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Abstract

Existing semi-supervised learning (SSL) studies typically assume that unlabeled
and test data are drawn from the same distribution as labeled data. However, in
many real-world applications, it is desirable to have SSL algorithms that not only
classify the samples drawn from the same distribution of labeled data but also
detect out-of-distribution (OOD) samples drawn from an unknown distribution.
In this paper, we study a setting called semi-supervised OOD detection. Two
main challenges compared with previous OOD detection settings are i) the lack
of labeled data and in-distribution data; ii) OOD samples could be unseen during
training. Efforts on this direction remain limited. In this paper, we present an
approach STEP significantly improving OOD detection performance by introducing
a new technique: Structure-Keep Unzipping. It learns a new representation space in
which OOD samples could be separated well. An efficient optimization algorithm
is derived to solve the objective. Comprehensive experiments across various OOD
detection benchmarks clearly show that our STEP approach outperforms other
methods by a large margin and achieves remarkable detection performance on
several benchmarks.

1 Introduction

Deep learning has achieved success in many application scenarios, such as computer vision, speech
recognition, natural language processing [10]. The excellent performance typically rely on sufficient
supervised information. However, collecting large amounts of well-labeled training data is not always
available in real-world applications due to the expensive cost of the labeling process. Therefore,
tremendous efforts have been devoted to semi-supervised learning (SSL) [36, 30] which aims
to enhance the model performance by exploiting much cheaper unlabeled data, and have shown
promising performance [52, 37, 29].

Previous SSL studies [39, 41] typically work on the assumption that unlabeled data and test data
are drawn from the same distribution as labeled data. However, it is often the case that such an
assumption fails in practical applications [13, 14]. For example, in document classification [9],
irrelevant documents readily occur in the testing data leading to high-confidence misclassification.
Similar cases commonly appear in other applications, such as medical diagnosis [4] and autonomous
driving [8]. In such applications, it is desirable to have SSL algorithms which could not only
classify samples from known distributions accurately but also be equipped with the ability to detect
out-of-distribution (OOD) samples from unknown distributions precisely.
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OOD detection has been studied for a long history with numerous methods proposed, such as ODIN
[31], Mahalanobis [27], DeConf [20], ELOC [43]. These methods perform OOD detection based on
the logits of the model or the Mahalanobis distance in the feature space. However, it is hard to adapt
these methods to semi-supervised settings because they all rely on massive labeled data. There are
some methods associating with unlabeled data, such as UOOD [49], CSI [40], SSD [38] have been
proposed recently. These methods assume that the model can obtain sufficient in-distribution (ID)
labeled data or ID unlabeled data during the training process. Such an assumption also limits their
ability to practical problems.

Therefore, we study a novel setting called semi-supervised OOD detection. Specifically, only a
tiny subset of ID labeled data is observed. The other ones remain unlabeled and may belong to ID
or OOD. Here, we assume that abundant ID data is contained in the unlabeled data for extracting
ID information. This setting is ubiquitous in real-world applications. For example, in web page
classification [47], acquiring large numbers of web pages annotated with relevant categories is very
expensive, and unlabeled web pages crawled from the Internet according to keywords usually contain
irrelevant pages that belong to unseen categories. In medical diagnosis [4], warning users of the
model’s uncertainty is crucial because any unfaithful diagnosis will bring unimaginable disasters to
the patients’ health. In ride-sharing liability judgment [15], detecting abnormal orders is of significant
value, while collecting training data will meet similar problems stated above. Similar cases often
occur in other real-world applications, such as crowdsourcing [45, 28]. There are two main challenges
for us compared with previous OOD detection settings. First, both the labeled data and directly
available ID data are limited, while sufficient unlabeled data is mixed with ID and OOD samples.
Second, OOD samples could be unseen during the training, requiring more stringent generalization
of the model.

Focusing on semi-supervised OOD detection, we find that the widely-used Mahalanobis distance is no
longer suitable as the confidence score for OOD detection. This is because the necessary covariance
matrix Σ̂ for calculating Mahalanobis distance is hard to estimate accurately with limited ID samples
which will severely affect the performance of OOD detection. To alleviate this issue, we propose a
novel STEP (STructure-keEP) approach. The idea is to detect OOD samples in a detection-specific
space where we maintain the same local topological structures as the original feature space, because
the relationships between samples need to be confirmed through local topological structures. We
introduce a new objective and optimize it efficiently. The experiments prove that our STEP approach
outperforms previous methods by a large margin on diverse data sets.

The contributions of our paper are summarized as follows:

• We propose a practical setting for OOD detection, called semi-supervised OOD detection.

• To alleviate the problem of Mahalanobis distance that the necessary covariance matrix Σ̂
is hard to be estimated with limited ID samples, we present a new distance calculated in a
detection-specific space as OOD confidence scores.

• We evaluate our approach with comprehensive experiments across various OOD detection
benchmarks. Our proposal outperforms previous methods by a large margin and achieves
remarkable detection performance on several benchmarks.

2 Method

2.1 Notations and Setting

In the semi-supervised OOD detection setting, we assume that a limited label data set Dl =
{(xi, yi)}ni=1 consisting n samples with labels drawn from ID, and an unlabeled data set Du =
{(xi)}mi=1 consisting m unlabeled samples drawn both ID and OOD, are accessible during the train-
ing phase. We denote the set of ground-truth classes in the labeled data set Dl and unlabeled data set
Du as Cl and Cu, respectively. The labeled samples can be classified into one of K classes denoted
by Cl = {c1, c2, . . . , cK}, and the unlabeled samples can be classified into the seen K classes Cl and
some unseen classes denoted by Cn = Cu\Cl. The goal is to distinguish whether a sample in Du or
an unknown testing sample is drawn from ID or not.
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2.2 Inaccurate Mahalanobis Distance and Our Approach

Mahalanobis distance which is widely used in previous studies [27, 38], has been proven to be a
powerful metric in OOD detection. MD(xi,xj) denotes the function measuring the Mahalanobis
distance between sample xi and sample xj based on estimated covariance matrix Σ̂:

MD(xi,xj) =

√
(xi − xj)⊤Σ̂−1(xi − xj) (1)

Previous methods mentioned above calculate the minimum Mahalanobis distance between target
sample x and each class center as the confidence score:

SCOREMD(x) = min
c∈c1,c2,...,cK

MD(x, µc) (2)

where µc denotes the center of samples which belong to class c and Σ̂ is the covariance matrix
estimated on all ID samples.

However, Σ̂ is hard to be accurately estimated in a semi-supervised OOD detection setting because the
available ID labeled data set Dl is insufficient. Inaccurate estimation of Σ̂ will affect the calculation
of Mahalanobis distance. This makes it difficult for the algorithm to distinguish OOD samples and
ID samples near the cluster boundary.

Instead of using inaccurate Mahalanobis distance, we decide to learn a P to project samples into space
where a large margin separates ID samples and OOD samples. Inspired by the topological technology
[44] used in noisy label problems and cluster assumption [36] used in SSL, we hope that the projected
samples can maintain the same local topological structure as the original space while increasing the
distance between samples not directly topologically connected. Because of the inaccurate estimation
of Σ̂, we consider that relationship between samples that are not topologically adjacent is uncertain.
Their relationships need to be confirmed through each local topological structure. We formulate our
goal into the objective:

max
P

∑
xi,xj∈Dl∪Du

∥Pxi −Pxj∥2

s.t. ∥Pxi −Pxn∥2 = MD(xi,xn),

if xn ∈ Bk(xi)

(3)

where, M(xi,xj) is the Mahalanobis distance between xi and xj in the feature space and Bk(xi) is
the set of k nearest neighbours of xi.

Finally, our detection-specific metric can directly calculate as L2 distance in the projected space:

N (xi,xj) = ∥Pxi −Pxj∥2 (4)

2.3 Backbone Pretraining

Our semi-supervised OOD detection task considers OOD detection as a clustering problem based on
the feature space. Therefore, reliable feature representations are essential. Benefiting from recent
progress on self-supervised learning, we adopt a simple contrastive learning method SimCLR [5]
to pre-train our backbone network on the whole dataset Du ∪ Dl in an unsupervised fashion. We
find that representations obtained by SimCLR have a reasonable ability to distinguish ID and OOD
samples. Notably, the learned representations could be not only used for our STEP approach but also
used as the initialization of downstream tasks.

2.4 Structure-Keep Unzipping

Based on the representations obtained by SimCLR, we further train a P to project samples into
a detection-specific space via our objective formulated in Eq.(3). However, there are two main
difficulties: i) Building a KNN graph for extracting topological structure needs O(n2d2) time
complexity to calculate Mahalanobis distance between each pair of samples. This step is very time-
consuming because we use an ensemble of representations from each backbone network’s layer, and
feature dimension d is relatively large. ii) The constraint in Eq.(3) can not be directly optimized.
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Figure 1: The overall of STEP approach: (a) In initial step, we use contrastive learning to train
initial representations. (b) In step A, we estimated statistics information via limited labeled data and
extracted topological structure via the KNN algorithm. (c) In step B, we train a P to project all the
samples into a detection-specific space where we can use L2 distances as OOD scores.

First, we transform the process of calculating pairwise Mahalanobis distance into calculating pairwise
Euclidean distance in projection space. The time complexity of this step reduces from O(n2d2)

to O(n2d). Specifically, as shown in Eq.(5), we can perform cholesky decomposition on Σ̂−1

to get linear projector the PMD. Then, we multiply all samples by PMD to project them into a
new space where Euclidean distance equals to original Mahalanobis distance between each pair of
samples. There are n2 pairwise Euclidean distances to calculate, and each calculation costs O(d)
time complexity. Therefore, the total time complexity of this step is O(n2d).

MD(xi,xj) =

√
(xi − xj)⊤Σ̂−1(xi − xj) = ∥PMDxi −PMDxj∥2

s.t. P⊤
MDPMD = Σ̂−1

(5)

After converting Mahalanobis distance to Euclidean distance, we can further use the advanced KNN
toolkit, such as Faiss [22], to speed up the entire process.

Second, we define LKeep and LUnzip that can be directly optimized to approximately achieve our
objective shown in Eq.(3). Both LKeep and LUnzip are shown in Eq.(6):{

LKeep = max(0, ∥Pxi −Pxn∥2 −MD(xi,xn)),

LUnzip = −∥Pxi −Pxj∥2.
(6)

where xi,xj are randomly sampled from Dl ∪ Du, and xn is randomly sampled from Bk(xi). The
final loss to optimize P is Loss = LKeep+LUnzip. The overall of our STEP approach is summarized
in Fig.(1), and the pseudo-code of our approach is shown in Algo.(1).

In the detection stage, we directly use the minimum L2 distance between the target sample and each
class center in the detection-specific space as the confidence score:

Score(x) = min
c∈{c1,c2,...,cK}

N (x,µc) (7)

where the µc is the center of class c in the original feature space.

3 Experiments

3.1 Experimental Setup

In-distribution Data Set. We use CIFAR-10 and CIFAR-100 [25] as ID data sets in our experiments.
They both contain 50,000 training images and 10,000 testing images. The image size of these two
data sets is 32 × 32. For CIFAR-10, each image belongs to one of 10 classes, and we randomly
sample 250 training images as ID labeled data Dl. For CIFAR-100, the size of image classes is 100,
and we randomly sample 400 training images as ID labeled data. Dl. We add the remaining training
images to the unlabeled data Du.
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Algorithm 1 Training Phase of STEP

Input: Dl: ID labeled data set; Du: unlabeled mixed data set; K: number of neighbours
Output: pre-trained backbone fθ(·); projctor P

1: train backbone fθ(·) via contrastive learning on Dl ∪ Du

2: estimate Σ̂ on Dl with fθ(·)
3: calculate PMD based on Σ̂−1

4: build KNN on Dl ∪ Du with PMD and fθ(·)
5: for epoch ∈ {1, 2, . . . , epochmax} do
6: randomly sample xi,xj from Dl ∪ Du

7: randomly sample xn from Bk(xi)
8: calculate Loss based on Eq.(6)
9: optimize P via SGD according to Loss

10: end for
11: return fθ(·) and P

Out-of-distribution Data Set. We use Tiny ImageNet data set [6] and Large-scale Scene Understand-
ing data set [48] as OOD data sets. The Tiny ImageNet data set (TIN) is a subset of ImageNet, which
contains 10,000 test images, includes 200 different classes. Following the settings used by previous
studies [31, 43, 49], we use two variants of TIN: TinyImageNet-crop (TINc) and TinyImageNet-resize
(TINr), by randomly cropping or downsampling each image to 32× 32, respectively. The Large-scale
Scene Understanding data set (LSUN) contains 10,000 testing images belonging to 10 different
scene categories. Similarly, we use two variants of LSUN: LSUN-crop (LSUNc) and LSUN-resize
(LSUNr). Because some comparison methods in our experiments heavily rely on OOD validation.
We randomly draw several images from ID testing images and OOD images as the OOD validation
set. The rest of the OOD images are added to unlabeled data Du and used as testing data. These
OOD data sets are released by ODIN [31] with their code1.

Comparsion Methods. We compare our STEP approach with representative OOD detection methods,
including the state-of-the-art UOOD method. ODIN [31] is a common baseline of OOD detection.
It uses maximal softmax score combining temperature scaling and input preprocessing tricks to
distinguish ID and OOD samples. MAH [27] uses Mahalanobis distance as the OOD confidence
score. For features of each layer in the backbone model, it independently calculates the Mahalanobis
distances between the target sample and each known class center. Then it integrates them by weighted
averaging via an extra OOD validation set. We denote it as MAH † because it uses a validation set
when training. UOOD [49] utilizes a two-head CNN consisting of one common feature extractor and
two classifiers which has different decision boundaries to detect OOD samples. This method optimizes
a discrepancy loss between two classifiers during the training stage and uses this discrepancy as the
OOD score when testing. However, this method relies on extra OOD validation to perform model
selection. Therefore, we denoted it as UOOD † in our experiments. For fair comparisons, we also
implement a variant of it denoting as UOOD . UOOD that uses discrepancy loss to perform model
selection instead of the performance on an extra OOD validation set.

Evaluation Metrics. Following the settings used by previous studies [49, 43, 31], we evaluate our
approach with five common metrics: AUROC, FPR at 95% TPR, Detection Error, AUPR-In, and
AUPR-Out. More details about evaluation metrics are presented in the supplementary material.

Implementation Details. In all experiments, we adopt the Densenet-BC [21] as the backbone since
it is widely used in previous studies [49, 43, 31]. Our backbone is trained by SOTA contrastive
learning method SimCLR [5] for 500 epochs. We set the learning rate to 10−3 with a cosine annealing
strategy. For fair comparisons, each comparison method can use the pre-trained backbone model.
MAH [27] uses the features from different layers extracted from the pre-trained backbone model.
A well-trained linear classifier with a pre-trained backbone model is provided for ODIN [31] and
UOOD [49]. The hyper-parameter K for STEP is set to 12 for all data set pairs. All experiments are
performed on one single NVIDIA 3090 graphics card. More details on implementation are provided
in the supplementary material and our code has been open source 2.

1https://github.com/ShiyuLiang/odin-pytorch
2https://www.lamda.nju.edu.cn/code_step.ashx
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3.2 Experiment Results

OOD Detection Performance. We evaluate STEP with compared methods on various OOD bench-
marks. Analyzed by five common metrics, the results are shown in Tab.(1). From the results, we
observe that ODIN suffers from severe performance degradation. Moreover, its performance is close
to random guessing in some cases. The limitation of labeled data mainly causes this. We can hardly
train a high-quality classification model to provide accurate logits for ODIN . Hence, ODIN can not
give the correct judgment based on inaccurate logits. Our STEP approach outperforms methods that
do not heavily rely on an OOD validation set by a large margin. Even compared with those methods
that heavily rely on the OOD validation set, such as UOOD † and MAH †, our STEP approach is
still better than them in most cases. However, a good OOD validation set is expensive and nearly
impossible to build in the real world. The number of OOD samples can be infinitely many, and a
fixed-size validation set cannot capture the complete OOD information. Therefore, introducing the
validation set during training will reduce the model’s generalization in the real environment. We will
verify this in detail in subsequent experiments.

Table 1: Performance comparison on various OOD benchmarks evaluated by 5 common metrics.
Methods with † use extra OOD validation set. The best results are indicated in bold. Our approach
outperforms other methods in most cases, even though they use an extra OOD validation set.

Metrics ID
Dataset

OOD
Dataset ODIN MAH † UOOD UOOD † STEP

A
U

R
O

C

↑

C
ifa

r1
0 TINc 81.00 ± 6.30 87.67 ± 2.47 90.46 ± 9.74 99.07 ± 0.48 99.99 ± 0.00

TINr 59.10 ± 2.08 86.88 ± 0.87 84.67 ± 9.41 92.63 ± 3.42 95.61 ± 0.36
LSUNc 76.17 ± 5.37 97.68 ± 0.09 96.92 ± 2.04 98.79 ± 0.67 99.99 ± 0.00
LSUNr 69.05 ± 3.49 90.41 ± 1.00 80.87 ± 24.45 97.81 ± 0.94 99.07 ± 0.20

C
ifa

r1
00 TINc 61.65 ± 6.71 71.15 ± 2.20 98.34 ± 1.57 98.84 ± 0.83 99.99 ± 0.01

TINr 54.46 ± 0.74 73.94 ± 1.79 84.80 ± 8.87 95.31 ± 0.93 93.51 ± 1.17
LSUNc 46.99 ± 4.99 93.91 ± 3.41 97.49 ± 1.48 99.31 ± 0.62 99.99 ± 0.00
LSUNr 52.06 ± 2.24 78.45 ± 1.11 97.61 ± 0.55 98.96 ± 0.40 98.20 ± 0.56

F
P
R

at
95

%
T
P
R

↓

C
ifa

r1
0 TINc 53.37 ± 10.55 44.17 ± 6.43 29.35 ± 30.05 2.75 ± 1.65 0.00 ± 0.00

TINr 89.76 ± 1.45 58.57 ± 3.09 31.72 ± 11.50 19.61 ± 9.50 17.63 ± 1.10
LSUNc 64.06 ± 9.12 7.73 ± 0.46 6.59 ± 3.22 3.56 ± 1.93 0.00 ± 0.00
LSUNr 76.89 ± 5.04 45.41 ± 3.87 32.69 ± 31.93 6.49 ± 2.89 4.48 ± 1.02

C
ifa

r1
00 TINc 84.24 ± 8.02 90.15 ± 1.99 5.22 ± 5.59 3.16 ± 2.25 0.00 ± 0.01

TINr 90.10 ± 0.46 80.55 ± 1.89 29.09 ± 15.68 11.10 ± 4.21 23.21 ± 4.14
LSUNc 93.49 ± 2.42 24.93 ± 21.75 6.24 ± 3.80 1.93 ± 2.43 0.00 ± 0.00
LSUNr 89.79 ± 0.79 69.69 ± 2.42 4.92 ± 1.33 2.39 ± 0.74 8.25 ± 3.14

D
et

ec
tio

n
E

rr
or

↓

C
ifa

r1
0 TINc 25.53 ± 4.67 19.93 ± 2.63 11.59 ± 11.35 2.54 ± 1.27 0.12 ± 0.01

TINr 43.04 ± 1.48 20.14 ± 0.82 18.07 ± 5.55 11.71 ± 4.56 10.77 ± 0.52
LSUNc 29.57 ± 3.82 6.28 ± 0.25 4.20 ± 2.12 2.58 ± 1.32 0.11 ± 0.01
LSUNr 35.52 ± 2.46 16.23 ± 0.95 18.40 ± 15.68 4.99 ± 1.91 4.66 ± 0.57

C
ifa

r1
00 TINc 40.95 ± 5.07 32.58 ± 1.64 3.67 ± 3.62 2.76 ± 1.00 0.32 ± 0.06

TINr 46.36 ± 0.56 31.09 ± 1.44 16.53 ± 7.87 6.88 ± 2.33 13.26 ± 1.61
LSUNc 48.47 ± 1.61 11.20 ± 3.73 4.24 ± 2.34 2.06 ± 1.54 0.23 ± 0.04
LSUNr 46.73 ± 0.66 27.33 ± 1.03 3.11 ± 0.78 1.90 ± 0.51 6.40 ± 1.32

A
U

PR
-I

n

↑

C
ifa

r1
0 TINc 76.80 ± 8.20 85.35 ± 2.86 89.31 ± 10.05 98.59 ± 0.67 99.99 ± 0.00

TINr 57.10 ± 2.11 86.79 ± 1.17 79.02 ± 12.17 88.72 ± 4.93 94.71 ± 0.51
LSUNc 72.16 ± 6.60 96.70 ± 0.21 94.78 ± 4.07 98.31 ± 0.92 100.00 ± 0.00
LSUNr 65.37 ± 3.39 89.93 ± 1.23 79.41 ± 19.89 96.86 ± 1.27 99.02 ± 0.20

C
ifa

r1
00 TINc 58.29 ± 5.01 71.18 ± 2.69 97.55 ± 2.04 98.24 ± 1.50 99.99 ± 0.01

TINr 52.96 ± 0.59 70.95 ± 2.20 77.32 ± 9.81 91.67 ± 1.29 91.91 ± 1.34
LSUNc 47.41 ± 2.86 92.26 ± 2.17 95.45 ± 2.32 99.09 ± 0.88 99.99 ± 0.00
LSUNr 50.47 ± 1.75 74.22 ± 1.14 95.53 ± 0.95 98.11 ± 0.78 98.07 ± 0.52

A
U

PR
-O

ut

↑

C
ifa

r1
0 TINc 83.63 ± 5.11 88.67 ± 2.28 91.34 ± 8.69 99.32 ± 0.35 99.99 ± 0.00

TINr 58.83 ± 1.77 84.26 ± 0.95 89.21 ± 6.22 94.60 ± 2.70 96.31 ± 0.28
LSUNc 78.43 ± 5.12 98.16 ± 0.12 98.01 ± 1.18 99.14 ± 0.48 99.99 ± 0.00
LSUNr 70.51 ± 3.97 88.84 ± 1.20 84.45 ± 21.48 98.41 ± 0.70 99.14 ± 0.19

C
ifa

r1
00 TINc 62.88 ± 7.90 65.14 ± 2.21 98.77 ± 1.23 99.08 ± 0.51 99.99 ± 0.01

TINr 55.94 ± 0.71 71.57 ± 1.71 89.44 ± 6.96 96.84 ± 0.82 94.66 ± 1.07
LSUNc 49.91 ± 4.42 93.77 ± 5.30 98.33 ± 0.99 99.39 ± 0.48 99.99 ± 0.00
LSUNr 55.18 ± 1.56 78.19 ± 1.33 98.49 ± 0.37 99.32 ± 0.24 98.35 ± 0.56
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Generalization of OOD Detection. Our STEP approach and some previous studies (e.g., UOOD
, MAH ) could utilize OOD samples during the training phase. For example, our STEP performs
contrastive learning on both ID and OOD data, UOOD optimizes the discrepancy loss on ID and
OOD unlabeled data and selects the final model with an extra OOD validation set, MAH tunes their
weighting parameters on an OOD validation set. Let known OOD samples denote the OOD samples
that the algorithm used during the training phase, contrasting to unknown OOD samples. We want
to explore whether the use of known OOD samples will reduce the performance of the model on
unknown OOD samples. Therefore, we design a novel experiment for algorithms using OOD samples,
in which the model is trained with ID dataset and known OOD samples while tested with unknown
samples. As an example, we train the model on the ID data set (CIFAR-10) and OOD data set (TINr)
and replace all OOD samples in the test set with a new OOD data set (TINc) when testing. An
OOD detection model with strong generalization should obtain consistent performance, no matter
what OOD data set we used to construct the testing set. We tested four OOD detection methods on
CIFAR-10 with two different OOD data set pairs. From the results shown in Fig.(2), we found that
UOOD † and MAH † have severe performance degradation when detecting unknown OOD samples.
This phenomenon is because the OOD validation set used by these methods introduces a severe bias
to their models. Furthermore, we also conducted experiments to analyze the relationship between
OOD detection performance and loss and verified the instability in the training process of the SOTA
UOOD † method. We put the extra experiments in the supplementary material. ODIN’s performance
changes very randomly, which is also in line with expectations because it has only seen ID data
during the training process. Our STEP approach gives a high and relatively close performance on
both known and unknown OOD data sets, which proves the effectiveness and strong generalization of
our approach. Further, we suggest that the experimental method proposed should be verified in all
future OOD detection studies that use OOD samples in the training process.

Figure 2: Performance of different methods on Known / Unknown OOD data set evaluated by
various metrics. The results shows that our STEP approach not only has very good OOD detection
performance, but also can generalize to unknown OOD samples.

Ablation Study. As introduced in Section 2, our STEP approach contains four components in total:
MAH, KNN, Unzipping, and Structure-Keep. Comprehensive ablation studies are conducted to verify
the effectiveness of each component. As shown in Tab.(2), we sequentially add the components of
STEP and verify the performance of each model on two OOD benchmarks. The first line in the table
shows the results of directly distinguishing the minimum Mahalanobis distance from the target sample
to each class center. Since necessary Σ̂ cannot be accurately estimated, the detection performance is
not ideal. The second line proves that the geodetic distance can alleviate the inaccurate estimation
problem to a certain extent, thereby improving the detection performance. The third line is the
incomplete version of our STEP approach to remove Structure-Keep. The result of this line proves
that the Structure-Keep technique is very important. Otherwise, the detection performance will be
greatly reduced. The fourth line, our STEP approach, gives the best results. This proves that the four
steps proposed in this article can only be integrated together to get the best results.
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Table 2: Ablation Study of our STEP approach evaluated by AUROC. This table proves that every
part of our approach is indispensable.

Different parts of STEP Data set pair
MAH KNN Unzipping Sturture-Keep Cifar10-TINr Cifar10-LSUNr

✓ 90.96 ± 0.28 93.46 ± 0.51
✓ ✓ 91.26 ± 1.74 97.35 ± 0.45
✓ ✓ ✓ 79.58 ± 0.69 80.38 ± 0.95
✓ ✓ ✓ ✓ 95.62 ± 0.39 99.07 ± 0.20

Robustness. In this paragraph, we verify the robustness of STEP to hyper-parameter K and the
number of labeled data |Dl|. We test the performance of STEP on different OOD data sets for
different choices of K in a large range from 2 to 18. Fig.(3a) shows that STEP is not sensitive to the
hyper-parameter K (the number of neighbors when KNN is built). Furthermore, we find that choosing
a smaller K helps improve the detection performance. Then we test how the amount of ID labeled
data affects the performance of different methods. From the results shown in Fig.(3b), we find that
our STEP is very tolerant of the amount of ID labeled data. Even in the case of extremely insufficient
ID labeled data, an acceptable performance still can be achieved by our STEP approach.

(a) AUROC with various K on different OOD bench-
marks.

(b) AUROC of different methods with various sizes
of labeled data.

Figure 3: The robustness of STEP approach. (a), (b) show that STEP approach is robust on K and size
of labeled data, respectively.

4 Related Work

This work is mainly related to self-supervised learning, semi-supervised learning, positive-unlabeled
learning, and OOD detection.

Self-supervised learning. Self-supervised learning is a powerful framework to learn discriminative
feature representations in an unsupervised fashion via artificially designed auxiliary tasks. Recently,
contrastive learning [17, 5] shows remarkable progress on it. Benefiting from the progress, some
studies [42, 16] utilize the learned representations to cluster samples with unseen labels. STEP
proposed in this paper takes advantage of the powerful features derived from the use of contrastive
learning. Any progress in comparative learning can be used by STEP to further improve OOD
detection performance.

Semi-supervised learning. SSL [36] aims to leverage unlabeled data to improve the performance
of the model when plenty of labeled data is inconvenient and expensive to access. Our paper is
mainly related to deep SSL. The combining of SSL technology and DNNs has significantly improved
classification accuracy. Many excellent studies, such as consistency regularization based methods
[41, 35], entropy minimization based methods [11] and holistic methods [3, 39], have been proposed
in recent years. There are also some studies [13, 50] that focus on improving the safeness of SSL.
Specifically, they aim to ensure the performance of SSL when unlabeled data contains OOD samples.
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However, these studies all consider the classification performance of the model for known categories
under the semi-supervised setting and ignore the problem of overconfidence in the OOD sample
when testing. Efforts on this issue remain limited. Therefore, we propose the semi-supervised OOD
detection setting and design STEP approach for it.

Positive-unlabeled learning. PU learning [1] is the setting where a learner only has access to positive
examples and unlabeled data. Studies in this direction can be mainly divided into three categories:
two-step techniques [32], biased learning [33] and class prior incorporation [7]. Some recent studies
expand this technique into the situation that includes anomalies and OOD samples. ADOA [51]
considers the anomaly detection problem where we only can observe some labeled anomalies along
with unlabeled data. PUC [46] aims to select data for network compression from massive unlabeled
data that may contain OOD samples. However, these methods only consider the known distributions
which pay little attention on the detection performance of unknown distribution.

OOD detection. OOD detection has been studied for a long history. The baseline [18] of this
problem attempts to detect OOD samples depending on the predicted softmax class probability.
Modified generative adversarial networks [26] are used to generate challenging OOD samples during
the training stage, and the algorithm encourages the classifier to assign OOD samples uniform
class probabilities. ODIN [31] applies the temperature scaling and input preprocessing to further
strengthen the difference between ID samples and OOD samples. ELOC [43] uses the ensemble of
K leave-out classifiers to detect OOD samples. There are some other studies that use energy-based
models [34, 12], hierarchical relations [23, 24], and so on. The current state-of-the-art method [49]
for OOD detection utilizes the discrepancy between two classifiers to separate ID and OOD samples.
Nevertheless, these studies either assume that there is an accurate classification model or assume that
there is sufficient labeled data, which limits their application in the real world. There are also some
unsupervised OOD detection studies [40, 19, 2, 38] utilizing the power of the contrastive learning
framework. However, although these studies do not require labels, they still need a large amount
of ID data for training. Previous studies [13] have reported that collecting clean unlabeled data is
also very difficult in the real world. Hence, we study a more general setting that is very common in
real-world applications in this paper.

5 Conclusions

In this paper, we propose a novel OOD detection setting, called semi-supervised OOD detection.
In this setting, we aim to distinguish ID and OOD samples by using limited ID labeled data and
large amounts of mixed unlabeled data. Due to the generality of this setting, it commonly occurs
in real-world applications. In the case of only having limited ID labeled data, we find that the
previous studies have suffered performance degeneration, mainly due to the inaccurate estimation
from the limited ID data. Focusing on this setting, we propose a novel STEP approach. Our main
idea is to detect OOD samples in a detection-specific space where we maintain the same local
topological structures as the original feature space. Our STEP approach outperforms other methods by
a large margin in most cases and achieves remarkable detection performance on several benchmarks.
Meanwhile, we also conduct comprehensive experiments to verify the robustness and generalization
of our STEP approach. The limitation of our work is the lack of solid theoretical results. Broadly
speaking, other OOD detection methods also have similar problems. We will put efforts into the
theoretical understanding of OOD detection in future work.

Broader Impact

In this work, we study OOD detection, which is a fundamental problem in deep learning. Specifically,
we first proposed a novel OOD detection setting. In this setting, only limited ID labeled data and
many mixed unlabeled data can be used for OOD detection. This is a novel and practical setting
commonly appearing in real-world applications because under this setting, we neither require a large
amount of labeled data nor clean unlabeled data. We propose the STEP approach to detect OOD
samples in a detection-specific space, greatly improving the performance of OOD detection. Our
work will give instructions for those applications having difficulties collecting large quantities of pure
ID labeled data while demanding detecting OOD samples to prevent potential dangers in real-world
applications. At the same time, there is still much room for exploration in this setting. We hope our

9



work can inspire more discussions about OOD detection in real scenarios and drive more researchers
to build practical and robust OOD detection algorithms.

Meanwhile, we are aware that abuse of this technology can pose ethical issues. In particular, we note
that people expect that real people rather than algorithms make the judgments behind the system.
Despite the risks of such AI research, developing and demonstrating such technologies is essential to
understand the technology’s practical and potentially troublesome applications. We hope that the
responsible use of technology will stimulate discussion about these methods’ practices and controls.
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