across populations).

3) Direct Subsidies to the Disadvantaged Popula-
tion: Finally we consider making direct financial
subsidies to the disadvantaged population, to shift
them from the lower wealth attracting fixed point
to the basin of attraction of the higher wealth
fixed point (from which they will naturally proceed
to the higher wealth fixed point without further
intervention). We consider a parameterized family
of objective functions that the designer might have,
that differ in how they relatively weight the cost of
the subsidy with the wealth of the disadvantaged
population, and in how they discount time. Within
this class of interventions, we focus on two options:
the most aggressive “1-shot” option makes a large
1-shot payment to directly increase the wealth of
the disadvantaged population to move them to the
basin of attraction of the wealthier fixed point.
The least aggressive “limiting” option makes the
minimal payment per round that is guaranteed to
cause eventual convergence to the wealthier fixed
point. We derive conditions under which the “1-
shot” option is preferred by the designer over the
“limiting” option and vice versa.

A. Discussion and Limitations

For mathematical tractability, we study a simple
stylized model, which should be viewed as a first cut
at attempting to model wealth inequality rather than a
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faithful description of the full problem. For example,
we have assumed that the university has access to an
applicant’s wealth only indirectly via inferences that can
be drawn from their test score and population. In practice,
a university has a number of other signals at their disposal.
One should interpret the wealth populations in our
model as equivalence classes induced by the information
available to them at admissions time. Similarly, we have
modeled individual talent via a static “type” distribution,
when in fact talent is multi-dimensional and not static
(and might depend on opportunities that different popu-
lations might have different access to prior to university
admissions). We have not modelled university capacity
constraints, and this allows us to treat each population
independently of the others.

Nevertheless, several qualitative takeaways emerge
from our modelling that we think are interesting: for
example, in our model, the persistence of inequality
(multiple attracting fixed points) depends on the university
using a selection rule that intentionally takes into account
wealth, rather than just talent (since if the university
places α = 1 weight on type in our model, there is only
a single fixed point, even when the signal nontrivially
conflates type and wealth (β ∈ (0, 1))). This suggests that
changes in admission policies that reduce the focus on
wealth (for example, switching to need blind admissions
and reducing or eliminating legacy admissions) might
have beneficial long term effects. Similarly, we find that
aggressive interventions (in our model, that aim to in
one shot lift the lower wealth population to the basin
of attraction of the higher wealth fixed point) are often
the most cost effective in the long run, compared to
more modest interventions that would accomplish the
same goal after k > 1 rounds. On the other hand,
incremental interventions become optimal when society
heavily discounts the future, suggesting that institutions
that are able to formulate longer term goals (e.g. non-
profit universities with large endowments) may be in a
better position to take aggressive action to combat wealth
inequality.

Finally, in most of our paper we assume that the
university does not have a binding capacity constraint (i.e.
it can admit all of the students that it estimates would
lead to positive utility). We briefly consider the extension
of our model in which the university also has a binding
capacity constraint in Appendix A. However we leave the
study of interventions in the setting of binding capacity
constraints to future work.

B. Related Work

Our paper is related to economic models of inequality,
which date back to [1] and [2]. For example, [3] and [4]
study two stage models in which the existence of self-
confirming equilibria can cause inequality to be persistent
even when populations are ex-ante identical.

More recently, the computer science community has
begun studying dynamic models of fairness. [5] study
the costs of imposing fairness constraints on learners in
general Markov decision processes. [6] study a dynamic
model of the labor market similar to that of [3], [4] in
which two populations are symmetric, but can choose to
exert costly effort in order to improve their value to an
employer. They study a two stage model of a labor market
in which interventions in a “temporary” labor market can
lead to high welfare symmetric equilibrium in the long
run. [7] study a two round model of lending in which
lending decisions in the first round can change the type
distribution of applicants in the 2nd round, according to
a known, exogenously specified function. [8] study a
dynamic model where in each round, strategic individuals
decide whether to invest in qualifications and the decision-
maker updates his classifier that decides which individuals
are qualified; they characterize the equilibria of such
dynamics and develop interventions that lead to better
long-term outcomes. [9] study a model in which decisions
over individuals and populations are made along a multi-
layered pipeline, where each layer corresponds to a
different stage of life. They consider the algorithmic
problem faced by a budgeted centralized designer who
aims to intervene on the transitions between layers to
obtain optimally fair outcomes, when such modifications
are costly. [10] study a two stage model of affirmative
action in which a college may set different admissions
policies for an advantaged and disadvantaged group,
but a downstream employer makes hiring decisions that
maximize their expected objective given their posterior
belief on student qualifications (that depend on the
college’s policies). [11] study an equilibrium model of
criminal justice in which two populations with different
outside option distributions make rational decisions as a
function of criminal justice policy; they show that policies
that have been proposed with equity considerations
in mind (equalizing false positive and negative rates)
actually emerge as optimal solutions to a social planner’s
optimization problem even without an explicit equity goal.
[12] studies a firm whose goal is to incentivize employees
to exert effort via a noisy and distorted performance
measure that may not align perfectly with the firm’s own
utility: this is similar to our setting in that the noisy signal
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observed by our university does not align perfectly with
the university’s objective.

We highlight two closely related papers. [13] also study
a model of inter-generational wealth dynamics across
many rounds, in which both wealth and talent play a
role in success, as a function of opportunities that can
be allocated to a limited portion of the population. Like
us, [13] use college admissions as a running example of
an institution allocating the opportunities, and like us,
study a model in which admissions to college plays the
role of determining wealth increase or decrease from one
generation to the next. Our models differ in a number of
specifics, but the primary difference between these two
works is that [13] study the optimal policy for a very
patient institution interested in maximizing its long-run
payoff, and show that it recovers a form of affirmative
action, preferentially offering opportunities to the less
wealthy population so that it can reap the benefits of
their resulting increased wealth in future generations.
In contrast, we study institutions that are myopic: the
university makes decisions based only on the current
distribution of wealth and type, but is not trying to
optimize for long-term outcomes; it does not reason
about how its decisions affect future applicants. Another
important distinction is that in our model, neither wealth
nor types are observed; instead, they have to be inferred
through Bayesian inference from a signal that conflates
both, while in [13] ability is observed and directly used in
decisions. We view these as the most salient differences,
but those are not the only distinctions between the two
works. For example, [13] consider a setting where an
agent’s circumstance (which in our setting could be seen
as wealth) is binary (advantaged or disadvantaged). The
circumstance or wealth in our setting here is instead in
a continuous range: even in the same “disadvantaged”
population, different agents can have a continuum of
differing levels of wealth.

II. PRELIMINARIES

Definition 1 (Attracting fixed points). Let f : R→ R be
a real-valued function and let x∗ be such that f(x∗) = x∗.
We call x∗ a fixed point of f . Further, let at(x) be the
sequence defined by a0 = x and at+1 = f(at); we say
that x∗ is attracting for x if and only if at(x) converges
to x∗.

Claim 1 (Attracting fixed points). Let f be a real-valued,
continuous, non-decreasing function such that x∗ is a
fixed point of f . If f(x) > x for all x ∈ [a, x∗), x∗

is attracting on [a, x∗). Similarly, if f(x) < x for all
x ∈ (x∗, b], x∗ is attracting on (x∗, b].

Proof. Let x ∈ [a, x∗). Let at(x) be the sequence defined
by a0 = x and at+1 = f(at). a1 = f(a0) > a0,
Since f is non-decreasing a2 = f(f(a0)) ≥ f(a0), but
f(x) > x ∀x ∈ [a, x∗), so this inequality is in fact strict,
i.e a2 > a1. Note that by induction, we have for all t that
x∗ = f(x∗) ≥ at+1(x) = f(at(x)) > at(x) . . . > a0;
hence at is increasing and at ∈ [a, x∗] for all t. In
particular, at is a convergent sequence with a finite limit
in [a, x∗]. Now, since f(x) > x for all x < x∗, x∗ is f ’s
unique fixed point on [a, x∗]. Because f is continuous,
we must have limt→+∞ at+1 = limt→+∞ f(at) =
f (limt→+∞ at), i.e. the limit l must satisfy f(l) = l.
The only point on [a, x∗] that satisfies this condition is
x∗, yielding the first part of the result. A similar argument
holds for the second part of the proof.

III. MODEL

We consider a university that has a non-atomic set of
applicants from two different sub-populations (or groups),
denoted 1 and 2, and must decide which applicants to
admit. Each applicant has a type T , where the types are
random variables drawn i.i.d. from a known distribution
D; we assume that the distribution of types is the same
for both groups. Further, each applicant also has a wealth
Wi; wealth is drawn i.i.d. from a known distribution Wi

which may depend on the applicant’s group i. We assume
that wealth and types are drawn independently of each
other.

a) University’s admission decisions: The university
is interested in admitting applicants based on both their
type and wealth, and get some benefit

αT + (1− α)W

for admitting an applicant with type T and wealth W ,
for some parameter α ∈ [0, 1] that controls how much it
is interested in type versus wealth. The university also
incurs a cost of τ for each applicant they admit. Thus,
the university’s utility for admitting an applicant with
type T and wealth W is given by

u(T,W ) = αT + (1− α)W − τ.

The university, however, does not have access to T and
W directly. Instead, it can only see a signal or a score S
(e.g. in the form of a standardized test), which conflates
both and does not distinguish between the applicant’s
type and wealth. We assume that this score S is a convex
combination of W and T and is written as

S = βT + (1− β)W,
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for some known β ∈ [0, 1]. This dependency of the score
on wealth rather than just type is motivated by the fact
that practically, individuals of higher socio-economic
status may have access to better preparation for tests
such as the SAT, and may be able to take the test several
times until they get a satisfactory score.

The university then performs a Bayesian update to
compute its expected utility for admitting each student
based on solely observing S and the distributions (but
not realizations) of type T and wealth W :

ET,W [u(T,W )|S] = ET,W [αT + (1− α)W |S]− τ.

The university tries to maximize its expected utility across
all admission decisions for all students. It is immediate
that to do so, it must admit a student if and only if
ET,W [u(T,W )|S] ≥ 0, i.e. if and only if

ET,W [αT + (1− α)W |S] ≥ τ.

b) Wealth dynamics: We are interested in under-
standing the long-term dynamics of a process where the
university’s decisions (made as described above) affect
the individuals’ future attributes2. We consider a discrete
time horizon, in which at each time step t ∈ Z+, the
university’s decisions shapes the distribution of wealth in
each group in time step t+ 1. In particular, we assume
that the expected wealth µti of group i in step t + 1 is
the fraction of group i that is admitted by the university
at time step t. I.e., we write

µt+1
i = PS [ET,W [αT + (1− α)W |S] ≥ τ ] (1)

This is motivated by the fact that students that are
admitted to competitive universities are expected to reach
better life outcomes and accumulate more wealth. The
higher the fraction of admitted students in a population,
the better the life outcomes of this population, and the
higher its future wealth.

In the rest of the paper, we make the following
assumptions on the functional form of the type and wealth
distributions:

2At a high level, our paper studies the dynamics that result when
a learning agent makes decisions from optimal statistical decisions,
and those decisions feed back into the data distribution at the next
round. One could adapt the current framework beyond university
admissions; e.g., to model wealth feedback loops via disparate access
to job opportunities–in which case the learner would be an employer
instead of a university. Here, we assume that our learner is able to make
Bayes optimal prediction, but we can also think of this assumption as
a simple abstraction for more complex machine learning systems; e.g.,
a bank which uses machine learning to make loan decisions, which
affects different populations’ abilities to build wealth.

Assumption 1. T ∼ N
(
0, γ2

)
. The initial wealth at

time 0 satisfies µ0 ∈ [0, 1], and Wi ∼ N
(
µti, σ

2
)

at time
step t for a fixed constant σ.

Note that the type can be centered around 0 without
loss of generality, by changing the value of τ used by the
employer by the corresponding amount. The assumption
µ0 ∈ [0, 1] is also without loss of generality, and simply
renormalizes the average wealth of a group to be between
[0, 1], so long as we consider populations with bounded
wealth. Note that with our assumptions the mean wealth
of each group always stays in the range [0, 1] although the
sampled wealth of individuals can fall outside this interval.
Finally, it may be worth noting here that wealth has no
effect on type. We take this point of view to highlight
that disparities can arise across different populations even
in the case where there are no type discrepancies across
populations.

IV. WEALTH DYNAMICS AND PROPERTIES

We note that the dynamics of each group only depend
on the decisions made by the university within that group.
Therefore, we can treat groups independently. In this
section, we focus on a single group at a time, and drop
the dependencies on i in our notations for simplicity. We
show that several attracting fixed points can arise from our
dynamics; in particular, there are regimes of parameters
under which there is a low wealth fixed point that groups
with initially low wealth converge to, and a high wealth
fixed point that groups with initially high wealth converge
to. In Section V-C, we consider interventions that apply
to more general update functions that the ones described
in this Section, so long as they have similar fixed point
properties.

A. Computing the Wealth Update Rule

We start by characterizing the joint distributions of the
type T , the wealth W , and the score S.

Claim 2. Let µ , E[W ]. We have that (T, S) forms a
bivariate Gaussian distribution with mean (0, (1− β)µ)
and covariance matrix[

γ2 βγ2

βγ2 β2γ2 + (1− β)2σ2.

]
Similarly, (W,S) forms a bivariate Gaussian distribution
with mean (µ, (1− β)µ) and covariance matrix[

σ2 (1− β)σ2

(1− β)σ2 β2γ2 + (1− β)2σ2.

]
The proof is provided in Appendix B-A. This allows

us to compute the update function that maps the wealth
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of a group in the current round, µt, to the wealth of that
same group in the next round, µt+1:

Lemma 1. At every time step t, we have

µt+1 = 1− Φ
(
K (α, β, γ, σ)

(
τ − (1− α)µt

))
,

where K (α, β, γ, σ)) ,
√
β2γ2+(1−β)2σ2

αβγ2+(1−α)(1−β)σ2 and Φ is
the cumulative density function of a standard Gaussian.
We denote the update rule function

f(x) , 1− Φ (K (α, β, γ, σ) (τ − (1− α)x)) . (2)

For simplicity of notations, we omit the dependency
of f in the parameters of the problem when clear from
context. When not, we explicitely write the dependency
of f in the parameters of interest. The proof of Lemma 1
is mostly algebraic, and is provided in Appendix B-B.

B. Fixed Points and Convergence of the Dynamics

We can now use the closed-form expression for the
update rule to study the properties of the wealth dynamics.
In this section, we bound the number of fixed points of
our dynamics, provide properties of these fixed points,
and characterize which fixed point each initial wealth
converges to. We start by noting that the update rule has
a simple shape. Indeed:

Claim 3. f(x) is continuous and increasing in x. Further,
f is convex on [0, x∗] and concave on [x∗, 1] where

x∗ =


0 if τ ≤ 0,
τ

1−α if 0 < τ < 1− α,
1 if τ ≥ 1− α.

The proof of the above claim is given in Appendix B-C.
We now use the above properties on the shape of f to
derive properties of its fixed point. First we remark that f
has at least one fixed point, since f(0) > 0 and f(1) < 1,
and f is continuous. Now, note that the number of fixed
points of f is also upper-bounded:

Lemma 2. Suppose 0 < τ < 1− α, then f(x) = x has
at most 3 solutions for x ∈ [0, 1]. If f has 3 fixed points
z1 < z2 < z3, it must be that z1 <

τ
1−α < z3. If τ ≤ 0

or τ ≥ 1− α, f(x) = x only has a single solution for
x ∈ [0, 1].

The proof is provided in Appendix B-D. Lemma 2
has direct implications for disparities across groups
with different starting expected wealth. In particular, the
number of fixed points of f determines whether different
groups must converge to equal wealth (the case in which
there is only a single fixed point) in the long-run or
whether there are cases in which wealth inequality is

persistent (the case in which there are multiple fixed
points). We discuss these implications in more details in
the rest of this section.

a) The Case of a Single Fixed Point: We now study
conditions under which f has single vs. multiple fixed
points. We first consider the case of a single fixed point.
In this case, we remark that the single fixed point has
the following property:

Claim 4. If z is the single fixed point of f , then z is
attracting on [0, 1].

Proof. Since f(0) > 0, f(1) < 1, and f is continuous
and has a single fixed point z, it must be that f(x) >
f(z) = z for x < z and f(x) < f(z) = z for x > z.
Applying Claim 1 concludes the proof.

This implies in particular that when f has a single fixed
point z, wealth dynamics converge to this fixed point
no matter what the starting wealth was. This means in
particular that there are no long-term disparities between
populations of different initial socio-economic statuses
(though they may take different amounts of time to reach
the same wealth), i.e. the dynamics self correct for initial
wealth disparities. Figure 1 shows an instantiation of a
wealth update functions with a single fixed point and
the corresponding wealth dynamics (in green); the plots
illustrate convergence of the dynamics to the single fixed
point starting both from an initially low wealth (Figure 1
(a)) and from an initially high wealth (Figure 1 (b)).

We note that Lemma 2 already implies that there
exist interesting situations in which the dynamics have
a single attracting fixed point and wealth dynamics are
self-correcting. The first one is when τ is small (τ < 0);
i.e., the university is not very selective in its admissions.
Intuitively, this leads to most individuals from any group
being admitted (almost) independently of their starting
wealth, which allows even economically disadvantaged
groups to build wealth over time. The other situation
deriving from Lemma 2 arises when τ > 1 − α. This
can arise for two reasons: first, is the university is very
selective and sets high values of τ , wealth becomes
insufficient to qualify an individual for admission (as
then (1− α)E[W |S] ≤ 1− α < τ ); an agent must have
sufficiently high (inferred) type to be admitted, which
helps reduce disparities due to wealth. This can also arise
when α is large and the university is mostly interested in
type over wealth. Intuitively, in this case, the university
pays significant attention to their posterior belief on the
type of an individual, which facilitates equalizing the
treatment of groups of different wealth since they have
the same type distributions; while the university cannot
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(a) Low initial wealth
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(b) High initial wealth

Fig. 1: A wealth update function with a single fixed point,
for α = 0.1, β = 0.6, γ = 0.4, σ = 1.1, τ = 0.2. The
update function is plotted in blue, its single fixed point
in red, and the wealth dynamics induced by the update
function in green. Sub-figure (a) considers dynamics
starting at an initial wealth of 0.2 while sub-figure (b)
considers dynamics starting at wealth 1.0.

observe type directly, they discount for average wealth
more (by a factor of (1− α)µ) hence correct for wealth
disparities more as α is smaller.

Below, we provide an additional condition under which
f has a single fixed point:

Claim 5. If K(α, β, γ, σ) ≤
√

2π
1−α , f is a contraction

mapping and has a unique attracting fixed point.

Proof. This immediately follows from f ′(x) =
K(1−α)√

2π
exp

(
−K2(τ − (1− α)x)2/2

)
and from

exp
(
−K2(τ − (1− α)x)2/2

)
≤ 1 (with equality at

x = τ/(1 − α)). Note that f(0) > 0 and f(1) < 1
so the fixed point z must satisfy f(x) < z if and only if
x < z and must be attracting.

We note that K(α, β, γ, σ) =

√
V ar(S)

Cov(D,S) where D =

αT + (1−α)W . This implies that, holding the college’s
objective function (i.e., α) constant, the better the scoring
rule aligns with the university’s admissions criteria (i.e. as

the covariance between D and S increases), the smaller K
becomes. This makes the condition that f is a contraction
mapping with a single fixed point easier to satisfy, which
in turn causes wealth dynamics to self-correct for initial
inequality. When α→ 1, the condition is always satisfied,
and f has a single fixed point. This may not be surprising
in that in this case the university only cares about type in
admissions, and the university requires a higher threshold
on scores for wealthier populations; this helps reduce
disparities across populations with disparate wealth.

b) The Case of Multiple Fixed Points: We first
characterize which fixed points are attracting when
multiple points arise, and which regime of initial wealth
lead to which fixed points. We focus on the case of three
fixed points, as the case of two fixed points is a corner
case than can only arise if f(x) is tangent to Id(x) = x
at one of the fixed points.3

Claim 6. Suppose f has 3 fixed points, denoted z1 <
z2 < z3. Then z1 is attracting for [0, z2) and z3 is
attracting for (z2, 1].

Proof. This follows from the proof of lemma 2. Indeed,
let g(x) = f(x)−x, we have that g(0) = f(0) > 0, then
g must decrease below 0, increase above 0, and decreases
below 0 again as g(1) = f(1)− 1 < 0. This implies that
f(x) > x for x < z1 and x ∈ (z2, z3), while f(x) < x
for x ∈ (z1, z2) and x > z3.

In particular, when there are three fixed points, a
population that starts with low wealth will converge to
the first fixed point, while a group with large initial
wealth will converge to the third fixed point. In this
case, initial disparities in wealth persist in the long term,
and interventions are needed for different populations to
obtain equitable long-term wealth outcomes. Figure 2
shows a wealth update function with three fixed points
and the corresponding dynamics for two different starting
points. We note that starting at low wealth leads to
convergence to the first and lowest fixed point, while
starting at relatively high health leads to convergence to
the highest fixed point. The figure illustrates how wealth
disparities can propagate and amplify over time.

We note that such situations can only arise in the
regime in which 0 < τ < (1− α). In particular:

Claim 7. Suppose K(α, β, γ, σ) >
√

2π
1−α and τ = 1−α

2 .
Then f has 3 fixed points.

3Suppose this is not the case. f(0) > 0 hence f(x) > x before the
first fixed point. Because it is not tangent to the identity line, it must
then be that f(x) < x between the first and the second fixed point.
Similarly, it must then be that f(x) > x after the second, last fixed
point. This contradicts f(1) < 1.
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(a) Low initial wealth
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(b) High initial wealth

Fig. 2: A wealth update function with 3 fixed points,
for α = 0.1, β = 0.95, γ = 1.4, σ = 1.1, τ = 0.5. the
update function is plotted in blue, its fixed points in red,
and the wealth dynamics induced by the update function
in green. Sub-figure (a) considers dynamics starting at
an initial wealth of 0.5 while sub-figure (b) considers
dynamics starting at an initial wealth of 0.7.

Proof. In this case, note that x∗ = τ
1−α = 1

2 . Further,
we know that

f(x∗) = 1− Φ (K (α, β, γ, σ) · (τ − (1− α)x∗))

= 1− Φ(0)

= 1/2,

implying that x∗ = 1/2 is a fixed point of f . Further,

f ′(x∗) =
K(1− α)√

2π
> 1,

hence f(x) < x in a small neighborhood (x∗ − ε, x∗)
and f(x) > x in a small neighborhood (x∗, x∗ + ε). By
continuity of x and the fact that f(0) > 0, f(x) = x
must have a solution on [0, x∗). Similarly, since f(1) < 1,
f(x) = x must have a solution on (x∗, 1].

Note that because f is continuous in τ , f must have
three fixed points for any τ in a neighborhood of 1−α

2 . I.e.,
there exists a continuous range of values of τ for which

f has three fixed points, showing that such situations are
not a corner case of our framework, unlike when f has
two fixed points.

Remark 1. There is a gap between the conditions given
in Claim 5 and Lemma 2 under which a single fixed
point arises, and the condition given in Claim 7. In
particular, we remark that even if f is not a contraction
mapping and K >

√
2π

1−α , or when 0 ≤ τ ≤ 1 − α, it
may still have only a single fixed point. To investigate
how often 3 fixed points can arise, we picked a uniform
grid of parameter values (α, β, γ, σ, τ) ∈ [0, 1]5 and
investigated what fraction of the parameters that satisfy
either 0 ≤ τ ≤ 1− α or K >

√
2π

1−α actually lead to an
update rule with three fixed points. We found that this
was the case for roughly 45 percent of the values we
explored, implying the existence of a significant range
of parameters for which there are disparities in the long
term wealth of different populations.

In Appendix A, we study an extension of these
dynamics when the university has a maximum capacity
on the number of students it can admit.

V. INTERVENTIONS TO IMPROVE LONG TERM
POPULATION WEALTH

In this section, we consider different types of inter-
vention aiming at improving and equalizing population
wealth, when the wealth dynamics have multiple fixed
points (and so are not necessarily self correcting). We
consider three types of interventions: i) changing the
design of the admission rule used by the university, ii)
changing the design of the standardized test or scoring
rule that the university relies on, and iii) providing
subsidies to disadvantaged groups.

A. Changing the Admission Rule

Since in our model, it is admission to university that
confers a wealth advantage to the next generation, a
natural intervention is to increase the capacity of the
university, thereby admitting more people. Rather than
changing the objective function of the university (α),
we model this kind of intervention by decreasing the
university’s admissions threshold τ . We note that although
we do not explicitly quantify it, increasing the capacity
of a university will come at some financial cost, and so
this kind of intervention is not necessarily incomparable
to the direct subsidies we consider later.

The claim below characterizes how the fixed points of
f change when we change the value of τ . For the sake
of notation, we let f(., τ) be the update rule when the
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chosen threshold is τ , and omit the dependencies of f
in the other parameters of the problem.

Theorem 1. Fix α, β, γ, σ. For a given admission thresh-
old τ , let z1(τ) < z2(τ) < z3(τ) be the fixed points of
f when all 3 exist. Let τ ′ < τ be such that f(., τ ′) has
3 fixed points, we have

z1(τ ′) > z1(τ) and z3(τ ′) > z3(τ),

but
z2(τ ′) < z2(τ).

Proof Sketch. The proof follows simply by showing that
the update function is decreasing in τ . In turn, decreasing
τ moves the update rule f “up”, which increases attracting
fixed points and decreases unstable ones. The full proof
is given in Appendix C-A.

In interpreting Theorem 1, we recall that only the first
and third fixed points z1 and z3 are attracting, and that z2

is unstable (has no points x for which it is attracting for
x 6= z2). Hence, if we are in a situation in which there
is persistent wealth inequality (multiple fixed points), we
find that if we can decrease the admissions threshold τ
of the university, then either:

1) We increase the wealth of both of the attracting
fixed points (and hence the wealth of both popu-
lations, irrespective of which attractive fixed point
they are at). By decreasing z2 we also reduce the
size of the attracting region [0, z2) of the lower
wealth fixed point, thus enabling poorer populations
to converge to the most desirable fixed point. Or

2) We move the dynamics to one in which there is only
a single fixed point, and hence eliminate wealth
inequality.

B. Changing the design of the scoring rule S
The college has to engage in inference about an

applicant’s type and wealth when β 6= α, because the
signal it receives does not align with its objective function.
What if we can modify the signal (by e.g. changing the
design of a standardized test) to more closely align the
signal with the college’s objective?

In this section we characterize how the fixed points of f
change when we change the value of β. We denote f(., β)
the update rule when the scoring rule uses parameter β,
while the other parameters of the problem remain fixed.

Theorem 2. Fix α, τ, γ, σ. For a given β, let z1(β) <
z2(β) < z3(β) be the fixed points of f when all 3 exist.
Suppose β < α and let β′ ∈ (β, α) be such that f(., β′)
has 3 fixed points, then

z1(β′) > z1(β) and z3(β′) < z3(β).

Similarly, if β > α and β′ ∈ (α, β), we have

z1(β′) > z1(β) and z3(β′) < z3(β).

Proof Sketch. The first part of the proof follows simply
by showing that the update function is increasing in β
for x < τ/(1− α) (where the first fixed point lies) and
decreasing in β as for x > τ/(1− α) (where the third
fixed point lies). In turn, increasing β < α towards α
move the update rule f “up” around the first fixed point
and “down” around the third fixed point, which increases
z1 and decreases z3. A similar argument holds for β > α.
The full proof is given in Appendix C-B.

Intuitively, one might suppose that to reduce wealth
disparities, we should redesign tests so as to make
them reflect type more strongly and wealth less strongly
(since types are distributed identically across groups). But
Theorem 2 shows that counter-intuitively, this need not
be the case4. Instead, what Theorem 2 shows is that in
order to reduce inequality, we want to move β towards α,
causing the signal to better reflect the objective function
of the college —- even when this results in reducing
the extent to which the signal reflects type5. Theorem 2
shows that moving β towards α always has the effect of
reducing wealth disparities. It either:

1) Increases the wealth of the less wealthy attracting
fixed point, and decreases the wealth of the more
wealthy attracting fixed point, thereby decreasing
the long term wealth disparity, or it

2) Shifts the dynamic to one that has only a single
fixed point, thereby eliminating long term wealth
disparities.

C. Direct Subsidies

We have thus far considered interventions that can
be applied by the college (admitting more students) or
a testing body (changing the design of the signal). In
this section, we take the point of view of a funding
body or governmental agency that can provide direct
monetary subsidies to populations. We generalize the
class of functions we study to include any function f
satisfying the following properties:

4Even when β → 1, f may have three fixed points: by Claim 7, this
arises for example when K(α, 1, γ, σ) = 1

αγ
> 1−α√

2π
and τ = 1−α

2
.

In this case, setting β = α surprisingly leads to better outcomes than
β = 1.

5Of course, if we can, we would prefer to increase the extent to
which the college values type rather than wealth, but to the extent that
we cannot do this, then we want to align the test with the college’s
objective.
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Assumption 2. f is continuous and increasing. Further,
f has three fixed points z1 < z2 < z3 with f(x) > x on
[0, z1] and [z2, z3] and f(x) < x on [z1, z2] and [z3, 1].

The above assumption captures the main properties of
our function f = 1 − Φ (K (α, β, γ, σ) (τ − (1− α)x))
when it has three fixed points and implies the same
attracting properties we established for z1, z2, and z3,
but also encompasses more general update rules that need
not result from the Gaussian inference process we have
studied thus far. We note that this allows us to study
general S-shaped function with diminishing returns at
both ends of the socio-economic spectrum. Such functions
model situation in which people of very low income or
very high income see little upward mobility (in the first
case because of a lack of access to opportunities, and in
the second case due to the fact that individuals of higher
income are rare), whereas middle income individuals
have significant opportunities to improve their wealth.

We denote by C(µ, t) the subsidy given to a population
with wealth µ at time step t. The wealth of a population
t+ 1 then depends of the wealth in time t as

µt+1 = f
(
µt + C(µt, t)

)
.

In this setting, we consider interventions that allow a
population to reach beyond the second fixed point z2.
Once a population reaches wealth (even slightly) over z2,
their wealth naturally evolves to the highest attracting
fixed point z3 over time; i.e., wealth dynamics self-correct
for disparities with no intervention needed. For the same
reason, we only consider µ0 ∈ [z1, z2]; this is because
populations with µ0 < z1 will converge to z1 without
intervention, and we can start intervening once µ0 reaches
z1, while a population with µ0 > z2 will reach the best
long-term outcome (the highest fixed point, z3) on its
own. Therefore, from now on, we assume C(µ) = 0 for
all µ /∈ [z1, z2]. We can now formulate our centralized
designer’s objective, which is to minimize the following
loss function:

L(C) = λ

T (C)−1∑
t=0

ρtC(µt, t)+(1−λ)

T (C)−1∑
t=0

ρt(z2−µt),

where ρ, λ ∈ [0, 1), and T (C) = min{t s.t. µt ≥ z2}
is the first time step such that µt ≥ z2. Here ρ is a
discounting factor; the lower ρ is, the less the designer
cares about future as opposed to immediate outcomes.
The objective is a convex combination of two terms,
with weights controlled by λ. The first term consists
of the discounted monetary cost of the subsidies (the
sum goes up to time T (C) − 1, since after the wealth
of the population crosses z2, the subsidies cease. This

term represents a preference to spend less money on
direct subsidies. The second term consists of the sum
discounted difference between the target wealth z2 that
the intervention is aiming at, and the wealth of the
population at the current round. This term represents
a preference to quickly increase the wealth of the lower
wealth population. λ represents the relative strength of
these two preferences.

Note that z2 − µ0 is a constant term that does not
depend on the designer’s interventions, hence we will
equivalently aim to minimize

L(C) = λ

T (C)−1∑
t=0

ρtC(µt, t)+(1−λ)

T (C)−1∑
t=1

ρt(z2−µt),

where we drop the discounted difference between z2 and
the initial wealth µ0 at t = 0.

a) Algorithmically finding a near-optimal subsidy
function C(.): We note that in our setting, one may
discretize the space of possible costs and use dynamic
programming to find optimal interventions from each
possible starting point. However, doing so requires
carefully understanding the wealth update function f . In
practice, detailed knowledge of f will be hard to come
by. For this reason, in the rest of this section, we will aim
for a “detail free” solution and consider a simple class
of constant subsidies and study how they can be applied
with minimal information about the wealth update f .

b) Constant Subsidies: In the rest of this section,
we consider the case in which C(µ) is constant in µ
for z1 ≤ µ ≤ z2. I.e. there exists C ∈ [0, 1] such that
C(µ) = C for all µ ∈ [z1, z2] and C(µ) = 0 otherwise.
We call these C-subsidy interventions. We qualify a C-
subsidy intervention as a k-shot intervention if it takes
k time steps under the subsidy to reach wealth (at least)
z2 when starting at wealth z1, i.e. if T (C) = k. Note
that different values of C may lead to the same number
of steps k such that µk ≥ z2, i.e. there may be several
values of C that qualify as a k-shot intervention for a
given value of k.

Our aim is to give guidelines on how to choose C
while using minimal information about the function f .
Here, we will encode this minimal information as a single,
real parameter ∆, defined as

∆ = max
x∈[z1,z2]

x− f(x). (3)

Intuitively, ∆ measures how difficult it is for a subsidy to
have an effect on wealth that propogates in the next round.
When ∆ → 0, we have that f(x) → x on x ∈ [z1, z2],
and investing a subsidy of C increases the population
wealth by C, since f(µt + C)→ µt + C. However, we
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have that for at least one value of µt, f(µt + C) =
µt + C − ∆, implying that when ∆ is large, a large
amount of the subsidy is lost in the next round, and
so its overall effect is small. If we want to guarantee
that our subsidies will eventually lift the lower wealth
population to the higher wealth fixed point independently
of its starting point, we need to consider subsidies in
which C > ∆.

Claim 8. Suppose C ≤ ∆. Then there exists a starting
wealth µ0 ∈ [z1, z2) such that µt < z2 for all t; i.e., µt
never reaches z2. On the other hand, if C > ∆, there
exists t such that µt ≥ z2.

Proof. Let x∆ ∈ (z1, z2) be any value of x such that
f(x) = x − ∆ (note that x∆ 6= z1, z2 where f(x) −
x = 0, since f(x) < x on [z1, z2] if f has three fixed
points). Suppose µt < x∆−∆ and C ≤ ∆, then µt+1 =
f (µt + C) < f (x∆ −∆ + C) ≤ f(x∆) = x∆−∆. I.e.,
µt < x∆−∆ < z2 for all t so long as µ0 ∈ [z1, x∆−∆);
note that the interval is not empty as x∆−∆ = f(x∆) >
z1. For the second part of the proof, note that by definition
of ∆, for all t, µt+1 = f (µt + C) ≥ µt+C−∆, hence
the group wealth increases by at least a constant amount
C −∆ at each time step.

Intuitively, this holds because if C is smaller than
∆, it becomes insufficient to compensate the fact that
the wealth of a group can decrease by an amount up
to ∆ at each round. In the rest of this section, we aim
to understand how different interventions for different
values of C compare to each other, and when to choose
low-cost versus high-cost interventions. Before doing so,
we note that there is always a single, optimal 1-shot
intervention among all such 1-shot interventions:

Fact 1. The 1-shot intervention with cost C = z2 − µ0

has smaller cost than any other 1-shot intervention.
This immediately follows from the fact that any 1-shot
intervention with cost C has loss λC, and that no
intervention with C < z2 − µ0 can reach z2 in one
shot, as µ1 = f(µ0 + C) < f(z2) = z2.

We now provide a sufficient condition under which
the 1-shot intervention is guaranteed to be optimal.

Theorem 3. Suppose ρ ≥ λ. Then, any k-shot interven-
tion has higher loss than the 1-shot,

(
z2 − µ0

)
-subsidy

intervention. I.e. the
(
z2 − µ0

)
-subsidy intervention is

optimal.

Proof. The proof follows by induction on k. First, let us
consider the base case when k = 2, and let C be any
cost that leads to convergence in two shots. Consider any

starting point µ0 ∈ [z1, z2]. Note that the sequence of
wealth µ0 → µ1 → µ2 must satisfy µ1 < z2 and µ2 ≥ z2.
Further, note that because µt+1 = f (µt + C) ≤ µt + C
we must have C ≥ µt+1−µt. We then have that the loss
L satisfies

L(C)

= λC + (1− λ)ρ(z2 − µ1) + ρ(λC)

≥ λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) + ρ[λ(z2 − µ1)]

= λ(µ1 − µ0) + ρ
(
z2 − µ1

)
≥ λ(µ1 − µ0) + λ

(
z2 − µ1

)
= λ(z2 − µ0).

This concludes the case of k = 2.
For k > 2, note that we have µk−1 < z2 and µk ≥ z2.

Letting C be any cost that leads to reaching z2 in k shots,
we have that the loss function is given by

L(C) ≥ λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1)

+

[
λ

k−1∑
t=1

ρtC + (1− λ)

k−1∑
t=2

ρt(z2 − µt)

]
= λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1)

+ ρ

[
λ

k−1∑
t=1

ρt−1C + (1− λ)

k−1∑
t=2

ρt−1(z2 − µt)

]
= λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1)

+ ρ

[
λ

k−2∑
t=0

ρtC + (1− λ)

k−2∑
t=1

ρt(z2 − µt+1)

]
.

The second term in the last line of the inequality is the
loss function when starting at µ1 ∈ [z1, z2] instead of
µ0. Indeed, write νt = µt+1 the sequence that starts at
µ1 and satisfies νk = µk−1 < z2 but νk−1 = µk ≥ z2

(hence this new sequence converges in k − 1 rather than
k steps); the loss of this sequence is given by:

λ

k−2∑
t=0

ρtC + (1− λ)

k−2∑
t=1

ρt(z2 − νt)

= λ

k−2∑
t=0

ρtC + (1− λ)

k−2∑
t=1

ρt(z2 − µt+1).

By the induction hypothesis, since the cost of a one-
shot intervention is lower than that of any k − 1-shot
intervention, we have that

λ

k−2∑
t=0

ρtC + (1− λ)

k−2∑
t=1

ρt(z2 − µt+1) ≥ λ
(
z2 − µ1

)
.
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Therefore, L(C) is lower bounded by

λ(µ1 − µ0) + (1− λ)ρ(z2 − µ1) + ρ[λ(z2 − µ1)]

≥ λ(µ1 − µ0) + λ(z2 − µ1)

≥ λ(z2 − µ0).

In particular, 1-shot interventions become optimal when
the discounting factor ρ is relatively large, or when λ is
relatively small. The first result intuitively arises because
when ρ becomes large, the centralized designer cares
about cost and wealth of the group at each time step; a 1-
shot intervention allows the designer to incur a single up-
front cost for intervening (instead of inefficiently investing
a smaller cost per round over more rounds, and losing
some of this invested cost, up to ∆, at each time step)
while immediately reaching high wealth outcomes. On
the other hand, no matter what ρ is, when λ becomes
small, the designer only cares about reaching high wealth
as soon as possible, hence prefers faster interventions.
We now provide sufficient conditions under which 1-shot
is not optimal:

Theorem 4. If ρ < λ
(

1− C
z2−µ0

)
, the C-subsidy

intervention has lower loss than the 1-shot,
(
z2 − µ0

)
-

subsidy intervention.

Proof. Consider any intervention with cost C such that
µk ≥ z2, i.e. we reach z2 after at most k time steps. First,
remember that the loss for this intervention is given by

λ

k−1∑
t=0

ρtC + (1− λ)

k−1∑
t=1

ρt(z2 − µt).

Noting that µt ≥ µ0 for all t, hence z2 − µt ≤ z2 − µ0,
we can upper bound the loss by

λ

+∞∑
t=0

ρtC + (1− λ)

+∞∑
t=1

ρt(z2 − µ0)

=
λC

1− ρ
+ (1− λ)

ρ

1− ρ
(z2 − µ0)

≤ λC

1− ρ
+ (1− λ)

ρ

1− ρ
(z2 − µ0).

In turn, we have that a sufficient condition for C-subsidy
to have a lower loss than one-shot is given by

1

1− ρ
(
λC + (1− λ)ρ(z2 − µ0)

)
< λ(z2 − µ0).

This can be rewritten as

λC+(z2−µ0)ρ−λ(z2−µ0)ρ < λ(z2−µ0)−λ(z2−µ0)ρ,

i.e.

(z2 − µ0)ρ < λ(z2 − µ0)− λC,

which immediately leads to the theorem statement.

Theorem 4 gives conditions under which the minimal
1-shot intervention has higher cost than the C-subsidy
intervention. But recall that we can take C as small as
∆+ ε (for arbitrarily small ε) and still get an intervention
that reaches the region of attraction for the highest wealth
fixed point. Thus we have the following corollary, which
gives a necessary condition for the 1-shot intervention to
be optimal:

Corollary 1. If ρ < λ
(

1− ∆
z2−µ0

)
, then the (∆ + ε)-

subsidy intervention has lower loss than the 1-shot, (z2−
µ0)-subsidy intervention as ε→ 0.

The above corollary provides the most stringent
condition that we can derive from Theorem 4 for 1-
shot not to be optimal. In particular, we note that the
cheapest intervention we can use, the (∆ + ε)-subsidy
one, is better than the 1-shot intervention so long as
ρ < λ

(
1− ∆

z2−µ0

)
. We note that the combination of

Theorem 3 and Corollary 1 show that when ∆ becomes
small and subsidy interventions are efficient, the condition
that ρ ≥ λ becomes nearly tight for optimality of
the 1-shot, (z2 − µ0)-subsidy intervention. When ∆ is
large, there are still situations in which the condition of
Corollary 1 is essentially necessary and sufficient for the
(∆ + ε)-subsidy to be better than the 1-shot intervention,
as evidenced by the example below:

Example 1. Suppose f is continuous, but such that it is
linear on interval (a, b) ⊂ (z1, z2) with f(x) = x −∆
within said interval. We have immediately that µt+1 =
µt + C − ∆ hence µt = µ0 + t(C − ∆) so long as t
is such that µt ∈ (a, b). Here, the one-shot intervention
still has loss λ(z2 − µ0). However, the (∆ + ε)-subsidy
intervention reaches z2 − ε, hence z2, after no less than
Tε = b−µ0

ε →ε→0 +∞ time steps. In turn, it has loss at
least

L(∆ + ε) ≥ λ
Tε−1∑
t=0

ρt(∆ + ε)

+ (1− λ)

Tε−1∑
t=1

ρt(z2 − µ0 − tε)

→ε→0
λ

1− ρ
∆ +

ρ(1− λ)

1− ρ
(z2 − µ0).
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The proof of Theorem 4 shows that the loss is also upper-
bounded by

L(∆ + ε) ≤ λ

1− ρ
(∆ + ε) +

ρ(1− λ)

1− ρ
(z2 − µ0).

Hence, it must be that this bound is essentially tight, i.e.
that

L(∆ + ε)→ε→0
λ

1− ρ
∆ +

ρ(1− λ)

1− ρ
(z2 − µ0).

In particular, in this case, the condition of Theorem 4
and Corollary 1 is not only sufficient but also necessary
for the (∆ + ε)-subsidy intervention to have better loss
than the one-shot intervention.
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APPENDIX A
EXTENSION: WEALTH DYNAMICS UNDER CAPACITY

CONSTRAINTS

One extension of immediate interest is when the
university has a maximum capacity on the number of
students they can admit. For simplicity and in the rest
of this section, we assume that each of the two sub-
populations constitutes half of the total population. We
assume that the university can only admit a maximum
fraction δ ∈ [0, 1] of the total population, and that it
wants to populate this fraction by hiring the students that
yields the highest expected utility for the university, i.e.
the δ fraction of the population with the highest values
of E [αT + (1− α)W |S].

We show that the decision rule used by the university
can still be seen as selecting individuals that meet a
minimum threshold on their expected utility, with the
added complexity that this threshold is both time and
population dependent:

Claim 9. Let µt1 and µt2 the means of populations 1 and
2 at time step t. At t, the university’s decision rule can
be written as

E [αT + (1− α)W |S] ≥ φt,

where φt solves

2δ = 1− Φ
(
K (α, β, γ, σ)

(
φt − (1− α)µt1

))
+ 1− Φ

(
K (α, β, γ, σ)

(
φt − (1− α)µt2

))
.

Proof. First, note that the optimal admission rule must
admit all individuals above a certain threshold φti
for population i–i.e., consider the “worst” individ-
ual to be admitted in population i and let φti =
E [αT + (1− α)W |S] for that individual. Then all in-
dividuals with E [αT + (1− α)W |S] ≥ φti must also be
admitted, since the university admits the students that
yield the highest expected utility.

Second, it must be the case that φt1 = φt2. Suppose for
contradiction and without loss of generality that φt1 > φt2.
Then, there exist individuals in population 1 (in particular,
some individuals whose utility is in the interval [φt2, φ

t
1),

with non-zero probability mass), who are not admitted
but are more qualified than some of the individuals in
population 2. This contradicts the fact that the university
admits the students with the highest expected utility.

Third, we note that the resulting fraction of the
population that is admitted by the above decision rule in
population i is given by

1− Φ
(
K (α, β, γ, σ)

(
τ − (1− α)µti

))
(4)
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as per Lemma 1, which gives a closed-form expression of
what fraction of the population is above a given threshold.
The fraction of the total population that is admitted is
then given by

1

2

(
1− Φ

(
K (α, β, γ, σ)

(
τ − (1− α)µt1

)))
+

1

2

(
1− Φ

(
K (α, β, γ, σ)

(
τ − (1− α)µt2

)))
= δ.

We also consider a university that can only admit
students up to a capacity of δ, but does not need to fill its
whole capacity — i.e. it does not want to admit students
that lead to negative expected utility. In this case, it is
easy to see that at each time step t, the decision rule
used by the university in population i can be written as

E [αT + (1− α)W |S] ≥ max
(
φt, τ

)
, (5)

where φti is defined as per Claim 9. Note that when the
capacity constraint is not binding — i.e. when φt < τ —
then this model is identical to that of a university without
a capacity constraint, that we study in the body of this
paper.

We now run experiments showing how these dy-
namics evolve in the presence of a capacity, for both
update rules described in Equations (4) and (5). For
the update rule from Equation (4), we study values
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] for the
fractional capacity δ, and 5 evenly spaced values in
[0.01, 0.99]6 each for α, β, γ, σ. For the update rule from
Equation (5), we keep the same range of parameters but
also discretize the threshold τ across the 5 evenly spaced
values in [0.01, 0.99]. Table I shows, given a desired
capacity δ, what percentage of the parameter values for
(µ0

1, µ
0
2, α, β, γ, σ) lead to long-term disparities in wealth

across both populations for the update rule described
in Equation (4) with only a capacity constraint. Table
II does the same for the update rule of Equation (5)
with both a capacity and a minimum utility constraint,
and also tracks what fraction of the time the capacity is
“binding” i.e. the university admits exactly the capacity δ
and cannot admit all students over the threshold τ .

As evidenced in Table I for the update rule given in
Equation 4 (capacity only), in the extreme case when the

6We ignore 0 and 1 to avoid numerical issues that arise that make
K → +∞. These situations only arise in trivial corner cases where
the employer only cares about wealth but the signal only encode types,
and simple situations in which there is no variability hence uncertainty
in the population distributions and every individual in a population has
the same type and wealth.

TABLE I: Capacitated update rule 4

Capacity δ % wealth gap
0 0
0.1 14.4
0.2 25.12
0.3 28.96
0.4 30.24
0.5 30.24
0.6 30.24
0.7 28.96
0.8 25.12
0.9 14.4
1 0

TABLE II: Capacitated update rule 5

Capacity δ % wealth gap % rounds binding(mean)
0 0 100
0.1 3.10 49.49
0.2 8.70 43.12
0.3 12.92 39.96
0.4 15.48 37.31
0.5 15.96 24.16
0.6 15.96 20.60
0.7 15.58 17.77
0.8 14.36 14.26
0.9 11.00 10.72
1 8.25 0

capacity δ is 0, the university cannot admit anyone. In
turn, the wealth of both populations immediately goes
to 0. When δ is 1, on the other extreme, the university
admits everyone, and both populations converge to 1. In
both cases, one observes no wealth disparities. However,
we see that significant wealth disparities start arising for
intermediate values of the capacity; constraining capacity
more and more (compared to the unconstrained case
when δ = 1) leads first to more and more disparities
where only one populations achieve high wealth. As the
capacity decreases more, these disparities start reducing:
the capacity becoming more stringent negatively impacts
the initially wealthy population and forces this population
to also end with low-wealth outcome.

Table II for the update rule of Equation 5 (capacity
and minimum threshold) exhibits a major distinction
compared the results of Table I. Indeed, even when δ = 1,
the university will only admit students that are above
the bar, and there will still be wealth gaps. In this case,
we note that unless the capacity is very restricted (in
which case, the wealth gap decreases as both populations
are forced towards undesirable outcomes, as in Table II),
the presence of a capacity seems to reinforce wealth
disparities across populations. The last column shows
that as the capacity becomes more and more stringent,
its effect is felt more and more in the dynamics since
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it limits which students are admitted compared to the
uncapacitated case δ = 1 an increasing fraction of the
time.

APPENDIX B
OMITTED PROOFS FOR SECTION IV-B0B: WEALTH

DYNAMICS

A. Proof of Claim 2

Because S is a convex combination of W and T ,
both (T, S) and (W,S) are multivariate Gaussians. The
covariances are given by

Cov(T, S) = βCov(T, T ) + (1− β)Cov(T,W ) = βγ2,

Cov(W,S) = βCov(W,T ) + (1− β)Cov(W,W )

= (1− β)σ2,

and

Cov(S, S) = β2Cov(T, T ) + (1− β)2Cov(W,W )

+ 2β(1− β)Cov(T,W )

= β2γ2 + (1− β)2σ2.

B. Proof of Lemma 1

Using Claim 2, we have that

E[T |S = s] =
Cov(T, S)

V ar(S)
(s− (1− β)µ)

=
βγ2

β2γ2 + (1− β)2σ2
(s− (1− β)µ),

and

E[W |S = s] = µ+
Cov(W,S)

V ar(S)
(s− (1− β)µ)

= µ+
(1− β)σ2

β2γ2 + (1− β)2σ2
(s− (1− β)µ).

Therefore, the university admits a student with score s if
and only if(

αβγ2 + (1− α)(1− β)σ2

β2γ2 + (1− β)2σ2

)
(s− (1− β)µ)

≥ τ − (1− α)µ,

which can be rewritten as
s− (1− β)µ√

β2γ2 + (1− β)2σ2

≥
√
β2γ2 + (1− β)2σ2

αβγ2 + (1− α)(1− β)σ2
· (τ − (1− α)µ) .

Noting that by Claim 2, S−(1−β)µ√
β2γ2+(1−β)2σ2

follows a

normal distribution with mean 0 and variance 1; the

expression for µt+1 (hence the update rule) is then given
by

1− Φ

( √
β2γ2 + (1− β)2σ2

αβγ2 + (1− α)(1− β)σ2
· (τ − (1− α)µ)

)
= 1− Φ (K (α, β, γ, σ) · (τ − (1− α)µ))

This concludes the proof.

C. Proof of Claim 3

For simplicity of notations, let us write K instead of
K(α, β, γ, σ). Continuity is immediate from f being the
composition of a linear (hence continuous) function and
the continuous function Φ. Now, we have

f ′(x) =
K(1− α)√

2π
exp

(
−K2(τ − (1− α)x)2/2

)
≥ 0,

showing f is increasing. Finally, the second order
derivative of the update rule f ′′(x) is given by

K3(1− α)2(τ − (1− α)x)√
2π

· e−K
2(τ−(1−α)x)2/2.

The result immediately follows, as f ′′(x) ≥ 0 if and only
if x ≤ τ

1−α .

D. Proof of Lemma 2

Let us write g(x) = f(x) − x. Note that f(x) has a
fixed point if and only if g(x) = 0.

1) τ ≥ 1−α and f is convex on [0, 1]. Then g′(x) =
f ′(x) − 1, g′′(x) = f ′′(x), and g is also convex.
Further, note that g(0) = f(0)−0 > 0 and g(1) =
f(1)− 1 < 0. Therefore, g(x) = 0 can only have
one solution at most. Indeed, let x∗ be the smallest
value in [0, 1] for which g(x∗) = 0; we have that for
all x ∈ (x∗, 1], we can write x∗ = λx+(1−λ)1 for
some λ ∈ (0, 1], Then, we have g(x) ≤ λg(x∗) +
(1− λ)g(1) < 0 by convexity.

2) τ ≤ 0 and f is concave on [0, 1]. Then f can have
at most 1 fixed point by the same argument as
above.

3) Otherwise, note that g′(x) = f ′(x) − 1 is first
increasing up until x∗ = τ/(1−α) then decreasing
in x. Therefore, g′ has at most two zeros x− and
x+. If g′ has two zeros, they must satisfy x− < x∗

and x+ > x∗, and that g′(x) < 0 for x < x−,
g′(x) ≥ 0 for x ∈ [x−, x+], and g′(x) < 0 for
x > x+. g then has at most three intersection with
0, with the first intersection on [0, x−], the second
on [x−, x+], and the third on [x+, 1]. When g′ has
at most one zero, g can only have at most 2 zeros

This concludes the proof.
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APPENDIX C
OMITTED PROOFS FOR SECTION V: INTERVENTIONS

FOR LONG-TERM FAIRNESS

A. Proof of Theorem 1

This follows from the fact that f(x, τ) is decreasing
in τ for all x ∈ [0, 1]. First, this implies that f(x, τ ′) >
f(x, τ) ≥ x for all x ∈ [0, z1(τ)]. Hence z1(τ ′) >
z1(τ). For the third fixed point, note that f(z3(τ), τ ′) >
f(z3(τ), τ) = z3(τ); because f is continuous and f(1) <
1, this immediately implies that f has a fixed point on
(z3(τ), 1], hence z3(τ ′) > z3(τ).

Finally, let us consider the case of the second fixed
point. First, we note that it must be that z1(τ ′) < z2(τ).
Suppose this is not the case, it must be that f(x, τ ′) > x
for all x < z2(τ). Further, for all x ∈ [z2(τ), z3(τ)], we
must have f(x, τ ′) > f(x, τ) ≥ x, hence f(x, τ ′) > x
for all x < z3(τ). This implies z1(τ ′) > z3(τ). However,
we must have z3(τ) ≥ τ/(1 − α) while z1(τ ′) ≤
τ ′/(1− α) < τ/(1− α), which is a contradiction.
Now that we have z1(τ ′) < z2(τ), note that it
must be that f(x, τ ′) < x on a small neighborhood
(z1(τ ′), z1(τ ′) + ε) by our characterization of the fixed
points of f . Since f is continuous and f(z2(τ), τ ′) >
f(z2(τ), τ) = z2(τ), there exists a fixed point on
(z1(τ ′), z2(τ). Since z3(τ ′) > z3(τ) > z2(τ), this must
be the second fixed point z2(τ ′).

B. Proof of Theorem 2

The partial derivative of f with respect to β is given
by

∂

∂β
f(x, β) =

[τ − (1− α)x] · φ (K(α, β, γ, σ)(τ − (1− α)x))

× (α− β)γ2σ2√
β2γ2 + (1− β)2σ2(αβγ2 + (1− α)(1− β)σ2)2

where φ is the probability density function of a standard
Gaussian. Note that for α < β, ∂

∂β f(x, β) < 0 when x <
τ/(1− α) and ∂

∂β f(x, β) > 0 when x > τ/(1− α). In
particular, f(x, β′) > f(x, β) ≥ x for all x ≤ z1(β)(<
τ/(1−α)), hence f(.β′) has no fixed point on [0, z1(β)].
This means that z1(β′) > z1(β). Similarly, f(x, β′) <
f(x, β) ≤ x for all x ≥ z3(β)(> τ/(1 − α)), hence f
has no fixed point on [z3(β), 1] and z3(β′) < z3(β). A
similar proof follows for α ≥ β′ > β.
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