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ABSTRACT

Large Vision Models (LVMs) are emerging tools for transferring cross-modal
knowledge to time series, but this potential is not well understood. This work
addresses the gap by investigating LVMs for both high-level (classification) and
low-level (forecasting) tasks. Our aim is to not only assess whether LVMs can
succeed, but also reveal why they succeed or fall short. Through a comparative
benchmark covering 4 LVMs, 8 imaging methods, 18 datasets, and 26 baselines,
we identify the strengths and limitations of LVMs, as well as strategies for adapting
them to time series modeling. Our findings indicate while LVMs are effective for
time series classification, they face notable challenges in forecasting — the best
LVM forecaster is limited to specific model types and imaging methods, exhibit
biases toward forecasting periods, and struggle to leverage long look-back windows.
We hope our findings can serve as both a cornerstone and a practical guide for
advancing LVM- and multimodal-based solutions to different time series tasks.

1 INTRODUCTION

Time series analysis underpins applications in geoscience (Ardid et al., 2025), neuroscience (Caro
et al., 2024), energy (Koprinska et al., 2018), healthcare (Morid et al., 2023), and smart city (Ma
et al., 2017). Inspired by advances in sequence modeling for language, recent research has explored
methods from Transformer (Wen et al., 2023) to Large Language Models (LLMs) (Jiang et al., 2024;
Zhang et al., 2024) for time series. With the success of Large Vision Models (LVMs) such as ViT
(Dosovitskiy et al., 2021), BELiT (Bao et al., 2022), and MAE (He et al., 2022), emerging work has
begun to investigate their potential in this domain (Chen et al., 2025). In these approaches, time
series are imaged, i.e., transformed to certain image representations (e.g., Fig. 1(a)) (Ni et al., 2025),
then fed to an LVM to learn embeddings that can be probed for downstream tasks. The motivation of
adapting LVMs, being pre-trained on vast images, to time series rests on two perspectives: (1) for
high-level (i.e., semantic level) tasks like classification, imaged time series can encode distinguishable
temporal patterns as semantic cues recognizable by LVMs; and (2) for low-level (i.e., numerical level)
tasks like forecasting, the structural similarity between images and time series — where rows or
columns of continuous pixels in an image resemble a univariate time series (UTS) — makes LVMs
more naturally suited than LLMs, which operate on discrete tokens. Despite this promise, the deeper
connections between LVMs and time series analysis remain largely underexplored.

To understand LVMs’ role in time series tasks and inform future research — including multimodal
models that integrate imaged time series (Zhong et al., 2025) — a thorough benchmark study is
desired. To this end, we investigate LVMs on two representative tasks, time series classification
(TSC) and time series forecasting (TSF). In a nutshell, our conclusion is: pre-trained LVMs prove
versatile for TSC — task relying on pattern comparison, but are constrained under TSF — task
requiring numerical inference. The current best LVM-based forecasters, although effective, remain
confined to specific types of LVMs and imaging methods, exhibit biases toward forecasting periods,
and struggle with long look-back windows. We envision our conclusion benefiting other high-level
tasks (e.g., retrieval, clustering) and low-level tasks (e.g., imputation, anomaly detection). Unlike
prior works that question the adoption of Transformer (Zeng et al., 2023a) and LLMs (Tan et al.,
2024) in this field, we take a cautiously optimistic view, aiming to provide novel insights and caveats
for selecting and adapting LVMs for the right time series tasks, so as to support future developments.

This work involves two LVMs that are supervisedly pre-trained, i.e., ViT (Dosovitskiy et al., 2021)
and Swin (Liu et al., 2021), and two LVMs that are self-supervisedly pre-trained, i.e., MAE (He et al.,
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2022) and SimMIM (Xie et al., 2022), along with 8 widely used methods for imaging time series (Ni
et al., 2025). The selected 4 LVMs cover key properties such as different pre-training strategies and
attention mechanisms (detailed in §4.2), underlying newer LVMs like Vi T-22B (Dehghani et al.,
2023), DINOv2 (Oquab et al., 2024), and VIS—-MAE (Liu et al., 2024). Another LVM, Lavin-DiT
(Wang et al., 2025), is also tested, but shows similar performance to the selected LVMs, thus is
deferred to Appendix B.12. Our analysis involves 10 datasets for TSC and 8 datasets for TSF, all are
widely used benchmarks (Bagnall et al., 2018; Wu et al., 2023; Tan et al., 2024). The results provide
an overview on the effectiveness of LVMs, shedding light on what type of LVMs (supervised vs.
self-supervised), which imaging method (among 8 methods), and what output design (linear probing
vs. pre-trained decoder) fit which task (classification vs. forecasting).

To uncover LVMs’ true potential, in-depth ablations are conducted. We compare their zero-shot and
(fully/partially) fine-tuned performance with the same architectures trained from scratch, identifying
the best adaptation strategy for TSC and TSF tasks, respectively. Testing with shuffled time steps
shows that LVMs capture temporal modeling. As we observe TSF is more challenging than TSC to
LVMs, further TSF-specific study is conducted, which reveals the best LVM forecaster is confined
to a combination of a self-supervised LVM and a specific imaging method (i.e., UVH in Fig. 1(a)).
Intriguingly, we find that pre-trained decoders contribute more than encoders in forecasting, explaining
the challenge for supervised LVMs. However, current best LVM forecasters carry an inductive bias:
they tend to “combine past periods” as forecasts, making them prone to datasets with strong periodicity,
highlighting an area to improve in the future. To sum up, our contributions are as follows:

* To the best of our knowledge, this is the first benchmark to comprehensively fine-tune and compare
representative LVMs with time series models for both high-level and low-level tasks (§4.1).

* We summarize the current best ways to tweak LVMs (§3) and conduct a series of ablation analysis
to assess whether LVMs are truely useful for TSC and TSF tasks, covering various aspects of the
adapted LVMs, including their effectiveness in terms of pre-training, imaging, decoding, fine-tuning,
architecture, temporal modeling, and computational costs (§4.2).

» We further investigate the challenge of using LVMs for forecasting by examining individual model
components, potential inductive bias, and the impact of look-back windows (§4.3).

2 RELATED WORK

Our work share similar merits as (Zeng et al., 2023a; Tan et al., 2024; Zhou & Yu, 2025), each of
which sheds important lights on a single time series task, i.e., Transformers for TSF (Zeng et al.,
2023a), LLMs for TSF (Tan et al., 2024), and LLMs for time series anomaly detection (TSAD) (Zhou
& Yu, 2025). In contrast, our work is LVM-specific, covering more tasks with in-depth analysis. This
work could be considered as a substantial complement to the prior works by adding a new lens to our
understanding of large models’ roles in the contemporary time series domain.

Vision models have been used for a variety of time series tasks, including classification (Li et al.,
2023; Wu et al., 2023), forecasting (Zeng et al., 2023b; Yang et al., 2024), anomaly detection (Zhang
et al., 2019; Wu et al., 2023), and generation (Li et al., 2022; Karami et al., 2024). Our work focuses
on the recent development of using pre-trained LVMs, particularly Transformer-based models, for
time series analysis. Image-pretrained CNNs have also been investigated in the past (Namura et al.,
2024; Li et al., 2020), but are out of our scope due to their relatively smaller sizes. To apply LVMs
to time series, the existing works typically transform time series to images by an imaging method
(Ni et al., 2025). For example, AST (Gong et al., 2021) applies ImageNet-pretrained DeiT (Touvron
et al., 2021) on filterbank spectrograms of audio signals, which are basically UTS, for TSC. ViTST
(Lietal., 2023) uses pre-trained Swin (Liu et al., 2021) for classifying lineplots of time series. These
works have inspired a series of efforts in pre-training ViT architectures with imaged time series
data, such as SSAST on AudioSet-2M (Gong et al., 2022), ViTime on synthetic data (Yang et al.,
2024), and Brain—-JEPA on brain time series (Dong et al., 2024). In contrast to TSC, TSF task has
less efforts in using LVMs, possibly because LVMs are less adept at low-level tasks than high-level
tasks. The most salient method is VisionTS (Chen et al., 2025), which adapts a self-supervisedly
pre-trained LVM i.e., MAE (He et al., 2022), to zero-shot and few-shot TSF. In our work, in addition
to MAE, we include another self-supervised LVM — SimMIM (Xie et al., 2022).

Recently, vision-language models (VLMs), such as LLaVA (Liu et al., 2023), CLIP (Radford et al.,
2021), ViLT (Kim et al., 2021), etc., which involve pre-trained vision encoders, have been explored
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Figure 1: An overview of (a) different imaging methods, (b) LVM-based time series classification, (c)
LVM with linear head for forecasting, (d) LVM encoder-decoder for forecasting. In (a), MVH encodes
MTS, others encode UTS. (b)(c) apply to all LVMs (ViT, Swin, MAE, SimMIM) in this study. (d)
applies to MAE and SimMIM with UVH/MVH images. Table 1 summarizes their applicability.

for TSC (Wimmer & Rekabsaz, 2023; Prithyani et al., 2024), TSAD (Zhuang et al., 2024), and TSF
(Zhong et al., 2025). However, the effectiveness of sole LVMs in time series analysis has not yet been
well understood. As such, we focus on LVMs in this work, and leave VLMs for future work.

3 METHODS FOR USING LVMS IN TIME SERIES ANALYSIS

In this work, we assess LVMs’ innate ability in time series analysis by keeping the main architecture
intact but making a few necessary tweaks for cross-modal adaptation. Additionally, we introduce
two ablations that will be used in §4 to evaluate whether LVMs’ architecture is over-complex.

Input Alignment. The input to a pre-trained LVM should be a normalized 3-channel image of a
predefined size. Fitting time series to LVMs’ input requires (1) imaging time series; (2) resizing the
imaged time series to fit the channel/size requirement; and (3) normalizing the image.

For (1), we employ 8 imaging methods outlined by (Ni et al., 2025). As Fig. 1(a) illustrates, Line Plot
draws a 2D image with x-axis representing time steps and y-axis representing time-wise values. UVH
(Univariate Heatmap) divides a UTS, x € R, into | 7'/ L] segments of length L — a period obtained
using Fast Fourier Transform (FFT) on x — and stack them to a 2D image of size L x |T//L|. MVH
(Multivariate Heatmap) visualizes the matrix of a multivariate time series (MTS), X € RXT  with
x-axis representing T’ time steps and y-axis representing d variates. STFT (Short-Time Fourier
Transform), Wavelet (Wavelet Transform) and Filterbank are three methods for transforming x to
a Spectrogram with x-axis as time and y-axis as frequency/scale. GAF (Gramian Angular Field)
and RP (Recurrence Plot) produce square matrices with both z- and y-axis representing time, but
they encode different temporal patterns. For brevity, we refer readers to (Ni et al., 2025) for more a
detailed introduction about the 8 imaging methods.

For (2), i.e., image resizing, following (Gong et al., 2021; Chen et al., 2025), we first resize an imaged
time series to fit the size defined by LVMs’ pre-training data using bilinear interpolation. Then, we
align the resized images to meet the 3-channel requirement by duplicating each resized image (per
variate) three times to form a gray image. For (3), i.e., image normalization, since the adopted LVMs,
i.e.,, ViT, Swin, MAE, SimMIM, standardize each pre-training image, we normalize each imaged
time series in the same manner for consistency: Inom = [I — mean(I)]/standard-deviation(I), where
I is the input image and I, is the normalized one. As shown in Fig. 1(b)-(d), the normalized image
is then divided into a number of patches as specified by each LVM before feeding to the LVM.

Task-Specific Augmentation. For TSC task, as shown in Fig. 1(b), we linearly probe each LVM’s
encoder. For ViT and Swin, this implies replacing their classification layers by a new linear layer
tailored to a specific downstream TSC task. For MAE and SimMIMV, this means their reconstruction
decoders are replaced by a linear classification layer. As most imaging methods encode UTS (except
for MVH), the image of each variate is fed to the LVM individually. The output patch embeddings
of all variates are concatenated before delivering to the last linear layer. For MVH, there is a single
image of all variates, thus it does not need variate-concatenation.
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caster (Zeng et al., 2023b; Yang et al., 2024), Forecasting UVHMVH (©) (© @ (@)
Fig. 1(d) uses LVMs’ reconstruction decoders  Forecasting  Other © © © ©
for forecasting (Chen et al., 2025). Because

only MAE and SimMIM in our study have such Table 1: LVM framework summary. (b)(c)(d) indi-
decoders, Fig. 1(d) is applied to them. Fig. ...c o frameworks in Fig. 1. Ty
1(c) applies to ViT and Swin. For both frame-

works, we adopt the “variate-independence” assumption that is widely used in TSF (Nie et al., 2023),
i.e., each variate is forecasted independently. This applies to all imaging methods except for MVH,
by which all variates appear in the same image thus are forecasted once. Additionally, the framework
in Fig. 1(d) adds a mask subsequent to the look-back window part in the image, then it reconstructs
the masked patches and recovers forecasts from the reconstructed patches. This requires input images
to preserve raw time series values in pixels. Among the 8 imaging methods, only MVH and UVH
preserve time series values. Thus, this framework is applied to MVH and UVH'. The framework in
Fig. 1(c) can be applied to all imaging types. Table | summarizes how frameworks (b)(c)(d) in Fig. 1
apply to different LVMs.

Ablations. To assess whether LVM architecture is over-complex, we add two ablation models. Both
models keep the projection layer in LVM encoder, but replace the Transformer by a simpler layer. The
first ablation replaces the Transformer by a linear layer, named as W/0-LVM. The second ablation
uses a single randomly initialized multi-head attention layer, named as LVM2ATTN. Both ablations
use a linear head to avoid complex decoders. They are applicable to all 8 imaging types and both of
the two tasks. An illustration of the ablation models can be found in Appendix B.6.

4 EXPERIMENTS

Datasets. Our experiments are conducted on widely used benchmarks. For TSC, following (Wu
et al., 2023; Zhou et al., 2023), we use 10 datasets from UEA Archive (Bagnall et al., 2018), covering
gesture/action/audio recognition, heartbeat-based diagnosis, and other real-world tasks. For TSF, we
use 8 datasets including ETT (Electricity Transformer Temperature) (Zhou et al., 2021), encompassing
ETThl, ETTh2, ETTm1, ETTm2, Weather (Wu et al., 2021), Illiness (Wu et al., 2021), Traffic (Wu
et al., 2021), and Electricity (Trindade, 2015). For both tasks, all of the time series are MTS. We
defer detailed data descriptions to Appendix A.1.

Evaluation Metrics. For TSC, following (Wu et al., 2023; Zhou et al., 2023), we report classification
accuracy of the compared methods. For TSF, following (Nie et al., 2023; Zeng et al., 2023a; Tan et al.,
2024), mean squared error (MSE) and mean absolute error (MAE) are used to evaluate performance.
Definitions of the metrics are deferred to Appendix A.3.

Models. We base our experiments on representative LVMs, including two supervised LVMs: (1)
ViT (Dosovitskiy et al., 2021), (2) Swin (Liu et al., 2021), and two self-supervised LVMs: (3) MAE
(He et al., 2022), (4) SimMIM (Xie et al., 2022). They are implemented as per Table 1 for different
tasks. Following (Wu et al., 2023; Zhou et al., 2023), we include 18 classification baselines ranging
from XGBoost to LLMs. Moreover, 8 SOTA forecasting baselines are compared. The baseline
methods are presented in Fig. 4 and Table 15 (Table 2 presents 8 best TSF baselines for brevity), and
described in Appendix A.2. The implementation details of the LVMs, including checkpoint selection,
hyperparameters, and running environments are described in Appendix A.4.

Structure of Experiments. Next, through a series of research questions (RQs), we will assess
(i) whether LVMs are effective in TSC and TSF tasks (RQ1 - RQ3, §4.1); (ii) whether the best-
performing LVMs (as identified in (i)) are truely useful (RQ4 - RQ7, §4.2); and (iii) why TSF poses
more challenges to LVMs (RQ8 - RQ10, §4.3). RQ3 uses all of the datasets for an overall comparison,
while other analyses are based on 4 UEA classification datasets (FaceDetection, Handwriting, Spoke-
nArabicDigits, and UWaveGestureLibrary) and 4 forecasting datasets (ETTh1, ETTm1, Weather, and
Illiness) for conciseness. It is noteworthy that (i) is not a simple reflection of existing works since
none of the existing works formally compares fine-tuned LVMs across the two tasks. As another
contribution, the RQs also provide a guide on how to configure LVMs for the right task.

'GAF can be applied as it has an inverse function, but is largely limited for reasons described in Appendix B.2.
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Figure 2: Comparison of 4 LVMs on TSC (accuracy) and TSF (MSE). 1 ({) indicates a higher (lower)
value is better. Two taxonomies of the LVMs: (1) supervised (ViT, Swin) vs. self-supervised (MAE,
SimMIM), (2) using global attention (ViT, MAE) vs. window-based attention (Swin, SimMIM).

4.1 WHETHER LVMS ARE EFFECTIVE IN TIME SERIES TASKS?

This section first determines the best combination of LVMs and imaging methods in TSC and TSF
tasks (RQ1 and RQ2), then compares the best settings with SOTA non-LVM baselines to assess an
overall effectiveness (RQ3).

[RQ1] What type of LVM best fits TSC (TSF) task? Fig. 2 compares the 4 LVMs in TSC and TSF
tasks. From Fig. 2, we observe (1) supervised LVMs and self-supervised LVMs show comparable
accuracies in classification, while (2) self-supervised LVMs are remarkably better at forecasting
than supervised LVMs. (1) is consistent with the comparable performance of the two kinds of
LVMs in classifying images (He et al., 2022). (2) attributes to the continuous nature of pixels and
time series, which enables self-supervised LVMs to transfer their ability in reconstructing masked
pixels to predict (masked) time series, as proposed by (Chen et al., 2025). Moreover, in Fig. 2(a),
we observe SimMIM and Swin underperform (SimMIM uses Swin backbone). This is because they
use window-based local attention mechanism. Compared to the global attention used by MAE and
ViT, local attention implicitly assumes translation invariance — a model’s ability to recognize an
object in an image regardless of its location (Lenc & Vedaldi, 2015). This assumption, however, does
not hold in imaged time series since different locations correspond to different time-steps/frequencies.
A pattern that appears at different time steps may lead to different classes. By overlooking spatial
differences, SimMIM and Swin fail to identify some time/frequency-sensitive patterns.

[RQ2] Which imaging method best fits TSC (TSF) task?

Fig. 3 presents the critical differ-
ence (CD) diagrams (Han et al., (a) Time Series Classification  (b) Time Series Forecasting
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

2022) on the average rank of the Lelodplefolnl T | Avg.Rank [P A B .‘I‘. | Avg.Rank

8 imaging methods on TSC and  gar I ) T Lineplot an —RP ot

TSF tasks (lower rank is better). “rp P GAF™®
UVH Wavelet Wavelet Filterbank

From Fig. 3(a), GAF fits the
classification best, with close
performance to MVH and RP, in-
dicating their abilities in encod-
ing distinguishable semantic pat-
terns. Line Plot remarkably un-
derperforms, thus may not fit this task. For forecasting, from Fig. 3(b), when used in conjunction
with the reconstruction framework in Fig. 1(d), UVH demonstrates best performance, followed by
MVH, suggesting their suitability in numerical level tasks by leveraging LVMs’ knowledge acquired
from reconstructing masked pixels during pre-training.

[RQ3] Can LVMs achieve SOTA performance? Fig. 4 and Table 2 present the overall performance
of the compared methods, where ViT and MAE are selected for their best performance as a supervised
LVM and a self-supervised LVM, respectively. Here, ViT and MAE are set up with their best imaging
methods — GAF for TSC and UVH for TSF. On average, LVMs were fine-tuned on each dataset
with 20 epochs for TSC and 8 epochs for TSF upon early stopping. Our experiments follow standard
protocols of TSC (Zhou et al., 2023) and TSF (Tan et al., 2024).

Figure 3: Average rank of different imaging methods in (a) TSC
task, and (b) TSF task. Lower rank is better. The detailed results
can be found in Appendix B.2.
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Method | MAE | VAT |Time-LLM| GPTATS | CALF |Dlinear |PatchTST|TimesNet|FEDformer|Autoformer
Metrics |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE |[MSE MAE

ETTh1 [0.409 0.419]0.445 0.449(0.418 0.432|0.418 0.421|0.432 0.431|0.423 0.437(0.413 0.431]0.458 0.450(0.440 0.460 |0.496 0.487
ETTh2 (0.3570.390(0.389 0.411(0.361 0.396|0.354 0.389(0.351 0.384]0.431 0.447|0.330 0.379(0.414 0.427|0.437 0.449 {0.450 0.459
ETTm1 [0.3450.374(0.409 0.422]0.356 0.3770.363 0.378]0.396 0.391(0.357 0.379]0.351 0.381]0.400 0.406(0.448 0.452 |0.588 0.517
ETTm2 [0.268 0.327/0.300 0.337]0.261 0.316|0.254 0.311]0.283 0.323|0.267 0.334]0.255 0.315]0.291 0.333|0.305 0.349 |0.327 0.371
Weather [0.225 0.258|0.234 0.273]0.244 0.2700.227 0.255]0.251 0.274|0.249 0.300{0.226 0.264]0.259 0.287|0.309 0.360 |0.338 0.382
Illness [1.837 0.883(2.179 1.016(2.018 0.894|1.871 0.852{1.700 0.869|2.169 1.041|1.443 0.798(2.139 0.931|2.847 1.144 |3.006 1.161
Traffic 0.386 0.256[0.430 0.343]0.422 0.281(0.421 0.274|0.444 0.284/0.434 0.295|0.391 0.264|0.620 0.336(0.610 0.376 |0.628 0.379

Electricity|0.159 0.250(0.173 0.266(0.165 0.259]0.170 0.263]0.176 0.266(0.166 0.264]0.162 0.253(0.193 0.295|0.214 0.327 |0.227 0.338
# Wins 9 0 0 3 0 0 4 0 0 0

Table 2: Model comparison in TSF. The results are averaged over different prediction lengths. See
Table 15 in Appendix B.4 for full results. Red and Blue numbers are the the best and second best
results. # Wins is the number of times the method performed best.

I VM-Based Bl LLM-Based
From Fig. 4, both ViT and MAE outperform the 753 754 N CNN-Based W Transformer-Based
baselines, suggesting both supervised and self- 7o [ RNN-Based Classical Methods
supervised LVMs appear effective in high-level [ MLP-Based
(i.e., semantic level) TSC task. This is consistent
with their ability in classifying regular images (He
et al., 2022). From Table 2, across the 8 datasets and
2 metrics, MAE outperforms non-LVM baselines in
9/16 cases, while Vi T doesn’t show evident superi-
ority over non-LVM baselines, which may be caused
by its classification-based pre-training. The results
suggest LVMSs’ distinct abilities in TSF, convey-
ing that more challenges may appear in low-level
(i.e., numerical level) tasks. Taking a closer look
at Table 2, despite ViT’s inferior performance, it is

comparable to DLinear in many cases. It implies Figure 4: Model comparison in TSC. The re-
that although ViT is pre-trained for image classi- gyts are averaged over 10 UEA datasets. See

fication, linearly probing it is adequate to produce Tgple 13 in Appendix B.3 for full results.
reasonable forecasting results, showing a potential

in cross-task/modality knowledge transfer.
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4.2 ARE LVMs TRUELY USEFUL FOR TIME SERIES TASKS?

This section aims to uncover whether LVMs’ effectiveness in Fig. 4 and Table 2 truely come from
their pre-trained parameters, architectures, and temporal modeling ability. Unless otherwise noted,
the best-performing LVM is used for TSC, i.e., ViT with GAF imaging (ref. Fig. 4), and TSF, i.e.,
MAE with UVH imaging (ref. Table 2), respectively.

[RQ4] Are the pre-trained parameters in LVMs useful in time series tasks? To answer this question,
we compare three kinds of ablations: (1) training LVMs from scratch; (2) freezing LVM’s parameters;
and (3) fine-tuning LVMs with a few epochs. Since different tasks may need different fine-tuning
strategies, we include a series of fine-tuning ablations that progressively freeze the key components
in the Transformer block of LVMs. Fig. 5 shows the key components. To sum up, our ablations in
this study include (a) fine-tune all parameters; (b) fine-tune all parameters but freeze CLS token and
Mask token; (c) fine-tune MLP and norm layers only; (d) fine-tune norm layer only; (e) freeze all
parameters; and (f) randomly initialize an LVM and train it from scratch.

Table 3 (upper panel) summarizes the results. For TSC, we observe that “freeze all” is better than
“train from scratch” in all cases, suggesting LVMs indeed transfer useful knowledge. Fine-tuning
all parameters with a few epochs always improves over “freeze all” cases, further validating effective
knowledge transfer. Comparing (a) and (c), fine-tuning MLP & norm layers is the minimal
fine-tuning effort for achieving ““full fine-tuning”-like performance in TSC. For TSF, surprisingly,
neither of “freeze-all” case nor fine-tuning all parameters consistently outperforms training from
scratch, while only fine-tuning the norm layer significantly boosts the performance in TSF. This
may be caused by the low-level nature of the forecasting task. The model needs to predict numerical
values, which is largely influenced by normalization, while fine-tuning more than necessary may lead
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Task TSC Task (accuracy (%)+) TSF Task (MSE )
Dataset UWave. Spoken. Handwrit. FaceDetect.|[ETThl ETTm1 Illiness Weather
(a) All parameters 88.4 98.5 36.4 67.4 0.558 0.399 1.781 0.273
(b) All but CLS & Mask 87.5 98.2 35.2 66.3 0.530 0.408 1.783 0.275
5 (¢) MLP & norm 88.7 98.4 35.5 67.1 0.532 0.396 1.737 0.264
& |(d) Norm 81.6 98.0 28.5 65.2 0.409 0.345 1.837 0.225
(e) Freeze (zero-shot in TSF)| 84.0 98.5 27.8 66.7 0.452 0420 2.037 0.308
(f) Train from scratch 73.4 97.0 24.3 65.0 0475 0372 1.723 0.241
S w/0-LVM 78.6 96.4 22.4 64.1 0423 0376 2291 0.255
& |LVM2ATTN 80.1 96.5 20.7 66.2 0.428 0.357 2.108 0.254

Table 3: Ablation analysis of LVMs. For classification, higher accuracy indicates better performance.
For forecasting, lower MSE is preferred. Full results are in Appendices B.5 and B.6.

Task Classification Forecasting
Dataset UWave. Spoken. Handwrit. FaceDetect.[ETTh1 ETTm1 Illiness Weather

w/0-LVM | 782%  49.7% 81.7% 193% |762% 98.4% 116.4% 24.1%
LVM2ATTN| 86.4%  50.6% 890.9% 224% | 79.7% 117.1% 109.1% 24.4%
LVM 80.7%  84.7% 91.5%  29.2% 83.8% 118.4% 162.8% 44.5%
w/0-LVM | 6.6% 12.4% 74.6%  10.8% 14.4% 283% 41.6%  2.4%
LVM2ATTIN| 87%  11.6% 83.6% 11.3% 19.5% 448% 693% 2.4%
LVM 36.4%  30.2% 86.5%  9.3% 145% 482% 21.3%  9.6%
W/0-LVM | 98.8%  82.2% 835% 22.8% 13.0% 1453% 11.0% 34.0%
LVM2ATTN| 98.9%  82.3% 87.0% 24.6% 9.1% 158.3% 27.9% 35.5%
LVM 59.4%  89.9% 97.0%  9.2% 14.2% 2423% 23.0% 67.2%
w/0-LVM | -1.0% 3.1% 223%  -12% 473% 58.5% 94.1% 33.4%
LVM2ATTN| 1.0% 3.6% 203%  2.77% 46.0% 70.3% 127.8% 33.6%
LVM 29.0% 41.8% 56.0%  7.4% 47.5% 58.4% 128.9% 49.6%

Masking/Ex-Half| Sf-Half| Sf-All

Table 4: Performance drop of the compared models under different temporal perturbations. Red color
marks the largest drop for each perturbation strategy. Full results are in Appendix B.7.

to overfitting. This is in contrast to classification, where the learning of high-level semantic patterns
is influenced by more layers than normalization, thus fine-tuning more parameters is beneficial.

[ROS5] How useful are LVMs’ architectures? In [RQ4], training
LVMs from scratch may overfit the small training datasets due to
their complex architectures. To examine it, we run the two simpler
models introduced in §3, i.e., W/0-LVM and LVM2ATTN. From Feedforward MLP
Table 3 (bottom panel), We observe training from scratch does not
consistently outperform the simple models, implying the LVM’s
architecture itself is over-complex. However, since training from
scratch is no worse than the simpler models, the overfitting issue Multi-Head Attention
is not serious. Moreover, the “freeze all” and all fine-tuning cases \_
(a)-(d) outperform the simple models in TSC. Fine-tuning case (d) T 1T 1 T T
consistently outperforms the simple models in TSF. These results CLS Patch Patch “* Mask Mask
indicate LVMSs’ architectures are not over-complex when used as : -
a container of transferrable knowledge from pre-training.

xN )

Layer Normalization

Layer Normalization

Figure 5: Key components in
[RQ6] Can LVMs capture temporal order of time series? Temporal LVMSs’ Transformer block.
order plays a critical role in time series analysis. It is of significant

interests to understand whether LVMs can capture temporal information. To this end, following (Tan
et al., 2024), we perturb the temporal order by four methods (1) Sf-All: randomly shuffle all of the
time points; (2) Sf-Half: randomly shuffle the first half of the time points; (3) Ex-Half: swap the first
and second halves of the time points; and (4) Masking: randomly mask 50% time points. Table 4
summarizes the relative performance drop. Following (Zeng et al., 2023a; Tan et al., 2024), simple
models are compared for their effectiveness in capturing temporal order. From Table 4, we can see
that LVMs always have a performance drop under temporal perturbations. Moreover, they are more
vulnerable to temporal perturbations than the ablations. This implies LVMs are very likely making
effective use of temporal patterns in time series during their inferences.
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Method \ LVM 1st Baseline (task specific) 2nd Baseline (task specific)
Task Dataset | #Param (M) Train (min) Inference(ms) | # Param (M) Train (min) Inference(ms) | # Param (M) Time (min) Inference(ms)
s UWave. 89.43 2.83 82.23 1.19 . 242 .69
Handwrit. 97.59 5.18 23.72 83.62 1.33 50.51 247 0.51 0.78
rsp  ETTh 111.91 9.99 4.32 3.75 0.52 0.18 85.02 10.46 0.50
Weather 111.91 207.83 1.50 6.90 16.97 0.10 86.64 94.10 0.35

Table 5: Computational costs of LVMs and two best baselines in TSC (GPT4TS, TimesNet) and
TSF (PatchTST, GPT4TS). The forecasting costs are measured with prediction length 96.
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Figure 6: Inference time vs. performance of compared methods on TSC (accuracy) using UWaveGes-
ture, SpokenArabicDigits, and TSF (MSE) using ETTh1, Weather. Full results are in Appendix B.8.
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Figure 8: Forecasting performance of MAE w.rt.
varying segment length used in UVH imaging. n
(green) estimates the difficulty of forecasting.

[RQ7] What are the computational costs of LVMs? We evaluate the training and inference time of
LVMs. Training time is measured when a model converges with early stopping. Inference time is
estimated by the average runtime per test sample. Table 5 compares LVMs with the best two baselines
in TSC (Fig. 4) - GPT4TS, TimesNet, and TSF (Table 2) — PatchTST, GPTATS. From Table 5,
LVMs have more parameters than the baselines. On average, LVMs take 3x (16x) training time than
the best TSC (TSF) baseline, primarily due to their larger sizes of trainable parameters. For inference,
LVMs are 4x faster than the best TSC baseline, but are 20x slower than the best TSF baseline. This is
incurred by both the parameter size and the extra costs to imaging time series. Fig. 6 shows inference
time vs. performance. Compared to the best baselines, LVMs show reasonable costs in TSC, but
trade the computational overhead for better performance in TSF.

4.3 WHY FORECASTING POSES CHALLENGES TO LVMSs?

This section aims to reveal the cause of the challenges to LVM forecasters as observed in §4.1.

[RQ8] Which component of LVMs contributes more to forecasting? Usually, pre-trained encoders
are considered as general feature extractors and widely used in knowledge transfer, while decoders are
task-specific thus are often re-trained in downstream tasks. Yet the conclusion looks counterintuitive
when adapting LVMs to TSF. Fig. 7 shows the performance drop of two ablations relative to MAE and
SimMIM: (1) Enc w/o Dec preserves the pre-trained encoder but re-trains the decoder; (2) Dec w/o
Enc preserves the pre-trained decoder but re-trains the encoder. Both ablations are fine-tuned until
convergence. From Fig. 7, Enc w/o Dec drops more than Dec w/o Enc, implying the pre-trained
decoders play more important roles than the encoders in TSF. This is because LVMs’ decoders
aim to reconstruct pixel values, thus fitting the low-level TSF task. Surprisingly, SimMIM’s decoder is
merely a linear layer that only occupies 3.8% of all parameters, which however overwhelms its much
larger encoder, further underscoring the essential role of LVMs’ pre-trained decoders in TSF. This
explains supervised LVMs’ difficulty in TSF (Fig. 2) as they don’t have pre-trained decoders.
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Figure 10: TSF performance (MSE) of MAE with varying look-back window (or context) lengths.

[RQOY] Will period-based imaging method induce any bias? In Table 2, the best LVM forecaster
is MAE with UVH imaging. As shown in Fig. 1(a)(d), UVH is a period-based imaging method —
it stacks length-L segments of a UTS x into a 2D image of size L x |T'/L|, where L is a period.
We find this method leads to an inductive bias towards “forecasting periods”. In Fig. 8, we
evaluate MAE’s forecasting performance by changing the segment length from %L to %L, where the
MSE values are min-max normalized to range [0, 1]. In Fig. 8, an estimated MSE is added at 0 by
averaging the MSEs at L and 2L since length-0 is not computable. This (and the green lines) will
be used later. From Fig. 8, MAE’s best performance occurs at L and 2L, implying (1) the datasets
show strong periodicity; and (2) MAE tends to infer future by “combining” past segments. When past
segments do not coincide with periods, i.e., # L or 2L, MAE fails to forecast accurately.

Time

Interestingly, following the UVH imaging method, we can
estimate the dlfﬁculty of TSF for MAE by llSil’lg the segment Number of segments before S reoccurs
length. Basically, the difficulty highly correlates with how long S

a segment can reoccur, measured by the number of segments S g 8 . } S $ .
between the two occurrences (Fig. 9). If the two occurrences Segments
are far apart, it is more difficult for MAE to capture periodic

patterns. More formally, if we divide the UTS into length- L Figure 9: An illustration of UVH.
segments, e.g., in Fig. 8, k = 6,7 = [1, ..., 12], the following

Lemma tells how to infer the number of segments before a specific segment reoccurs.

Lemma 1. Let x be a UTS with a perfect period L, i.e., Xy = Xy 1. If X is divided into length-%L

segments, where i,k € NT, the smallest number of segments, n, before any segment reoccurs, i.e.,
Xt = Xiypn-(i/k)L 1S given by n = GCD#(M)’ where GCD is the greatest common divisor.

The proof of Lemma 1 is in Appendix C. Lemma 1 states we can calculate n given ¢ and k. To
validate the correlation between n and the difficulty of TSF, we calculate . in Fig. 8, and normalize it
to range [0,1]. nis small when £ = 1,2 > n=1or £ = 1,2 — n = 2, leading to an “M”-shape
curve (green). Its coincidence with the MSEs on ETTh1 and ETTm1 datasets validates our estimation
of TSF difficulty, implying MAE “combines past” to forecast future. In contrast, the MSEs on Weather
and Illness datasets align less with the n-values, likely due to their weaker periodic patterns.

[RQ10] Can LVMs make effective use of look-back windows? Ideally, longer look-back windows
facilitate forecasting (Zeng et al., 2023a). We assess MAE with different look-back windows in Fig.
10. The Illness dataset is excluded due to its short time series (966 time steps in total). From Fig.
10, MAE’s performance improves up to a window length of 1000, after which it plateaus or
declines. This may result from image transformation. Fixed-size image in pre-trained LVMs has a
pixel limit and may constrain the information captured from excessively long time series. Fortunately,
contemporary LVMs can handle moderately long windows well (1000 may be considered sufficient
in many cases). Future models may extend this capability further.

5 CONCLUSION

In this work, we explore the potential of LVMs for time series analysis in both high-level (classifica-
tion) and low-level (forecasting) tasks. By experiments with various LVMs and ablations, we offer
insights into whether and how image-pretrained LVMs benefit time series tasks, hopefully helping
ease their adoption across research and applications. Our forecasting-specific analysis highlights key
limitations of current LVM forecasters, underscoring the need for improving encoder utilization,
addressing inductive bias, handling longer look-back windows, and diversifying benchmarks.
We hope this study complements existing research and lays the groundwork for future developments
on multi-modal, agentic time series analysis.
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A EXPERIMENTAL SETUP

A.1 BENCHMARKS

Time Series Classification. For TSC, following (Wu et al., 2023; Zhou et al., 2023), our experiments
are conducted on 10 multivariate benchmark datasets from UEA archive (Bagnall et al., 2018), which
span diverse domains, including chemical analysis, cognitive neuroscience, gesture recognition,
biomedical signal processing, speech recognition and traffic analysis. The datasets are preprocessed
following (Zerveas et al., 2021). Table 6 summarizes the statistics of the datasets.

Dataset Variates Series Length Dataset Size Classes
EthanolConcentration 3 1751 (261, 263, 263) 4
FaceDetection 144 62 (5890, 3524, 3524) 2
Handwriting 3 152 (150, 850, 850) 26
Heartbeat 61 405 (204, 205,205) 2
Japanese Vowels 12 29 (270, 370, 370) 9
PEMS-SF 963 144 (267, 173, 173) 7
SelfRegulationSCP1 6 896 (268, 293, 293) 2
SelfRegulationSCP2 7 1152 (200, 180, 180) 2
SpokenArabicDigits 13 93 (6599, 2199, 2199) 10
UWaveGestureLibrary 3 315 (120, 320, 320) 8

Table 6: Statistics of the datasets for TSC. “Dataset Size” is organized in (Train, Validation, Test).

Time Series Forecasting. For TSF, following (Zhou et al., 2021; Wu et al., 2021; Nie et al., 2023;
Zeng et al., 2023a; Tan et al., 2024; Chen et al., 2025), our experiments are conducted on 8 widely
used benchmark datasets. The four ETT datasets (ETThl, ETTh2, ETTm1, ETTm2) record oil
temperature from two electric transformers, sampled at 15-minute and hourly intervals. The Weather
dataset collects measurements of meteorological indicators in Germany every 10 minutes. The Illness
dataset keeps weekly counts of patients and the influenza-like illness ratio from the United States. The
Traffic dataset measures hourly road occupancy rates from sensors on San Francisco freeways. The
Electricity dataset records hourly electricity consumption of Portuguese clients. Table 7 summarizes
the statistics of the datasets.

Dataset # Variates Series Length Dataset Size Frequency
ETThl 7 17420 (8545, 2881, 2881) Hourly
ETTh2 7 17420 (8545, 2881, 2881) Hourly
ETTml 7 69680 (34465, 11521, 11521) 15 mins
ETTm2 7 69680 (34465, 11521, 11521) 15 mins
Weather 321 52696 (36792, 5271, 10540) 10 mins
Illness 7 966 (617, 74, 170) Weekly
Traffic 862 17544 (12185, 1757, 3509) Hourly
Electricity 21 26304 (18317, 2633, 5261) Hourly

Table 7: Statistics of the datasets for TSF. “Dataset Size” is organized in (Train, Validation, Test).

A.2 BASELINES

For TSC, following (Zhou et al., 2023), 18 conventional and SOTA baselines are included. For
TSF, following (Nie et al., 2023; Tan et al., 2024; Chen et al., 2025), 8 representative LLM-based,
Transfomer-based, and non-Transformer-based baselines are included. Since several baselines are
used in both TSC and TSF tasks (e.g., GPT4TS, Autoformer, Dlinear, etc.), there are 21 distinct
baselines, which are described as follows.

e GPTA4TS (Zhou et al., 2023) is a foundation model built on GPT for various of time series tasks.

* Time-LLM (Jin et al., 2023) implements reprogramming to align time series with language so as to
leverage pre-trained LLMs.
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* CALF (Liu et al., 2025) is built upon LLMs by designing a cross attention and feature regularization
loss to align time series with language.

» PatchTST (Nie et al., 2023) divides time series into subsequence-based patches, which is then
modeled as tokens through Transformer encoders with channel independence strategy.

* Flowformer (Huang et al., 2022) introduces a linear-time attention mechanism named Flow-
Attention without using specific inductive biases for time series forecasting.

* Informer (Zhou et al., 2021) is a Transformer-based model that designs a ProbSparse attention
mechanism to reduce time complexity on long time series.

e Transformer (Vaswani et al., 2017) is the most traditional encoder-decoder structure which can
model time series with attention mechanism.

* Stationary (Liu et al., 2022b) combines series stationarization and de-stationary attention to solve
the over-stationarization problem in time series forecasting.

» Refromer (Kitaev et al., 2020) applies locality-sensitive hashing and reversible residual layers to
improve the efficiency of using Transformers to model long time series.

* Autoformer (Wu et al., 2021) replaces the attention block of Transformer with the Auto-Correlation
mechanism which can enhance both efficiency and accuracy.

* ETSformer (Woo et al., 2022) decomposes an input time series into interpretable components with
exponential smoothing attention and frequency attention for time series forecasting.

 Pyraformer (Liu et al., 2022a) designs a pyramidal attention module with inter-scale tree structures
and intra-scale neighboring connections to capture multi-resolution temporal dependencies.

* FEDformer (Zhou et al., 2022) combines seasonal-trend decomposition with a frequency-enhanced
Transformer to capture both global patterns and detailed structures in time series.

* Rocket (Dempster et al., 2020) achieves accurate time series classification by using linear classifiers
with random convolutional kernels.

* XGBoost (Chen & Guestrin, 2016) is an efficient implementation of gradient boost decision trees
for both classification and regression tasks.

* Dlinear (Zeng et al., 2023a) is a linear model that decomposes an input time series into seasonal
component and trend component, and then models them with linear layers.

* LightTS (Zhang et al., 2022) is an efficient MLP-based architecture for multivariate time series
forecasting by leveraging interval and continuous down-sampling to preserve temporal patterns.

* TimesNet (Wu et al., 2023) transforms time series into a 2D image-like representation using
period-based patching, and then models the transformed time series with inception blocks.

* TCN (Franceschi et al., 2019) is a type of convolutional neural network that use causal, dilated
convolutions with residual connections to model the temporal dependencies in time series.

e LSTNet (Lai et al., 2018) integrates RNNs and CNNs to capture temporal patterns in time series.

* LSSL (Gu et al., 2021) is proposed based on a new parameterization for state space model to
capture the long-term dependencies in time series.

A.3 EVALUATION METRICS

For TSC, following (Wu et al., 2023; Zhou et al., 2023), accuracy (in percentage) is used as the
evaluation metric. For TSF, following (Nie et al., 2023; Zeng et al., 2023a; Tan et al., 2024; Chen
et al., 2025), Mean Squared Error (MSE) and Mean Absolute Error (MAE) are used as the evaluation
metrics. Eq equation 1 defines MSE and MAE.

D T

1 ~ 1 -

MSE = —— Yo —Yaul3, MAE= —— Yu-Y 1

DT 1Y ar — Yaell, D~TZZ” at — Yail1 (D
d=1t=1 d=1t=1

where Y € RP*T stands for the prediction at T" future time steps of D variates, Y stands for the

ground truth, || - ||2 is ¢2 norm, and || - ||1 is ¢; norm.

Following (Nie et al., 2023; Zeng et al., 2023a; Tan et al., 2024), for fair comparison, we adopt the
standard evaluation protocol. In particular, the look-back window length is set to H = 336. The
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prediction lengths is set to T € {96, 192,336, 720} for all datasets except for Illness dataset. For
Illness dataset, because of its limited total length of 966 time steps, shorter look-back window of
H = 104 and prediction lengths T' € {24, 36, 48, 60} are employed by following (Nie et al., 2023;
Zeng et al., 2023a; Tan et al., 2024). Unless otherwise noted, this configuration is applied to all of the
experiments on TSF.

A.4 IMPLEMENTATION DETAILS

As described in §4, 4 pre-trained LVMs have been included in our experiments. For
ViT and Swin, we use the checkpoints ViT_B_16_Weights.IMAGENET1K_V1 and
Swin_B_Weights.IMAGENET1K_V1 respectively from PyJorch, which are pre-trained on
224 x 224 x 3 sized images. For MAE, we use the checkpoint released by Meta Research’, which
is pre-trained on 224 x 224 x 3 sized images with ViT-Base backbone. For SimMIM, we use
the checkpoint released by Microsoft’, which is pre-trained on 192 x 192 x 3 sized images with
Swin-Base backbone.

For TSC task, we fine-tune the LVMs using Adam optimizer with learning rate 0.0001 and batch size
32. The training runs up to a maximum of 30 epochs on the training set. Early stopping is applied
after 8 consecutive epochs of no improvement is observed on the validation set.

For TSF task, we use Adam optimizer with learning rate 0.0001. For ETT and Illness datasets, the
batch size is set to 32. For Weather, Traffic and Electricity datasets, the batch size is set to 256. The
training runs up to 20 epochs on the training set. Early stopping is applied after 3 consecutive epochs
of no improvement is observed on the validation set.

All experiments are repeated three times, and the final result is obtained by taking the average. Unless
otherwise noted, the above training configuration is applied to all experiments.

The experiments are conducted on NVIDIA RTX 6000 Ada Generation GPUs with 4GB memory.
All implementations are based on PyTorch 2.6.0 and utilize CUDA 12.4 for training.

A.5 IMAGING METHODS

In this section, we elaborate Gramian Angular Field (GAF) and Univariate Heatmap (UVH), as they
are the most frequently used imaging methods in our experiments. For more details about GAF, UVH,
and other imaging methods, we refer readers to (Ni et al., 2025).

Gramian Angular Field (GAF). Given a univariate time series x = [z, ..., x7] € R'*T, where
z; (1 < ¢ < T)is the value at time step i, GAF applies Min-Max scaling to normalize each x;
to &; € [0, 1]. This normalization allows each time step to be mapped into polar coordinates with
angular component ¢; = arccos(&;) and radial component r; = /N, where N is a constant factor.

In Gramian Sum Angular Field (GSAF), the (i, j)-th entry encodes the temporal correlation between
time steps ¢ and j, which is computed as cos(¢; + ¢;) and can be further expanded as following.

cos(¢i + ¢5) = iy — \J1 = &7\ /1 - &3 )

The resulting GAF is a matrix of size ' x T, with (i, j)-th entry defined as cos(¢; + ¢;), which
captures the pairwise temporal correlations among all time steps. For a multivariate time series
X € R¥*T the resulting GAF consists of d individual 7' x T" matrices.

Univariate Heatmap (UVH). Given a univariate time series x € R! *T UVH applies Fast Fourier
Transform (FFT) to compute the Fourier coefficient of each frequency component f;, where f; €
[1,]|7/2]]. Then it identifies the dominant frequency f7, with the largest coefficient amplitude, and

sets the potential period length as L = [T/ f1]. Next, x is left-padded to a length-T" time series X,
where T is a multiple of L. The padded time series X is subsequently reshaped into a 2D image of
size L x T'/L by stacking it subsequences of length L.

https://github.com/facebookresearch/mae
Shttps://github.com/microsoft/SimMIM
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Segment length selection for UVH. To identify the best segment length for UVH, FFT is applied on
a long look-back window of 1152 time steps on all datasets except for Illness dataset, where 104 time
steps is used to accommodate its short time series. Table 8 summarizes the top-3 potential periods
with the highest Fourier coefficients on each TSF dataset, along with the segment length L used in
the subsequent experiments involving UVH imaging method.

ETThl, ETTh2 ETTml, ETTm2 Weather Tllness Traffic Electricity
Top 3 Period {24, 576, 384} {96, 576, 384} {144,72,576} {52,26,17} {24,12,168} {24,164, 82}
Segment Length L 24 96 144 52 24 24

Table 8: Top-3 potential periods by FFT and segment lengths for UVH on 8 TSF datasets.

B FuLL EXPERIMENTAL RESULTS

B.1 FULL RESULTS OF RQ1: WHAT TYPE OF LVM BEST FITS TSC (TSF) TASK?

The detailed performance comparison between self-supervised LVMs and supervised LVMs using
the best imaging method on TSC (i.e., GAF) and TSF (i.e., UVH) tasks are provided in Table 9 and
Table 10, respectively. For TSC, supervised and self-supervised LVMs perform comparably, while
for TSF, self-supervised LVMs outperform their supervised counterparts.

Dataset | MAE | SimMiM | ViT | Swin

UWaveGestureLibrary | 85.0 83.1 88.4 | 78.9
SpokenArabicDigits 98.5 88.2 98.5 | 87.3

Handwriting 39.5 29.8 36.4 | 33.1
FaceDetection 65.4 57.8 67.4 | 50.3
Average | 72.1 | 647 | 726 | 62.4

Table 9: Accuracy (%) comparison between self-supervised LVMs and supervised LVMs on TSC
benchmark datasets. Red numbers indicate the best performance for each dataset.

B.2 FULL RESULTS OF RQ2: WHICH IMAGING METHOD BEST FITS TSC (TSF) TASK?

This section provides detailed performance comparison of 8 imaging methods, including GAF, MVH,
RP, STFT, Wavelet (Wave.), Filterbank (Filter.), UVH, and Line Plot. The best LVMs for TSC (i.e.,
ViT) and TSF (i.e., MAE) are used. Table 11 and Table 12 summarize the results for TSC and TSF,
respectively. For TSF, UVH demonstrates a clear advantage on the 4 datasets in Table 12. For TSC,
all benchmark datasets are used in Table 11 because the 4 datasets outlined in §4.2 are insufficient to
confidently rank the compared methods using critical difference (CD) diagram (Fig. 3). Using all
datasets improves confidence and helps identify the best imaging method (i.e., GAF).

In Table 12, GAF (GAF") represents applying GAF with framework (c) (framework (d)) in Fig. 1.
For GAF', we follow (Wang & Oates, 2015) to use its inverse function to recover forecasted values
from the reconstructed images by the framework in Fig. 1(d). Notably, GAF' scales all time series
values within [0, 1] by min-max normalization to compute polar coordinates during its imaging
process. The normalization uses the minimum and maximum values from the look-back window,
which are used to recover any predicted values. This imposes a constraint on the predicted values, i.e.,
the predicted values must remain within the upper and lower bounds of the look-back window, which
is irrational in TSF, leading to a significant limitation and performance degradation as demonstrated
in Table 12. As such, we use GAF, which outperforms GAF' in Table 12, in the CD diagram in Fig.
3(b).

B.3 FULL RESULTS OF RQ3: TIME SERIES CLASSIFICATION

Table 13 provides the full results of the compared methods on 10 benchmark datasets for TSC. The
LVM results are averaged over 3 runs. The corresponding standard deviations reported in Table 14.
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Self-Supervised Supervised
Model MAE P SimMIM ViT P Swin
Dataset
\ Maetrics \ MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE
96 0.356 0.383 | 0.362 0.383 | 0.398 0.401 | 0.407 0.429
= 192 0.395 0406 | 0407 0.412 | 0439 0.445 | 0.442 0.458
E 336 0.417 0424 | 0422 0417 | 0462 0.458 | 0467 0.481
m 720 0.467 0463 | 0.462 0.455 | 0479 0.491 | 0.470 0.497
Average | 0.409 0.419 | 0413 0.417 | 0445 0.449 | 0447 0.466
96 0.284 0.333 | 0.311 0.350 | 0.344 0.384 | 0.308 0.360
E 192 0.328 0.363 | 0.335 0.367 | 0414 0425 | 0.350 0.381
E 336 0.357 0384 | 0.356 0.382 | 0.411 0.427 | 0.385 0.407
m 720 0411 0417 | 0400 0.413 | 0466 0.451 | 0.430 0.437
Average | 0.345 0.374 | 0.351 0.378 | 0.409 0.422 | 0.368 0.396
- 96 0.146 0.191 | 0.148 0.196 | 0.162 0.219 | 0.163 0.216
2 192 0.194 0.238 | 0.196 0.243 | 0.196 0.244 | 0.214 0.262
§ 336 0.243 0275 | 0.244 0.276 | 0.250 0.286 | 0.270 0.298
= 720 0.318 0.328 | 0.340 0.340 | 0.329 0.342 | 0.345 0.348
Average | 0.225 0.258 | 0.232 0.264 | 0.234 0.273 | 0.248 0.281
24 1.977 0921 | 1.934 0.902 | 1.989 0.941 | 1.990 0.942
@ 36 1.812 0.872 | 1.754 0.825 | 2.123 1.002 | 2.003 0.951
g 48 1.743 0.856 | 1.715 0.867 | 2.200 1.032 | 2.084 0.991
= 60 1.816 0.881 | 1.673 0.877 | 2.404 1.087 | 2.128 1.007
Average | 1.837 0.883 | 1.769 0.868 | 2.179 1.016 | 2.051 0.973

Table 10: MSE and MAE Comparison between self-supervised LVMs and supervised LVMs on TSF
datasets. Red numbers indicate the best performance for each prediction length per dataset.

Dataset GAF MVH RP STFT Wave. Filterr UVH Lineplot
EthanolConcentration | 49.4 | 30.7 | 43.7 | 319 | 273 | 28.1 | 285 | 252
FaceDetection 674 | 683 | 655 | 61.1 | 639 | 647 | 67.7 | 503
Handwriting 364 | 308 | 45.1 | 282 | 340 | 223 | 258 | 159
Heartbeat 746 | 775 | 717 | 747 | 726 | 731 | 780 | 537

Japanese Vowels 98.3 | 97.8 | 87.8 | 948 | 949 | 970 | 964 | 657

|
|
|
|
|
PEMS-SF | 842 | 872 | 80.1 | 68.5 | 847 | 712 | 88.1 | 734
|
|
|
|
|

SelfRegulationSCP1 | 97.2 | 90.4 | 98.6 | 90.7 | 76.7 | 55.6 | 91.8 | 853
SelfRegulationSCP2 | 58.8 | 533 | 54.4 | 527 | 544 | 522 | 52.8 | 445
SpokenArabicDigits | 98.5 | 97.5 | 984 | 979 | 96.1 | 950 | 97.0 | 68.1
UWaveGestureLibrary | 88.4 | 88.7 | 91.8 | 862 | 86.3 | 521 | 843 | 740
Average 753 | 722 | 737 | 687 | 69.1 | 61.1 | 71.0 | 556

Table 11: Accuracy (%) comparison of 8 imaging methods on TSC benchmark datasets. Red numbers
indicate the best performance for each dataset.

B.4 FULL RESULTS OF RQ3: TIME SERIES FORECASTING

Table 15 provides the full result of the compared methods on 8 benchmark datasets for TSF. The
results of LVMs are averaged over 3 runs with standard deviations reported in Table 16.
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Imaging Method GAF GAF! MVH RP STFT Wave. Filter. UVH Lineplot
Dataset | Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 0986 0.783 | 1.224 0.850 | 0.484 0.471 | 0.969 0.771 | 0.534 0.533 | 0.621 0.582 | 0.820 0.684 | 0.356  0.383 | 0.902 0.751
= 192 1.004 0.797 | 1.227 0.854 | 0.575 0.517 | 0.971 0.775 | 0.621 0.587 | 0.650 0.600 | 0.864 0.707 | 0.395 0.406 | 1.204 0.894
> 336 1.038 0.820 | 1.214 0.857 | 0.623 0.546 | 0.989 0.788 | 0.602 0.573 | 0.681 0.616 | 0.827 0.693 | 0.417 0.424 | 1.223 0.901
m 720 1.008 0.812 | 1.190 0.863 | 0.737 0.612 | 1.062 0.825 | 0.669 0.621 | 0.699 0.633 | 0.858 0.720 | 0.467 0.463 | 1.150 0.852
Average | 1.009 0.803 | 1.214 0.856 | 0.605 0.537 | 0.998 0.790 | 0.607 0.579 | 0.663 0.608 | 0.842 0.701 | 0.409 0.419 | 1.120 0.850
96 0.836  0.729 | 0.956 0.676 | 0.310 0.352 | 0.849 0.719 | 0.420 0.470 | 0.449 0.490 | 0.793 0.648 | 0.284 0.333 | 0.842 0.735
= 192 0.830  0.717 | 0.967 0.685 | 0.386 0.400 | 0.865 0.726 | 0.466 0.496 | 0.504 0.524 | 0.798 0.649 | 0.328 0.363 | 0.840 0.726
E 336 0.853  0.725 | 0.988 0.697 | 0.393 0.402 | 0.872 0.728 | 0.506 0.519 | 0.532 0.535 | 0.883 0.690 | 0.357 0.384 | 0.841 0.726
m 720 0.865 0.726 | 1.107 0.779 | 0.488 0.467 | 0.928 0.754 | 0.543 0.536 | 0.586 0.563 | 0.899 0.703 | 0.411 0417 | 0.872 0.741
Average | 0.846 0.724 | 1.005 0.709 | 0.394 0.405 | 0.879 0.732 | 0484 0.505 | 0.518 0.528 | 0.843 0.673 | 0.345 0.374 | 0.849 0.732
24 5.066 1.591 | 6.172 2.618 | 2.326 0.976 | 5.106 1.594 | 5.049 1.591 | 4270 1.484 | 7.863 2.056 | 1.977 0.921 | 4993 1.508
2 36 5236 1.628 | 5497 2.627 | 2.152 0919 | 5309 1.629 | 5.143 1.598 | 4293 1.487 | 8.169 2.122 | 1.812 0.872 | 5.147 1.593
E 48 5.118  1.600 | 5218 2.448 | 2.111 0.966 | 5381 1.643 | 5010 1.574 | 4190 1451 | 7.144 1.962 | 1.743 0.856 | 5.039 1.541
= 60 5349 1.641 | 5299 2239 | 2.118 0.968 | 5.586 1.685 | 5.164 1.601 | 4.045 1.430 | 7.193 1.986 | 1.816 0.881 | 5235 1.601
Average | 5.192  1.615 | 5.547 2483 | 2.177 0.957 | 5.346 1.638 | 5.092 1.591 | 4200 1.463 | 7.592 2.032 | 1.837 0.883 | 5.104 1.561
96 0.581 0.554 | 0.961 0.592 | 0.153 0.202 | 0.647 0.610 | 0.202 0.294 | 0.224 0.312 | 0.515 0.488 | 0.146 0.191 | 0.588 0.561
E 192 0.598 0.567 | 0.995 0.614 | 0.194 0.241 | 0.649 0.607 | 0.251 0336 | 0.273 0.354 | 0.516 0.488 | 0.194 0.238 | 0.604 0.574
3 336 0593 0.558 | 1.039 0.637 | 0.239 0.275 | 0.674 0.619 | 0.294 0364 | 0.330 0.388 | 0.505 0.484 | 0.243 0275 | 0.601 0.568
= 720 0.611 0574 | 1.051 0.644 | 0.337 0.344 | 0.640 0.593 | 0.364 0.413 | 0.411 0433 | 0.513 0.499 | 0.318 0.328 | 0.617 0.582
Average | 0.596 0.563 | 1.012 0.622 | 0.231 0.266 | 0.653 0.607 | 0.278 0.352 | 0.310 0.372 | 0.512 0.490 | 0.225 0.258 | 0.603 0.571

Table 12: MSE and MAE comparison of 8 imaging methods on TSF benchmark datasets.

Red

numbers indicate the best performance for each dataset. GAF represents applying GAF with the

framework in Fig. 1(c). GAF' represents applying GAF with the framework in Fig. 1(d).

Dataset | MAE | ViT | XGBoost | Rocket | LSTNet | LSSL | TCN | Trans. | Re. | In. | Pyra. | Auto. | Station. | FED. | ETS. | Flow. | Dlinear | LightTS | TimesNet | GPT4TS
EthanolConcentration | 414 | 49.4 | 43.7 | 452 | 39.9 | 311 | 289 | 327 |31.9| 31.6 | 30.8 | 31.6 | 327 | 31.2 | 28.1 | 338 | 326 | 297 | 357 | 342
FaceDetection [ 654|674 | 633 | 647 | 65.7 | 667 | 528 | 673 |68.6 | 67.0 | 65.7 | 684 | 680 | 66.0 | 663 | 67.6 | 680 | 675 | 686 | 692
Handwriting [ 395|364 | 158 | 588 | 258 | 246 | 533 | 320 |274 | 32.8 | 294 | 36.7 | 316 | 280 | 325 | 338 | 270 | 261 | 321 | 327
Heartbeat [ 868 | 74.6 | 732 | 756 | 77.0 | 727 | 756 761 |77.1| 80.5 | 756 | 74.6 | 737 | 737 | 712 [ 776 | 751 | 751 | 180 | 772
Japancse Vowels | 95.4 | 983 | 865 | 962 | 98.1 | 984 989 | 98.7 [97.8 | 989 | 984 | 962 | 99.2 | 984 | 959 | 989 | 962 | 962 | 984 | 986
PEMS-SF [ 844|842 983 | 751 | 867 | 86.1 | 688 | 821 |82.7 | 81.5 | 83.2 | 82.7 | 873 | 80.9 | 860 | 838 | 75.1 | 884 | 896 | 879
SclfRegulationSCP1_ | 95.2 | 97.2 | 846 | 908 | 840 | 90.8 | 84.6 | 922 |90.4 | 90.1 | 88.1 | 84.0 | 89.4 | 88.7 | 89.6 | 92.5 | 873 | 898 | 918 | 932
SelfRegulationSCP2_ | 59.4 | 58.8 | 489 | 533 | 52.8 | 522 | 556 | 539 | 567 | 533 | 53.3 | 50.6 | 572 | 544 | 550 | 56.1 | 505 | S5L1 | 572 | 594
SpokenArabicDigits | 985 | 98.5 | 69.6 | 712 | 1000 | 100.0 | 95.6 | 984 | 97.0 | 100.0 | 99.6 | 100.0 | 100.0 | 100.0 | 100.0 | 988 | 814 | 100.0 | 990 | 992
UWaveGestureLibrary | 850 | 884 | 759 | 944 | 87.8 | 859 | 88.4| 85.6 | 856 | 85.6 | 83.4 | 859 | 87.5 | 853 | 850 | 86.6 | 821 | 803 | 853 | 88.1
Average [ 751753 | 660 | 725 | 718 | 709 | 703 | 71.9 | 715 | 721 | 708 | 711 | 727 | 70.7 | 710 | 73.0 | 675 | 704 | 736 | 740
# Wins 2 | 3| 1 | 1 | 1t | 1 1] 0 0| 10 ] T 2 [ 1|1 ]0] 0 | 1 | 0 | 2

Table 13: Accuracy (%) of the compared methods in TSC on 10 benchmark datasets. Red numbers

are the the best results. # Wins is the number of times the method performs the best.

Dataset

MAE |

ViT

EthanolConcentration | 41.4 £0.5 | 49.4 £ 0.9

FaceDetection |654+£12]674L15
Handwriting [395+15]364+13
Heartbeat | 86.8 £2.1 | 74.6 £ 0.6
Japanese Vowels | 954+03]983£03
PEMS-SF | 84.4£04 | 842+£0.5
SelfRegulationSCP1 | 95.2 £ 0.6 | 97.2 £ 0.9
SelfRegulationSCP2 | 59.4 £ 1.5 | 588 £ 1.3
SpokenArabicDigits | 98.5 £ 0.5 | 98.5 £ 0.5
UWaveGestureLibrary | 85.0 = 1.7 | 88.4 £ 1.4

Table 14: Standard deviation of LVMSs on TSC datasets.

B.5 FULL RESULTS OF RQ4: ARE THE PRE-TRAINED PARAMETERS IN LVMS USEFUL IN
TIME SERIES TASKS?

Table 17 and Table 18 provide the results of comparing different fine-tuning strategies on TSC and
TSF tasks, respectively. In this ablation analysis, we progressively freeze the components of the
Transformer blocks in LVMs (Fig. 5) with the following settings: (a) Fine-tune all parameters; (b)
Fine-tune all parameters but freeze CLS token and Mask token; (c) Fine-tune MLP and norm layers
only; (d) Fine-tune norm layers only; (e) Freeze all parameters (i.e., zero-shot); and (f) Randomly
initialize an LVM and train it from scratch. From Table 17, for TSC, fully fine-tuning all parameters
yields the best performance. From Table 18, for TSF, fine-tuning only the norm layer leads to better
performance than other settings.
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0.467

0.383
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0.398
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0.479
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0.430
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0.421 | 0412 0413
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0.429 0.426
0.451  0.440
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0.405 0.416
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0472 0.490

0370 0.399
0413 0421
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0.447  0.466

0.384
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0.491
0.521

0.402
0.429
0.469
0.500

0.376
0.420
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0.419 | 0431 0416
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0.375 0.376
0.411 0.401
0.476  0.438

0.299 0.343
0.335 0.365
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0425 0421
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0.833 | 1.853 0.854
1.012 | 1.886 0.855
0.925 | 1.877 0.877

1.460 0.788
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1.784  0.890
1.982  0.962

2215 1.081
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2.130  1.024
2.368 1.096

1.319  0.754
1430 0.834
1.553  0.815
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2.317
1.972
2.238
2.027

0.934
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0.346
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0.451

0.267 | 0.396 0.264
0.271 | 0.412  0.268
0.296 | 0.421 0.273
0.291 | 0.455 0.291

0.416 0.274
0.430 0.276
0.451 0.286
0.478 0.301

0.410 0.282
0.423  0.287
0.436  0.296
0.466 0.315

0.360  0.249
0379 0.256
0392 0.264
0.432  0.286

0.593
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0.629
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0.321
0.336
0.336
0.350

0.587
0.604
0.621
0.626

0.366
0.373
0.383
0.382

0.613
0.616
0.622
0.660

0.388
0.382
0.337
0.408

96
192
336
720

0.127
0.148
0.163
0.199

0.217
0.237
0.253
0.293

0.152
0.164
0.173
0.202

0.244
0.249
0.275
0.294

0.137
0.152
0.169
0.200

0.233 | 0.141  0.239
0.247 | 0.158 0.253
0.267 | 0.172  0.266
0.290 | 0.207 0.293

0.147  0.240
0.163  0.254
0.178  0.270
0.215  0.300

0.140  0.237
0.153  0.249
0.169  0.267
0.203  0.301

0.129  0.222
0.157  0.240
0.163  0.259
0.197  0.290

0.168
0.184
0.198
0.220

0.272
0.289
0.300
0.320

0.193
0.201
0.214
0.246

0.308
0.315
0.329
0.355

0.201
0.222
0.231
0.254

0.317
0.334
0.338
0.361

# | Electricity
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| 14
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Table 15: MSE and MAE evaluation of the compared methods in TSF on benchmark datasets. Red
(Blue) numbers are the best (second best) results on each prediction length per dataset. # Wins is the
number of times the method performs the best.

Method

MAE

ViT

Metrics

MSE

MAE

MSE

MAE

ETThl

96
192
336
720

0.356 & 0.001
0.395 4 0.001
0.417 4 0.001
0.467 + 0.012

0.383 £ 0.005
0.406 + 0.001
0.424 £ 0.001
0.463 £ 0.010

0.398 £ 0.011
0.439 + 0.005
0.462 + 0.004
0.479 £0.011

0.401 £ 0.012
0.445 4+ 0.003
0.458 £ 0.004
0.491 % 0.008

ETTh2

96
192
336
720

0.297 + 0.000
0.356 & 0.005
0.371 4 0.003
0.403 4 0.001

0.341 £ 0.004
0.386 £ 0.011
0.402 + 0.004
0.430 £ 0.005

0.302 + 0.001
0.394 £ 0.001
0.423 +0.003
0.438 + 0.005

0.355 + 0.000
0.411 + 0.001
0.429 4+ 0.001
0.449 + 0.002

ETTml

0.284 4+ 0.003
0.328 4 0.001
0.357 4+ 0.001
0.411 4 0.002

0.333 £ 0.004
0.363 + 0.002
0.384 £ 0.001
0.417 £ 0.001

0.344 £ 0.001
0.414 £ 0.003
0.411 £ 0.002
0.466 + 0.003

0.384 + 0.002
0.425 + 0.003
0.427 £+ 0.007
0.451 4 0.002

ETTm2

0.173 4 0.005
0.231 + 0.004
0.282 4 0.001
0.386 4 0.002

0.258 + 0.004
0.297 £ 0.003
0.340 £ 0.004
0.413 £ 0.003

0.179 £ 0.003
0.262 + 0.002
0.346 £ 0.001
0.411 + 0.002

0.265 & 0.004
0.319 + 0.001
0.371 £+ 0.003
0.392 4 0.004

‘Weather

0.146 & 0.000
0.194 4 0.001
0.243 + 0.000
0.318 4 0.001

0.191 £ 0.002
0.238 £ 0.002
0.275 £ 0.001
0.328 £ 0.001

0.162 + 0.001
0.196 + 0.002
0.250 + 0.001
0.329 + 0.002

0.219 4 0.003
0.244 + 0.003
0.286 + 0.000
0.342 + 0.002

Illness

1.977 £ 0.017
1.812+0.014
1.743 £+ 0.029
1.816 & 0.022

0.921 £ 0.003
0.872 £ 0.009
0.856 +0.012
0.881 + 0.008

1.989 +0.011
2.123 £ 0.006
2.200 £ 0.009
2.404 £ 0.018

0.941 & 0.004
1.002 + 0.003
1.032 + 0.005
1.087 = 0.011

Traffic

0.346 & 0.004
0.376 & 0.006
0.389 4 0.004
0.432 + 0.002

0.232 £ 0.003
0.245 £ 0.002
0.252 £ 0.003
0.293 + 0.005

0.403 + 0.003
0.411 £ 0.001
0.429 + 0.002
0.477 £ 0.004

0.330 & 0.002
0.334 & 0.000
0.335 + 0.005
0.371 + 0.002

Electricity

96
192
336
720

0.127 4 0.001
0.148 & 0.004
0.163 4 0.001
0.199 4 0.002

0.217 £ 0.000
0.237 £ 0.000
0.253 £ 0.002
0.293 £ 0.001

0.152 £ 0.001
0.164 + 0.003
0.173 + 0.002
0.202 £ 0.001

0.244 + 0.001
0.249 £+ 0.001
0.275 4+ 0.003
0.294 £+ 0.003

Table 16: Standard deviation of LVMs on TSF datasets.

B.6 FULL RESULTS OF RQS5: HOW USEFUL ARE LVMS’ ARCHITECTURES?

Table 19 and Table 20 provide the results of comparing LVMs’ architecture and two ablation models,
W/0-LVM and LVM2ATTN, on TSC and TSF tasks, respectively. Fig. 11 illustrates the ablation
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Dataset (a) (b) (c) (d) (e) ®)
UWaveGestureLibrary | 88.4 | 87.5 | 88.7 | 81.6 | 84.0 | 73.4

SpokenArabicDigits | 98.5 | 98.2 | 98.4 | 98.0 | 98.5 | 97.0
Handwriting 364 | 352 355 | 28.5 | 27.8 | 24.3
FaceDetection | 67.4 | 663 | 67.1 | 652 | 66.7 | 65.0

Table 17: Accuracy (%) comparison of different fine-tuning strategies for on TSC benchmark datasets.
Red numbers indicate the best performance for each dataset.

Fine-tuning Strategy (a) (b) (©) (d) (e) ®)
Dataset \ Metrics \ MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE
96 0.512 0.448 | 0.481 0.435 | 0477 0418 | 0.356 0.383 | 0426 0.397 | 0.412 0.431
= 192 0.511 0.453 | 0.520 0.455 | 0.526 0.456 | 0.395 0.406 | 0448 0.417 | 0462 0.462
E 336 0.610 0.512 | 0.537 0.484 | 0.584 0.497 | 0.417 0424 | 0.478 0.439 | 0.489 0.479
m 720 0.598 0.523 | 0.581 0.526 | 0.539 0.493 | 0.467 0463 | 0.454 0453 | 0.536 0.514
Average 0.558 0.484 | 0.530 0.475 | 0.532 0.466 | 0.409 0419 | 0.452 0427 | 0475 0472
96 0.303 0.334 | 0.320 0.348 | 0.306 0.338 | 0.284 0.333 | 0.394 0.370 | 0.323 0.367
e 192 0.385 0.385 | 0.389 0.385 | 0.385 0.378 | 0.328 0.363 | 0.404 0.381 | 0.344 0.383
E 336 0.409 0.403 | 0419 0.407 | 0420 0.402 | 0.357 0.384 | 0.421 0.398 | 0.375 0.403
m 720 0.500 0.461 | 0.503 0.461 | 0.474 0444 | 0411 0417 | 0462 0.426 | 0.446 0.445
Average 0.399 0.396 | 0.408 0.400 | 0.396 0.391 | 0.345 0.374 | 0420 0.394 | 0.372 0.400
24 1.888 0.818 | 1.683 0.789 | 2.043 0.818 | 1.977 0.921 | 2.227 0971 | 1.719 0.799
2 36 1.542 0.781 | 1.632 0.801 | 1.573 0.775 | 1.812 0.872 | 2.023 0.932 | 1.541 0.753
E 48 1.682 0.829 | 1.839 0.845 | 1.548 0.783 | 1.743 0.856 | 1.947 0.920 | 1.687 0.817
= 60 2.012 0.859 | 1.977 0921 | 1.783 0.860 | 1.816 0.881 | 1.952 0.939 | 1.944 0.880
Average 1.781 0.822 | 1.783 0.839 | 1.737 0.809 | 1.837 0.883 | 2.037 0.941 | 1.723 0.812
96 0.172 0.213 | 0.174 0.213 | 0.171 0.208 | 0.146 0.191 | 0.274 0.280 | 0.154 0.201
E 192 0.225 0.259 | 0.233 0.263 | 0.225 0.256 | 0.194 0.238 | 0.284 0.294 | 0.199 0.245
s 336 0.298 0.302 | 0.296 0.304 | 0.293 0.303 | 0.243 0.275 | 0.311 0.316 | 0.265 0.292
= 720 0.397 0.363 | 0.397 0.364 | 0.367 0.361 | 0.318 0.328 | 0.364 0.354 | 0.344 0.350
Average 0.273 0.284 | 0.275 0.286 | 0.264 0.282 | 0.225 0.258 | 0.308 0.311 | 0.241 0.272

Table 18: MSE and MAE comparison of different fine-tuning strategies on TSF benchmark datasets.
Red numbers indicate the best performance for each dataset.

70 27 </

# Linear Head # Linear Head

# Linear # Attention

% Projection % Projection

.' Input Alignment H

1 (Imaging, norm, patching) |
NS v

/ Input Alignment )

1 (Imaging, norm, patching) |
| N pe— 4

(a) w/o-LVM (b) LVM2Attn

Figure 11: Illustration of LVM’s ablation models. (a) is the model w/0-LVM, which replaces the
Transformer blocks in LVMs with a linear layer. (b) is the model LVM2ATTN, which replaces the
Transformer blocks in LVMs with a single mult-head attention layer.

models. Both models keep the projection layer in LVM encoder. The model w/0-LVM replaces the
Transformer blocks with a linear layer. The model LVM2ATTN replaces the Transformer blocks
with a single multi-head self-attention layer. Other components including input alignment and the
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linear head remain unchanged. In this comparison, all models are trained from scratch without using
pre-trained parameters. From Table 19 and Table 20, without pre-trained knowledge, LVMs perform
on par with w/0-LVMand LVM2ATTN on both TSC and TSF tasks. However, as demonstrated in
Table 17 and Table 18, with pre-training parameters, LVMs outperform both ablation models.

Dataset LVMs w/0-LVM LVM2ATTN
UWaveGestureLibrary | 734 | 786 | 80.1
SpokenArabicDigits | 97.0 | 964 | 96.5
Handwriting | 243 | 224 | 20.7
FaceDetection | 650 | 641 \ 66.2

Table 19: Accuracy (%) comparison between LVM architecture and ablation models on TSC bench-
mark datasets. Red numbers indicate the best performance for each dataset.

Model LVMs w/0-LVM LVM2ATTN
Dataset | Metrics | MSE MAE | MSE MAE | MSE MAE

96 0.412 0431 | 0392 0410 | 0391 0417

= 192 0462 0.462 | 0.418 0.426 | 0.414 0.435
E 336 0.489 0479 | 0.441 0.443 | 0438 0.452
Sa) 720 0.536  0.514 | 0.441 0.465 | 0.469 0.485
Average | 0475 0.472 | 0423 0.436 | 0.428 0.447

96 0.323 0367 | 0322 0.364 | 0.298 0.354

E 192 0.344 0.383 | 0.353 0.381 | 0.338 0.380
E 336 0.375 0.403 | 0.388 0.401 | 0.376 0.401
8a) 720 0.446 0.445 | 0.440 0432 | 0416 0427
Average | 0.372 0.400 | 0.376 0.395 | 0.357 0.391

24 1.719 0.799 | 2.280 1.034 | 1.990 0.909

2 36 1.541 0.753 | 2.224 1.018 | 1.913 0.899
E 48 1.687 0.817 | 2.296 1.039 | 2.105 0.964
= 60 1.944 0.880 | 2.364 1.052 | 2423 1.033
Average | 1.723 0.812 | 2291 1.036 | 2.108 0.951

o 96 0.154 0.201 | 0.188 0.243 | 0.184 0.240
2 192 0.199 0.245 | 0.226 0.273 | 0.226 0.271
Ei 336 0.265 0.292 | 0.270 0.302 | 0.271 0.303
= 720 0.344 0350 | 0336  0.347 | 0.335 0.346
Average | 0.241 0.272 | 0.255 0.291 | 0.254 0.290

Table 20: MSE and MAE comparison between LVM architecture and ablation models on TSF
benchmark datasets. Red numbers indicate the best performance for each dataset.

B.7 FULL RESULTS OF RQ6: CAN LVMS CAPTURE TEMPORAL ORDER OF TIME SERIES?

Four kinds of perturbation, Sf-All, Sf-Half, Ex-Half and Masking, are applied to the time series to
compare the performance drop of LVMs, W/0-LVM, and LVM2ATTN on both TSC and TSF tasks.
Table 21 and Table 22 summarize the results. As can be seen, LVMs are more vulnerable to temporal
perturbations than the ablation models.
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B.8 FULL RESULTS OF RQ7: WHAT ARE THE COMPUTATIONAL COSTS OF LVMS?

Fig. 12 presents the accuracy and inference efficiency comparison between LVMs and the two
best-performing baselines on TSC task. Fig. 13 (Fig. 14) presents the MSE (MAE) and inference
efficiency comparisons between LVMs and the two best-performing baselines on TSF task. In general,

LVMs can yield improved performance with higher costs of inference time.

* LVM @ 15 Baseline B 2" Baseline
UWave. Handwrit.
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Spoken. FaceDetect.
995 69.01 ()
T | W ® "
< 985 * 67.01

(0]
Inference Tim

40

e (ms)
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Figure 12: Accuracy vs. inference time of the compared methods on TSC benchmark datasets. Green
marker stands for LVM, Red marker stands for GPT4TS and Blue marker stands for TimesNet.
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Figure 13: MSE vs. inference time of the compared methods on TSF benchmark datasets. Green
marker stands for LVM, Red marker stands for PatchTST and Blue marker stands for GPT4TS.
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Figure 14: MAE vs. inference time of the compared methods on TSF benchmark datasets. Green
marker stands for LVM, Red marker stands for PatchTST and Blue marker stands for GPT4TS.
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B.9 FULL RESULTS OF RQ8: WHICH COMPONENT OF LVMS CONTRIBUTES MORE TO
FORECASTING

Table 23 provides the detailed results on MSE and MAE of the two ablations, Enc w/o Dec and Dec
w/o Enc, of self-supervised LVMs on TSF benchmark datasets. From Table 23, Enc w/o Dec shows
inferior performance to Dec w/o Enc, highlighting the importance of the pre-trained decoders of
LVMs in TSFE.

\ MAE \ SimMIM
| Pre-trained | Enc w/oDec | Dec w/o Enc
Dataset | Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Model

Pre-trained | Enc w/o Dec | Dec w/o Enc

96 0.356  0.383 | 0.420 0.423 | 0.396 0.401 | 0.362 0.383 | 0.466 0.426 | 0.412 0.418

= 192 0.395 0406 | 0.445 0.446 | 0.399 0.414 | 0407 0412 | 0496 0455 | 0.457 0.446
; 336 0.417 0.424 | 0.489 0.484 | 0.441 0433 | 0422 0.417 | 0.499 0.474 | 0.581 0.520
m 720 0.467 0463 | 0.582 0.543 | 0.426 0.451 | 0.462 0.455 | 0.505 0481 | 0.564 0.526
Average | 0.409 0419 | 0484 0474 | 0416 0425 | 0413 0417 | 0492 0.459 | 0.504 0.478

96 0.284 0.333 | 0.324 0363 | 0.295 0.335 | 0.311 0.350 | 0.320 0.347 | 0.299 0.348

E 192 0.328 0.363 | 0.361 0.387 | 0.330 0.364 | 0.335 0.367 | 0.377 0.377 | 0.344 0.378
E 336 0.357 0.384 | 0.398 0.414 | 0.365 0.388 | 0.356 0.382 | 0.411 0.401 | 0.403 0.419
m 720 0.411 0417 | 0.446 0.440 | 0.409 0.416 | 0.400 0.413 | 0.468 0.442 | 0431 0.433
Average | 0.345 0.374 | 0.382 0.401 | 0.350 0.376 | 0.351 0.378 | 0.394 0.392 | 0.369 0.395

24 1.977 0921 | 1.946 0.842 | 1.774 0.841 | 1.934 0.902 | 2.314 0.944 | 2.034 0.899

2 36 1.812 0.872 | 1.981 0.895 | 1.918 0.876 | 1.754 0.825 | 2.434 1.045 | 2.198 0.983
§ 48 1.743  0.856 | 1.967 0.855 | 2.061 0.943 | 1.715 0.867 | 2.008 0.869 | 2.209 0.960
= 60 1.816 0.881 | 1.956 0.858 | 1.969 0.950 | 1.673 0.877 | 1.979 0.865 | 2.275 0.997
Average | 1.837 0.883 | 1.963 0.863 | 1.931 0.903 | 1.769 0.868 | 2.184 0.931 | 2.179 0.960

96 0.146  0.191 | 0.168 0.210 | 0.155 0.201 | 0.148 0.196 | 0.166 0.208 | 0.150 0.200

g 192 0.194 0.238 | 0.237 0.263 | 0.209 0.248 | 0.196 0.243 | 0.228 0.257 | 0.199 0.246
E] 336 0.243 0275 | 0.299 0.306 | 0.274 0.298 | 0.244 0276 | 0.294 0.297 | 0.251 0.284
= 720 0.318 0.328 | 0.396 0.372 | 0.378 0.361 | 0.340 0.340 | 0.382 0.357 | 0.343 0.342
Average | 0.225 0.258 | 0.275 0.288 | 0.254 0.277 | 0.232 0.264 | 0.268 0.280 | 0.236  0.268

Table 23: MSE and MAE comparison of self-supervised LVMs with either the pre-trained encoder
(Dec w/o Enc) or decoder (Enc w/o Dec) excluded on TSF benchmark datasets.

B.10 FULL RESULTS OF RQ9: WILL PERIOD-BASED IMAGING METHOD INDUCE ANY BIAS?

Fig. 15 provides the forecasting performance of an LVM (i.e., MAE) in terms of metrics MAE w.r.1.
segment length that varies from %L to %L. The LVM generally achieves the best performance when
segment length is a multiple of the period, i.e. L or 2L, which is caused by the inductive bias as
discussed in RQS8 In §4.3.

—e— 1 (hypothesis) ETTh1 —— ETTmi1

—a— Weather Illness
1
<
=
o]
S 0
=
.
g
5]
Z
O_ T T T T T T T T T T T T T
Q 5 1
ooy v
Segment Length

Figure 15: Forecasting performance (MAE) of an LVM w.rt. varying segment length used in UVH
imaging. n (green) estimates the difficulty of forecasting.
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B.11 FULL RESULTS OF RQ10: CAN LVMS MAKE EFFECTIVE USE OF LOOK-BACK
WINDOWS?

Table 24 presents the MSE and MAE performance of LVMs across varying look-back window lengths,
ranging from 48 to 2304. As discussed in RQ9, LVMs exhibits limited ability in fully leveraging the
information of look-back window when the window length exceeds approximately 1000 time steps.
The Illness dataset is omitted in Table 24 because its time series are of short lengths, with only 966
time steps in total.

Look-back Window 48 \ 96 \ 192 | 336 | 720 | us2 | 1728 | 2304
Dataset | Metrics | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 0.376  0.395 | 0.373 0390 | 0.364 0.383 | 0.356 0.383 | 0.347 0.375 | 0.347 0.376 | 0.344 0.376 | 0.373  0.402

= 192 0.440 0431 | 0424 0418 | 0411 0412 | 0.395 0.406 | 0.385 0.405 | 0.384 0.402 | 0.391 0.408 | 0.399 0.417
ﬁ 336 0.474 0450 | 0471 0.445 | 0456 0.437 | 0.417 0.424 | 0408 0.418 | 0.410 0418 | 0.395 0.413 | 0408 0.423
m 720 0.485 0477 | 0482 0471 | 0469 0.465 | 0.467 0.463 | 0468 0.460 | 0.432 0440 | 0.425 0.442 | 0424 0.442
Average | 0.444 0.438 | 0.438 0.431 | 0425 0424 | 0409 0419 | 0402 0415 | 0393 0.409 | 0.389 0.410 | 0.401 0.421

96 0443 0413 | 0316 0.353 | 0.304 0.345 | 0.284 0.333 | 0.279 0.324 | 0.280 0.332 | 0.277 0.322 | 0.285 0.326

E 192 0.476 0431 | 0.373 0390 | 0.333 0.365 | 0.328 0.363 | 0.322 0.358 | 0.321 0.361 | 0.321 0.355 | 0.318 0.350
E 336 0.512 0457 | 0.385 0.400 | 0.370 0.390 | 0.357 0.384 | 0.356 0.381 | 0.362 0.383 | 0.352 0.378 | 0.346 0.374
o 720 0.574 0489 | 0449 0438 | 0426 0.429 | 0.411 0417 | 0411 0414 | 0399 0413 | 0411 0.414 | 0407 0416
Average | 0.501 0.448 | 0.381 0.395 | 0.358 0.382 | 0.345 0.374 | 0.342 0369 | 0.341 0.372 | 0.340 0.367 | 0.339 0.367

96 0.200 0.237 | 0.167 0.209 | 0.152 0.196 | 0.146 0.191 | 0.142 0.188 | 0.144 0.194 | 0.143 0.193 | 0.141 0.195

j:) 192 0236 0.267 | 0.212 0.249 | 0.200 0.240 | 0.194 0.238 | 0.188 0.235 | 0.189 0.237 | 0.195 0.242 | 0.200 0.253
B 336 0293  0.307 | 0.268 0.290 | 0.254 0.280 | 0.243 0.275 | 0.247 0281 | 0.242 0.279 | 0.272 0.302 | 0.278 0.307
=z 720 0.370 0.358 | 0.346 0.340 | 0.330 0.333 | 0.318 0.328 | 0.334 0.341 | 0.332 0.339 | 0.344 0.349 | 0.372 0.357
Average | 0.275 0.292 | 0.248 0.272 | 0.234 0.262 | 0.225 0.258 | 0.228 0.261 | 0.227 0.262 | 0.239 0.272 | 0.248 0.278

Table 24: The MSE and MAE performance of LVMs across different look-back window lengths on
TSF benchmark datasets.

B.12 COMPARISON WITH LATEST DIFFUSION-BASED LVM

Table 25 and Table 26 present comparisons with the latest diffusion LVM (Wang et al., 2025) on both
TSC and TSF tasks. For each task, the best basic LVM is used to compare with Lavin-DiT. The
results show no clear advantage over the general LVMs applied in this paper.

Dataset | ViT | Lavin-DiT
UWaveGestureLibrary | 88.4 84.2
SpokenArabicDigits 98.5 97.9
Handwriting 36.4 36.7
FaceDetection 67.4 67.0
Average | 72.6 | 71.5

Table 25: The comparison on performance of diffusion-based LVM on TSC benchmark datasets

\ MAE | Lavin-DiT
Dataset | MSE | MAE | MSE | MAE
ETThl 0.409 | 0.419 | 0.403 | 0.416
ETTm1 | 0.345 | 0.374 | 0.349 | 0.377

Weather | 0.225 | 0.258 | 0.231 | 0.259
Illness 1.837 | 0.883 | 1.733 | 0.859

Table 26: The comparison on performance of diffusion-based LVM on TSF benchmark datasets

C PROOF OF LEMMA 1

In this section, we provide the proof for Lemma 1.
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Proof. Given x is perfectly periodic, T; = %41 4.1, holds when o € Nt and L is the period. The
smallest number of segments n before any segment reoccurs, i.e., X; = Xiin.(i/k)L, indicates

k

GopiE 3 the smallest

n - (i/k) € NT. Hence, the proof of Lemma 1 is equivalent to prove n =
natural number such that k divides n - 4, denoted as k | n - 4.

Set d = GCD(i, k) as the greatest common divisor of ¢ and k. The following is based on the definition
of greated common divisor:

i=d-i 3)
k=d-kK 4)
GCD(i', k') = 1 )

where i/, k' € NT. As k divides n - 4, we have
kln-i=d-K|dn-i
=k |n-d
=k |n (6)
The first step in Eq. equation 6 is expanded with Eq. equation 3 and Eq. equation 4. The second step
cancels the common factor d from both sides of with the divisibility relation unchanged. The last step

follows Eq. equation 5. To satisfy Eq. equation 6, the smallest n is n = k’. Finally, expand k' with
Eq. equation 4, we reach

D VISUALIZATION RESULTS

D.1 VISUALIZATION OF GAF ON TSC TASK

To have a sense about what temporal patterns can be recognized by LVMs for TSC, we visualize the
images of GAF method on the Handwriting and UWaveGestureLibrary datasets in Fig. 16 and Fig.
17, respectively. The examples are randomly sampled from five different classes on both datasets.
From Fig. 16 and Fig. 17, we can observe clear visual patterns that distinguish the GAF images from
different classes, which highlight the effectiveness of GAF as a way to encode time series for LVMs
to process for TSC.

28



Under review as a conference paper at ICLR 2026

Class Name Example 1 Example 2 Example 3

Letter ‘@’

Letter ‘b’

Letter ‘d’

Letter ‘f

Letter ‘w’

Figure 16: Examples of GAF images on the first channel of multivariate time series with 152 time
steps randomly drawn from five classes in the Handwriting dataset.
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Class Name Example 1 Example 2 Example 3

Figure 17: Examples of GAF images on the first channel of multivariate time series with 336 time
steps randomly drawn from five classes in the UWaveGestureLibrary dataset.
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D.2 ILLUSTRATION OF AN INDUCTIVE BIAS OF LVMS DURING TSF

As discussed in RQ8, the imaging method UVH can induce an inductive bias to LVMs in TSF toward
“forecasting periods” by rendering them to combine the past segments to infer future. To illustrate
this, Fig. 18 and Fig. 19 visualize two random examples with varying segment lengths from one
period (24 time steps) to two periods (48 time steps) from ETTh1 and Traffic datasets. The blue lines
represent the time series in look-back window, the red lines represent the ground truth in prediction
horizon, and the green lines represent the forecasted time series by LVMs. The results demonstrate
that LVMs perform best when the segment length aligns with the period of the time series, while the
performance degrades when the segment length shifts from the period. This implies the inductive
bias of combining the past periods as forecasts by LVMs with UVH for TSF.

History = ——— Ground Truth —----- Forecast

\ 4

v

(c) Segment length L = 36 (d) Segment length L = 48

Figure 18: Visualization of LVM’s inductive bias during TSF on a random example from the ETTh1
dataset (period is 24 time steps). From (a) to (d), the segment length vary within {24, 32, 36, 48}.

History = ——— Ground Truth ==-=-_ Forecast

(c) Segment length L = 36 (d) Segment length L = 48

Figure 19: Visualization of LVM’s inductive bias during TSF on a random example from the Traffic
dataset (period is 24 time steps). From (a) to (d), the segment length vary within {24, 32, 36, 48}.
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